CN112011547B - Major gene for controlling rape leaf shape and application thereof - Google Patents
Major gene for controlling rape leaf shape and application thereof Download PDFInfo
- Publication number
- CN112011547B CN112011547B CN202010719919.1A CN202010719919A CN112011547B CN 112011547 B CN112011547 B CN 112011547B CN 202010719919 A CN202010719919 A CN 202010719919A CN 112011547 B CN112011547 B CN 112011547B
- Authority
- CN
- China
- Prior art keywords
- gene
- rape
- bnaa10
- rco
- leaf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/6895—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Botany (AREA)
- Biomedical Technology (AREA)
- Immunology (AREA)
- Mycology (AREA)
- Medicinal Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Cell Biology (AREA)
- Plant Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
技术领域technical field
本发明涉及植物基因工程技术领域,具体涉及一种调控油菜叶形的主效基因及其应用。The invention relates to the technical field of plant genetic engineering, in particular to a major gene for regulating the leaf shape of rape and its application.
背景技术Background technique
叶片是植物最重要的器官之一,具有光合作用、蒸腾作用、营养供给和水分运输等功能,影响作物的生理特性甚至产量。叶片形态变化影响叶面温度、植物的水分利用效率和光合作用强度,是植物对环境的一种适应性表现,是通过长期的自然选择所形成的。叶片的形状和大小存在丰富的自然变异,叶片可以根据叶缘形状分为全缘、浅裂和深裂等类型。此外,一些研究也发现花叶性状也与植物的抗逆性有关。迄今为止,关于叶形的研究主要集中在拟南芥、碎米荠和番茄等模式物种中,而油菜中关于叶形基因的定位和分子调控机理研究很少。Leaf is one of the most important organs of plants, with functions such as photosynthesis, transpiration, nutrient supply and water transport, which affect the physiological characteristics and even yield of crops. The change of leaf shape affects leaf temperature, water use efficiency and photosynthesis intensity of plants. It is an adaptive performance of plants to the environment and is formed through long-term natural selection. There are abundant natural variations in the shape and size of leaves, and leaves can be divided into whole, lobed and deep-lobed types according to the shape of the leaf margin. In addition, some studies have also found that mosaic traits are also related to plant stress resistance. So far, research on leaf shape has mainly focused on model species such as Arabidopsis, Camelina and tomato, while the localization and molecular regulation mechanism of leaf shape genes in rapeseed are rarely studied.
油菜中的花叶表型在植株发育早期就能够表现出来,且表型稳定,不易受环境条件的影响,因此,花叶也成为一种理想的形态标记应用于油菜杂种的生产。目前已有的关于油菜花叶表型的应用是利用花叶显性性状为标记,进行恢复系和不育系等选育,保证杂交油菜的纯度。但是油菜中关于叶形基因的定位和分子调控机理研究很少,因此,如何更好的了解花叶叶形的形成机理,为利用叶形性状更好的进行油菜遗传改良具有重要的意义。The mosaic phenotype in rapeseed can be manifested in the early stage of plant development, and the phenotype is stable and not easily affected by environmental conditions. Therefore, mosaic has also become an ideal morphological marker for the production of rapeseed hybrids. At present, the existing application of rape mosaic phenotype is to use the dominant traits of mosaic and leaves as markers to select restorer lines and sterile lines to ensure the purity of hybrid rapeseed. However, there are few studies on the localization and molecular regulation mechanism of leaf shape genes in rapeseed. Therefore, how to better understand the formation mechanism of mosaic leaf shape is of great significance for better genetic improvement of rapeseed by using leaf shape traits.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种控制油菜叶形的主效基因及其应用。本发明所提供的主效基因能够实现油菜叶形的调控,为油菜的叶形改良育种提供理论基础。The purpose of the present invention is to provide a major gene for controlling rape leaf shape and its application. The main effect gene provided by the invention can realize the regulation of rape leaf shape, and provides a theoretical basis for the improvement and breeding of rape leaf shape.
本发明所提供的控制油菜叶形的主效基因,所述主效基因为 BnaA10.RCO基因或者其等位基因,其中BnaA10.RCO基因的核苷酸序列如 SEQ ID NO:1所示。The major gene for controlling the leaf shape of rapeseed provided by the present invention is the BnaA10.RCO gene or its allele, wherein the nucleotide sequence of the BnaA10.RCO gene is shown in SEQ ID NO: 1.
本发明还提供了一种调控油菜叶形的蛋白,所述蛋白由上述的主效基因编码。The present invention also provides a protein that regulates the leaf shape of rapeseed, and the protein is encoded by the above-mentioned major gene.
本发明还提供了一种含有控制油菜叶形的主效基因的表达载体,其中,所述表达载体为含有上述主效基因的PMDC32载体。The present invention also provides an expression vector containing a major gene for controlling the leaf shape of rapeseed, wherein the expression vector is a PMDC32 vector containing the above major gene.
本发明还提供了控制油菜叶形的主效基因、该基因编码的蛋白以及含有该基因的表达载体在调控油菜叶形中的应用。The invention also provides the main gene for controlling the leaf shape of rapeseed, the protein encoded by the gene and the application of the expression vector containing the gene in regulating the leaf shape of rapeseed.
本发明还提供了一种含有调控油菜叶形主效基因的表达载体的构建方法,其特征在于,包括以下步骤:The present invention also provides a method for constructing an expression vector containing a major gene for regulating the leaf shape of rapeseed, characterized in that it comprises the following steps:
S1-1,分别从HY刻裂叶和Z9浅裂叶两个材料中扩增BnaA10.RCO基因组DNA序列;S1-1, Amplify BnaA10.RCO genomic DNA sequence from two materials of HY cleavage leaves and Z9 lobed leaves, respectively;
S1-2,将步骤S1中扩增后的序列用酶切连接的方法连入以CaMV35S 为启动子的PMDC32载体上。S1-2, the amplified sequence in step S1 is ligated into the PMDC32 vector with CaMV35S as the promoter by the method of enzyme digestion and ligation.
其中,步骤S1-1中扩增BnaA10.RCO基因组DNA序列所用的引物为:Wherein, the primers used for amplifying the BnaA10.RCO genomic DNA sequence in step S1-1 are:
A10-117F GGGCttaattaaCTACCATGGGTAAGGCTGTTGCA10-117F GGGCttaattaaCTACCATGGGTAAGGCTGTTGC
A10-118R GACAggtaccATGGAATGGTCAACGACGAGCA10-118R GACAggtaccATGGAATGGTCAACGACGAGC
本发明还提供了一种控制油菜叶形的主效基因的克隆方法,包括以下步骤:The present invention also provides a method for cloning a major gene for controlling the leaf shape of rapeseed, comprising the following steps:
S2-1,将甘蓝型油菜参考基因组中BnLLA10区段注释的基因比对到拟南芥基因组中,并进行功能注释,确定候选基因;S2-1, align the genes annotated with the BnLLA10 segment in the Brassica napus reference genome to the Arabidopsis genome, and perform functional annotation to determine candidate genes;
S2-2,设计引物对HY刻裂叶和Z9浅裂叶两个材料的候选基因进行克隆,并将其cDNA和DNA的测序结果进行比较,确定候选基因在两个材料中等位基因的差异位置;S2-2, design primers to clone the candidate genes of the two materials of HY incised leaves and Z9 lobed leaves, and compare the cDNA and DNA sequencing results to determine the differential positions of the candidate genes in the two materials. ;
S2-3,分析候选基因在HY和Z9的近等基因系Z9-NIL中的特异表达量,并经过超表达实验和基因敲除实验,最终确定出主效基因BnaA10.RCO;S2-3, analyze the specific expression of candidate genes in the near-isogenic line Z9-NIL of HY and Z9, and finally determine the major gene BnaA10.RCO through overexpression experiments and gene knockout experiments;
S2-4,将主效基因BnaA10.RCO连接到表达载体上并经过农杆菌介导的下胚轴转化法转入到受体细胞中,即可。S2-4, connect the main gene BnaA10.RCO to the expression vector and transfer it into the recipient cell through the Agrobacterium-mediated hypocotyl transformation method.
其中,步骤S2-1中确定的候选基因为BnaA10.RCO和BnaA10.LMI1。Wherein, the candidate genes determined in step S2-1 are BnaA10.RCO and BnaA10.LMI1.
其中,步骤S2-2中BnaA10.RCO基因克隆时所用的引物的核苷酸序列为:Wherein, the nucleotide sequence of the primer used when the BnaA10.RCO gene is cloned in step S2-2 is:
A10_101F:TCTCCAAGATCCGAAACACCTA10_101F: TTCCCAAGATCCGAAACACCT
A10_101R:ATGGAATGGTCAACGACGAGC。A10_101R: ATGGAATGGTCAACGACGAGC.
本发明公开了分离克隆的调控油菜叶形的主效基因BnaA10.RCO,以及它的等位基因(HY)的核苷酸序列如SEQ ID NO:1和氨基酸序列如SEQ ID NO:2所示,在等位基因比较测序中发现两个亲本材料HY和Z9的等位基因差异主要位于基因5’调控区位置,利用qRT-PCR技术对HY及其近等基因系Z9-NIL进行表达量分析,发现在不同组织中BnaA10.RCO基因表达量在HY中明显高于近等基因系,超表达和基因敲除的转基因实验都证明 BnaA10.RCO基因正调控油菜叶形。The invention discloses the isolated and cloned main gene BnaA10.RCO for regulating the leaf shape of rapeseed, and the nucleotide sequence of its allele (HY) as shown in SEQ ID NO: 1 and the amino acid sequence as shown in SEQ ID NO: 2 , in the allelic comparison sequencing, it was found that the allelic differences between the two parental materials HY and Z9 were mainly located in the 5' regulatory region of the gene, and the expression levels of HY and its near-isogenic line Z9-NIL were analyzed by qRT-PCR technology. , found that the expression of BnaA10.RCO gene in different tissues was significantly higher in HY than in near-isogenic lines. Both overexpression and gene knockout transgenic experiments proved that BnaA10.RCO gene positively regulates rape leaf shape.
本发明在油菜中克隆了调控油菜叶形的主效基因,为油菜的叶形改良育种提供了理论基础;同时也为白菜型油菜、芥菜型油菜等十字花叶植物的叶形调控研究提供了参考。The invention clones the main gene that regulates the leaf shape of rapeseed in rapeseed, provides a theoretical basis for the improvement and breeding of the leaf shape of rapeseed, and also provides the research on the leaf shape control of cruciferous leaf plants such as cabbage-type rape, mustard-type rape and the like. refer to.
附图说明Description of drawings
图1为BnaA10.RCO的基因结构图;其中箭头所指的S1、S2中的位置即为靶点序列位置;Figure 1 is the gene structure diagram of BnaA10.RCO; the positions in S1 and S2 indicated by the arrows are the target sequence positions;
图2为BnaA10.RCO基因的表达量分析图;其中A为不同天数的HY 和Z9-NIL的幼苗叶片中的表达量,B为10天时HY和Z9-NIL幼苗不同组织中的表达量;Figure 2 is an analysis diagram of the expression level of BnaA10.RCO gene; wherein A is the expression level in leaves of HY and Z9-NIL seedlings at different days, and B is the expression level in different tissues of HY and Z9-NIL seedlings at 10 days;
图3为在J9707和HY背景下,过表达的BnaA10.RCOHY (HY OE)和BnaA10.RCOZ9 (Z9OE)的表型和表达水平;其中15d叶龄的幼苗:(A)J9707;(B)J9707背景中的HY OE-16、HYOE-55、HY OE-63、HY OE-141和HY OE-30转基因系; (C)HY;(D)HY背景下的Z9 OE-7、Z9 OE-17、Z9 OE-23;(E)HY背景中的Z9 OE-119和Z9 OE-122转基因系;(F)HY背景中的Z9 OE-20和Z9 OE-25转基因系;(G-K)分别对应于A (G)、B (H)、C (I)、D (J)和F (K)中的幼苗长大到50d植株时的成熟叶;L表示10天时叶片中BnaRCO和BnaLMI1的表达水平,M表示10天时茎尖中BnaRCO和BnaLMI1的表达水平。Figure 3 shows the phenotype and expression levels of overexpressed BnaA10.RCOHY (HY OE) and BnaA10.RCOZ9 (Z9OE) under the background of J9707 and HY; among them, the 15d leaf-aged seedlings: (A) J9707; (B) J9707 HY OE-16, HYOE-55, HY OE-63, HY OE-141 and HY OE-30 transgenic lines in the background; (C) HY; (D) Z9 OE-7, Z9 OE-17 in the HY background , Z9 OE-23; (E) Z9 OE-119 and Z9 OE-122 transgenic lines in HY background; (F) Z9 OE-20 and Z9 OE-25 transgenic lines in HY background; (G-K) correspond to Seedlings in A (G), B (H), C (I), D (J) and F (K) grew to mature leaves at 50 d; L represents the expression levels of BnaRCO and BnaLMI1 in leaves at 10 d, M represents the expression levels of BnaRCO and BnaLMI1 in shoot apex at 10 days.
图4为在花叶亲本HY中用CRISPR/Cas9系统诱导的BnaRCO突变体。 (A)Cas9P35s-BnaRCO(SRCO)的载体示意图。(B)针对RCO设计的靶点序列,其中用下划线标记了PAM序列。(C)BnaRCO编辑单株T0和T1代的基因型和表型。(D)BnaRCO编辑单株的sgRNA靶位点附近的序列。PAM序列用下划线标记,具体的突变序列信息见右边的标注;“A”或者“C”代表野生型等位基因,“a”或者“c”代表突变等位基因。标尺为1cm。Figure 4 is a BnaRCO mutant induced by the CRISPR/Cas9 system in the mosaic parent HY. (A) Schematic representation of the Cas9P35s-BnaRCO (SRCO) vector. (B) Target sequence designed for RCO, where the PAM sequence is underlined. (C) Genotype and phenotype of T 0 and T 1 generations of BnaRCO edited individual plants. (D) BnaRCO edits sequences near the sgRNA target site of an individual. The PAM sequence is marked with an underline, and the specific mutation sequence information is shown in the annotation on the right; "A" or "C" represents the wild-type allele, and "a" or "c" represents the mutant allele. The ruler is 1cm.
图5为BnaA10.RCO突变体表型及突变体中BnaLMI1的表达水平的检测。不同基因型编辑单株的表型(A)(二叶期)及其叶形指数(B)的比较;AaCc 代表两个RCO基因拷贝杂合突变体,aacc代表两个RCO基因拷贝代表纯合突变体或双等位突变体;(C)通过qPCR用BnOTC进行RNA总量的均一化,检测了BnaA10.RCO编辑的转基因系中7d幼苗的茎尖中BnaLMI1的表达水平。标尺为1cm。Figure 5 is the detection of the BnaA10.RCO mutant phenotype and the expression level of BnaLMI1 in the mutant. Comparison of phenotypes (A) (two-leaf stage) and leaf shape index (B) of edited individual plants with different genotypes; AaCc represents two RCO gene copies heterozygous mutants, aacc represents two RCO gene copies represents homozygous Mutants or biallelic mutants; (C) BnaLMI1 expression levels in shoot tips of 7d seedlings in BnaA10.RCO edited transgenic lines were examined by normalization of total RNA by qPCR with BnOTC. The ruler is 1cm.
具体实施方式Detailed ways
以下结合具体实施方式对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。除非另有定义,本文所使用的所有的技术和科学术语均属于本发明的技术领域的技术人员通常理解的含义。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。The principles and features of the present invention will be described below in conjunction with specific embodiments, and the examples are only used to explain the present invention, but not to limit the scope of the present invention. Unless otherwise defined, all technical and scientific terms used herein have the meaning as commonly understood by one of ordinary skill in the technical field of the present invention. The terms used herein in the description of the present invention are for the purpose of describing specific embodiments only, and are not intended to limit the present invention.
供试材料:Test material:
HY来自于安徽省“铜陵花叶”,地方品种,叶片表型为深裂叶,也叫做花叶,由江西省农科院种植资源库提供。HY comes from "Tongling Mosaic" in Anhui Province. It is a local variety. The leaf phenotype is deep-lobed leaves, also called Mosaic. It is provided by the Planting Resource Bank of Jiangxi Academy of Agricultural Sciences.
Z9为“中双9号”简称为Z9,为推广品种,叶片表型为浅裂叶形。Z9 is "Zhongshuang No. 9" and abbreviated as Z9. It is a popularized variety, and its leaf phenotype is lobed.
半冬性甘蓝型油菜J9707为浅裂叶形,用于本研究中的转化受体,由华中农业大学油菜工程中心提供。Brassica napus J9707, a lobed leaf shape, was used as the transformation receptor in this study, provided by the Rapeseed Engineering Center of Huazhong Agricultural University.
表达载体PMDC32购买自addgene网站,网址为https://www.addgene.org。The expression vector PMDC32 was purchased from the addgene website at https://www.addgene.org .
PYLCRISPR/Cas935S-H编辑载体由华南农业大学刘耀光老师实验室提供,载体具体序列参见Ma X,Zhang Q,Zhu Q,Liu W,Chen Y,Qiu R,Wang B, Yang Z,Li H,Lin Y.Arobust CRISPR/Cas9 system for convenient, high-efficiency multiplex genomeediting in monocot and dicot plants.Mol Plant, 2015,8:1274-1284。The PYLCRISPR/Cas935S-H editing vector was provided by the laboratory of Mr. Liu Yaoguang, South China Agricultural University. For the specific sequence of the vector, please refer to Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y .Arobust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant, 2015, 8:1274-1284.
Z9-NIL:两个亲本材料HY和Z9通过正反交分别得到F1杂种,其中 HY×Z9的F1杂种通过自交和与HY亲本的回交,衍生出F2、F3、BC1F2、 BC2F2和BC3F2等不同世代的分离群体。在BC3F2世代,通过分子标记辅助选择的方法筛选出在叶形主效位点(BnLLA10位点)为纯合Z9等位基因型且叶形与供体亲本Z9相同的单株,作为HY材料的近等基因系,称为 Z9-NIL(Near-Isogenic Line ofHY)。Z9-NIL: Two parent materials, HY and Z9, were obtained by reversing crosses to obtain F1 hybrids, wherein the F1 hybrids of HY×Z9 were derived from F2, F3, BC1F2, BC2F2 and BC3F2 through selfing and backcrossing with the HY parent. Segregated groups of different generations. In the BC3F2 generation, the individual plants with the homozygous Z9 allele at the leaf-shaped major locus (BnLLA10 locus) and the leaf shape identical to the donor parent Z9 were screened by molecular marker-assisted selection, and were used as the HY material. The near-isogenic line is called Z9-NIL (Near-Isogenic Line ofHY).
本发明提供一种控制油菜叶形的主效基因,所述主效基因为 BnaA10.RCO基因或者其等位基因,其中BnaA10.RCO基因的核苷酸序列如 SEQ ID NO:1所示。本发明所涉及到的主效基因BnaA10.RCO基因,是位于油菜A10染色体上的基因,编码一个与植物叶形发育相关的HD-ZIPI转录因子,发明人利用图位克隆基因定位和遗传转化相结合的方法分离克隆了该基因。本发明利用本研究小组已发表的A10染色体上控制叶形的位点,即 BnLLA10的精细定位结果,将定位区段缩小至A10染色体上A10_87和 A10_88所对应的41.0kb的区段内。通过对这个区间范围内的5个基因的功能预测,确定了BnaA10.RCO基因为候选基因。该候选基因有2个内含子和 3个外显子,编码223个氨基酸序列。该候选基因在HY和Z9两个亲本中基因型只有基因编码区离ATG处35bp有1个由C-T的碱基突变,导致HY 相对Z9由Met12突变成Thr12。但该突变不在RCO基因保守motif区段内,且Met12也出现在刻裂叶材料Yuye 87中,说明Thr12或者Met12不是决定叶形的关键氨基酸。而BnaA10.RCO的5’-UTR区在亲本间存在很多差异,包括79个SNP和21个INDEL,而3’-UTR只有13个SNP差异。通过表达量检测发现在9d幼苗的茎顶端组织、10d和15d幼苗的叶片中,HY相较于 Z9-NIL中,BnaA10.RCO基因表达量都显著上调表达。利用超表达技术,通过农杆菌介导的遗传转化,发现该基因的表达量与叶形复杂度呈正相关。利用CRISPR/Cas9基因编辑技术,通过农杆菌介导的遗传转化,发现在HY中敲除该基因会使花叶叶形突变成正常叶。在该超表达转基因株系和该基因敲除突变体中,相较于其野生型,BnaLMI1表达水平没有显著差异。因此,最终确定BnaA10.RCO基因为控制油菜叶缘刻裂的主效基因。The present invention provides a major gene for controlling the leaf shape of rape, wherein the major gene is the BnaA10.RCO gene or its allele, wherein the nucleotide sequence of the BnaA10.RCO gene is shown in SEQ ID NO: 1. The main gene BnaA10.RCO involved in the present invention is a gene located on the A10 chromosome of rapeseed and encodes an HD-ZIPI transcription factor related to plant leaf shape development. The gene was isolated and cloned by the combined method. The present invention utilizes the fine mapping result of BnLLA10, the locus that controls leaf shape on the A10 chromosome published by our research group, and narrows the mapping segment to the 41.0kb segment corresponding to A10_87 and A10_88 on the A10 chromosome. The BnaA10.RCO gene was identified as a candidate gene by the function prediction of 5 genes in this interval. The candidate gene has 2 introns and 3 exons, encoding 223 amino acid sequences. The genotype of the candidate gene in the two parents, HY and Z9, only has a C-T base mutation in the coding region of the gene 35bp away from ATG, resulting in the mutation of HY from Met12 to Thr12 relative to Z9. However, the mutation was not in the conserved motif segment of the RCO gene, and Met12 also appeared in
本发明还提供了一种调控油菜叶形的蛋白,所述蛋白由上述的主效基因编码。The present invention also provides a protein that regulates the leaf shape of rapeseed, and the protein is encoded by the above-mentioned major gene.
本发明还提供了一种含有控制油菜叶形的主效基因的表达载体,其中,所述表达载体为含有上述主效基因的PMDC32载体。The present invention also provides an expression vector containing a major gene for controlling the leaf shape of rapeseed, wherein the expression vector is a PMDC32 vector containing the above major gene.
本发明还提供了控制油菜叶形的主效基因、该基因编码的蛋白以及含有该基因的表达载体在调控油菜叶形中的应用。The invention also provides the main gene for controlling the leaf shape of rapeseed, the protein encoded by the gene and the application of the expression vector containing the gene in regulating the leaf shape of rapeseed.
本发明还提供了一种含有调控油菜叶形主效基因的表达载体的构建方法,其特征在于,包括以下步骤:The present invention also provides a method for constructing an expression vector containing a major gene for regulating the leaf shape of rapeseed, characterized in that it comprises the following steps:
S1-1,分别从HY刻裂叶和Z9浅裂叶两个材料中扩增BnaA10.RCO基因组DNA序列;S1-1, Amplify BnaA10.RCO genomic DNA sequence from two materials of HY cleavage leaves and Z9 lobed leaves, respectively;
S1-2,将步骤S1中扩增后的序列用酶切连接的方法连入以CaMV35S 为启动子的PMDC32载体上。S1-2, the amplified sequence in step S1 is ligated into the PMDC32 vector with CaMV35S as the promoter by the method of enzyme digestion and ligation.
其中,步骤S1-1中扩增BnaA10.RCO基因组DNA序列所用的引物为:Wherein, the primers used for amplifying the BnaA10.RCO genomic DNA sequence in step S1-1 are:
A10-117F GGGCttaattaaCTACCATGGGTAAGGCTGTTGCA10-117F GGGCttaattaaCTACCATGGGTAAGGCTGTTGC
A10-118R GACAggtaccATGGAATGGTCAACGACGAGC。A10-118R GACAggtaccATGGAATGGTCAACGACGAGC.
本发明还提供了一种控制油菜叶形的主效基因的克隆方法,包括以下步骤:The present invention also provides a method for cloning a major gene for controlling the leaf shape of rapeseed, comprising the following steps:
S2-1,将甘蓝型油菜参考基因组中BnLLA10区段注释的基因比对到拟南芥基因组中,并进行功能注释,确定候选基因;S2-1, align the genes annotated with the BnLLA10 segment in the Brassica napus reference genome to the Arabidopsis genome, and perform functional annotation to determine candidate genes;
S2-2,设计引物对HY刻裂叶和Z9浅裂叶两个材料进行候选基因测序,并将其cDNA和DNA的测序结果进行比较,确定两者的候选基因存在较大差异的位置;S2-2, design primers to sequence the candidate genes of the two materials of HY cut leaf and Z9 lobed leaf, and compare the sequencing results of their cDNA and DNA to determine the positions where the candidate genes of the two are significantly different;
S2-3,分析候选基因在HY和Z9的近等基因系Z9-NIL中的特异表达量,并经过超表达实验和基因敲除实验,最终确定出主效基因BnaA10.RCO;S2-3, analyze the specific expression of candidate genes in the near-isogenic line Z9-NIL of HY and Z9, and finally determine the major gene BnaA10.RCO through overexpression experiments and gene knockout experiments;
S2-4,将主效基因BnaA10.RCO连接到表达载体上并经过农杆菌介导的下胚轴转化法转入到受体细胞中,即可。S2-4, connect the main gene BnaA10.RCO to the expression vector and transfer it into the recipient cell through the Agrobacterium-mediated hypocotyl transformation method.
其中,步骤S2-1中确定的候选基因为BnaA10.RCO和BnaA10.LMI1。Wherein, the candidate genes determined in step S2-1 are BnaA10.RCO and BnaA10.LMI1.
其中,步骤S2-2中基因克隆测序时所用的引物的核苷酸序列为:Wherein, the nucleotide sequences of the primers used in gene cloning and sequencing in step S2-2 are:
A10_101F:TCTCCAAGATCCGAAACACCTA10_101F: TTCCCAAGATCCGAAACACCT
A10_101R:ATGGAATGGTCAACGACGAGC。A10_101R: ATGGAATGGTCAACGACGAGC.
实施例1BnaA10.RCO基因的定位与克隆Example 1 Location and cloning of BnaA10.RCO gene
经过申请人的大量研究,申请人认为在A10染色体定位区段内存在效应大的叶形基因,且在芸薹属中该位点对叶形的调控作用比较保守。After extensive research by the applicant, the applicant believes that there is a leaf shape gene with a large effect in the A10 chromosome positioning segment, and the regulatory effect of this site on leaf shape is relatively conservative in Brassica.
在甘蓝型油菜参考基因组中(http://www.genoscope.cns.fr/brassicanapus/),定位区段的41.0kb内有5个注释基因,即BnaA10g26310D到BnaA10g26350D (表1)。我们将BnLLA10区段内注释的基因比对到拟南芥基因组 (http://www.arabidopsis.org/),并进行功能注释。其中BnaA10g26320D (BnaA10.RCO)和BnaA10g26330D(BnaA10.LMI1)为拟南芥LMI1-like旁系同源基因,编码HD-Zip I转录因子,其同源基因在碎米荠、拟南芥被报道参与叶形调控(Vlad et al 2014,Sicard et al 2014)。另外3个基因中,BnaA10g26310D 是一个外泌素家族基因;BnaA10g26340D编码一个3-脱氧-D-甘露糖八辛酸酯转移酶;BnaA10g26350D编码一个β-甘露聚糖合酶合成酶。这3个基因的注释信息都和叶形调控无关。因此,串联同源基因BnaA10.RCO和 BnaA10.LMI1是最有可能控制油菜花叶的候选基因。In the Brassica napus reference genome (http://www.genoscope.cns.fr/brassicanapus/), there are 5 annotated genes within 41.0 kb of the mapped segment, namely BnaA10g26310D to BnaA10g26350D (Table 1). We aligned genes annotated within the BnLLA10 segment to the Arabidopsis genome (http://www.arabidopsis.org/) and performed functional annotation. Among them, BnaA10g26320D (BnaA10.RCO) and BnaA10g26330D (BnaA10.LMI1) are Arabidopsis LMI1-like paralogous genes, which encode HD-Zip I transcription factors. Leaf shape regulation (Vlad et al 2014, Sicard et al 2014). Among the other three genes, BnaA10g26310D is an exocrine family gene; BnaA10g26340D encodes a 3-deoxy-D-mannose octacaprylate transferase; BnaA10g26350D encodes a β-mannan synthase synthase. The annotation information of these three genes has nothing to do with leaf shape regulation. Therefore, the tandem homologous genes BnaA10.RCO and BnaA10.LMI1 are the most likely candidate genes to control rape mosaic.
表1甘蓝型油菜参考基因组中定位区段内的注释基因Table 1 Annotated genes within the mapping segment in the reference genome of Brassica napus
基于此,根据HY(刻裂叶)和Z9(浅裂叶)两个材料重测序序列,我们设计了A10-101F/R这对引物对BnaA10.RCO基因序列进行扩增,其中引物序列为:Based on this, according to the resequencing sequences of HY (cut leaf) and Z9 (lobed leaf), we designed the primer pair A10-101F/R to amplify the BnaA10.RCO gene sequence, where the primer sequence is:
A10_101F:TCTCCAAGATCCGAAACACCTA10_101F: TTCCCAAGATCCGAAACACCT
A10_101R:ATGGAATGGTCAACGACGAGC。A10_101R: ATGGAATGGTCAACGACGAGC.
同时利用这对引物对该基因的cDNA和基因组扩增并进行TA克隆,其中PCR反应体系为:2ul DNA模板、25ul Phanta Max Buffer(Vazyme,P505-d1)、引物工作液各2ul、10mMdNTP 1ul、Phanta Max Super-Fidelity DNA polymerase 1ul和双蒸馏水混合成50ul的体系。反应程序为:1:95℃ 4分钟;2:95℃ 30秒,58℃ 30秒,72℃ 1分30秒;3:重复2步骤33次;4: 72℃ 10分钟,25℃ 5分钟。At the same time, this pair of primers was used to amplify the cDNA and genome of the gene and carry out TA cloning, wherein the PCR reaction system was: 2ul DNA template, 25ul Phanta Max Buffer (Vazyme, P505-d1), 2ul of primer working solution, 1ul of 10mM dNTP, Phanta Max Super-Fidelity DNA polymerase 1ul and double distilled water were mixed into a 50ul system. The reaction program was: 1: 95°C for 4 minutes; 2: 95°C for 30 seconds, 58°C for 30 seconds, 72°C for 1 minute and 30 seconds; 3:
cDNA测序结果对比DNA测序结果表明,BnaA10.RCO有2个内含子和 3个外显子,编码223个氨基酸序列,与BnaA10.LMI1相比蛋白相似性为 61%,为同源基因。该类基因含有1个保守的同源盒(Homeobox domain)和亮氨酸拉链结构域(Leucine zipper domain)。在等位基因比较测序结果中,我们发现BnaA10.RCO基因在两个亲本中基因编码区离ATG处35bp有1个由C-T的碱基突变,导致HY相对Z9由Met12突变成Thr12。但该突变不在 RCO基因保守motif区段内,且Met12也出现在刻裂叶材料Yuye 87中,说明Thr12或者Met12不是决定叶形的关键氨基酸。而BnaA10.RCO的5’-基因调控区在亲本间存在很多差异,包括79个SNP和21个INDEL,而3’- 基因调控区只有13个SNP差异(图1)。Comparison of cDNA sequencing results and DNA sequencing results showed that BnaA10.RCO has 2 introns and 3 exons, encoding 223 amino acid sequences. Compared with BnaA10.LMI1, the protein similarity is 61%, and it is a homologous gene. This type of gene contains a conserved homeobox (Homeobox domain) and leucine zipper domain (Leucine zipper domain). In the allele comparison sequencing results, we found that the BnaA10.RCO gene in the two parents had a C-T base mutation 35bp away from ATG in the gene coding region, resulting in the mutation of HY relative to Z9 from Met12 to Thr12. However, the mutation was not in the conserved motif segment of the RCO gene, and Met12 also appeared in the cut
BnaA10.RCO基因的5’基因调控区克隆引物:Cloning primers for the 5' gene regulatory region of the BnaA10.RCO gene:
A10_111F:GAGCGAGTTGGATGAGTTAGA10_111F: GAGCGAGTTGGATGAGTTAG
A10_112F:CTTTAGTCTTGCTGTTCTTGTGA10_112F: CTTTAGTCTTGCTGTTCTTGTG
A10_115R:CGGCGATGATGTAGAGATAATAA10_115R: CGGCGATGATGTAGAGATAATA
A10_145F:TTACCTTCGGTTCTTAGCGTA10_145F: TTACCTTCGGGTTCTTAGCGT
A10_148F:GTAGAGAGGGAAGTCATGTTGTCA10_148F: GTAGAGAGGGAAGTCATGTTGTC
A10_150R:CGATGTCTTGCGGTACTTTATA10_150R: CGATGTCTTGCGGTACTTTAT
BnaA10.RCO基因的3’基因调控区克隆引物:3' gene regulatory region cloning primer of BnaA10.RCO gene:
A10_106F:TTCTTCGCAGGAGGTGTAA10_106F: TTCTTCGCAGGAGGTGTA
A10_107F:CAGGTTACGTTCCTCCTTTCA10_107F: CAGGTTACGTTCCTCCTTTC
A10_108F:CGGTCTTGCTCCAACATTA10_108F: CGGTCTTGCTCCAACATT
A10_109R:TATCATCGCAACAGCCTTACA10_109R: TATCATCGCAACAGCCTTAC
A10_110R:GAGGCAAATGAATCTGAACAACA10_110R: GAGGCAAATGAATCTGAACAAC
实施例2BnaA10.RCO的表达量分析Example 2 Expression analysis of BnaA10.RCO
在HY和Z9-NIL中检测BnaRCO的基因表达量。提取亲本HY和 Z9-NIL茎顶端的总RNA,以反转录得到的cDNA为模板,利用基因的表达检测引物进行PCR扩增,所述引物序列为:The gene expression of BnaRCO was detected in HY and Z9-NIL. The total RNA at the stem tip of the parent HY and Z9-NIL was extracted, and the cDNA obtained by reverse transcription was used as a template, and the expression detection primer of the gene was used for PCR amplification, and the primer sequence was:
RCOF:GGTAGCTGTTTGGTTCCAGAARCOF: GGTAGCTGTTTGGTTCCAGAA
RCOR:CCCTCCGGCTATTTGATTGTRCOR: CCCTCCGGCTATTTGATTGT
油菜基因ORNITHINE TRANSCARBAMYLASE(OTC)基因(Cnops et al 2004)作为内参基因,引物序列如下:The rape gene ORNITHINE TRANSCARBAMYLASE (OTC) gene (Cnops et al 2004) was used as the internal reference gene, and the primer sequences were as follows:
BnOTC-F:CATAACCACCCTTGCCAAATCBnOTC-F: CATAACCACCCTTGCCAAATC
BnOTC-R:TTGTTCCCGTCTCCAACATAGBnOTC-R: TTGTTCCCGTCTCCAACATAG
其中,反应体系为:2×super mix 7.5ul、左右引物(2.5uM)各2ul、CDNA: 5.5ul,反应程序为1:95℃ 30秒;2:95℃ 15秒,56℃ 15秒,72℃ 15 秒,收集荧光;3:重复2步骤45次;4:溶解曲线生成,4℃ 10分钟。The reaction system was: 2×super mix 7.5ul, left and right primers (2.5uM) 2ul each, cDNA: 5.5ul, and the reaction program was 1: 95°C for 30 seconds; 2: 95°C for 15 seconds, 56°C for 15 seconds, 72 15 seconds at °C, fluorescence collection; 3:
qRT-PCR结果表明在9d幼苗的茎顶端组织、10d和15d幼苗的叶片中, HY相较于Z9-NIL中,BnaRCO基因表达量显著上调表达。另外,相较于 10d和15d幼苗的叶片,9d幼苗的茎顶端组织中候选基因的表达量显著上升(图2A);在幼苗的不同组织,包括下胚轴、根、茎顶端、10d幼苗的叶片、 10d幼苗的子叶中,BnaRCO基因的表达量在茎顶端中水平最高(图2B),说明BnaRCO可能作用于叶片发育早期参与调控叶形。图2中A为HY和 Z9-NIL中BnaRCO基因在发芽后9d的幼苗的茎顶端、10d的幼苗的叶子和 15d的幼苗的叶子中的表达量;B为BnaRCO基因在HY幼苗的不同组织中的表达量;qRT-PCR是以BnOTC为内参基因,表达量计算是3个生物学重复的平均值±SD来表示的;Z9-NIL是BC3F2群体中HY背景下,在 BnLLA10位点为纯合Z9基因型的个体;**,P<0.01的显著水平,*,P<0.05 的显著水平。The results of qRT-PCR showed that in the shoot top tissue of 9d seedlings and the leaves of 10d and 15d seedlings, the expression of BnaRCO gene was significantly up-regulated in HY compared with Z9-NIL. In addition, compared with the leaves of 10d and 15d seedlings, the expression levels of candidate genes in the stem apical tissues of 9d seedlings were significantly increased (Fig. 2A); In leaves and cotyledons of 10-day seedlings, the expression level of BnaRCO gene was the highest in the top of the stem (Fig. 2B), indicating that BnaRCO may act in the early stage of leaf development and participate in the regulation of leaf shape. In Figure 2, A is the expression level of BnaRCO gene in HY and Z9-NIL at the stem tip of 9d seedlings, the leaves of 10d seedlings and the leaves of 15d seedlings after germination; B is the expression of BnaRCO gene in different tissues of HY seedlings qRT-PCR uses BnOTC as the internal reference gene, and the expression is expressed as the mean ± SD of 3 biological replicates; Z9-NIL is the HY background in the BC3F2 population, homozygous at the BnLLA10 locus Individuals with Z9 genotype; **, significant level at P<0.01, *, significant level at P<0.05.
实施例3BnaA10.RCO的超表达试验Example 3 Overexpression test of BnaA10.RCO
我们分别从HY和Z9基因组中扩增BnaA10.RCO基因组DNA序列,上述引物信息为:We amplified the BnaA10.RCO genomic DNA sequences from the HY and Z9 genomes, respectively. The above primer information is:
A10-117F:GGGCttaattaaCTACCATGGGTAAGGCTGTTGCA10-117F: GGGCttaattaaCTACCATGGGTAAGGCTGTTGC
A10-118R:GACAggtaccATGGAATGGTCAACGACGAGCA10-118R: GACAggtaccATGGAATGGTCAACGACGAGC
连入以CaMV35S为启动子的表达载体PMDC32中,构建超表达载体。It was linked into the expression vector PMDC32 with CaMV35S as the promoter to construct an overexpression vector.
该载体同时转化浅裂叶J9707和花叶HY两种受体材料。其中 BnaA10.RCOHY为HY中BnaA10.RCO等位基因的超表达载体,简称HY OE; BnaA10.RCOZ9为Z9中BnaA10.RCO等位基因的超表达载体,简称Z9 OE。The vector simultaneously transformed two acceptor materials of lobed leaf J9707 and mosaic HY. Among them, BnaA10.RCO HY is the overexpression vector of BnaA10.RCO allele in HY, referred to as HY OE; BnaA10.RCO Z9 is the overexpression vector of BnaA10.RCO allele in Z9, referred to as Z9 OE.
通过农杆菌介导的下胚轴转化法,在以J9707(浅裂叶形,优异转化受体材料)为受体材料的HY OE转基因阳性株系后代中,大部分转基因阳性单株叶缘刻裂明显增多,个别产生深裂叶表型,类似于HY(图3B-H)。在 HY转化背景下,Z9 OE转基因系阳性株系中,叶形刻裂程度比HY更严重,仅剩下少量叶肉组织,裂叶之间的生长和细胞增殖被抑制,叶片面积明显减少。HY转基因背景下Z9 OE中,Z9_OE-20、Z9_OE-119两个转基因系表现为平滑的叶边缘,表现出共表达抑制现象(图3E,F,K)。利用qRT-PCR 进行表达量检测发现,BnaA10.RCO的表达均大大降低,表明两个株系中存在共抑制现象(图3M)。其中,图3为在J9707和HY背景下,过表达的 BnaA10.RCOHY(HY OE)和BnaA10.RCOz9(Z9 OE)的表型和表达水平。15d 叶龄的幼苗:(A)J9707;(B)J9707背景中的HY OE-16、HY OE-55、HY OE-63、 HY OE-141和HY OE-30转基因系;(C)HY;(D)HY背景下的Z9 OE-7、Z9 OE-17、Z9 OE-23;(E)HY背景中的Z9 OE-119和Z9 OE-122转基因系;(F)HY 背景中的Z9 OE-20和Z9 OE-25转基因系。(G-K)分别对应于A(G)、B(H)、 C(I)、D(J)和F(K)中的幼苗长大到50d植株时的成熟叶。通过qRT-PCR对BnOTC进行标准化,通过qRT-PCR检测10d转基因株系及其叶片的叶片(L) 和茎尖(M)中的BnaRCO和BnaLMI1表达水平;表达量的值表示3个生物学重复的平均值±SD,标尺,1cm。Through the Agrobacterium-mediated hypocotyl transformation method, in the offspring of the HY OE transgenic line with J9707 (lobed leaf shape, excellent transformation acceptor material) as the acceptor material, most of the transgene-positive individual plants were inscribed on the leaf margins. The number of lobes was significantly increased, and some individuals produced a deep-lobed leaf phenotype, similar to HY (Fig. 3B-H). Under the background of HY transformation, in the Z9 OE transgenic line-positive line, the degree of leaf shape incision was more serious than that of HY, only a small amount of mesophyll tissue was left, the growth and cell proliferation between the split leaves were inhibited, and the leaf area was significantly reduced. In the Z9 OE under the HY transgenic background, the two transgenic lines Z9_OE-20 and Z9_OE-119 showed smooth leaf margins, showing the phenomenon of co-expression inhibition (Fig. 3E, F, K). Expression detection by qRT-PCR showed that the expression of BnaA10.RCO was greatly reduced, indicating that there was co-suppression in the two lines (Fig. 3M). Among them, Figure 3 shows the phenotype and expression levels of overexpressed BnaA10.RCOHY (HY OE) and BnaA10.RCOz9 (Z9 OE) in the background of J9707 and HY. 15d leaf-aged seedlings: (A) J9707; (B) HY OE-16, HY OE-55, HY OE-63, HY OE-141 and HY OE-30 transgenic lines in J9707 background; (C) HY; (D) Z9 OE-7, Z9 OE-17, Z9 OE-23 in HY background; (E) Z9 OE-119 and Z9 OE-122 transgenic lines in HY background; (F) Z9 OE in HY background -20 and Z9 OE-25 transgenic lines. (G-K) correspond to the mature leaves when the seedlings in A (G), B (H), C (I), D (J) and F (K) grow to 50 d plants, respectively. BnOTC was normalized by qRT-PCR, and the expression levels of BnaRCO and BnaLMI1 in the leaves (L) and shoot tips (M) of the 10d transgenic lines and their leaves were detected by qRT-PCR; the expression values represent 3 biological replicates Mean ± SD, scale bar, 1 cm.
以上结果表明,不论是提高HY或Z9的BnaA10.RCO等位基因的表达量都可以增加叶形复杂度;而在HY中降低BnaA10.RCO基因表达量使叶缘变平滑。因此,BnaA10.RCO表达水平与叶形呈正相关关系。The above results indicated that increasing the expression of BnaA10.RCO allele in HY or Z9 could increase the complexity of leaf shape; while decreasing the expression of BnaA10.RCO in HY made the leaf margins smoother. Therefore, BnaA10.RCO expression level was positively correlated with leaf shape.
转基因操作的具体步骤如下:The specific steps of transgenic operation are as follows:
超表达载体构建:1)构建p35S:BnaRCO载体:将BnaA10.RCO基因序列以引物A10_117F(PacI)/A10_118R(KpnI)从HY和Z9中扩增出来,再利用酶切连接的方法连入pMDC32载体。对构建好的载体再通过测序验证正确后,提取质粒,然后转化农杆菌GV3101。Construction of overexpression vector: 1) Construction of p35S:BnaRCO vector: The BnaA10.RCO gene sequence was amplified from HY and Z9 with primers A10_117F(PacI)/A10_118R(KpnI), and then connected to pMDC32 vector by enzyme ligation . After the constructed vector was verified to be correct by sequencing, the plasmid was extracted and transformed into Agrobacterium GV3101.
其中PCR扩增的反应体系为:2ul DNA模板、25ul Phanta Max Buffer (Vazyme,P505-d1)、引物工作液各2ul、10mM dNTP 1ul、Phanta Max Super-Fidelity DNApolymerase 1ul和双蒸馏水混合成50ul的体系。反应程序为1:95℃ 4分钟;2:95℃ 30秒,58℃ 30秒,72℃ 1分30秒;3:重复2步骤33次;4:72℃ 10分钟,25℃ 5分钟。酶切表达载体的反应体系为质粒15ul、FastDigest buffer 5ul、PacI和KpnI各1.25ul,最后加双蒸馏水混合成40ul体系;反应条件为37℃ 15分钟,连接时的反应体系为质粒4ul、 T4 DNA ligasebuffer 2ul、T4 DNA ligese 0.5ul和双蒸馏水混合成10ul体系,反应条件为20-25℃ 10分钟。Wherein the reaction system of PCR amplification is: 2ul DNA template, 25ul Phanta Max Buffer (Vazyme, P505-d1), each 2ul of primer working solution, 1ul of 10mM dNTP, 1ul of Phanta Max Super-Fidelity DNApolymerase and double distilled water are mixed into a system of 50ul . The reaction program was 1: 95°C for 4 minutes; 2: 95°C for 30 seconds, 58°C for 30 seconds, 72°C for 1 minute and 30 seconds; 3:
遗传转化的主要步骤、培养基及其配制的方法如下所述:The main steps of genetic transformation, the culture medium and the preparation method thereof are as follows:
1)灭菌:种子用2ml离心管装小半管,加入75%酒精浸泡种子1-3分钟,注意时间不宜过长,否则影响发芽。去掉酒精,加入84消毒液(用蒸馏水稀释一倍)浸泡种子5-8分钟;去掉84消毒液,用无菌水冲洗3-5遍。1) Sterilization: The seeds are placed in a 2ml centrifuge tube in a small half tube, and 75% alcohol is added to soak the seeds for 1-3 minutes. Pay attention that the time should not be too long, otherwise the germination will be affected. Remove the alcohol, add 84 disinfectant (diluted twice with distilled water) and soak the seeds for 5-8 minutes; remove the 84 disinfectant and rinse with sterile water 3-5 times.
2)播种:用无菌镊子将灭菌种子播到M0培养基上,每皿20-25粒;然后,将培养皿放无菌培养盒中,暗光24℃培养6d。2) Sowing: Use sterile tweezers to sow sterilized seeds on M0 medium, 20-25 seeds per dish; then, put the petri dish in a sterile incubator, and cultivate at 24°C in dark light for 6 days.
3)摇菌:播种4d后用LB培养目标农杆菌菌株。灭菌PU瓶加入4ml LB 培养液,再吸入10μl活化的目标菌株,并加入抗生素,即4ml LB液体加4μL kana和4μL Gent以及10μL菌液;于180-220r/min摇床中摇菌培养12-15h。3) Shake bacteria: 4 days after sowing, the target Agrobacterium strains were cultured with LB. Add 4ml of LB culture solution to the sterilized PU bottle, inhale 10μl of the activated target strain, and add antibiotics, that is, 4ml of LB solution plus 4μL of kana and 4μL of Gent and 10μL of bacterial solution; Shake the bacteria in a shaker at 180-220r/min for 12 -15h.
4)外植体的制备及侵染:测菌的OD值(OD约0.4左右较好),吸取 2ml培养好的菌株到2ml无菌离心管中,6000r/min离心3分钟,倒掉上清;用2ml DM重新悬浮一次,6000r/min离心3分钟,弃上清后,加2ml DM 再次悬浮,将悬浮的菌液放4℃备用。无菌剪刀剪取暗培养6d的幼苗的下胚轴到无菌平皿中,平皿中先加入18mL M1液体培养基;剪下的外植体最适长度为0.8-1.0cm,且切取外植体时尽量一次性垂直剪下。每皿150-200个外植体时,加入第一步准备好的2ml DM悬浮菌液,开始计时浸染10-15分钟,期间每隔2分钟摇晃一次。然后快速吸出菌液,将外植体转移到无菌的滤纸上,吸走外植体上附着的大量菌液。4) Preparation and infection of explants: measure the OD value of the bacteria (OD about 0.4 is better), suck 2ml of the cultured strains into a 2ml sterile centrifuge tube, centrifuge at 6000r/min for 3 minutes, and discard the supernatant ; Resuspend once with 2ml DM, centrifuge at 6000r/min for 3 minutes, discard the supernatant, add 2ml DM to resuspend, and put the suspended bacterial solution at 4°C for later use. Sterile scissors cut the hypocotyls of the seedlings cultured in dark for 6 days and put them in a sterile plate, and add 18mL M1 liquid medium to the plate first; the optimal length of the cut explants is 0.8-1.0cm, and the explants are cut. Try to cut vertically at one time. When there are 150-200 explants per dish, add 2ml of the DM suspension bacteria prepared in the first step, start timed for 10-15 minutes, and shake every 2 minutes during this period. Then quickly aspirate the bacterial liquid, transfer the explants to sterile filter paper, and suck up a large amount of bacterial liquid attached to the explants.
5)转到M1培养基中,每皿30-50个外植体,暗光下24℃放置。5) Transfer to M1 medium, 30-50 explants per dish, and place at 24°C under dark light.
6)24-48h后转到M2培养基,24℃光照条件下培养(白天16h/晚上8h)。6) After 24-48h, transfer to M2 medium and cultivate under light conditions at 24°C (16h during the day/8h at night).
7)15-20d后转到M3培养基中,每2-3周继代一次,直至出现绿芽。7) Transfer to M3 medium after 15-20 days, and subculture every 2-3 weeks until green shoots appear.
8)大于2cm的绿芽转入M4生根培养基生根,生根时间需2-4周。长出健壮的完整幼苗后就可以把幼苗移栽至大田或温室继续生长直至结实。8) The green shoots larger than 2cm are transferred to M4 rooting medium for rooting, and the rooting time takes 2-4 weeks. Once robust intact seedlings have grown, the seedlings can be transplanted to the field or greenhouse to continue growing until firm.
实施例4BnaA10.RCO的基因敲除试验Example 4 Gene knockout test of BnaA10.RCO
为了进一步证明BnaA10.RCO参与叶形调控,针对BnaA10.RCO基因编码区设计了两个sgRNA盒,将该载体命名为Cas9P35S-RCO,简称SRCO(图 4A)。sgRNA构建引物为:To further prove that BnaA10.RCO is involved in the regulation of leaf shape, two sgRNA cassettes were designed for the coding region of the BnaA10.RCO gene, and the vector was named Cas9P35S-RCO, or SRCO for short (Figure 4A). The primers for sgRNA construction are:
BnRCOT1-F:gtcACGGGCGTAGACGAATTTCCBnRCOT1-F: gtcACGGGCGTAGACGAATTTCC
BnRCOT1-R:aaacggaaattcgtctacgcccgBnRCOT1-R: aaacggaaattcgtctacgcccg
BnRCOT2-F:attGCTTCACCCTCCACCGTGCABnRCOT2-F: attGCTTCACCCTCCACCGTGCA
BnRCOT2-R:aaactgcacggtggagggtgaagBnRCOT2-R: aaactgcacggtggagggtgaag
这两个sgRNA分别用拟南芥启动子pU3d和pU6-1启动表达,且同时靶向RCO的两个同源拷贝BnaA10.RCO(BnaA10g26320D)和BnaC04.RCO (BnaC04g00850D)(图4B)。将构建好的SRCO载体利用农杆菌下胚轴转化法转化HY材料。利用载体特异性引物进行转基因阳性鉴定,上述特异性引物序列为:The two sgRNAs were expressed using the Arabidopsis promoters pU3d and pU6-1, respectively, and simultaneously targeted the two homologous copies of RCO, BnaA10.RCO (BnaA10g26320D) and BnaC04.RCO (BnaC04g00850D) (Figure 4B). The constructed SRCO vector was transformed into HY material by Agrobacterium hypocotyl transformation method. Use carrier-specific primers for positive identification of transgenes, and the above-mentioned specific primer sequences are:
PB-L:GCGCGCGGTCTCGCTCGACTAGTATGGPB-L: GCGCGCGGTCTCGCTCGACTAGTATGG
PB-R:GCGCGCGGTCTCTACCGACGCGTATCCPB-R: GCGCGCGGTCTCTACCGACGCGTATCC
扩增体系为:2ul DAN模板、1ul buffer3、0.16ul 10mM dNTP、0.1ul Taq DNApolymerase、左右引物各加0.5ul、双蒸馏水混合成10ul的体系。扩增程序为:95℃ 4分钟;2:95℃ 30秒,58℃ 30秒,72℃ 1分;3:重复2 步骤32次;4:72℃ 10分钟,25℃ 5分钟。The amplification system was as follows: 2ul DAN template, 1ul buffer3, 0.16ul 10mM dNTP, 0.1ul Taq DNA polymerase, 0.5ul each of the left and right primers, and double distilled water mixed into a 10ul system. The amplification program was: 95°C for 4 minutes; 2: 95°C for 30 seconds, 58°C for 30 seconds, 72°C for 1 minute; 3: repeat
结果共得到38个T0代转基因阳性单株,这些单株进一步通过高通量测序方法鉴定基因型(Liu et al 2017),基因编辑鉴定引物序列为:As a result, a total of 38 T 0 generation transgene-positive individual plants were obtained. These individual plants were further identified by high-throughput sequencing (Liu et al 2017), and the primer sequences for gene editing identification were:
C04-1:ggagtgagtacggtgtgcCCTACTTCCCGTTCCCTCAAC04-1: ggagtgagtacggtgtgcCCTACTTCCCGTTCCCTCAA
A10_266:gagttggatgctggatggATGGAATGGTCAACGACGAGA10_266: gagttggatgctggatggATGGAATGGTCAACGACGAG
A10_267:ggagtgagtacggtgtgcGCGTGATAATTCCAAGATTTTTAGAAA10_267: ggagtgagtacggtgtgcGCGTGATAATTCCAAGATTTTTAGAA
A10_269:gagttggatgctggatggGATTCAGACAGGAAGGTGAAGA10_269: gagttggatgctggatggGATTCAGACAGGAAGGTGAAG
A10_271:ggagtgagtacggtgtgcACCTCATCGTGCGTTGTCA10_271: ggagtgagtacggtgtgcACCTCATCGTGCGTTGTC
高通量测序结果表明有21个T0代单株发生了基因编辑事件,编辑效率为55.3%。在这21个编辑单株中有12个单株在BnaA10.RCO和BnaC04.RCO 两个拷贝同时发生纯合或双等位突变,突变体表现为浅裂叶形。为了进一步确认该突变表型是否可以遗传,我们继续对5个发生编辑的T0代家系进行繁殖,并检测基因型。结果发现在所有检测的单株中,当BnaA10.RCO两个等位基因都发生移码突变(纯合突变或双等位突变,aacc基因型)或只有BnaA10.RCO发生纯合突变或双等位突变时,突变体都表现相同的浅裂叶形;而两个基因为杂合基因型(AaCc)时,突变体表现为中间叶形(图4C-D,图5A-B)。因此,我们推断BnaA10.RCO对叶形有决定作用,而根据RCO 基因两个拷贝的表达量分析结果表明BnaC04.RCO几乎不表达,说明 BnaC04.RCO与叶形调控无关。在rco突变体株系中进行BnaLMI1的基因表达量检测。检测结果表明在转基因系材料中BnaLMI1的基因表达量相较于受体材料中该基因的表达量都没有显著变化(图5C)。其中,图4为在花叶亲本HY中用CRISPR/Cas9系统诱导的BnaRCO突变体。 (A)Cas9P35s-BnaRCO(SRCO)的载体示意图。(B)针对RCO设计的靶点序列,其中用下划线标记了PAM序列。(C)BnaRCO编辑单株T0和T1代的基因型和表型。(D)BnaRCO编辑单株的sgRNA靶位点附近的序列。PAM序列用下划线标记,具体的突变序列信息见右边的标注;“A”或者“C”代表野生型等位基因,“a”或者“c”代表突变等位基因。标尺为1cm。The results of high-throughput sequencing showed that 21 T 0 generation individual plants had gene editing events, and the editing efficiency was 55.3%. Among the 21 edited individuals, 12 were homozygous or biallelic mutations in both copies of BnaA10.RCO and BnaC04.RCO, and the mutants showed a lobed leaf shape. To further confirm whether the mutant phenotype can be inherited, we proceeded to breed and genotype five edited T 0 families. The results showed that in all tested individual plants, when both BnaA10.RCO alleles had frameshift mutations (homozygous or biallelic mutations, aacc genotype) or only BnaA10.RCO had homozygous mutations or bi-isotypes. When both genes were mutated, the mutants all showed the same lobed leaf shape; while when the two genes were heterozygous genotypes (AaCc), the mutants showed an intermediate leaf shape (Fig. 4C-D, Fig. 5A-B). Therefore, we infer that BnaA10.RCO has a decisive effect on leaf shape, and the expression analysis of the two copies of RCO gene shows that BnaC04.RCO is almost not expressed, indicating that BnaC04.RCO has nothing to do with leaf shape regulation. The gene expression level of BnaLMI1 was detected in rco mutant lines. The detection results showed that the gene expression level of BnaLMI1 in the transgenic line material did not change significantly compared with the expression level of the gene in the recipient material (Fig. 5C). Among them, Figure 4 is the BnaRCO mutant induced by the CRISPR/Cas9 system in the mosaic parent HY. (A) Schematic representation of the Cas9P35s-BnaRCO (SRCO) vector. (B) Target sequence designed for RCO, where the PAM sequence is underlined. (C) Genotype and phenotype of T 0 and T 1 generations of BnaRCO edited individual plants. (D) BnaRCO edits sequences near the sgRNA target site of an individual. The PAM sequence is marked with an underline, and the specific mutation sequence information is shown in the annotation on the right; "A" or "C" represents the wild-type allele, and "a" or "c" represents the mutant allele. The ruler is 1cm.
图5为BnaA10.RCO突变体表型及突变体中BnaLMI1的表达水平的检测。不同基因型编辑单株的表型(A)(二叶期)及其叶形指数(B)的比较;AaCc 代表两个RCO基因拷贝杂合突变体,aacc代表两个RCO基因拷贝代表纯合突变体或双等位突变体;(C)通过qPCR用BnOTC进行RNA总量的均一化,检测了BnaA10.RCO编辑的转基因系中7d幼苗的茎尖中BnaLMI1的表达水平。标尺为1cm。Figure 5 is the detection of the BnaA10.RCO mutant phenotype and the expression level of BnaLMI1 in the mutant. Comparison of phenotypes (A) (two-leaf stage) and leaf shape index (B) of edited individual plants with different genotypes; AaCc represents two RCO gene copies heterozygous mutants, aacc represents two RCO gene copies represents homozygous Mutants or biallelic mutants; (C) BnaLMI1 expression levels in shoot tips of 7d seedlings in BnaA10.RCO edited transgenic lines were examined by normalization of total RNA by qPCR with BnOTC. The ruler is 1cm.
这意味着BnaRCO调控叶形的过程不需要依赖于调控BnaLMI1的表达水平。This means that the regulation of leaf shape by BnaRCO does not depend on regulating the expression level of BnaLMI1.
CRISPR/Cas9编辑载体构建:利用CRISPR-P (http://cbi.hzau.edu.cn/cgi-bin/CRISPR)在线工具挑选基因靶位点,然后参照 Ma等(2015)所描述的方法构建CRISPR/Cas9编辑载体进行,所用骨架载体为PYLCRISPR/Cas935S-H。主要步骤包括:CRISPR/Cas9 editing vector construction: Use CRISPR-P (http://cbi.hzau.edu.cn/cgi-bin/CRISPR) online tool to select gene target sites, and then construct according to the method described by Ma et al. (2015) CRISPR/Cas9 editing vector was used, and the backbone vector used was PYLCRISPR/Cas935S-H. The main steps include:
1)对骨架载体用Bsa I酶切,其中酶切反应体系为:取pU3d等质粒各1) The backbone vector is digested with Bsa I, wherein the enzyme digestion reaction system is: take each plasmid such as pU3d, etc.
1μg,在25μl反应用10U Bsa I,冷冻保存,反应条件为:37℃酶切20分钟,回收骨架片段;1μg, 10U Bsa I for reaction in 25μl, cryopreserved, the reaction conditions are: 37°C for 20 minutes, and the backbone fragment is recovered;
2)sgRNA盒构建,做2轮巢式PCR,第一轮PCR做2个反应,分别用 U-F接头反向引物,和用接头正向引物gR-R;第二轮为Overlapping PCR,用位置特异引物扩增出表达盒产物。其中U-F接头反向引物为: CTCCGTTTTACCTGTGGAATCG,接头正向引物gR-R为CGGAGGAAAATTCCATCCAC,反应体系为:表达盒连接产物0.5ul、引物各0.3ul、2mM dNTP1.5ul、1.5ul 10×buffer(KOD-Plus,TOYOBO)、5mM MgSO4 0.6ul、KOD plus 0.3ul,加双蒸馏水混合成15ul的体系,反应条件为: 94℃ 2分钟;2:98℃ 10秒,58℃ 10秒,68℃ 10秒;3:重复2步骤25 次;4:68℃ 4分钟,25℃ 4分钟。2) sgRNA cassette construction, do 2 rounds of nested PCR, do 2 reactions in the first round of PCR, respectively use UF linker reverse primer, and use linker forward primer gR-R; the second round is Overlapping PCR, using position specific The primers amplify the expression cassette product. The UF linker reverse primer is: CTCCGTTTTACCTGTGGAATCG, the linker forward primer gR-R is CGGAGGAAAATTCCATCCAC, and the reaction system is: expression cassette ligation product 0.5ul, primers 0.3ul each, 2mM dNTP 1.5ul, 1.5
3)双元载体与sgRNA表达盒的酶切-连接。用变温循环进行酶切连接约10-15循环:37℃ 5分钟;10℃ 5分钟,20℃ 5分钟;最后37℃ 5分钟。3) Enzymatic cleavage-ligation of binary vector and sgRNA expression cassette. Enzymatic ligation was performed using a variable temperature cycle for approximately 10-15 cycles: 5 minutes at 37°C; 5 minutes at 10°C, 5 minutes at 20°C; and a final 5 minutes at 37°C.
4)对构建好的载体再通过测序验证正确后,提取质粒,然后转化农杆菌GV3101。农杆菌介导的下胚轴转化方法参照实施例3中的介绍。4) After the constructed vector is verified to be correct by sequencing, the plasmid is extracted, and then transformed into Agrobacterium GV3101. For the method of Agrobacterium-mediated hypocotyl transformation, refer to the introduction in Example 3.
基因编辑的基因型检测方法如下:本发明利用高通量的测序方法来检测突变基因型,本实验室主要采用了王克剑老师课题组开发的Hi-TOM测序方法,进行两轮重叠PCR:第一轮PCR使用靶点引物扩增目标片段;第二轮 PCR使用通用引物扩增第一轮PCR产物,通用引物在目标片段两端添加上二代测序序列元件和barcode序列;PCR产物纯化后进行二代高通量测序;最后经过简单的数据提取后,使用在线网站Hi-Tom (http://www.hi-tom.net/hi-tom/)分析每个单株的具体突变形式。The genotype detection method for gene editing is as follows: the present invention uses a high-throughput sequencing method to detect mutant genotypes, and the laboratory mainly adopts the Hi-TOM sequencing method developed by the research group of Mr. Wang Kejian, and performs two rounds of overlapping PCR: first. One round of PCR uses target primers to amplify the target fragments; the second round of PCR uses universal primers to amplify the first round of PCR products, and the universal primers add next-generation sequencing elements and barcode sequences to both ends of the target fragments; Generation of high-throughput sequencing; finally, after simple data extraction, the online website Hi-Tom (http://www.hi-tom.net/hi-tom/) was used to analyze the specific mutant form of each individual plant.
遗传转化所用培养基:Media used for genetic transformation:
M0培养基:1/2MS(2.2g/L)+蔗糖(30g/L),调pH值至5.8左右,加琼脂8g/L,然后高温灭菌;M0 medium: 1/2MS (2.2g/L) + sucrose (30g/L), adjust the pH value to about 5.8, add agar 8g/L, and then sterilize at high temperature;
DM悬浮液:MS(4.4g/L)+蔗糖(30g/L),调pH约5.8,加琼脂8g/L,然后高温灭菌,使用时添加乙酰丁香酮终浓度100μM;DM suspension: MS (4.4g/L) + sucrose (30g/L), adjust pH to about 5.8, add agar 8g/L, then sterilize at high temperature, add acetosyringone to final concentration of 100μM;
M1培养基:MS(4.4g/L)+蔗糖(30g/L)+甘露醇(18g/L)+2,4-D(1 mg/L)+KT(0.3mg/L),调pH约5.8,加琼脂8g/L,然后高温灭菌,使用时添加乙酰丁香酮终浓度100μM;M1 medium: MS (4.4g/L) + sucrose (30g/L) + mannitol (18g/L) + 2,4-D (1 mg/L) + KT (0.3 mg/L), adjust the pH to about 5.8, add agar 8g/L, then sterilize at high temperature, and add acetosyringone to the final concentration of 100μM;
M2培养基:MS(4.4g/L)+葡萄糖(10g/L)+甘露醇(18g/L)+2,4-D (1mg/L)+KT(0.3mg/L),调pH约5.8,加琼脂8g/L,然后高温灭菌,使用时添加硫代硫酸银(终浓度30μM),以及抗生素(如潮霉素、特美汀);M2 medium: MS (4.4g/L)+glucose (10g/L)+mannitol (18g/L)+2,4-D (1mg/L)+KT (0.3mg/L), adjust pH to about 5.8 , add agar 8g/L, then sterilize at high temperature, add silver thiosulfate (final concentration 30μM), and antibiotics (such as hygromycin, timementin) when using;
M3培养基:MS(4.4g/L)+蔗糖(30g/L)+木糖(0.25g/L)+MES(0.6 g/L),调pH约5.8,加琼脂8g/L,然后高温灭菌。使用时添加激素ZT(终浓度2mg/L)、IAA(终浓度0.1mg/L)和AgNO3(终浓度3mg/L),以及抗生素(如潮霉素、特美汀);M3 medium: MS (4.4g/L) + sucrose (30g/L) + xylose (0.25g/L) + MES (0.6 g/L), adjust pH to about 5.8, add agar 8g/L, then sterilize at high temperature bacteria. Add hormones ZT (final concentration 2mg/L), IAA (final concentration 0.1mg/L) and AgNO3 (final concentration 3mg/L), and antibiotics (such as hygromycin, Timentin) during use;
M4培养基:MS(4.4g/L)+蔗糖(10g/L),调pH约5.8,加琼脂8g/L,然后高温灭菌。M4 medium: MS (4.4g/L) + sucrose (10g/L), adjust pH to about 5.8, add agar 8g/L, and then sterilize at high temperature.
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the protection of the present invention. within the range.
序列表sequence listing
<110> 华中农业大学<110> Huazhong Agricultural University
<120> 一种控制油菜叶形的主效基因及其应用<120> A major gene for controlling rape leaf shape and its application
<160> 2<160> 2
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 1769<211> 1769
<212> DNA<212> DNA
<213> 油菜(Brassica campestris L)<213> Rape (Brassica campestris L)
<400> 1<400> 1
atggaatggt caacgacgag caatgttgaa aacacgagag ttgcttttat gccacttcag 60atggaatggt caacgacgag caatgttgaa aacacgagag ttgcttttat gccacttcag 60
tggctggagt ctaactcatc caactcgctc caaaacttca gctatgatcc ttatgcaggt 120tggctggagt ctaactcatc caactcgctc caaaacttca gctatgatcc ttatgcaggt 120
atattcattc acatgcatct ttatatccat ctttttgtgg atttgttgta attccggttg 180atattcattc acatgcatct ttatatccat ctttttgtgg atttgttgta attccggttg 180
agttttaaaa tttccaccaa aatatagcta ggtttgcatt aaattttgaa aaggtagcac 240agttttaaaa tttccaccaa aatatagcta ggtttgcatt aaattttgaa aaggtagcac 240
cattaatggc gagagattaa aaagaaaata ttagtatttt atttttatga tttttttaaa 300cattaatggc gagagattaa aaagaaaata ttagtatttt atttttatga ttttttttaaa 300
gaaaattaaa gaaatatgaa tggtcagttg aatgacactt gtataataga attctcaaaa 360gaaaattaaa gaaatatgaa tggtcagttg aatgacactt gtataataga attctcaaaa 360
tttgtgcaaa atgtttaaaa ttgaaaccat ttttcctctt tttattattt tctttaattt 420tttgtgcaaa atgtttaaaa ttgaaaccat ttttcctctt ttattatttt tctttaattt 420
taattatgag agactcagag aaatacgcct actatttcca tttttggaaa agattcgatt 480taattatgag agactcagag aaatacgcct actatttcca tttttggaaa agattcgatt 480
ttatacagta ctccagtata tgactttttt gagggaacgg gaaaaacgtt ttgcaattct 540ttatacagta ctccagtata tgactttttt gagggaacgg gaaaaacgtt ttgcaattct 540
aaaaatcttg gaattatcac gcttttctta tgagaagtag gatatagacc accgatattc 600aaaaatcttg gaattatcac gcttttctta tgagaagtag gatatagacc accgatattc 600
ttatgacttt cttggaacca tgctcagtgt ttcaaaagta gaaacgtcgc ttttcaaatg 660ttatgacttt cttggaacca tgctcagtgt ttcaaaagta gaaacgtcgc ttttcaaatg 660
ttttgagatt cgttttctcg ctcaagaaaa actggaaagt tttttttttg tattgtattt 720ttttgagatt cgtttttctcg ctcaagaaaa actggaaagt ttttttttttg tattgtattt 720
gaaattatta ttgttgagcg tttgtgtcgt tctctttgtt tttgttgtta agttttacca 780gaaattatta ttgttgagcg tttgtgtcgt tctctttgtt tttgttgtta agttttacca 780
ggaaattcgt ctacgcccgt ccttacgcaa accggaccgg ttatttctgt accggaatca 840ggaaattcgt ctacgcccgt ccttacgcaa accggaccgg ttatttctgt accggaatca 840
tcagaaaaga tcaccaatgc gtgcccatat ccaagtaacg acgacgagat gataaagaag 900tcagaaaaga tcaccaatgc gtgcccatat ccaagtaacg acgacgagat gataaagaag 900
aagcagaaac taacgactga acaattagct tcacttgaac agagttttca agaagatatc 960aagcagaaac taacgactga acaattagct tcacttgaac agagttttca agaagatatc 960
aaacttgatt cagacaggaa ggtgaagctg tcgaaggagc ttcgtctgca gccacgtcag 1020aaacttgatt cagacaggaa ggtgaagctg tcgaaggagc ttcgtctgca gccacgtcag 1020
gtagctgttt ggttccagaa ccgccgtgca cggtggaggg tgaagcatct cgaggagtcg 1080gtagctgttt ggttccagaa ccgccgtgca cggtggaggg tgaagcatct cgaggagtcg 1080
tacaactcgc taaggaaaga gtacgacgtg gtttcaagac agaatcaaat gctacacgat 1140tacaactcgc taaggaaaga gtacgacgtg gtttcaagac agaatcaaat gctacacgat 1140
gaggtatata tatatatata tattttcttt ttttgacaac gcacgatgag gtatatatat 1200gaggtatata tatatata tattttcttt ttttgacaac gcacgatgag gtatatatat 1200
gcaccattta aaaaaaaaaa tcatgggatc ttagagcatc cgtctccctt tagatattca 1260gcaccattta aaaaaaaaaa tcatgggatc ttagagcatc cgtctccctt tagatattca 1260
cctaggtaat tgatagataa aatattacta gtagttattt aatatagttt atttaatgat 1320cctaggtaat tgatagataa aatattacta gtagttattt aatatagttt atttaatgat 1320
tacattagaa atcatactaa aagtaagcaa atcatagatt gccatataac tttaagagta 1380tacattagaa atcatactaa aagtaagcaa atcatagatt gccatataac tttaagagta 1380
tctccagttt tttttttttt ttttttaagt ttctcaaact ccgtcattta tctctctact 1440tctccagtttt tttttttttt ttttttaagt ttctcaaact ccgtcattta tctctctact 1440
ttttgagttc tttttttttc ttcactacat tttcaaaatt tcttatttta taatgatcag 1500ttttgagttc ttttttttttc ttcactacat tttcaaaatt tcttatttta taatgatcag 1500
atattcggtt gagatacacc aatgtgattt ctaaactatt catcctttgt tgttttagcc 1560atattcggtt gagatacacc aatgtgattt ctaaactatt catcctttgt tgttttagcc 1560
ctttagtttt tgattttgtg acgcaggtga tgaatctgag aggtgtaata ctaaaagacc 1620ctttagtttt tgattttgtg acgcaggtga tgaatctgag aggtgtaata ctaaaagacc 1620
atttgatgaa gaggcaaatg aatctgaaca acaatcaaat agccggaggg agtcaaattt 1680atttgatgaa gaggcaaatg aatctgaaca acaatcaaat agccggaggg agtcaaattt 1680
acggtactgc agatcaatat aataatccaa tgtgtgttgc ttcaacttgt tggcccccgt 1740acggtactgc agatcaatat aataatccaa tgtgtgttgc ttcaacttgt tggcccccgt 1740
tatcatcgca acagccttac ccatggtag 1769tatcatcgca acagccttac ccatggtag 1769
<210> 3<210> 3
<211> 223<211> 223
<212> PRT<212> PRT
<213> 油菜(Brassica campestris L)<213> Rape (Brassica campestris L)
<400> 3<400> 3
Met Glu Trp Ser Thr Thr Ser Asn Val Glu Asn Thr Arg Val Ala PheMet Glu Trp Ser Thr Thr Ser Asn Val Glu Asn Thr Arg Val Ala Phe
1 5 10 151 5 10 15
Met Pro Leu Gln Trp Leu Glu Ser Asn Ser Ser Asn Ser Leu Gln AsnMet Pro Leu Gln Trp Leu Glu Ser Asn Ser Ser Asn Ser Leu Gln Asn
20 25 30 20 25 30
Phe Ser Tyr Asp Pro Tyr Ala Val Leu Pro Gly Asn Ser Ser Thr ProPhe Ser Tyr Asp Pro Tyr Ala Val Leu Pro Gly Asn Ser Ser Thr Pro
35 40 45 35 40 45
Val Leu Thr Gln Thr Gly Pro Val Ile Ser Val Pro Glu Ser Ser GluVal Leu Thr Gln Thr Gly Pro Val Ile Ser Val Pro Glu Ser Ser Glu
50 55 60 50 55 60
Lys Ile Thr Asn Ala Cys Gln Tyr Pro Ser Asn Asp Asp Glu Met IleLys Ile Thr Asn Ala Cys Gln Tyr Pro Ser Asn Asp Asp Glu Met Ile
65 70 75 8065 70 75 80
Lys Lys Lys Gln Lys Leu Thr Thr Glu Gln Leu Ala Ser Leu Glu GlnLys Lys Lys Gln Lys Leu Thr Glu Gln Leu Ala Ser Leu Glu Gln
85 90 95 85 90 95
Ser Phe Gln Glu Asp Ile Lys Leu Asp Ser Asp Arg Lys Val Lys LeuSer Phe Gln Glu Asp Ile Lys Leu Asp Ser Asp Arg Lys Val Lys Leu
100 105 110 100 105 110
Ser Lys Glu Leu Arg Leu Gln Pro Arg Gln Val Ala Val Trp Phe GlnSer Lys Glu Leu Arg Leu Gln Pro Arg Gln Val Ala Val Trp Phe Gln
115 120 125 115 120 125
Asn Arg Arg Ala Arg Trp Arg Val Lys His Leu Glu Glu Ser Tyr AsnAsn Arg Arg Ala Arg Trp Arg Val Lys His Leu Glu Glu Ser Tyr Asn
130 135 140 130 135 140
Ser Leu Arg Lys Glu Tyr Asp Val Val Ser Arg Gln Asn Gln Met LeuSer Leu Arg Lys Glu Tyr Asp Val Val Ser Arg Gln Asn Gln Met Leu
145 150 155 160145 150 155 160
His Asp Glu Val Met Asn Leu Arg Gly Val Ile Leu Lys Asp His LeuHis Asp Glu Val Met Asn Leu Arg Gly Val Ile Leu Lys Asp His Leu
165 170 175 165 170 175
Met Lys Arg Gln Met Asn Leu Asn Asn Asn Gln Ile Ala Gly Gly SerMet Lys Arg Gln Met Asn Leu Asn Asn Asn Gln Ile Ala Gly Gly Ser
180 185 190 180 185 190
Gln Ile Tyr Gly Thr Ala Asp Gln Tyr Asn Asn Pro Met Cys Val AlaGln Ile Tyr Gly Thr Ala Asp Gln Tyr Asn Asn Pro Met Cys Val Ala
195 200 205 195 200 205
Ser Thr Cys Trp Pro Pro Leu Ser Ser Gln Gln Pro Tyr Pro TrpSer Thr Cys Trp Pro Pro Leu Ser Ser Gln Gln Pro Tyr Pro Trp
210 215 220 210 215 220
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010719919.1A CN112011547B (en) | 2020-07-23 | 2020-07-23 | Major gene for controlling rape leaf shape and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010719919.1A CN112011547B (en) | 2020-07-23 | 2020-07-23 | Major gene for controlling rape leaf shape and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112011547A CN112011547A (en) | 2020-12-01 |
CN112011547B true CN112011547B (en) | 2022-04-15 |
Family
ID=73499242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010719919.1A Active CN112011547B (en) | 2020-07-23 | 2020-07-23 | Major gene for controlling rape leaf shape and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112011547B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113767914A (en) * | 2021-09-02 | 2021-12-10 | 黑龙江省科学院大庆分院 | China-hemp female-plant nutrition male-inducing reagent and preparation and use methods thereof |
CN114262750B (en) * | 2022-02-11 | 2022-09-30 | 中国农业科学院蔬菜花卉研究所 | Nucleic acid for detecting kalp marker linked with leaf splitting gene of mustard and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002050292A2 (en) * | 2000-12-08 | 2002-06-27 | Her Majesty In Right Of Canada As Represented By The Minister Of Agriculture And Agrifood Canada | Modulation of plant cyclin-dependent kinase inhibitor activity |
CN103421805A (en) * | 2012-12-13 | 2013-12-04 | 华中农业大学 | Cloning and application of major gene qpc1 controlling protein content of rice endosperm |
CN108239647A (en) * | 2017-11-29 | 2018-07-03 | 华中农业大学 | A kind of gene, molecular labeling and application for controlling rape plant type |
CN109112146A (en) * | 2018-07-17 | 2019-01-01 | 华中农业大学 | Control clone and the Breeding Application of the gene qSLWA9 of cabbage type rape silique length and grain principal characteristic shape |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9918061D0 (en) * | 1999-07-30 | 1999-10-06 | Univ Bath | Modified plants |
CN110894223B (en) * | 2019-12-16 | 2021-06-22 | 福建农林大学 | A kind of kenaf leaf shape control gene HcLMI1 and its application |
-
2020
- 2020-07-23 CN CN202010719919.1A patent/CN112011547B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002050292A2 (en) * | 2000-12-08 | 2002-06-27 | Her Majesty In Right Of Canada As Represented By The Minister Of Agriculture And Agrifood Canada | Modulation of plant cyclin-dependent kinase inhibitor activity |
CN103421805A (en) * | 2012-12-13 | 2013-12-04 | 华中农业大学 | Cloning and application of major gene qpc1 controlling protein content of rice endosperm |
CN108239647A (en) * | 2017-11-29 | 2018-07-03 | 华中农业大学 | A kind of gene, molecular labeling and application for controlling rape plant type |
CN109112146A (en) * | 2018-07-17 | 2019-01-01 | 华中农业大学 | Control clone and the Breeding Application of the gene qSLWA9 of cabbage type rape silique length and grain principal characteristic shape |
Non-Patent Citations (3)
Title |
---|
Brassica napus class I homeodomain leucine zipper mRNA, complete cds GenBank: MF590052.1;Hu,L.;《GenBank》;20190628;第1页 * |
Hu,L..Brassica napus class I homeodomain leucine zipper mRNA, complete cds GenBank: MF590052.1.《GenBank》.2019,第1页. * |
水、旱稻根基粗、千粒重主效QTL近等基因系的构建及鉴评;刘立峰 等;《农业生物技术学报》;20071231;第15卷(第3期);第469-476页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112011547A (en) | 2020-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107937416B (en) | Genes and their applications for improving nitrogen use efficiency and yield in rice | |
CN110862993B (en) | Control gene ZKM89 of maize plant height and ear height and its application | |
US20220396805A1 (en) | Dna sequence for regulating maize leaf angle, and mutant, molecular markers, detection primers, and use thereof | |
CN110903368B (en) | A gene for controlling maize female traits and kits, mutant genotypes and methods for creating maize female sterile lines | |
CN111235180B (en) | Method for shortening flowering phase of corn | |
CN114958867B (en) | Corn ear grain weight and yield regulation gene KWE2, coded protein, functional marker, expression vector and application thereof | |
CN101857633B (en) | Leaf-shaped control gene SRNL1 of rice and application thereof | |
CN112011547B (en) | Major gene for controlling rape leaf shape and application thereof | |
CN115927381B (en) | A rapeseed RNA processing factor NCBP gene and its application | |
CN114752579A (en) | Application of ZmMAPK protein and coding gene thereof in regulation and control of low-temperature stress tolerance of plants | |
CN109721649B (en) | A kind of rice plant type regulation related gene, protein and application | |
CN112662687B (en) | Method, kit and gene for delaying flowering phase of corn | |
CN111172171B (en) | Gene for controlling plant height and flowering phase of corn and application thereof | |
CN116891862B (en) | A salt-tolerant gene ZmLA1 and protein of Zoysia striata and its application | |
CN110204600B (en) | BnSPL14 gene, protein and application thereof in controlling cabbage type rape plant type | |
CN112646011A (en) | Protein PHD-Finger17 related to plant stress resistance and coding gene and application thereof | |
CN108484741B (en) | Protein for controlling grain weight of crop seeds and application thereof | |
US20240240193A1 (en) | Gene for regulating branch numbers of soybean and use thereof | |
CN111979233A (en) | Method for increasing rice grain type and application thereof | |
CN112457385B (en) | Application of gene LJP1 for controlling rice growth period | |
CN113416747B (en) | Method for creating temperature-sensitive male sterile plant | |
CN108315336B (en) | Application of gene PIS1 for controlling development of rice spikelets | |
CN102206652B (en) | Rice gel consistency control gene GC6 and application thereof | |
CN115697043A (en) | Method for obtaining mutant plants by targeted mutagenesis | |
CN107868773A (en) | The Protein S SIIIa related to rice resistant starch and its encoding gene and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |