CN114181966B - Method for creating corn dwarf material based on Zm00001d008708 gene - Google Patents
Method for creating corn dwarf material based on Zm00001d008708 gene Download PDFInfo
- Publication number
- CN114181966B CN114181966B CN202111405976.3A CN202111405976A CN114181966B CN 114181966 B CN114181966 B CN 114181966B CN 202111405976 A CN202111405976 A CN 202111405976A CN 114181966 B CN114181966 B CN 114181966B
- Authority
- CN
- China
- Prior art keywords
- mt1t2
- gene
- seq
- pro
- ser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Botany (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Plant Pathology (AREA)
- Gastroenterology & Hepatology (AREA)
- Microbiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicinal Chemistry (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了一种基于Zm00001d008708基因创制玉米矮化材料的方法,属于基因工程技术领域。本发明公开的一种基于Zm00001d008708基因创制玉米矮化材料的方法,通过CRISPR/Cas9技术对玉米Zm00001d008708基因进行基因编辑,并进一步筛选获得含目的基因缺失片段的突变体材料,这些玉米矮化材料具有重要的育种价值。
The invention discloses a method for creating a corn dwarf material based on the Zm00001d008708 gene, which belongs to the technical field of genetic engineering. The present invention discloses a method for creating dwarfing maize materials based on the Zm00001d008708 gene. The Zm00001d008708 gene of maize is edited by CRISPR/Cas9 technology, and further screened to obtain mutant materials containing target gene deletion fragments. These maize dwarfing materials have important breeding value.
Description
技术领域technical field
本发明涉及基因工程技术领域,更具体的说是涉及一种利用基因编辑技术基于Zm00001d008708基因创制玉米矮化材料的方法。The invention relates to the technical field of genetic engineering, and more specifically relates to a method for creating dwarfing maize materials based on the Zm00001d008708 gene by using gene editing technology.
背景技术Background technique
二十世纪玉米产量的提高主要依赖提高单位面积内玉米的种植密度,但是密度过高随之而来的就是倒伏的风险,可能会降低产量,因此在一定程度上降低玉米株高有助于提高玉米产量。上世纪60年代末,闻名于世的“绿色革命”掀起了半矮化植株可以提高产量的狂潮。在“绿色革命”期间成功创制了半矮化水稻和小麦的高产品种。在过去的几十年中许多玉米矮化突变体被鉴定,但没有完全应用到玉米育种中。The improvement of corn production in the 20th century mainly relied on increasing the planting density of corn per unit area. However, if the density is too high, there will be the risk of lodging, which may reduce the yield. Therefore, reducing the plant height of corn to a certain extent will help improve corn yield. At the end of the 1960s, the world-famous "Green Revolution" set off a frenzy that semi-dwarf plants could increase yields. High-yield varieties of semi-dwarf rice and wheat were successfully created during the "Green Revolution". Many maize dwarf mutants have been identified over the past few decades but have not been fully utilized in maize breeding.
传统矮杆玉米的创制主要是通过回交转育的方法,往往需要经过6个回交世代,不仅耗时长,同时经常伴随基因冗余,导致一些非目标性状的导入,限制了改良材料的应用效果。Zm00001d008708是一类DUF1421结构家族蛋白,目前功能未知。The creation of traditional dwarf corn is mainly through the method of backcrossing, which often requires 6 backcrossing generations, which is not only time-consuming, but also often accompanied by gene redundancy, which leads to the introduction of some non-target traits and limits the application of improved materials Effect. Zm00001d008708 is a kind of DUF1421 structural family protein, whose function is unknown at present.
因此,提供一种基于Zm00001d008708基因创制玉米矮化材料的方法是本领域技术人员亟需解决的问题。Therefore, it is an urgent problem for those skilled in the art to provide a method for creating a dwarf maize material based on the Zm00001d008708 gene.
发明内容Contents of the invention
有鉴于此,本发明提供了一种基于Zm00001d008708基因创制玉米矮化材料的方法。In view of this, the present invention provides a method for creating dwarf maize materials based on the Zm00001d008708 gene.
为了实现上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种基于Zm00001d008708基因创制玉米矮化材料的方法,具体步骤如下:A method for creating dwarf corn material based on the Zm00001d008708 gene, the specific steps are as follows:
(1)针对基因Zm00001d008708设计基于CRISPR/Cas9的sgRNA作用位点;(1) Design the sgRNA action site based on CRISPR/Cas9 for the gene Zm00001d008708;
所述sgRNA作用位点的核苷酸序列为:The nucleotide sequence of the sgRNA action site is:
5’-TCCAGCACCAGCGGTTCTTCTGG-3’;SEQ ID NO.3;和5'-TCCAGCACCAGCGGTTCTTCTGG-3'; SEQ ID NO. 3; and
5’-CCGTGCGGAGGCTGACTGAAAAC-3’;SEQ ID NO.4;5'-CCGTGCGGAGGCTGACTGAAAAC-3'; SEQ ID NO.4;
(2)以pCBC-MT1T2质粒为模板,MT1T2-F,MT1T2-F0,MT2T2-R0,MT2T2-R为引物,PCR扩增目的片段;(2) Using pCBC-MT1T2 plasmid as template, MT1T2-F, MT1T2-F0, MT2T2-R0, MT2T2-R as primers, PCR amplifies the target fragment;
所述引物序列如下:The primer sequences are as follows:
MT1T2-F:5’-AATAATGGTCTCAGGCGCCAGCACCAGCGGTTCTTC-3’;SEQ ID NO.5;MT1T2-F: 5'-AATAATGGTCTCAGGCGCCAGCACCAGCGGTTCTTC-3'; SEQ ID NO.5;
MT1T2-F0:5’-GCCAGCACCAGCGGTTCTTCGTTTTAGAGCTAGAAATAGC-3’;SEQ ID NO.6;MT1T2-F0: 5'-GCCAGCACCAGCGGTTCTTCGTTTTAGGCTAGAAATAGC-3'; SEQ ID NO.6;
MT1T2-R0:5’-TGCGGAGGCTGACTGAAAACGCTTCTTGGTGCC-3’;SEQ ID NO.7;MT1T2-R0: 5'-TGCGGAGGCTGACTGAAAACGCTTCTTGGTGCC-3'; SEQ ID NO.7;
MT1T2-R:5’-ATTATTGGTCTCTAAACTGCGGAGGCTGACTGAAAA-3’;SEQ ID NO.8;MT1T2-R: 5'-ATTATTGGTCTCTAAACTGCGGAGGCTGACTGAAAA-3'; SEQ ID NO.8;
所述PCR反应体系为:pCBC-MT1T2质粒1μl,MT1T2-F 0.5μl,MT1T2-F0 0.5μl,MT1T2-R0 0.5μl,MT1T2-R 0.5μl,2×Mix 10μl,ddH2O 7μl;PCR扩增反应程序为:98℃3min;98℃30s,57℃30s,72℃1min,35个循环;72℃5min,4℃∞。The PCR reaction system is: pCBC-MT1T2 plasmid 1 μl, MT1T2-F 0.5 μl, MT1T2-F0 0.5 μl, MT1T2-R0 0.5 μl, MT1T2-R 0.5 μl, 2×
(3)将步骤(2)获得的目的片段与载体pBUE411进行酶切连接,构建得到Zm00001d008708基因编辑载体pBUE411-2gR-Zm00001d008708;(3) Ligate the target fragment obtained in step (2) with the vector pBUE411 to construct the Zm00001d008708 gene editing vector pBUE411-2gR-Zm00001d008708;
所述酶切连接反应体系如下:目的片段2μl,pBUE411 2μl,10xNEB T4 Buffer 1.5μl,10xBSA 1.5μl,BsaI 1μl,T4 Ligase 1μl,ddH2O 6μl,Total 15μl;The enzyme digestion ligation reaction system is as follows: target fragment 2 μl, pBUE411 2 μl, 10xNEB T4 Buffer 1.5 μl, 10xBSA 1.5 μl, BsaI 1 μl, T4 Ligase 1 μl, ddH2O 6 μl, Total 15 μl;
(4)将步骤(3)获得的基因编辑载体pBUE411-2gR-Zm00001d008708转入农杆菌LBA4404,进行玉米遗传转化,经筛选鉴定获得玉米矮化材料。(4) The gene editing vector pBUE411-2gR-Zm00001d008708 obtained in step (3) was transformed into Agrobacterium LBA4404 for genetic transformation of maize, and the dwarf maize material was obtained through screening and identification.
将两个sgRNA作用位点通过不同表达盒串联到同一基因编辑载体上。The two sgRNA action sites are connected in series to the same gene editing vector through different expression cassettes.
携带Cas9的载体为pBUE411。The vector carrying Cas9 is pBUE411.
所述玉米为自交系郑58。The maize is the inbred line Zheng 58.
经由上述的技术方案可知,与现有技术相比,本发明公开提供了一种利用基因编辑技术基于Zm00001d008708基因创制玉米矮化材料的方法,基因编辑技术能精准对目的基因进行编辑,并且没有外缘基因的导入,本发明通过基因编辑技术精准敲除Zm00001d008708,可以精准降低玉米株高,并且不改变其它农艺性状。It can be known from the above-mentioned technical solutions that, compared with the prior art, the present invention discloses a method for creating corn dwarfing materials based on the Zm00001d008708 gene using gene editing technology. The gene editing technology can precisely edit the target gene without external For the introduction of edge genes, the present invention accurately knocks out Zm00001d008708 through gene editing technology, which can accurately reduce the plant height of corn without changing other agronomic traits.
本发明首次揭示了玉米Zm00001d008708基因的生物学功能,通过CRISPR/Cas9技术对玉米Zm00001d008708基因进行基因编辑,并进一步筛选获得含目的基因片段缺失的突变体材料,这些玉米矮化材料具有重要的育种价值。本发明创制的玉米矮化材料属于高度矮化材料,节间发育变短但正常结实,通过合理的栽培管理措施可以应用于杂交玉米生产。The present invention reveals the biological function of the maize Zm00001d008708 gene for the first time. The maize Zm00001d008708 gene is gene-edited by CRISPR/Cas9 technology, and further screened to obtain mutant materials containing the deletion of the target gene fragment. These maize dwarf materials have important breeding value . The corn dwarfing material created by the invention belongs to the highly dwarfing material, the internodes are shortened but fruity normally, and can be applied to hybrid corn production through reasonable cultivation and management measures.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only It is an embodiment of the present invention, and those skilled in the art can also obtain other drawings according to the provided drawings without creative work.
图1附图为本发明测序比对结果;Fig. 1 accompanying drawing is the sequencing comparison result of the present invention;
图2附图为本发明突变体株系;Fig. 2 accompanying drawing is the mutant strain of the present invention;
其中,A为突变体玉米植株;B为野生型玉米植株。Wherein, A is a mutant maize plant; B is a wild-type maize plant.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
本发明利用基因编辑技术创制玉米矮化材料,针对玉米中的目标基因Zm00001d008708设计基于CRISPR/Cas9的sgRNA序列,将含有编码所述sgRNA序列的DNA片段连接到携带Cas9的载体中,用构建的载体转化玉米(如农杆菌介导法),实现对基因Zm00001d008708的定点突变,进而获得Zm00001d008708基因功能缺失的玉米植株。The present invention uses gene editing technology to create corn dwarfing materials, designs a CRISPR/Cas9-based sgRNA sequence for the target gene Zm00001d008708 in corn, connects the DNA fragment encoding the sgRNA sequence to a vector carrying Cas9, and uses the constructed vector Maize is transformed (such as Agrobacterium-mediated method) to achieve site-directed mutation of the gene Zm00001d008708, and then obtain maize plants with Zm00001d008708 gene function loss.
实施例1基因编辑载体的构建The construction of embodiment 1 gene editing vector
(1)控制玉米株高的基因为Zm00001d008708基因,其核苷酸序列如下:(1) The gene controlling the plant height of maize is the Zm00001d008708 gene, and its nucleotide sequence is as follows:
ATGAACGCGTCGCAGTTCATGGACAAGCAGATCCTCGGCCTGGCTGCCTCCGCTTCCCCCTCCGGCGGCGGCGCGGGGGGCGGTGGGGGTGTGGATCTCAGCGATCTGATGATACCGATCCCCCAGGAGGACGCCGAGAACCGCCTCGGTCGCCGGCGTAGCAGCACCAGCGTCAACGGAACCGCAGACGACATGCTACCCAGTTATGACTTCCAGCCCATCCGCACTAGTGGCGGCGCCGCGGCCGCCGCCGCGCCTCAGGCCTCGTGGGGGTCGCTCGACTCCAAGGCACCCTCTGCCTCATACAACCTCAAGAGTGCTGGTATATTGGAGCCGCATGTGCTGAAGAAAGTTAGTCATGAGGAAGACAAGAGTAACTTTCCTACAGTTACTATTGCGGATATTGATCGAACCATGAAGAAGTACTCTGATAACCTTTTGCATGCACTGGAAGGTGTAAGCTCAAGGCTTTCACAGATGGAGGGTAGAACACACCAACTCGAAAACTCTGTTGACGAGTTGAAGTTAACAATCGGTAACTATAATGGTAGCACTGATGGAAAACTGAGGAACCTTGAGAACATGCTCAGGGAGGTCCAAGCAGGTGTGCAGATTTTGCGAGACAAGCAGGAAATTGTCGAGACACAGCTCCACCTTGCGAAGCTCCAGACAAACAAAACCGATGGCCAATCATCAGAAAATAGTGGGTCTGGACAGGCTGGTTTACAGCAGCAGCCGGTGGTTCCTCCACAAGCAGCCATTCAGCCACAACAAGTCCTAACCCCTTCGCAACCACCTGCACTTCCTGCCCTTCCTGCTCCAAATGCACCACCTCCACCTCCAACGCTTCAAAACCAATCATCATTACAGTTTCCAAGTCATTTACAACATTCACAGGTACCATCTGTGCCTTCTGTTGCACTGGCACCCACAGTTCCAGCTTTACCAAGGGATGCTTACTATGCCCCATCTGCTCAGCCGACCGAGACCATGCACCAGCAGTATCAAGCTCCGCCAGTTCCACAGCCACAGGCACCTCCTGCACCACCTCAGCAGTACCAATCCCAAACCCAGTTCCCTCAATATGCACAGCCACCTCAGCCTGCAAATGTTAACCCTTCAACTCCCCATGTGCCCCATGCACCCCAGCAACCAGAGGAAACTATGCCTTATGCACCAGCTCAGAGCTATCCACCTAATGCAATCGCTGCACCTTATATGCAACCACCTAGTGGACCTGCTCCTCCTTACTATGGGCAGCAAAACCCTAGCATGTATGAACCTCCTGCAGGCCGGGCTAACCCTGGGCCACCATCATCCTACGGTTCTGGTGGGTACGGGCCACAGGGTGGAGGTAGTTTCTCTGAATCTTATGGTTACACTGGATCTCCTTCCCACCGTGGCAATGCTGGAATGAAGCAGTCTTCACCTTTTGCTCAATCCTCTGGAGGAAGCGGCAGCTATGGCAGTGGCAAGCTCCCTACTGCCCAGATGCTTCCACAAGCAGTGCCGATCAGCTCCTCCAGCACCAGCGGTTCTTCTGGCAATAGAGTGCCACTTGACGATGTAGTGGAGAAGGTTGCTACGATGGGATTCTCAAGAGAGCAGGTGAGAGCAACCGTGCGGAGGCTGACTGAAAACGGGCAGAACGTGGACCTGAATGTGGTGCTCGACAAGCTGATGAACGGATGA;SEQ ID NO.1。ATGAACGCGTCGCAGTTCATGGACAAGCAGATCCTCGGCCTGGCTGCCTCCGCTTCCCCCTCCGGCGGCGGCGCGGGGGGCGGTGGGGGTGTGGATCTCAGCGATCTGATGATACCGATCCCCCAGGAGGACGCCGAGAACCGCCTCGGTCGCCGGCGTAGCAGCACCCAGCGTCAACGGAACCGCAGACGACATGCTACCCAGTT ATGACTTCCAGCCCATCCGCACTAGTGGCGGCGCCGCGGCCGCCGCCGCGCCTCAGGCCTCGTGGGGGGTCGCTCGACTCCAAGGCACCCTCTGCCTCATACAACCTCCAAGAGTGCTGGTATATTGGAGCCGCATGTGCTGAAGAAAGTTAGTCATGAGGAAGACAAGAGTAACTTTCCTAACTAGTTACTATTGCGGATATTGATCGAACCATGAAGAAG TACTCTGATAACCTTTTGCATGCACTGGAAGGTGTAAGCTCAAGGCTTTCACAGATGGAGGGTAGAACACACCAACTCGAAAACTCTGTTGACGAGTTGAAGTTAACAATCGGTAACTATAATGGTAGCACTGATGGAAAACTGAGGAACCTTGAGAACATGCTCAGGGAGGTCCAAGCAGGTGTGCAGATTTTGCGAGACAAGCAGGAAATTGTCGAGA CACAGCTCCACCTTGCGAAGCTCCAGACAAACAAAACCGATGGCCAATCATCAGAAAATAGTGGGTCTGGACAGGCTGGTTTCAGCAGCAGCCGGTGGTTCCTCCACAAGCAGCCATTCAGCCACAAACAAGTCCTAACCCCTTCGCAACCACCTGCACTTCCTGCCCTTCCTGCTCCAAATGCACCACCTCCACCTCCAACGCTTCAAAACCAATCATCATTACAGTTTCC AAGTCATTTACAACATTCACAGGTACCATCTGTGCCTTCTGTTGCACTGGCACCCACAGTTCCAGCTTTACCAAGGGATGCTTACTATGCCCCATCTGCTCAGCCGACCGAGACCATGCACCAGCAGTATCAAGCTCCGCCAGTTCCAGCCACAGGCACCTCCTGCACCACCTCAGCAGTACCCAATCCCAAACCCAGTTCCCTCAATATGCACAGCCACCTCAGCCTGCAA ATGTTAACCCTTCAACTCCCCATGTGCCCCATGCACCCCAGCAACCAGAGGAAACTATGCCTTATGCACCAGCTCAGAGCTATCCACCTAATGCAATCGCTGCACCCTTATATGCAACCACCTAGTGGACCTGCTCCTCCTTACTATGGGCAGCAAAACCCTAGCATGTATGAACCTCCTGCAGGCCGGGCTAACCCTGGGCCACCATCATCCTACGGTTCTGGT GGGTACGGGCCACAGGGTGGAGGTAGTTTCCTCTGAATCTTATGGTTACACTGGATCTCCTTCCCACCGTGGCAATGCTGGAATGAAGCAGTCTCACCTTTTGCTCAATCCTCTGGAGGAAGCGGCAGCTATGGCAGTGGCAAGCTCCTACTGCCCAGATGCTTCCAAGCAGTGCCGATCAGCTCCTCCAGCACCAGCGGTTCTTCTGGCAATA GAGTGCCACTTGACGATGTAGTGGAGAAGGTTGCTACGATGGGATTCTCAAGAGAGCAGGTGAGAGCAACCGTGCGGAGGCTGACTGAAAACGGGCAGAACGTGGACCTGAATGTGGTGCTCGACAAGCTGATGAACGGATGA; SEQ ID NO. 1.
Zm00001d008708蛋白的氨基酸序列如下:The amino acid sequence of Zm00001d008708 protein is as follows:
MNASQFMDKQILGLAASASPSGGGAGGGGGVDLSDLMIPIPQEDAENRLGRRRSSTSVNGTADDMLPSYDFQPIRTSGGAAAAAAPQASWGSLDSKAPSASYNLKSAGILEPHVLKKVSHEEDKSNFPTVTIADIDRTMKKYSDNLLHALEGVSSRLSQMEGRTHQLENSVDELKLTIGNYNGSTDGKLRNLENMLREVQAGVQILRDKQEIVETQLHLAKLQTNKTDGQSSENSGSGQAGLQQQPVVPPQAAIQPQQVLTPSQPPALPALPAPNAPPPPPTLQNQSSLQFPSHLQHSQVPSVPSVALAPTVPALPRDAYYAPSAQPTETMHQQYQAPPVPQPQAPPAPPQQYQSQTQFPQYAQPPQPANVNPSTPHVPHAPQQPEETMPYAPAQSYPPNAIAAPYMQPPSGPAPPYYGQQNPSMYEPPAGRANPGPPSSYGSGGYGPQGGGSFSESYGYTGSPSHRGNAGMKQSSPFAQSSGGSGSYGSGKLPTAQMLPQAVPISSSSTSGSSGNRVPLDDVVEKVATMGFSREQVRATVRRLTENGQNVDLNVVLDKLMNG;SEQ ID NO.2。MNASQFMDKQILGLAASASPSGGGAGGGGGVDLSDLMIPIPQEDAENRLGRRRSSTSVNGTADDMLPSYDFQPIRTSGGAAAAAAPQASWGSLDSKAPSASYNLKSAGILEPHVLKKVSHEEDKSNFPTVTIADIDRTMKKYSDNLLHALEGVSSRLSQMEGRTHQLENSVDELKLTIGNYNGSTDGKL RNLENMLREVQAGVQILRDKQEIVETQLHLAKLQTNKTDGQSSENSGSGQAGLQQQPVVPPQAAIQPQQVLTPSQPPALPALPAPNAPPPPTLQNQSSLQFPSHLQHSQVPSVALAPTVPALPRDAYYAPSAQPTETMHQQYQAPPVPQPQAPPPPQQYQSQTQFPQYAQPPQPAN VNPSTPHVPHAPQQPEETMPYAPAQSYPPNAIAIAAPYMQPPSGPAPPYYGQQNPSMYEPPAGRANPGPPSSYGSGGYGPQGGGSFSESYGYTGSPSHRGNAGMKQSSPFAQSSGGSGSYGSGKLPTAQMLPQAVPISSSSTSGSSGNRVPLDDVVEKVATMGFSREQVRATVRRLENGQNVDLNVVLDK LMNG; SEQ ID NO.2.
(2)针对基因Zm00001d008708,sgRNA作用位点的核苷酸序列为:(2) For the gene Zm00001d008708, the nucleotide sequence of the sgRNA action site is:
5’-TCCAGCACCAGCGGTTCTTCTGG-3’;SEQ ID NO.3;(靶点1)和5'-TCCAGCACCAGCGGTTCTTCTGG-3'; SEQ ID NO.3; (Target 1) and
5’-CCGTGCGGAGGCTGACTGAAAAC-3’;SEQ ID NO.4;(靶点2)。5'-CCGTGCGGAGGCTGACTGAAAAC-3'; SEQ ID NO.4; (Target 2).
根据所选的编辑位点以及载体pCBC-MT1T2和pBUE411多克隆位点处的酶切位点设计引物,引物序列如下:Primers were designed according to the selected editing site and the restriction site at the multiple cloning site of vectors pCBC-MT1T2 and pBUE411. The primer sequences are as follows:
MT1T2-F:5’-AATAATGGTCTCAGGCGCCAGCACCAGCGGTTCTTC-3’;SEQ ID NO.5;MT1T2-F: 5'-AATAATGGTCTCAGGCGCCAGCACCAGCGGTTCTTC-3'; SEQ ID NO.5;
MT1T2-F0:5’-GCCAGCACCAGCGGTTCTTCGTTTTAGAGCTAGAAATAGC-3’;SEQ ID NO.6;MT1T2-F0: 5'-GCCAGCACCAGCGGTTCTTCGTTTTAGGCTAGAAATAGC-3'; SEQ ID NO.6;
MT1T2-R0:5’-TGCGGAGGCTGACTGAAAACGCTTCTTGGTGCC-3’;SEQ ID NO.7;MT1T2-R0: 5'-TGCGGAGGCTGACTGAAAACGCTTCTTGGTGCC-3'; SEQ ID NO.7;
MT1T2-R:5’-ATTATTGGTCTCTAAACTGCGGAGGCTGACTGAAAA-3’;SEQ ID NO.8;MT1T2-R: 5'-ATTATTGGTCTCTAAACTGCGGAGGCTGACTGAAAA-3'; SEQ ID NO.8;
(3)用一轮PCR方法扩增目的片段,PCR反应使用两对引物MT1T2-F,MT1T2-F0,MT2T2-R0,MT2T2-R,以pCBC-MT1T2质粒为模板扩增。(3) The target fragment was amplified by a round of PCR method, and the PCR reaction used two pairs of primers MT1T2-F, MT1T2-F0, MT2T2-R0, MT2T2-R, and the pCBC-MT1T2 plasmid was used as a template for amplification.
PCR扩增反应体系为:pCBC-MT1T2质粒1μl,MT1T2-F 0.5μl,MT1T2-F0 0.5μl,MT1T2-R0 0.5μl,MT1T2-R 0.5μl,2×Mix 10μl,ddH2O 7μl。The PCR amplification reaction system is: pCBC-MT1T2 plasmid 1 μl, MT1T2-F 0.5 μl, MT1T2-F0 0.5 μl, MT1T2-R0 0.5 μl, MT1T2-R 0.5 μl, 2×
PCR扩增反应程序为:98℃3min;98℃30s,57℃30s,72℃1min,35个循环;72℃5min,4℃∞。The PCR amplification reaction program was: 98°C for 3min; 98°C for 30s, 57°C for 30s, 72°C for 1min, 35 cycles; 72°C for 5min, 4°C∞.
将获得的目的片段与载体pBUE411进行酶切连接,反应体系如下:The obtained target fragment was digested and ligated with the vector pBUE411, and the reaction system was as follows:
目的片段(964bp)2μl,pBUE411 2μl,10xNEB T4 Buffer 1.5μl,10xBSA 1.5μl,BsaI(NEB)1μl,T4 Ligase(NEB)/高浓度1μl,ddH2O 6μl,Total 15μl。Target fragment (964bp) 2 μl, pBUE411 2 μl, 10xNEB T4 Buffer 1.5 μl, 10xBSA 1.5 μl, BsaI (NEB) 1 μl, T4 Ligase (NEB)/high concentration 1 μl, ddH 2 O 6 μl, Total 15 μl.
反应条件:37℃5h,50℃5min,80℃10min。Reaction conditions: 37°C for 5h, 50°C for 5min, 80°C for 10min.
构建得到Zm00001d008708基因编辑载体pBUE411-2gR-Zm00001d008708。The Zm00001d008708 gene editing vector pBUE411-2gR-Zm00001d008708 was constructed.
实施例2基因编辑载体转入农杆菌LBA4404Example 2 Gene Editing Vector Transformed into Agrobacterium LBA4404
1)CaCl2法制备根癌农杆菌感受态细胞1) Preparation of Agrobacterium tumefaciens competent cells by CaCl 2 method
(1)从YEP平板(RifR,StrR)上挑取新鲜的LBA4404单菌落接种于含50mg/L Str和25mg/L Rif的YEP液体培养基中,28℃,220rpm振荡培养过夜24~36h;(1) Pick a fresh LBA4404 single colony from the YEP plate (Rif R , Str R ) and inoculate it in YEP liquid medium containing 50 mg/L Str and 25 mg/L Rif, culture at 28°C and 220 rpm for 24-36 hours overnight with shaking ;
(2)取2ml过夜活化的对数生长期的菌液,接种于50mL YEP液体培养基中,20℃培养菌液OD600至0.4~0.6左右;(2) Take 2ml of overnight activated bacterial solution in the logarithmic growth phase, inoculate it in 50mL of YEP liquid medium, and culture the bacterial solution at 20°C with an OD 600 of about 0.4-0.6;
(3)将菌液转移到冰预冷的50mL无菌离心管中,冰浴30min,4℃,4,000×g离心10min,富集菌体;(3) Transfer the bacterial solution to a 50 mL sterile centrifuge tube pre-cooled with ice, bathe in ice for 30 min, centrifuge at 4,000×g for 10 min at 4°C to enrich the bacterial cells;
(4)用10mL冰预冷0.05M CaCl2悬浮菌体,冰浴30min,4℃,4,000×g离心10min,富集菌体;(4) Pre-cool the suspended cells with 0.05M CaCl 2 in 10 mL of ice, bathe in ice for 30 min, centrifuge at 4,000×g for 10 min at 4°C to enrich the cells;
(5)用1mL冰预冷0.05M CaCl2重悬菌体,将制备好的感受态细胞于4℃保存,24~48h内使用转化效率最高,也可按每管100μL分装于无菌管中,加入终浓度20%甘油,并用液氮速冻后置于-80℃保存。(5) Pre-cool 0.05M CaCl 2 with 1mL of ice to resuspend the cells, store the prepared competent cells at 4°C, and use them within 24-48h for the highest transformation efficiency. You can also dispense 100μL per tube into sterile tubes 20% glycerol was added to the final concentration, and stored at -80°C after quick-freezing with liquid nitrogen.
2)冻融法转化根癌农杆菌感受态细胞2) Transformation of Agrobacterium tumefaciens competent cells by freeze-thaw method
(1)取出农杆菌感受态(200μL),置于冰上,待刚解冻时加入质粒DNA(1μg),放入液氮中1min,而后放入37℃金属浴中5min;(1) Take out the competent Agrobacterium (200 μL), put it on ice, add plasmid DNA (1 μg) when it is just thawed, put it in liquid nitrogen for 1 min, and then put it in a metal bath at 37 °C for 5 min;
(2)取出离心管,加入1mL YEB液体培养基(不含抗生素),置于摇床上,28℃,180r/min培养35h;(2) Take out the centrifuge tube, add 1mL YEB liquid medium (without antibiotics), place on a shaker, and incubate at 28°C, 180r/min for 35h;
(3)3000rpm离心1min,取出多余上清液,保留100μL,重悬,倒入YEB平板培养基(kan,rif)上,涂抹均匀,在恒温培养箱中28℃培养36-48h;(3) Centrifuge at 3000rpm for 1min, remove excess supernatant, retain 100μL, resuspend, pour onto YEB plate medium (kan, rif), spread evenly, and incubate in a constant temperature incubator at 28°C for 36-48h;
(4)挑取单克隆,检测,保留阳性菌落。利用引物OsU3-FD3/TaU3-RD进行菌液PCR鉴定。(4) Pick a single clone, detect it, and keep the positive colony. Using primers OsU3-FD3/TaU3-RD to carry out bacterial liquid PCR identification.
其中,OsU3-FD3/TaU3-RD引物序列如下:Among them, the OsU3-FD3/TaU3-RD primer sequence is as follows:
OsU3-FD3:5’-GACAGGCGTCTTCTACTGGTGCTAC-3’;SEQ ID NO.9;OsU3-FD3: 5'-GACAGGCGTCTTCTACTGGTGCTAC-3'; SEQ ID NO.9;
TaU3-RD:5’-CTCACAAATTATCAGCACGCTAGTC-3’;SEQ ID NO.10。TaU3-RD: 5'-CTCACAAATTATCAGCACGCTAGTC-3'; SEQ ID NO.10.
反应体系:reaction system:
菌液1μl,OsU3-FD3 1μl,TaU3-RD 1μl,2×mix 10μl,ddH2O 7μl,Total 20μl。Bacteria solution 1μl, OsU3-FD3 1μl, TaU3-RD 1μl, 2×mix 10μl, ddH 2 O 7μl, Total 20μl.
PCR扩增反应程序为:98℃3min;98℃30s,57℃45s,72℃1min,35个循环;72℃5min,4℃∞。The PCR amplification reaction program was: 98°C for 3min; 98°C for 30s, 57°C for 45s, 72°C for 1min, 35 cycles; 72°C for 5min, 4°C∞.
菌落PCR产物大小为831bp。The size of the colony PCR product was 831bp.
实施例3玉米遗传转化Embodiment 3 Maize genetic transformation
(1)取胚材料为玉米自交系郑58,在授粉后第九天开始观察玉米幼胚,待其长到1.5mm左右时,将果穗取回实验室进行取胚工作。(1) The material for embryo extraction was the maize inbred line Zheng 58. The immature corn embryos were observed on the ninth day after pollination, and when they grew to about 1.5 mm, the ears were taken back to the laboratory for embryo extraction.
(2)准备农杆菌侵染液,经过活化的农杆菌在YEB液体培养基中摇菌至特定浓度时(OD550=0.5),低速离心收集菌体沉淀,然后用inf(每升组成:N6盐和维生素(sigma)2克,蔗糖68.5克,葡萄糖36克,L-proline 0.7克,MES 0.5g,1mg/ml 2,4-D 1.5ml)+AS(Acetosyringone,(100mM),1ml))液体培养基重悬,25℃75r/min摇菌24h,至浓度为OD550=0.3-0.4即可。(2) Prepare the Agrobacterium infection solution. When the activated Agrobacterium is shaken to a specific concentration (OD 550 =0.5) in the YEB liquid medium, the bacterial precipitate is collected by low-speed centrifugation, and then inf (composition per liter: N6 Salt and vitamin (sigma) 2g, sucrose 68.5g, glucose 36g, L-proline 0.7g, MES 0.5g, 1mg/ml 2,4-D 1.5ml)+AS(Acetosyringone, (100mM), 1ml)) The liquid medium was resuspended, and the bacteria were shaken at 75 r/min at 25°C for 24 hours until the concentration was OD 550 =0.3-0.4.
(3)将(1)中取出的幼胚用inf+AS(同上)液体培养基洗涤2次,然后加入农杆菌侵染液,侵染20min-30min。(3) Wash the immature embryos taken out in (1) twice with inf+AS (same as above) liquid medium, then add Agrobacterium infection solution, and infect for 20min-30min.
(4)将侵染过后的幼胚转移到共培养培养基(每升组成:N6盐和维生素4克,蔗糖40克,葡萄糖30克,L-proline 0.7克,MES 0.5g,1mg/ml 2,4-d 1.5ml,琼脂糖(低EEO)5g,8.5mg/ml硝酸银0.1ml,100mg/ml L-半胱氨酸0.4g,0.5M/L DTT 0.154g)中,幼胚的盾片朝上,胚轴与培养基表面接触,用封口膜封住培养皿,在20℃培养箱中暗培养3天。(4) Transfer the immature embryos after infection to the co-cultivation medium (composition per liter: 4 grams of N6 salt and vitamins, 40 grams of sucrose, 30 grams of glucose, 0.7 grams of L-proline, 0.5 g of MES, 1 mg/ml 2 , 4-d 1.5ml, agarose (low EEO) 5g, 8.5mg/ml silver nitrate 0.1ml, 100mg/ml L-cysteine 0.4g, 0.5M/L DTT 0.154g), the shield of immature embryo With the sheet facing upwards, the hypocotyl was in contact with the surface of the culture medium, and the petri dish was sealed with parafilm, and cultured in the dark for 3 days in a 20°C incubator.
(5)把幼胚从共培养培养基转移到静息培养基(每升组成:N6盐和维生素4克,蔗糖40克,葡萄糖30克,L-proline 0.7克,MES 0.5g,1mg/ml 2,4-d 1.5ml,8.5mg/ml硝酸银0.1ml,100mg/ml L-半胱氨酸0.4g,0.5M/L DTT 0.154g,Timentin(蒂门汀,Sigma)100mg)中,用封口膜封住培养皿,放在28℃条件下暗培养7天。(5) Transfer the immature embryos from the co-cultivation medium to the resting medium (composition per liter: 4 grams of N6 salt and vitamins, 40 grams of sucrose, 30 grams of glucose, 0.7 grams of L-proline, 0.5 g of MES, 1 mg/ml 2,4-d 1.5ml, 8.5mg/ml silver nitrate 0.1ml, 100mg/ml L-cysteine 0.4g, 0.5M/L DTT 0.154g, Timentin (Timentin, Sigma) 100mg), use Seal the petri dish with a parafilm and culture it in the dark at 28°C for 7 days.
(6)再将所有的幼胚转移到选择培养基Ⅰ(每升组成:N6盐和维生素4克,蔗糖40克,葡萄糖30克,L-proline 0.7克,MES 0.5g,1mg/ml 2,4-d 1.5ml,8.5mg/ml硝酸银0.1ml,100mg/ml L-半胱氨酸0.4g,0.5M/L DTT 0.154g,Timentin 100mg,3mg/ml Bialaphos0.5ml)上,28℃暗培养两周。(6) Transfer all the immature embryos to selection medium I (composition per liter: 4 grams of N6 salt and vitamins, 40 grams of sucrose, 30 grams of glucose, 0.7 grams of L-proline, 0.5 g of MES, 1 mg/ml 2, 4-d 1.5ml, 8.5mg/ml silver nitrate 0.1ml, 100mg/ml L-cysteine 0.4g, 0.5M/L DTT 0.154g, Timentin 100mg, 3mg/ml Bialaphos 0.5ml), 28 ℃ dark Grow for two weeks.
(7)将所有的幼胚转移到选择培养基Ⅱ(每升组成:N6盐和维生素4克,蔗糖40克,葡萄糖30克,L-proline 0.7克,MES 0.5g,1mg/ml 2,4-d 1.5ml,8.5mg/ml硝酸银0.1ml,100mg/ml L-半胱氨酸0.4g,0.5M/L DTT 0.154g,Timentin 100mg,3mg/ml Bialaphos1ml)上,此时可以进行挑选,挑选颜色鲜艳的幼胚28℃暗培养两周。(7) Transfer all immature embryos to selection medium II (composition per liter: 4 grams of N6 salt and vitamins, 40 grams of sucrose, 30 grams of glucose, 0.7 grams of L-proline, 0.5 g of MES, 1 mg/ml 2,4 -d 1.5ml, 8.5mg/ml silver nitrate 0.1ml, 100mg/ml L-cysteine 0.4g, 0.5M/L DTT 0.154g, Timentin 100mg, 3mg/ml Bialaphos1ml), you can choose at this time, Select brightly colored immature embryos and culture them in the dark at 28°C for two weeks.
(8)经过两次选择之后,开始进行再生,在再生培养基I(每升组成:MS(Murashigeand Skoog)盐(sigma)4.3g,蔗糖60g,凝胶2.5克,2mg/ml甘氨酸1ml,Timentin 100mg)中进行发芽生根,待见到明显叶片及根生长出来时转移到再生培养基Ⅱ(每升组成:MS salts2.9g,蔗糖30g,凝胶2.5g,2mg/ml甘氨酸1ml,Timentin 100mg)上。从此步骤开始,进行光照培养。(8) After two selections, start regeneration, in regeneration medium I (composition per liter: MS (Murashige and Skoog) salt (sigma) 4.3g, sucrose 60g, gel 2.5 grams, 2mg/ml glycine 1ml, Timentin 100mg) for germination and rooting, and transfer to regeneration medium II when obvious leaves and roots grow out (composition per liter: MS salts 2.9g, sucrose 30g, gel 2.5g, 2mg/ml glycine 1ml, Timentin 100mg) superior. From this step, light culture is carried out.
(9)待再生苗长出3-4片叶时,将其转移至温室,并进行检查,阳性植株保留,缓苗2-3天后转移到土中,而后进行正常的玉米生长管理,开花一周后进行株高测量。(9) When the regenerated seedlings grow 3-4 leaves, transfer them to the greenhouse for inspection, and keep the positive plants. After slowing down the seedlings for 2-3 days, transfer them to the soil, then carry out normal corn growth management, and flower for a week Then measure the plant height.
实施例4发生编辑的转基因玉米植株的鉴定Example 4 Identification of edited transgenic maize plants
转移到土中一周后,进行草铵膦筛选,经过草铵膦筛选后成活的玉米叶片采用CTAB法提取DNA,用Zm00001d008708基因特异性引物进行PCR鉴定,扩增产物用1%琼脂糖凝胶电泳进行检测。One week after being transferred to the soil, glufosinate-ammonium screening was carried out. After glufosinate-ammonium screening, DNA was extracted from the surviving corn leaves using the CTAB method, and PCR identification was carried out with Zm00001d008708 gene-specific primers, and the amplified products were electrophoresed on 1% agarose gel to test.
Zm00001d008708基因特异性引物序列如下:Zm00001d008708 gene-specific primer sequences are as follows:
Zm00001d008708-CRISPR-F1:5’-CCACCATCATCCTACGGT-3’;SEQ ID NO.11;Zm00001d008708-CRISPR-F1: 5'-CCACCATCATCCTACGGT-3'; SEQ ID NO.11;
Zm00001d008708-CRISPR-R1:5’-CAGGCACAATCAGGTATGC-3’;SEQ ID NO.12;Zm00001d008708-CRISPR-R1: 5'-CAGGCACAATCAGGTATGC-3'; SEQ ID NO.12;
反应体系为:The reaction system is:
DNA 1μl,Zm00001d008708-CRISPR-F1 1μl,Zm00001d008708-CRISPR-R1 1μl,2×mix 10μl,ddH2O 7μl,Total 20μl。DNA 1 μl, Zm00001d008708-CRISPR-F1 1 μl, Zm00001d008708-CRISPR-R1 1 μl, 2×
反应程序为:94℃5min;98℃30s,58℃30s,72℃1min,35个循环;72℃延伸10min,4℃∞。The reaction program was: 94°C for 5 min; 98°C for 30 s, 58°C for 30 s, 72°C for 1 min, 35 cycles; 72°C for 10 min, 4°C∞.
引物对(Zm00001d008708-CRISPR-F1/R1)用于扩增靶点1、靶点2突变,产物大小约为0.5Kb;将扩增产物条带大小正确的PCR产物送去测序,测序结果(Zm00001d008708MT)与野生型(Zm00001d008708WT)进行比对,结果见图1(仅显示突变位点)。筛选到1个Zm00001d008708基因编辑的突变体株系(图2,A)。发生编辑的纯合突变体材料明显比野生型玉米(图2,B)植株矮。这个玉米矮化材料具有重要的育种价值。The primer pair (Zm00001d008708-CRISPR-F1/R1) is used to amplify the mutation of target 1 and target 2, and the product size is about 0.5Kb; the PCR product with the correct band size of the amplified product is sent for sequencing, and the sequencing result (Zm00001d008708MT ) and the wild type (Zm00001d008708WT), the results are shown in Figure 1 (only the mutation site is shown). One Zm00001d008708 gene-edited mutant line was screened (Fig. 2, A). The edited homozygous mutant material was significantly shorter than wild-type maize (Fig. 2, B) plants. This maize dwarf material has important breeding value.
对野生型(Zm00001d008708WT)和突变体(Zm00001d008708MT)株系的株高进行统计,野生型植株平均株高为158.2cm,突变体株系平均株高为135.9cm,二者方差分析差异显著。The plant heights of the wild type (Zm00001d008708WT) and mutant (Zm00001d008708MT) lines were counted. The average plant height of the wild type plants was 158.2cm, and the average plant height of the mutant lines was 135.9cm. The variance analysis between the two showed significant differences.
本发明提供一种创制玉米矮化材料的方法,按照上述方法制备目的基因编辑的玉米植株,然后基因编辑玉米植株进行杂交、回交、自交或无性繁殖,从而创制玉米矮化材料。The present invention provides a method for creating a corn dwarfing material. According to the above method, a target gene-edited corn plant is prepared, and then the gene-edited corn plant is subjected to hybridization, backcrossing, self-crossing or asexual reproduction, thereby creating a corn dwarfing material.
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Therefore, the present invention will not be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
序列表sequence listing
<110> 吉林省农业科学院<110> Jilin Academy of Agricultural Sciences
<120> 一种基于Zm00001d008708基因创制玉米矮化材料的方法<120> A method for creating maize dwarf material based on Zm00001d008708 gene
<160> 12<160> 12
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 1692<211> 1692
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<400> 1<400> 1
atgaacgcgt cgcagttcat ggacaagcag atcctcggcc tggctgcctc cgcttccccc 60atgaacgcgt cgcagttcat ggacaagcag atcctcggcc tggctgcctc cgcttccccc 60
tccggcggcg gcgcgggggg cggtgggggt gtggatctca gcgatctgat gataccgatc 120tccggcggcg gcgcgggggg cggtgggggt gtggatctca gcgatctgat gataccgatc 120
ccccaggagg acgccgagaa ccgcctcggt cgccggcgta gcagcaccag cgtcaacgga 180ccccaggagg acgccgagaa ccgcctcggt cgccggcgta gcagcaccag cgtcaacgga 180
accgcagacg acatgctacc cagttatgac ttccagccca tccgcactag tggcggcgcc 240accgcagacg acatgctacc cagttatgac ttccagccca tccgcactag tggcggcgcc 240
gcggccgccg ccgcgcctca ggcctcgtgg gggtcgctcg actccaaggc accctctgcc 300gcggccgccg ccgcgcctca ggcctcgtgg gggtcgctcg actccaaggc accctctgcc 300
tcatacaacc tcaagagtgc tggtatattg gagccgcatg tgctgaagaa agttagtcat 360tcatacaacc tcaagagtgc tggtatattg gagccgcatg tgctgaagaa agttagtcat 360
gaggaagaca agagtaactt tcctacagtt actattgcgg atattgatcg aaccatgaag 420gaggaagaca agagtaactt tcctacagtt actattgcgg atattgatcg aaccatgaag 420
aagtactctg ataacctttt gcatgcactg gaaggtgtaa gctcaaggct ttcacagatg 480aagtactctg ataacctttt gcatgcactg gaaggtgtaa gctcaaggct ttcacagatg 480
gagggtagaa cacaccaact cgaaaactct gttgacgagt tgaagttaac aatcggtaac 540gagggtagaa cacaccaact cgaaaactct gttgacgagt tgaagttaac aatcggtaac 540
tataatggta gcactgatgg aaaactgagg aaccttgaga acatgctcag ggaggtccaa 600tataatggta gcactgatgg aaaactgagg aaccttgaga acatgctcag ggaggtccaa 600
gcaggtgtgc agattttgcg agacaagcag gaaattgtcg agacacagct ccaccttgcg 660gcaggtgtgc agatttgcg agacaagcag gaaattgtcg aagacacagct ccaccttgcg 660
aagctccaga caaacaaaac cgatggccaa tcatcagaaa atagtgggtc tggacaggct 720aagctccaga caaacaaaac cgatggccaa tcatcagaaa atagtgggtc tggacaggct 720
ggtttacagc agcagccggt ggttcctcca caagcagcca ttcagccaca acaagtccta 780ggtttacagc agcagccggt ggttcctcca caagcagcca ttcagccaca acaagtccta 780
accccttcgc aaccacctgc acttcctgcc cttcctgctc caaatgcacc acctccacct 840accccttcgc aaccacctgc acttcctgcc cttcctgctc caaatgcacc acctccacct 840
ccaacgcttc aaaaccaatc atcattacag tttccaagtc atttacaaca ttcacaggta 900ccaacgcttc aaaaccaatc atcattacag tttccaagtc atttacaaca ttcacaggta 900
ccatctgtgc cttctgttgc actggcaccc acagttccag ctttaccaag ggatgcttac 960ccatctgtgc cttctgttgc actggcaccc acagttccag ctttaccaag ggatgcttac 960
tatgccccat ctgctcagcc gaccgagacc atgcaccagc agtatcaagc tccgccagtt 1020tatgccccat ctgctcagcc gaccgagacc atgcaccagc agtatcaagc tccgccagtt 1020
ccacagccac aggcacctcc tgcaccacct cagcagtacc aatcccaaac ccagttccct 1080ccacagccac aggcacctcc tgcaccacct cagcagtacc aatcccaaac ccagttccct 1080
caatatgcac agccacctca gcctgcaaat gttaaccctt caactcccca tgtgccccat 1140caatatgcac agccacctca gcctgcaaat gttaacccctt caactcccca tgtgccccat 1140
gcaccccagc aaccagagga aactatgcct tatgcaccag ctcagagcta tccacctaat 1200gcaccccagc aaccagagga aactatgcct tatgcaccag ctcagagcta tccacctaat 1200
gcaatcgctg caccttatat gcaaccacct agtggacctg ctcctcctta ctatgggcag 1260gcaatcgctg caccttatat gcaaccacct agtggacctg ctcctcctta ctatgggcag 1260
caaaacccta gcatgtatga acctcctgca ggccgggcta accctgggcc accatcatcc 1320caaaacccta gcatgtatga acctcctgca ggccgggcta accctgggcc accatcatcc 1320
tacggttctg gtgggtacgg gccacagggt ggaggtagtt tctctgaatc ttatggttac 1380tacggttctg gtgggtacgg gccacagggt ggaggtagtt tctctgaatc ttatggttac 1380
actggatctc cttcccaccg tggcaatgct ggaatgaagc agtcttcacc ttttgctcaa 1440actggatctc cttcccaccg tggcaatgct ggaatgaagc agtcttcacc ttttgctcaa 1440
tcctctggag gaagcggcag ctatggcagt ggcaagctcc ctactgccca gatgcttcca 1500tcctctggag gaagcggcag ctatggcagt ggcaagctcc ctactgccca gatgcttcca 1500
caagcagtgc cgatcagctc ctccagcacc agcggttctt ctggcaatag agtgccactt 1560caagcagtgc cgatcagctc ctccagcacc agcggttctt ctggcaatag agtgccactt 1560
gacgatgtag tggagaaggt tgctacgatg ggattctcaa gagagcaggt gagagcaacc 1620gacgatgtag tggagaaggt tgctacgatg ggattctcaa gagagcaggt gagagcaacc 1620
gtgcggaggc tgactgaaaa cgggcagaac gtggacctga atgtggtgct cgacaagctg 1680gtgcggaggc tgactgaaaa cgggcagaac gtggacctga atgtggtgct cgacaagctg 1680
atgaacggat ga 1692atgaacggat ga 1692
<210> 2<210> 2
<211> 563<211> 563
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<400> 2<400> 2
Met Asn Ala Ser Gln Phe Met Asp Lys Gln Ile Leu Gly Leu Ala AlaMet Asn Ala Ser Gln Phe Met Asp Lys Gln Ile Leu Gly Leu Ala Ala
1 5 10 151 5 10 15
Ser Ala Ser Pro Ser Gly Gly Gly Ala Gly Gly Gly Gly Gly Val AspSer Ala Ser Pro Ser Gly Gly Gly Ala Gly Gly Gly Gly Gly Val Asp
20 25 3020 25 30
Leu Ser Asp Leu Met Ile Pro Ile Pro Gln Glu Asp Ala Glu Asn ArgLeu Ser Asp Leu Met Ile Pro Ile Pro Gln Glu Asp Ala Glu Asn Arg
35 40 4535 40 45
Leu Gly Arg Arg Arg Ser Ser Thr Ser Val Asn Gly Thr Ala Asp AspLeu Gly Arg Arg Arg Ser Ser Thr Ser Val Asn Gly Thr Ala Asp Asp
50 55 6050 55 60
Met Leu Pro Ser Tyr Asp Phe Gln Pro Ile Arg Thr Ser Gly Gly AlaMet Leu Pro Ser Tyr Asp Phe Gln Pro Ile Arg Thr Ser Gly Gly Ala
65 70 75 8065 70 75 80
Ala Ala Ala Ala Ala Pro Gln Ala Ser Trp Gly Ser Leu Asp Ser LysAla Ala Ala Ala Ala Pro Gln Ala Ser Trp Gly Ser Leu Asp Ser Lys
85 90 9585 90 95
Ala Pro Ser Ala Ser Tyr Asn Leu Lys Ser Ala Gly Ile Leu Glu ProAla Pro Ser Ala Ser Tyr Asn Leu Lys Ser Ala Gly Ile Leu Glu Pro
100 105 110100 105 110
His Val Leu Lys Lys Val Ser His Glu Glu Asp Lys Ser Asn Phe ProHis Val Leu Lys Lys Val Ser His Glu Glu Asp Lys Ser Asn Phe Pro
115 120 125115 120 125
Thr Val Thr Ile Ala Asp Ile Asp Arg Thr Met Lys Lys Tyr Ser AspThr Val Thr Ile Ala Asp Ile Asp Arg Thr Met Lys Lys Tyr Ser Asp
130 135 140130 135 140
Asn Leu Leu His Ala Leu Glu Gly Val Ser Ser Arg Leu Ser Gln MetAsn Leu Leu His Ala Leu Glu Gly Val Ser Ser Arg Leu Ser Gln Met
145 150 155 160145 150 155 160
Glu Gly Arg Thr His Gln Leu Glu Asn Ser Val Asp Glu Leu Lys LeuGlu Gly Arg Thr His Gln Leu Glu Asn Ser Val Asp Glu Leu Lys Leu
165 170 175165 170 175
Thr Ile Gly Asn Tyr Asn Gly Ser Thr Asp Gly Lys Leu Arg Asn LeuThr Ile Gly Asn Tyr Asn Gly Ser Thr Asp Gly Lys Leu Arg Asn Leu
180 185 190180 185 190
Glu Asn Met Leu Arg Glu Val Gln Ala Gly Val Gln Ile Leu Arg AspGlu Asn Met Leu Arg Glu Val Gln Ala Gly Val Gln Ile Leu Arg Asp
195 200 205195 200 205
Lys Gln Glu Ile Val Glu Thr Gln Leu His Leu Ala Lys Leu Gln ThrLys Gln Glu Ile Val Glu Thr Gln Leu His Leu Ala Lys Leu Gln Thr
210 215 220210 215 220
Asn Lys Thr Asp Gly Gln Ser Ser Glu Asn Ser Gly Ser Gly Gln AlaAsn Lys Thr Asp Gly Gln Ser Ser Glu Asn Ser Gly Ser Gly Gln Ala
225 230 235 240225 230 235 240
Gly Leu Gln Gln Gln Pro Val Val Pro Pro Gln Ala Ala Ile Gln ProGly Leu Gln Gln Gln Pro Val Val Pro Pro Gln Ala Ala Ile Gln Pro
245 250 255245 250 255
Gln Gln Val Leu Thr Pro Ser Gln Pro Pro Ala Leu Pro Ala Leu ProGln Gln Val Leu Thr Pro Ser Gln Pro Pro Ala Leu Pro Ala Leu Pro
260 265 270260 265 270
Ala Pro Asn Ala Pro Pro Pro Pro Pro Thr Leu Gln Asn Gln Ser SerAla Pro Asn Ala Pro Pro Pro Pro Pro Pro Thr Leu Gln Asn Gln Ser Ser
275 280 285275 280 285
Leu Gln Phe Pro Ser His Leu Gln His Ser Gln Val Pro Ser Val ProLeu Gln Phe Pro Ser His Leu Gln His Ser Gln Val Pro Ser Val Pro
290 295 300290 295 300
Ser Val Ala Leu Ala Pro Thr Val Pro Ala Leu Pro Arg Asp Ala TyrSer Val Ala Leu Ala Pro Thr Val Pro Ala Leu Pro Arg Asp Ala Tyr
305 310 315 320305 310 315 320
Tyr Ala Pro Ser Ala Gln Pro Thr Glu Thr Met His Gln Gln Tyr GlnTyr Ala Pro Ser Ala Gln Pro Thr Glu Thr Met His Gln Gln Tyr Gln
325 330 335325 330 335
Ala Pro Pro Val Pro Gln Pro Gln Ala Pro Pro Ala Pro Pro Gln GlnAla Pro Pro Val Pro Gln Pro Gln Ala Pro Pro Ala Pro Pro Gln Gln
340 345 350340 345 350
Tyr Gln Ser Gln Thr Gln Phe Pro Gln Tyr Ala Gln Pro Pro Gln ProTyr Gln Ser Gln Thr Gln Phe Pro Gln Tyr Ala Gln Pro Pro Gln Pro
355 360 365355 360 365
Ala Asn Val Asn Pro Ser Thr Pro His Val Pro His Ala Pro Gln GlnAla Asn Val Asn Pro Ser Thr Pro His Val Pro His Ala Pro Gln Gln
370 375 380370 375 380
Pro Glu Glu Thr Met Pro Tyr Ala Pro Ala Gln Ser Tyr Pro Pro AsnPro Glu Glu Thr Met Pro Tyr Ala Pro Ala Gln Ser Tyr Pro Pro Asn
385 390 395 400385 390 395 400
Ala Ile Ala Ala Pro Tyr Met Gln Pro Pro Ser Gly Pro Ala Pro ProAla Ile Ala Ala Pro Tyr Met Gln Pro Pro Ser Gly Pro Ala Pro Pro
405 410 415405 410 415
Tyr Tyr Gly Gln Gln Asn Pro Ser Met Tyr Glu Pro Pro Ala Gly ArgTyr Tyr Gly Gln Gln Asn Pro Ser Met Tyr Glu Pro Pro Ala Gly Arg
420 425 430420 425 430
Ala Asn Pro Gly Pro Pro Ser Ser Tyr Gly Ser Gly Gly Tyr Gly ProAla Asn Pro Gly Pro Pro Ser Ser Tyr Gly Ser Gly Gly Tyr Gly Pro
435 440 445435 440 445
Gln Gly Gly Gly Ser Phe Ser Glu Ser Tyr Gly Tyr Thr Gly Ser ProGln Gly Gly Gly Ser Phe Ser Glu Ser Tyr Gly Tyr Thr Gly Ser Pro
450 455 460450 455 460
Ser His Arg Gly Asn Ala Gly Met Lys Gln Ser Ser Pro Phe Ala GlnSer His Arg Gly Asn Ala Gly Met Lys Gln Ser Ser Pro Phe Ala Gln
465 470 475 480465 470 475 480
Ser Ser Gly Gly Ser Gly Ser Tyr Gly Ser Gly Lys Leu Pro Thr AlaSer Ser Gly Gly Ser Gly Ser Tyr Gly Ser Gly Lys Leu Pro Thr Ala
485 490 495485 490 495
Gln Met Leu Pro Gln Ala Val Pro Ile Ser Ser Ser Ser Thr Ser GlyGln Met Leu Pro Gln Ala Val Pro Ile Ser Ser Ser Ser Thr Ser Gly
500 505 510500 505 510
Ser Ser Gly Asn Arg Val Pro Leu Asp Asp Val Val Glu Lys Val AlaSer Ser Gly Asn Arg Val Pro Leu Asp Asp Val Val Glu Lys Val Ala
515 520 525515 520 525
Thr Met Gly Phe Ser Arg Glu Gln Val Arg Ala Thr Val Arg Arg LeuThr Met Gly Phe Ser Arg Glu Gln Val Arg Ala Thr Val Arg Arg Leu
530 535 540530 535 540
Thr Glu Asn Gly Gln Asn Val Asp Leu Asn Val Val Leu Asp Lys LeuThr Glu Asn Gly Gln Asn Val Asp Leu Asn Val Val Leu Asp Lys Leu
545 550 555 560545 550 555 560
Met Asn GlyMet Asn Gly
<210> 3<210> 3
<211> 23<211> 23
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<400> 3<400> 3
tccagcacca gcggttcttc tgg 23tccagcacca gcggttcttc tgg 23
<210> 4<210> 4
<211> 23<211> 23
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<400> 4<400> 4
ccgtgcggag gctgactgaa aac 23ccgtgcggag gctgactgaa
<210> 5<210> 5
<211> 36<211> 36
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<400> 5<400> 5
aataatggtc tcaggcgcca gcaccagcgg ttcttc 36aataatggtc tcaggcgcca gcaccagcgg ttcttc 36
<210> 6<210> 6
<211> 40<211> 40
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<400> 6<400> 6
gccagcacca gcggttcttc gttttagagc tagaaatagc 40gccagcacca gcggttcttc gttttagagc tagaaatagc 40
<210> 7<210> 7
<211> 33<211> 33
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<400> 7<400> 7
tgcggaggct gactgaaaac gcttcttggt gcc 33tgcggaggct gactgaaaac gcttcttggt gcc 33
<210> 8<210> 8
<211> 36<211> 36
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<400> 8<400> 8
attattggtc tctaaactgc ggaggctgac tgaaaa 36attattggtc tctaaactgc ggaggctgac tgaaaa 36
<210> 9<210> 9
<211> 25<211> 25
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<400> 9<400> 9
gacaggcgtc ttctactggt gctac 25gacaggcgtc ttctactggt gctac 25
<210> 10<210> 10
<211> 25<211> 25
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<400> 10<400> 10
ctcacaaatt atcagcacgc tagtc 25ctcacaaatt atcagcacgc tagtc 25
<210> 11<210> 11
<211> 18<211> 18
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<400> 11<400> 11
ccaccatcat cctacggt 18ccaccatcat cctacggt 18
<210> 12<210> 12
<211> 19<211> 19
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<400> 12<400> 12
caggcacaat caggtatgc 19caggcacaat caggtatgc 19
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111405976.3A CN114181966B (en) | 2021-11-24 | 2021-11-24 | Method for creating corn dwarf material based on Zm00001d008708 gene |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111405976.3A CN114181966B (en) | 2021-11-24 | 2021-11-24 | Method for creating corn dwarf material based on Zm00001d008708 gene |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114181966A CN114181966A (en) | 2022-03-15 |
CN114181966B true CN114181966B (en) | 2023-05-16 |
Family
ID=80541436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111405976.3A Expired - Fee Related CN114181966B (en) | 2021-11-24 | 2021-11-24 | Method for creating corn dwarf material based on Zm00001d008708 gene |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114181966B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112575029B (en) * | 2020-12-22 | 2022-06-24 | 吉林省农业科学院 | Method for creating high-stalk corn material by using gene editing technology |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112575029A (en) * | 2020-12-22 | 2021-03-30 | 吉林省农业科学院 | Method for creating high-stalk corn material by using gene editing technology |
CN112626113A (en) * | 2020-12-22 | 2021-04-09 | 吉林省农业科学院 | Method for creating maize dwarfing material by using gene editing technology |
-
2021
- 2021-11-24 CN CN202111405976.3A patent/CN114181966B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112575029A (en) * | 2020-12-22 | 2021-03-30 | 吉林省农业科学院 | Method for creating high-stalk corn material by using gene editing technology |
CN112626113A (en) * | 2020-12-22 | 2021-04-09 | 吉林省农业科学院 | Method for creating maize dwarfing material by using gene editing technology |
Non-Patent Citations (1)
Title |
---|
Hai-Jun Liu等.High-Throughput CRISPR/Cas9 Mutagenesis Streamlines Trait Gene Identification in Maize.The Plant Cell.2020,第32卷(第5期),第1397-1413页. * |
Also Published As
Publication number | Publication date |
---|---|
CN114181966A (en) | 2022-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112626113B (en) | A method for creating maize dwarfing materials using gene editing technology | |
CN112063626B (en) | Corn gene ZmRAVL1 and functional site and application thereof | |
CN110128518A (en) | Method for creating dwarf maize material using gene editing technology | |
KR20210039306A (en) | Gene editing method using transgenic plants expressing CRISPR/Cas9 and gRNA, respectively | |
CN112575029B (en) | Method for creating high-stalk corn material by using gene editing technology | |
CN110904071A (en) | Application of RAF49 protein and its encoding gene in regulating plant drought resistance | |
CN105624188A (en) | Application of SPL18 gene in enhancing plant yield | |
CN113265418B (en) | A method and application of CRISPR/Cas9 specific knockout soybean SOC1 gene | |
WO2023202727A1 (en) | Method for preparing rice male sterile material, and related gene | |
CN108913668A (en) | Rice albefaction turns albumen and the application of greenery gene VAL1 and its coding | |
CN114703198B (en) | Cloning and Application of a Tomato Transporter SlZIF1 | |
CN114181966B (en) | Method for creating corn dwarf material based on Zm00001d008708 gene | |
CN113373166B (en) | Application of tobacco NtAAP3 gene in tobacco | |
CN112062823B (en) | Application of GLK7 protein and its encoding gene in plant drought resistance | |
CN112011547B (en) | Major gene for controlling rape leaf shape and application thereof | |
CN112626115A (en) | Application of OsELF4 gene in controlling heading stage of rice | |
CN110607309A (en) | A protein capable of enhancing plant drought resistance, its coding gene and application | |
CN114150014B (en) | Method for creating corn dwarf material based on ZmEMF2b/2-2 gene | |
CN109456396A (en) | A kind of protein, molecular labeling and the application of Senescence of Rice and fringe type controlling gene HK73 and its coding | |
CN109182350B (en) | Application of Maize Zm675 Gene in Plant Quality Improvement | |
CN107573411A (en) | Application of the wheat TaZIM1 7A albumen in crop heading stage is regulated and controled | |
CN115838756A (en) | Preparation method and application of tobacco NtMAB1 gene silencing plant | |
CN112877341A (en) | Glucosinolate transport related cabbage type rape BnaA09.GTR2 gene and application thereof | |
CN106318923A (en) | Protein capable of regulating chloroplast development under high temperature stress and genes and application thereof | |
CN114807175B (en) | Monosaccharide transduction protein gene OsSTP15 and its transporter and its application in improving rice yield, amplification primers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20230516 |