CN114291879B - A kind of preparation method of aluminum silicate - Google Patents
A kind of preparation method of aluminum silicate Download PDFInfo
- Publication number
- CN114291879B CN114291879B CN202111396047.0A CN202111396047A CN114291879B CN 114291879 B CN114291879 B CN 114291879B CN 202111396047 A CN202111396047 A CN 202111396047A CN 114291879 B CN114291879 B CN 114291879B
- Authority
- CN
- China
- Prior art keywords
- silicon
- reaction
- aluminum silicate
- containing alkaline
- slag
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 title claims abstract description 18
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 54
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims abstract description 54
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 51
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 51
- 239000010703 silicon Substances 0.000 claims abstract description 51
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 44
- 238000006243 chemical reaction Methods 0.000 claims abstract description 40
- 239000002893 slag Substances 0.000 claims abstract description 40
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 38
- 239000007788 liquid Substances 0.000 claims abstract description 36
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims abstract description 31
- 239000008103 glucose Substances 0.000 claims abstract description 31
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims abstract description 20
- 238000005406 washing Methods 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 16
- 238000001914 filtration Methods 0.000 claims abstract description 12
- 238000001035 drying Methods 0.000 claims abstract description 10
- 238000003756 stirring Methods 0.000 claims abstract description 5
- 238000001556 precipitation Methods 0.000 claims abstract description 4
- 238000004321 preservation Methods 0.000 claims description 21
- 238000010009 beating Methods 0.000 claims description 10
- 230000035484 reaction time Effects 0.000 claims description 9
- 239000013049 sediment Substances 0.000 claims description 5
- 238000009413 insulation Methods 0.000 claims 2
- 238000002386 leaching Methods 0.000 abstract description 7
- 239000000047 product Substances 0.000 abstract description 7
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 abstract description 6
- 239000011734 sodium Substances 0.000 abstract description 6
- 229910052708 sodium Inorganic materials 0.000 abstract description 6
- CMZUMMUJMWNLFH-UHFFFAOYSA-N sodium metavanadate Chemical compound [Na+].[O-][V](=O)=O CMZUMMUJMWNLFH-UHFFFAOYSA-N 0.000 abstract description 6
- 239000002699 waste material Substances 0.000 abstract description 6
- 229910000166 zirconium phosphate Inorganic materials 0.000 abstract description 6
- 238000000605 extraction Methods 0.000 abstract description 5
- 239000012535 impurity Substances 0.000 abstract description 5
- 238000000576 coating method Methods 0.000 abstract description 2
- 239000000049 pigment Substances 0.000 abstract description 2
- 239000002244 precipitate Substances 0.000 abstract description 2
- 239000002994 raw material Substances 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 238000004537 pulping Methods 0.000 abstract 1
- 238000004064 recycling Methods 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 9
- 238000001816 cooling Methods 0.000 description 6
- 238000007654 immersion Methods 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
Landscapes
- Processing Of Solid Wastes (AREA)
Abstract
Description
技术领域technical field
本发明涉及化工领域,具体涉及一种硅酸铝的制备方法。The invention relates to the field of chemical industry, in particular to a method for preparing aluminum silicate.
背景技术Background technique
钒渣钠化焙烧-水浸提钒工艺,主要采用钠盐作为焙烧添加剂,在高温有氧条件下焙烧,生成溶于水的钒酸钠,水浸后获得钒酸钠溶液,进一步沉钒获得钒产品,但钒渣中含有大量硅,与钠形成硅酸钠,也一同进入溶液中,硅酸钠在钒液中,如果不去除,会影响沉钒及钒产品质量。Vanadium slag sodium roasting-water leaching vanadium extraction process, mainly uses sodium salt as roasting additive, roasts under high temperature and aerobic conditions, generates sodium vanadate soluble in water, obtains sodium vanadate solution after water immersion, and further precipitates vanadium to obtain Vanadium products, but the vanadium slag contains a lot of silicon, which forms sodium silicate with sodium, and enters the solution together. If the sodium silicate is not removed in the vanadium liquid, it will affect the quality of vanadium precipitation and vanadium products.
常用的除硅方法有很多,例如,《碱性钒液沉淀法除硅研究》中报道了采用硫酸镁除硅效果最佳,《含钒碱浸液除硅试验研究》中研究采用一种絮凝剂进行除硅,《无盐焙烧浸出液深度除杂工艺研究》中研究了先加入生石灰除磷,除硅剂选择氢氧化铝,杂质元素满足国标要求。目前,大量文献及专利报道均停留在单纯除硅磷,而得到的除杂渣需要二次提钒或直接与残渣堆存,作为废弃物使用,造成了资源的浪费。There are many commonly used silicon removal methods. For example, it is reported in "Research on Silicon Removal by Alkaline Vanadium Liquid Precipitation" that magnesium sulfate has the best effect on silicon removal. In the "Study on Deep Impurity Removal Process of Salt-Free Roasting Leach Liquor", it is studied that quicklime is added to remove phosphorus first, and aluminum hydroxide is selected as the silicon removal agent. The impurity elements meet the requirements of the national standard. At present, a large number of literature and patent reports are still on the simple removal of silicon and phosphorus, and the obtained slag needs to be extracted twice or directly stored with the residue, and used as waste, resulting in a waste of resources.
发明内容Contents of the invention
本发明的目的是为了克服现有技术存在的除硅得到的除杂渣作为废弃物存放造成资源浪费、污染环境,以及除硅获得的硅酸铝纯度不高等问题,提供一种硅酸铝的制备方法,该方法在有效除硅的同时,还能得到高纯度的硅酸铝。The purpose of the present invention is to provide a kind of aluminosilicate to overcome the existing problems in the prior art that the impurity-removing slag obtained by removing silicon is stored as waste, causing waste of resources, polluting the environment, and the purity of aluminum silicate obtained by removing silicon is not high. A preparation method, the method can obtain high-purity aluminum silicate while effectively removing silicon.
为了实现上述目的,本发明提供一种硅酸铝的制备方法,所述方法包括以下步骤:In order to achieve the above object, the invention provides a kind of preparation method of aluminum silicate, described method comprises the following steps:
(1)向含硅碱性钒液中加入硫酸铝,在搅拌下进行反应,然后进行过滤和洗涤,得到沉淀渣;(1) adding aluminum sulfate to silicon-containing alkaline vanadium liquid, reacting under stirring, then filtering and washing to obtain precipitated slag;
(2)将步骤(1)所得沉淀渣加入水中进行打浆,然后加入葡萄糖进行反应,接着加入乙醇进行反应,然后进行过滤、洗涤和烘干;(2) adding the precipitated slag obtained in step (1) into water for beating, then adding glucose for reaction, then adding ethanol for reaction, then filtering, washing and drying;
其中,所述硫酸铝与所述含硅碱性钒液中的硅的摩尔比为1:2-3。Wherein, the molar ratio of the aluminum sulfate to the silicon in the silicon-containing alkaline vanadium solution is 1:2-3.
优选地,在步骤(1)中,所述含硅碱性钒液中硅的浓度为0.6-3g/L,所述含硅碱性钒液的pH值为9.5-10.5。Preferably, in step (1), the silicon concentration in the silicon-containing alkaline vanadium liquid is 0.6-3 g/L, and the pH value of the silicon-containing alkaline vanadium liquid is 9.5-10.5.
优选地,在步骤(1)中,反应温度为95℃-99℃,反应时间为30-60min。Preferably, in step (1), the reaction temperature is 95°C-99°C, and the reaction time is 30-60min.
优选地,所述步骤(2)的具体过程包括:将步骤(1)所得沉淀渣加入水中在95-99℃下打浆,然后在95-99℃下加入葡萄糖进行保温反应,接着降温至45-60℃时加入乙醇进行保温反应,然后进行过滤、洗涤和烘干。Preferably, the specific process of the step (2) includes: adding the precipitated slag obtained in the step (1) into water for beating at 95-99° C., then adding glucose at 95-99° C. for heat preservation reaction, and then cooling to 45-99° C. Add ethanol at 60°C for heat preservation reaction, then filter, wash and dry.
优选地,在步骤(2)中,所述沉淀渣和水的固液比为1g:1.5-2.5mL。Preferably, in step (2), the solid-to-liquid ratio of the precipitated slag and water is 1g:1.5-2.5mL.
优选地,在步骤(2)中,所述葡萄糖与所述沉淀渣的重量比为0.3-0.5:100。Preferably, in step (2), the weight ratio of the glucose to the sediment residue is 0.3-0.5:100.
优选地,在步骤(2)中,所述乙醇的加入量为加入葡萄糖进行反应得到的溶液体积的0.05-0.3体积%。Preferably, in step (2), the amount of ethanol added is 0.05-0.3% by volume of the volume of the solution obtained by adding glucose for reaction.
优选地,在步骤(2)中,加入葡萄糖保温反应的反应时间为80-180min。Preferably, in step (2), the reaction time of adding glucose and incubating the reaction is 80-180min.
优选地,在步骤(2)中,加入乙醇保温反应的反应时间为30-60min。Preferably, in step (2), the reaction time of adding ethanol and insulated reaction is 30-60min.
优选地,在步骤(2)中,打浆时间为30-45min。Preferably, in step (2), the beating time is 30-45min.
通过使用本发明所述的方法对钒渣钠化焙烧-水浸提钒工艺中水浸后获得的钒酸钠溶液进行处理,在保证高效去除杂质硅的前提下,还能够获得高纯度的硅酸铝产品,减少了废弃物的排放,实现了资源化利用。得到的高纯硅酸铝产品可直接作为生产颜料和涂料的原料使用。By using the method of the present invention to treat the sodium vanadate solution obtained after water immersion in the vanadium slag sodium roasting-water leaching vanadium extraction process, high-purity silicon can also be obtained under the premise of ensuring efficient removal of impurity silicon Acid aluminum products reduce waste emissions and realize resource utilization. The obtained high-purity aluminum silicate products can be directly used as raw materials for the production of pigments and coatings.
具体实施方式Detailed ways
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。Specific embodiments of the present invention will be described in detail below. It should be understood that the specific embodiments described here are only used to illustrate and explain the present invention, and are not intended to limit the present invention.
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。Neither the endpoints nor any values of the ranges disclosed herein are limited to such precise ranges or values, and these ranges or values are understood to include values approaching these ranges or values. For numerical ranges, between the endpoints of each range, between the endpoints of each range and individual point values, and between individual point values can be combined with each other to obtain one or more new numerical ranges, these values Ranges should be considered as specifically disclosed herein.
本发明提供一种硅酸铝的制备方法,所述方法包括以下步骤:The invention provides a kind of preparation method of aluminum silicate, described method comprises the following steps:
(1)向含硅碱性钒液中加入硫酸铝,在搅拌下进行反应,然后进行过滤和洗涤,得到沉淀渣;(1) adding aluminum sulfate to silicon-containing alkaline vanadium liquid, reacting under stirring, then filtering and washing to obtain precipitated slag;
(2)将步骤(1)所得沉淀渣加入水中进行打浆,然后加入葡萄糖进行反应,接着加入乙醇进行反应,然后进行过滤、洗涤和烘干;(2) adding the precipitated slag obtained in step (1) into water for beating, then adding glucose for reaction, then adding ethanol for reaction, then filtering, washing and drying;
其中,所述硫酸铝与所述含硅碱性钒液中的硅的摩尔比为1:2-3。Wherein, the molar ratio of the aluminum sulfate to the silicon in the silicon-containing alkaline vanadium solution is 1:2-3.
在本发明中,在步骤(1)中,所述含硅碱性钒液可以为钒渣钠化焙烧-水浸提钒工艺中进行水浸后获得的钒酸钠溶液。In the present invention, in step (1), the silicon-containing alkaline vanadium solution may be sodium vanadate solution obtained after water immersion in the vanadium slag sodium roasting-water leaching vanadium extraction process.
在优选的实施方式中,在步骤(1)中,所述含硅碱性钒液中硅的浓度为0.6-3g/L,所述含硅碱性钒液的pH值为9.5-10.5。In a preferred embodiment, in step (1), the concentration of silicon in the silicon-containing alkaline vanadium liquid is 0.6-3 g/L, and the pH value of the silicon-containing alkaline vanadium liquid is 9.5-10.5.
进一步优选地,所述含硅碱性钒液中钒的浓度为10~60g/L。Further preferably, the concentration of vanadium in the silicon-containing alkaline vanadium liquid is 10-60 g/L.
在优选的实施方式中,在步骤(1)中,反应温度为95℃-99℃,反应时间为30-60min。具体的,所述反应温度可以为95℃、95.5℃、96℃、96.5℃、97℃、97.5℃、98℃、98.5℃或99℃。In a preferred embodiment, in step (1), the reaction temperature is 95°C-99°C, and the reaction time is 30-60min. Specifically, the reaction temperature may be 95°C, 95.5°C, 96°C, 96.5°C, 97°C, 97.5°C, 98°C, 98.5°C or 99°C.
在优选的实施方式中,所述步骤(2)的具体过程包括:将步骤(1)所得沉淀渣加入水中在95-99℃下打浆,然后在95-99℃下加入葡萄糖进行保温反应,接着降温至45-60℃时加入乙醇进行保温反应,然后进行过滤、洗涤和烘干。在具体的实施方式中,所述打浆的温度可以为95℃、95.5℃、96℃、96.5℃、97℃、97.5℃、98℃、98.5℃或99℃;所述加入葡萄糖进行保温反应的温度可以为95℃、95.5℃、96℃、96.5℃、97℃、97.5℃、98℃、98.5℃或99℃;所述加入乙醇进行保温反应的温度可以为45℃、46℃、47℃、48℃、49℃、50℃、51℃、52℃、53℃、54℃、55℃、56℃、57℃、58℃、59℃或60℃。In a preferred embodiment, the specific process of the step (2) includes: adding the precipitated slag obtained in the step (1) into water for beating at 95-99°C, then adding glucose at 95-99°C for heat preservation reaction, and then When the temperature is lowered to 45-60°C, ethanol is added to carry out the heat preservation reaction, and then filtering, washing and drying are carried out. In a specific embodiment, the beating temperature can be 95°C, 95.5°C, 96°C, 96.5°C, 97°C, 97.5°C, 98°C, 98.5°C or 99°C; It can be 95°C, 95.5°C, 96°C, 96.5°C, 97°C, 97.5°C, 98°C, 98.5°C or 99°C; °C, 49°C, 50°C, 51°C, 52°C, 53°C, 54°C, 55°C, 56°C, 57°C, 58°C, 59°C or 60°C.
在本发明中,将步骤(1)中经过洗涤得到的沉淀渣直接用于步骤(2)中,因此,本发明中步骤(2)中所述的沉淀渣的重量为沉淀渣湿重。In the present invention, the precipitated slag obtained through washing in step (1) is directly used in step (2), therefore, the weight of the precipitated slag described in step (2) in the present invention is the wet weight of the precipitated slag.
在优选的实施方式中,在步骤(2)中,所述沉淀渣和水的固液比为1g:1.5-2.5mL。具体的,所述沉淀渣和水的固液比可以为1g:1.5mL、1g:1.6mL、1g:1.7mL、1g:1.8mL、1g:1.9mL、1g:2mL、1g:2.1mL、1g:2.2mL、1g:2.3mL、1g:2.4mL或1g:2.5mL。In a preferred embodiment, in step (2), the solid-to-liquid ratio of the precipitated slag and water is 1g:1.5-2.5mL. Specifically, the solid-to-liquid ratio of the sediment residue and water can be 1g:1.5mL, 1g:1.6mL, 1g:1.7mL, 1g:1.8mL, 1g:1.9mL, 1g:2mL, 1g:2.1mL, 1g : 2.2mL, 1g: 2.3mL, 1g: 2.4mL or 1g: 2.5mL.
在优选的实施方式中,在步骤(2)中,所述葡萄糖与所述沉淀渣的重量比为0.3-0.5:100。具体的,所述葡萄糖与所述沉淀渣的重量比可以为0.3:100、0.35:100、0.4:100、0.45:100或0.5:100。In a preferred embodiment, in step (2), the weight ratio of the glucose to the sediment residue is 0.3-0.5:100. Specifically, the weight ratio of the glucose to the sediment residue may be 0.3:100, 0.35:100, 0.4:100, 0.45:100 or 0.5:100.
在优选的实施方式中,在步骤(2)中,所述乙醇的加入量为加入葡萄糖进行反应得到的溶液体积的0.05-0.3体积%。In a preferred embodiment, in step (2), the amount of ethanol added is 0.05-0.3% by volume of the volume of the solution obtained by adding glucose for reaction.
在优选的实施方式中,在步骤(2)中,加入葡萄糖保温反应的反应时间为80-180min。具体的可以为80min、90min、100min、110min、120min、130min、140min、150min、160min、170min或180min。In a preferred embodiment, in step (2), the reaction time of adding glucose and incubating the reaction is 80-180min. Specifically, it may be 80 min, 90 min, 100 min, 110 min, 120 min, 130 min, 140 min, 150 min, 160 min, 170 min or 180 min.
在优选的实施方式中,在步骤(2)中,加入乙醇保温反应的反应时间为30-60min。具体的可以为30min、35min、40min、45min、50min、55min或60min。In a preferred embodiment, in step (2), the reaction time of adding ethanol and insulated reaction is 30-60min. Specifically, it may be 30 min, 35 min, 40 min, 45 min, 50 min, 55 min or 60 min.
在优选的实施方式中,在步骤(2)中,打浆时间为30-45min。具体的可以为30min、31min、32min、33min、34min、35min、36min、37min、38min、39min、40min、41min、42min、43min、44min或45min。In a preferred embodiment, in step (2), the beating time is 30-45min. Specifically, it can be 30min, 31min, 32min, 33min, 34min, 35min, 36min, 37min, 38min, 39min, 40min, 41min, 42min, 43min, 44min or 45min.
在优选的实施方式中,在步骤(2)中,采用热水进行洗涤。进一步优选地,热水的温度为80~95℃。In a preferred embodiment, in step (2), hot water is used for washing. More preferably, the temperature of the hot water is 80-95°C.
以下将通过实施例对本发明进行详细描述,但本发明的保护范围并不局限于此。The present invention will be described in detail through examples below, but the protection scope of the present invention is not limited thereto.
以下实施例和对比例中使用的含硅碱性钒液为钒渣钠化焙烧-水浸提钒工艺中进行水浸后获得的钒酸钠溶液。The silicon-containing alkaline vanadium solution used in the following examples and comparative examples is the sodium vanadate solution obtained after water leaching in the vanadium slag sodium roasting-water leaching vanadium extraction process.
实施例1Example 1
(1)向含硅碱性钒液(pH=9.5,Si浓度为0.6g/L,钒浓度为10g/L)中加入硫酸铝,硫酸铝与含硅碱性钒液中Si的摩尔比为1:3,在95℃下搅拌反应30min,然后进行过滤和洗涤,得到沉淀渣;(1) Add aluminum sulfate to silicon-containing alkaline vanadium liquid (pH=9.5, Si concentration is 0.6g/L, vanadium concentration is 10g/L), the mol ratio of aluminum sulfate and Si in silicon-containing alkaline vanadium liquid is: 1:3, stirred and reacted at 95°C for 30 minutes, then filtered and washed to obtain precipitated residue;
(2)将步骤(1)所得沉淀渣加入水中在95℃下打浆30min,沉淀渣湿重与水的固液比为1g:1.5mL,然后在95℃下加入葡萄糖(葡萄糖与沉淀渣湿重的比为0.3:100)保温反应80min,自然冷却降温至45℃时加入乙醇保温反应30min,乙醇加入量为加入葡萄糖进行保温反应得到的溶液体积的0.05体积%,然后进行过滤、热水洗涤和烘干。(2) Add the precipitated slag gained in step (1) into water and beat for 30 minutes at 95°C. The solid-to-liquid ratio of the wet weight of the precipitated slag to water is 1g:1.5mL, then add glucose (glucose and the wet weight of the precipitated slag) at 95°C The ratio is 0.3:100) heat preservation reaction 80min, add ethanol heat preservation reaction 30min when naturally cooling down to 45 ℃, ethanol addition is 0.05 volume % of the solution volume that adds glucose and carries out heat preservation reaction to obtain, then filter, hot water washing and drying.
实施例2Example 2
(1)向含硅碱性钒液(pH=10,Si浓度为1.6g/L,钒浓度为20g/L)中加入硫酸铝,硫酸铝与含硅碱性钒液中Si的摩尔比为1:3,在97℃下搅拌反应45min,然后进行过滤和洗涤,得到沉淀渣;(1) Add aluminum sulfate to silicon-containing alkaline vanadium liquid (pH=10, Si concentration is 1.6g/L, vanadium concentration is 20g/L), the mol ratio of aluminum sulfate and Si in silicon-containing alkaline vanadium liquid is 1:3, stirred and reacted at 97°C for 45 minutes, then filtered and washed to obtain precipitated residue;
(2)将步骤(1)所得沉淀渣加入水中在96℃下打浆38min,沉淀渣湿重与水的固液比为1g:2mL,然后在96℃下加入葡萄糖(葡萄糖与沉淀渣湿重的比为0.4:100)保温反应140min,自然冷却降温至50℃时加入乙醇保温反应45min,乙醇加入量为加入葡萄糖进行保温反应得到的溶液体积的0.18体积%,然后进行过滤、热水洗涤和烘干。(2) adding the precipitated slag gained in step (1) into water and beating at 96°C for 38min, the solid-liquid ratio of the wet weight of the precipitated slag to water was 1g:2mL, then adding glucose (the ratio of the wet weight of glucose and the wet weight of the precipitated slag) at 96°C Ratio is 0.4:100) heat preservation reaction 140min, add ethanol heat preservation reaction 45min when naturally cooling down to 50 ℃, ethanol addition is 0.18 volume % of the solution volume that adds glucose and carries out heat preservation reaction to obtain, carry out filtration, hot water washing and drying then Dry.
实施例3Example 3
(1)向含硅碱性钒液(pH=10,Si浓度为3g/L,钒浓度为25g/L)中加入硫酸铝,硫酸铝与含硅碱性钒液中Si的摩尔比为1:3,在98℃下搅拌反应60min,然后进行过滤和洗涤,得到沉淀渣;(1) Add aluminum sulfate to silicon-containing alkaline vanadium liquid (pH=10, Si concentration is 3g/L, vanadium concentration is 25g/L), the mol ratio of aluminum sulfate and Si in silicon-containing alkaline vanadium liquid is 1 : 3, stirring and reacting at 98° C. for 60 min, then filtering and washing to obtain precipitated slag;
(2)将步骤(1)所得沉淀渣加入水中在98℃下打浆45min,沉淀渣湿重与水的固液比为1g:2.5mL,然后在98℃下加入葡萄糖(葡萄糖与沉淀渣湿重的比为0.5:100)保温反应180min,自然冷却降温至60℃时加入乙醇保温反应60min,乙醇加入量为加入葡萄糖进行保温反应得到的溶液体积的0.3体积%,然后进行过滤、热水洗涤和烘干。(2) Add the precipitated slag gained in step (1) into water and beat for 45 minutes at 98°C. The solid-to-liquid ratio of the wet weight of the precipitated slag to water is 1g:2.5mL, then add glucose (glucose and the wet weight of the precipitated slag) at 98°C The ratio is 0.5:100) heat preservation reaction 180min, when natural cooling is cooled to 60 ℃, add ethanol heat preservation reaction 60min, the ethanol addition is 0.3 volume % of the solution volume that adds glucose and carries out heat preservation reaction to obtain, then filter, hot water washing and drying.
实施例4Example 4
(1)向含硅碱性钒液(pH=9.5,Si浓度为0.6g/L,钒浓度为30/L)中加入硫酸铝,硫酸铝与含硅碱性钒液中Si的摩尔比为1:2.5,在95℃下搅拌反应30min,然后进行过滤和洗涤,得到沉淀渣;(1) Add aluminum sulfate to silicon-containing alkaline vanadium liquid (pH=9.5, Si concentration is 0.6g/L, vanadium concentration is 30/L), the mol ratio of aluminum sulfate and Si in silicon-containing alkaline vanadium liquid is 1:2.5, stirred and reacted at 95°C for 30 minutes, then filtered and washed to obtain precipitated residue;
(2)将步骤(1)所得沉淀渣加入水中在95℃下打浆30min,沉淀渣湿重与水的固液比为1g:1.5mL,然后在95℃下加入葡萄糖(葡萄糖与沉淀渣湿重的比为0.3:100)保温反应80min,自然冷却降温至45℃时加入乙醇保温反应30min,乙醇加入量为加入葡萄糖进行保温反应得到的溶液体积的0.05体积%,然后进行过滤、热水洗涤和烘干。(2) Add the precipitated slag gained in step (1) into water and beat for 30 minutes at 95°C. The solid-to-liquid ratio of the wet weight of the precipitated slag to water is 1g:1.5mL, then add glucose (glucose and the wet weight of the precipitated slag) at 95°C The ratio is 0.3:100) heat preservation reaction 80min, add ethanol heat preservation reaction 30min when naturally cooling down to 45 ℃, ethanol addition is 0.05 volume % of the solution volume that adds glucose and carries out heat preservation reaction to obtain, then filter, hot water washing and drying.
实施例5Example 5
(1)向含硅碱性钒液(pH=10,Si浓度为1.6g/L,钒浓度为20g/L)中加入硫酸铝,硫酸铝与含硅碱性钒液中Si的摩尔比为1:2,在97℃下搅拌反应45min,然后进行过滤和洗涤,得到沉淀渣;(1) Add aluminum sulfate to silicon-containing alkaline vanadium liquid (pH=10, Si concentration is 1.6g/L, vanadium concentration is 20g/L), the mol ratio of aluminum sulfate and Si in silicon-containing alkaline vanadium liquid is 1:2, stirred and reacted at 97°C for 45 minutes, then filtered and washed to obtain precipitated residue;
(2)将步骤(1)所得沉淀渣加入水中在96℃下打浆38min,沉淀渣湿重与水的固液比为1g:2mL,然后在96℃下加入葡萄糖(葡萄糖与沉淀渣湿重的比为0.4:100)保温反应140min,自然冷却降温至50℃时加入乙醇保温反应45min,乙醇加入量为加入葡萄糖进行保温反应得到的溶液体积的0.18体积%,然后进行过滤、热水洗涤和烘干。(2) adding the precipitated slag gained in step (1) into water and beating at 96°C for 38min, the solid-liquid ratio of the wet weight of the precipitated slag to water was 1g:2mL, then adding glucose (the ratio of the wet weight of glucose and the wet weight of the precipitated slag) at 96°C Ratio is 0.4:100) heat preservation reaction 140min, add ethanol heat preservation reaction 45min when naturally cooling down to 50 ℃, ethanol addition is 0.18 volume % of the solution volume that adds glucose and carries out heat preservation reaction to obtain, carry out filtration, hot water washing and drying then Dry.
对比例1Comparative example 1
按照实施例1的方法进行实施,与之不同的是,在步骤(1)中,硫酸铝与含硅碱性钒液中Si的摩尔比为1:3.2。Implement according to the method of Example 1, the difference is that in step (1), the molar ratio of aluminum sulfate to Si in the silicon-containing alkaline vanadium liquid is 1:3.2.
对比例2Comparative example 2
按照实施例1的方法进行实施,与之不同的是,在步骤(1)中,硫酸铝与含硅碱性钒液中Si的摩尔比为1:1.8。Implement according to the method of Example 1, the difference is that in step (1), the molar ratio of aluminum sulfate to Si in the silicon-containing alkaline vanadium liquid is 1:1.8.
测试例test case
1、对实施例和对比例中步骤(1)得到的滤液中的Si浓度进行检测,结果如表1所示。1, the Si concentration in the filtrate that step (1) obtains in the embodiment and the comparative example is detected, and the results are as shown in table 1.
表1Table 1
2、对实施例和对比例制得的硅酸铝的纯度进行检测,结果如表2所示。2. The purity of the aluminum silicate prepared in Examples and Comparative Examples was detected, and the results are shown in Table 2.
表2Table 2
由表1和表2的结果可知,采用本发明所述的方法,可以有效的去除含硅碱性钒液中的杂质硅,同时还能够获得高纯度的硅酸铝产品。From the results in Table 1 and Table 2, it can be seen that the method of the present invention can effectively remove the impurity silicon in the silicon-containing alkaline vanadium liquid, and at the same time obtain high-purity aluminum silicate products.
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。The preferred embodiments of the present invention have been described in detail above, however, the present invention is not limited thereto. Within the scope of the technical concept of the present invention, various simple modifications can be made to the technical solution of the present invention, including the combination of various technical features in any other suitable manner, and these simple modifications and combinations should also be regarded as the content disclosed in the present invention. All belong to the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111396047.0A CN114291879B (en) | 2021-11-23 | 2021-11-23 | A kind of preparation method of aluminum silicate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111396047.0A CN114291879B (en) | 2021-11-23 | 2021-11-23 | A kind of preparation method of aluminum silicate |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114291879A CN114291879A (en) | 2022-04-08 |
CN114291879B true CN114291879B (en) | 2023-09-05 |
Family
ID=80964967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111396047.0A Active CN114291879B (en) | 2021-11-23 | 2021-11-23 | A kind of preparation method of aluminum silicate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114291879B (en) |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB157555A (en) * | 1919-10-18 | 1921-01-18 | Philip Alexander Mackay | A method of recovering vanadium from its ores |
US4978511A (en) * | 1985-01-03 | 1990-12-18 | Union Oil Company Of California | Methods for selectively recovering vanadium from phosphoric acid and vanadium sources |
CN2261432Y (en) * | 1996-11-20 | 1997-09-03 | 田晓菲 | Container for alcoholation of wines |
CN101289705A (en) * | 2007-04-20 | 2008-10-22 | 北京化工大学 | A method for extracting vanadium from iron-making waste slag of vanadium ore |
CN102251113A (en) * | 2011-07-12 | 2011-11-23 | 河北钢铁股份有限公司承德分公司 | Method for purifying vanadium leaching solution |
CN102491419A (en) * | 2011-12-05 | 2012-06-13 | 合肥工业大学 | Method for comprehensively recycling waste vanadium catalyst |
CN102732727A (en) * | 2012-05-23 | 2012-10-17 | 河北钢铁股份有限公司承德分公司 | Method for extracting vanadium from high vanadium-sodium-aluminum-silicon slag |
CN103194603A (en) * | 2013-04-01 | 2013-07-10 | 攀枝花学院 | Preparation method of high-purity vanadium pentoxide |
CN103318930A (en) * | 2013-06-27 | 2013-09-25 | 中国铝业股份有限公司 | Comprehensive utilization method and device of high iron bauxite |
CN103409633A (en) * | 2013-07-22 | 2013-11-27 | 攀钢集团攀枝花钢铁研究院有限公司 | A method of recycling vanadium from removed silicon slag |
CN103789550A (en) * | 2014-01-26 | 2014-05-14 | 郝喜才 | Method for recovering vanadium, potassium and silicon from waste vanadium catalyst |
CN104195342A (en) * | 2014-09-17 | 2014-12-10 | 华北电力大学 | Method for recycling vanadium pentoxide in waste SCR (Selective Catalytic Reduction) denitration catalyst |
CN104342567A (en) * | 2014-11-05 | 2015-02-11 | 攀枝花兴辰钒钛有限公司 | Method for extracting vanadium from high-calcium vanadium containing material |
CN105861829A (en) * | 2016-04-18 | 2016-08-17 | 攀钢集团攀枝花钢铁研究院有限公司 | Method for separating vanadium and chromium solution and recycling vanadium and chromium |
CN106086441A (en) * | 2016-08-12 | 2016-11-09 | 攀钢集团攀枝花钢铁研究院有限公司 | The method of Vanadium fluidization vanadium extraction |
CN107190155A (en) * | 2017-05-19 | 2017-09-22 | 重庆大学 | Vanadium, the method for chromium are extracted in a kind of mixed liquor from containing vanadium and chromium |
CN107416903A (en) * | 2017-04-21 | 2017-12-01 | 广东工业大学 | A kind of method for handling spent vanadium catalyst |
CN107805710A (en) * | 2017-10-23 | 2018-03-16 | 中国科学院过程工程研究所 | A kind of method of the silicate mineral synthetical recovery silicon of vanadium containing multivalent state and vanadium |
CN108359815A (en) * | 2017-04-26 | 2018-08-03 | 中国科学院过程工程研究所 | A kind of preparation method containing vanadium solution |
CN109182752A (en) * | 2018-10-23 | 2019-01-11 | 攀钢集团研究院有限公司 | The method that desilication slag removes phosphorus in acid vanadium liquid |
CN109750169A (en) * | 2019-03-28 | 2019-05-14 | 攀钢集团攀枝花钢铁研究院有限公司 | Method for separating vanadium chromium from vanadium chromium solution |
CN110724836A (en) * | 2019-11-20 | 2020-01-24 | 河钢股份有限公司承德分公司 | Method for extracting vanadium from waste SCR denitration catalyst by taking iron salt as roasting additive |
CN111041243A (en) * | 2020-01-13 | 2020-04-21 | 攀钢集团攀枝花钢铁研究院有限公司 | Method for extracting vanadium from acidic high-phosphorus vanadium solution |
CN111495354A (en) * | 2020-05-25 | 2020-08-07 | 贵州威顿催化技术有限公司 | Method for preparing catalyst by leaching waste vanadium catalyst |
CN111705228A (en) * | 2020-07-02 | 2020-09-25 | 攀钢集团研究院有限公司 | 4. The method of pentavalent vanadium mixed precipitation |
-
2021
- 2021-11-23 CN CN202111396047.0A patent/CN114291879B/en active Active
Patent Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB157555A (en) * | 1919-10-18 | 1921-01-18 | Philip Alexander Mackay | A method of recovering vanadium from its ores |
US4978511A (en) * | 1985-01-03 | 1990-12-18 | Union Oil Company Of California | Methods for selectively recovering vanadium from phosphoric acid and vanadium sources |
CN2261432Y (en) * | 1996-11-20 | 1997-09-03 | 田晓菲 | Container for alcoholation of wines |
CN101289705A (en) * | 2007-04-20 | 2008-10-22 | 北京化工大学 | A method for extracting vanadium from iron-making waste slag of vanadium ore |
CN102251113A (en) * | 2011-07-12 | 2011-11-23 | 河北钢铁股份有限公司承德分公司 | Method for purifying vanadium leaching solution |
CN102491419A (en) * | 2011-12-05 | 2012-06-13 | 合肥工业大学 | Method for comprehensively recycling waste vanadium catalyst |
CN102732727A (en) * | 2012-05-23 | 2012-10-17 | 河北钢铁股份有限公司承德分公司 | Method for extracting vanadium from high vanadium-sodium-aluminum-silicon slag |
CN103194603A (en) * | 2013-04-01 | 2013-07-10 | 攀枝花学院 | Preparation method of high-purity vanadium pentoxide |
CN103318930A (en) * | 2013-06-27 | 2013-09-25 | 中国铝业股份有限公司 | Comprehensive utilization method and device of high iron bauxite |
CN103409633A (en) * | 2013-07-22 | 2013-11-27 | 攀钢集团攀枝花钢铁研究院有限公司 | A method of recycling vanadium from removed silicon slag |
CN103789550A (en) * | 2014-01-26 | 2014-05-14 | 郝喜才 | Method for recovering vanadium, potassium and silicon from waste vanadium catalyst |
CN104195342A (en) * | 2014-09-17 | 2014-12-10 | 华北电力大学 | Method for recycling vanadium pentoxide in waste SCR (Selective Catalytic Reduction) denitration catalyst |
CN104342567A (en) * | 2014-11-05 | 2015-02-11 | 攀枝花兴辰钒钛有限公司 | Method for extracting vanadium from high-calcium vanadium containing material |
CN105861829A (en) * | 2016-04-18 | 2016-08-17 | 攀钢集团攀枝花钢铁研究院有限公司 | Method for separating vanadium and chromium solution and recycling vanadium and chromium |
CN106086441A (en) * | 2016-08-12 | 2016-11-09 | 攀钢集团攀枝花钢铁研究院有限公司 | The method of Vanadium fluidization vanadium extraction |
CN107416903A (en) * | 2017-04-21 | 2017-12-01 | 广东工业大学 | A kind of method for handling spent vanadium catalyst |
CN108359815A (en) * | 2017-04-26 | 2018-08-03 | 中国科学院过程工程研究所 | A kind of preparation method containing vanadium solution |
CN107190155A (en) * | 2017-05-19 | 2017-09-22 | 重庆大学 | Vanadium, the method for chromium are extracted in a kind of mixed liquor from containing vanadium and chromium |
CN107805710A (en) * | 2017-10-23 | 2018-03-16 | 中国科学院过程工程研究所 | A kind of method of the silicate mineral synthetical recovery silicon of vanadium containing multivalent state and vanadium |
CN109182752A (en) * | 2018-10-23 | 2019-01-11 | 攀钢集团研究院有限公司 | The method that desilication slag removes phosphorus in acid vanadium liquid |
CN109750169A (en) * | 2019-03-28 | 2019-05-14 | 攀钢集团攀枝花钢铁研究院有限公司 | Method for separating vanadium chromium from vanadium chromium solution |
CN110724836A (en) * | 2019-11-20 | 2020-01-24 | 河钢股份有限公司承德分公司 | Method for extracting vanadium from waste SCR denitration catalyst by taking iron salt as roasting additive |
CN111041243A (en) * | 2020-01-13 | 2020-04-21 | 攀钢集团攀枝花钢铁研究院有限公司 | Method for extracting vanadium from acidic high-phosphorus vanadium solution |
CN111495354A (en) * | 2020-05-25 | 2020-08-07 | 贵州威顿催化技术有限公司 | Method for preparing catalyst by leaching waste vanadium catalyst |
CN111705228A (en) * | 2020-07-02 | 2020-09-25 | 攀钢集团研究院有限公司 | 4. The method of pentavalent vanadium mixed precipitation |
Non-Patent Citations (1)
Title |
---|
沉钒上层液用硫酸铝除硅制备低硅氢氧化铬研究;庄立军;杨锦铭;孙丽月;;无机盐工业(12);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114291879A (en) | 2022-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112142081B (en) | A method for preparing battery-grade lithium carbonate by utilizing lepidolite | |
CN102491419B (en) | Method for comprehensively recycling waste vanadium catalyst | |
WO2015096561A1 (en) | Method for producing nano silicon dioxide and nano calcium carbonate by using rice hull ash and flue gas of biomass power plant | |
CN105712871A (en) | Purification method of long chain dicarboxylic acid | |
CN1843938A (en) | Method for preparing vanadium pentoxide | |
CN112158865A (en) | Method for recycling lithium element in lithium precipitation mother liquor | |
CN102337410A (en) | Method for recycling vanadium from dephosphorization base flow residues | |
CN114291879B (en) | A kind of preparation method of aluminum silicate | |
CN104495925A (en) | Method for preparing sodium metavanadate | |
CN106517289A (en) | Method of using low-grade witherite to produce high-purity barium chloride | |
CN1545487A (en) | Process for preparing titanium dioxide tioi2 from reaction residue of sulfate leaching | |
CN112694098A (en) | Method for recovering and synthesizing molecular sieve ZSM-5X from silicon-containing sewage | |
CN111495354A (en) | Method for preparing catalyst by leaching waste vanadium catalyst | |
CN107032981A (en) | A kind of method recycled containing sodium formate and sodium chloride mixing solid wastes recycling | |
CN113816406B (en) | Environment-friendly hydrotalcite synthesis process | |
NO140181B (en) | PROCEDURE FOR PREPARING AUTOMATIC TITANIO DIOXIDE HYDRATE SUSPENSIONS | |
CN116654982A (en) | A method for preparing battery-grade vanadium pentoxide | |
CN102491346A (en) | Method for preparing white carbon black from aluminum oxide red mud | |
CN102320620B (en) | Method for preparing 4A zeolite by using alumina red mud | |
CN102382044A (en) | Purification method for 2,3-dimethylpyridine | |
CN107244756B (en) | A kind of post-processing approach of phenylenediamine hydrolyzate | |
CN104003365B (en) | Phosphoric acid by wet process deposition slag prepares the method for titanium phosphate | |
JPH05112728A (en) | Refining of indigo | |
CN108179143B (en) | Magnetic graphene oxide immobilized enzyme and application thereof in wet corn soaking | |
NO800560L (en) | APPLICATION OF POLYETERS FOR THE PREPARATION OF ANNUAL MAGNESIUM CHLORIDE. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20231206 Address after: Room 1006, 10th Floor, Unit 1, Building 17, No. 89 Hezuo Road, High tech Zone, Chengdu, Sichuan Province, 611730 Patentee after: PANGANG GROUP RESEARCH INSTITUTE Co.,Ltd. Patentee after: PANGANG GROUP VANADIUM TITANIUM & RESOURCES Co.,Ltd. Address before: 611731 innovation group of Western Park of Chengdu high tech Zone, Sichuan Province Patentee before: PANGANG GROUP RESEARCH INSTITUTE Co.,Ltd. |