CN114109548B - A supercritical carbon dioxide power generation system and method based on chemical looping combustion of ammonia fuel - Google Patents
A supercritical carbon dioxide power generation system and method based on chemical looping combustion of ammonia fuel Download PDFInfo
- Publication number
- CN114109548B CN114109548B CN202111405889.8A CN202111405889A CN114109548B CN 114109548 B CN114109548 B CN 114109548B CN 202111405889 A CN202111405889 A CN 202111405889A CN 114109548 B CN114109548 B CN 114109548B
- Authority
- CN
- China
- Prior art keywords
- reactor
- way valve
- outlet
- fuel
- inlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 70
- 239000000446 fuel Substances 0.000 title claims abstract description 61
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 title claims abstract description 41
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 35
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 34
- 229910021529 ammonia Inorganic materials 0.000 title claims abstract description 20
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 20
- 239000000126 substance Substances 0.000 title claims abstract description 20
- 238000010248 power generation Methods 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 title abstract description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 48
- 239000001301 oxygen Substances 0.000 claims abstract description 48
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 48
- 239000012530 fluid Substances 0.000 claims description 18
- 239000000969 carrier Substances 0.000 claims description 10
- 230000008878 coupling Effects 0.000 claims description 8
- 238000010168 coupling process Methods 0.000 claims description 8
- 238000005859 coupling reaction Methods 0.000 claims description 8
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 abstract description 21
- 238000005516 engineering process Methods 0.000 abstract description 7
- 238000005243 fluidization Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 abstract description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
- F01K25/10—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
- F01K25/103—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/04—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01D15/08—Adaptations for driving, or combinations with, pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01D15/10—Adaptations for driving, or combinations with, electric generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K7/00—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
- F01K7/32—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines using steam of critical or overcritical pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/005—Regulating fuel supply using electrical or electromechanical means
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
本发明公开了一种基于氨燃料化学链燃烧的超临界二氧化碳发电系统及方法,该系统包括空气入口三通阀、燃料入口三通阀、反应器A、反应器B、空气出口三通阀、燃料出口三通阀、工质入口三通阀、工质出口三通阀、透平、回热器、预冷器、压缩机和发电机。该系统利用化学链燃烧技术燃烧氨燃料,减少了二氧化碳和氮氧化物的排放,采用固定床反应器,相较于流化床化学链燃烧反应器,节省了床料流化所需的动力消耗,同时,减少了氧载体的磨损消耗。
The invention discloses a supercritical carbon dioxide power generation system and method based on ammonia fuel chemical looping combustion. The system includes an air inlet three-way valve, a fuel inlet three-way valve, a reactor A, a reactor B, an air outlet three-way valve, Fuel outlet three-way valve, working medium inlet three-way valve, working medium outlet three-way valve, turbine, regenerator, precooler, compressor and generator. The system uses chemical looping combustion technology to burn ammonia fuel, which reduces the emission of carbon dioxide and nitrogen oxides. Compared with the fluidized bed chemical looping combustion reactor, the fixed bed reactor saves the power consumption required for bed material fluidization , At the same time, the wear and tear consumption of the oxygen carrier is reduced.
Description
技术领域technical field
本发明涉及超临界二氧化碳发电领域,特别涉及一种基于氨燃料化学链燃烧的超临界二氧化碳发电系统。The invention relates to the field of supercritical carbon dioxide power generation, in particular to a supercritical carbon dioxide power generation system based on ammonia fuel chemical loop combustion.
背景技术Background technique
氨作为一种富氢化合物,易于液化,便于储存,作为燃料时,还可以在氧气中燃烧或者与含氧化合物反应,生成氮气和水,无二氧化碳排放。化学链燃烧技术,实现了燃料和空气的非混合燃烧,以氧载体代替空气,在燃料反应器中,燃料与氧载体反应,完成燃料的氧化,被还原的氧载体返回到空气反应器,与空气进行氧化反应,实现氧载体的再生。化学链燃烧技术避免了燃料与空气的直接接触,可以显著减少传统燃烧方式下氮氧化物的生成,降低了氮氧化物的处理成本。As a hydrogen-rich compound, ammonia is easy to liquefy and store. When used as a fuel, it can also be burned in oxygen or react with oxygen-containing compounds to generate nitrogen and water without carbon dioxide emissions. The chemical loop combustion technology realizes the non-mixed combustion of fuel and air, and replaces air with oxygen carrier. In the fuel reactor, the fuel reacts with the oxygen carrier to complete the oxidation of the fuel, and the reduced oxygen carrier returns to the air reactor. The air undergoes an oxidation reaction to regenerate the oxygen carrier. Chemical looping combustion technology avoids direct contact between fuel and air, can significantly reduce the generation of nitrogen oxides in traditional combustion methods, and reduces the processing cost of nitrogen oxides.
超临界二氧化碳具有能量密度大、传热效率高等特点,是环保、清洁的天然工质流体。以超临界二氧化碳为工质的发电技术也是目前国际上新型、高效的发电技术之一。Supercritical carbon dioxide has the characteristics of high energy density and high heat transfer efficiency, and is an environmentally friendly and clean natural working fluid. The power generation technology using supercritical carbon dioxide as the working medium is also one of the new and efficient power generation technologies in the world.
液氨作为我国大宗的化工产品,产量大,如果能够开发出一种基于氨燃料化学链燃烧的超临界二氧化碳发电系统,会大大降低二氧化碳排放和氮氧化物的排放。As a bulk chemical product in my country, liquid ammonia has a large output. If a supercritical carbon dioxide power generation system based on ammonia fuel chemical loop combustion can be developed, it will greatly reduce carbon dioxide emissions and nitrogen oxide emissions.
现有技术中,二氧化碳和氮氧化物的排放较大,氧载体的磨损消耗较大。In the prior art, the emissions of carbon dioxide and nitrogen oxides are large, and the wear and consumption of oxygen carriers are relatively large.
发明内容Contents of the invention
为了克服上述现有技术的不足,本发明的目的在于提供一种基于氨燃料化学链燃烧的超临界二氧化碳发电系统及方法,利用化学链燃烧技术燃烧氨燃料发电,减少二氧化碳和氮氧化物的排放。In order to overcome the deficiencies of the above-mentioned prior art, the object of the present invention is to provide a supercritical carbon dioxide power generation system and method based on ammonia fuel chemical looping combustion, using chemical looping combustion technology to burn ammonia fuel to generate electricity, reducing the emission of carbon dioxide and nitrogen oxides .
为了实现上述目的,本发明采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种基于氨燃料化学链燃烧的超临界二氧化碳发电系统,包括空气入口三通阀1、燃料入口三通阀2、反应器A 3、反应器B 4、空气出口三通阀5、燃料出口三通阀6、工质入口三通阀7、工质出口三通阀8、透平9、回热器10、预冷器11、压缩机12和发电机13;所述的空气入口三通阀1的两个出口与反应器A 3和反应器B 4的空气入口相连通,燃料入口三通阀2的两个出口与反应器A 3和反应器B 4的燃料入口相连通,反应器A 3和反应器B 4的空气出口与空气出口三通阀5相连通,反应器A 3和反应器B 4的燃料出口与燃料出口三通阀6相连通。反应器A 3和反应器B 4的壳程出口与工质出口三通阀8向连通,工质出口三通阀8的出口与透平9的入口相连通,透平9的出口与回热器10的热侧入口相连通,回热器10的热侧出口与预冷器11的热侧入口相连通,预冷器11的热侧出口与压缩机12的入口相连通,压缩机12的出口与回热器10的冷侧入口相连通,回热器10的冷侧出口与工质入口三通阀7相连通,工质入口三通阀7的出口与反应器A 3和反应器B 4的壳程入口相连通。A supercritical carbon dioxide power generation system based on ammonia fuel chemical looping combustion, including an air inlet three-way valve 1, a fuel inlet three-way valve 2, a
所述的反应器A 3和反应器B 4的管程中装载有氧载体。The tubes of the reactor A3 and the reactor B4 are loaded with oxygen carrier.
所述的透平9与压缩机12通过联轴器联动,压缩机12与发电机13通过联轴器联动。The
所述的反应器A 3和反应器B 4为管壳式。The
一种基于氨燃料化学链燃烧的超临界二氧化碳发电方法,包括以下步骤;A supercritical carbon dioxide power generation method based on ammonia fuel chemical looping combustion, comprising the following steps;
调节空气入口三通阀1和空气出口三通阀5,使空气进入反应器A 3的管程,调节燃料入口三通阀2和燃料出口三通阀6,使燃料进入反应器B 4的管程,调节工质入口三通阀7和工质出口三通阀8,使工质进入反应器A 3的壳程。在反应器A 3管程中,空气中的氧气与还原态氧载体反应,还原态氧载体被氧化成氧载体,释放出热量,热量被反应器A 3的壳程的二氧化碳工质吸收,吸热后的二氧化碳进入透平9中做功,做功后的二氧化碳进入回热器10的热侧,与低温的二氧化碳工质换热后,进入预冷器11的热侧,与循环水换热,进一步降温,之后进入压缩机12加压,加压后的二氧化碳进入回热器10的冷侧,与高温的二氧化碳工质换热后,进入反应器A 3的壳程吸热,完成循环。在反应器B 4的管程中,氨燃料与氧载体反应,生成氮气和水蒸气,通过燃料出口三通阀6排出,管程中装载的氧载体被还原成还原态氧载体。Adjust the air inlet three-way valve 1 and the air outlet three-
反应进行一段时间后,反应器A 3管程中的还原态氧载体被全部氧化成氧载体,反应器B 4的管程中的氧载体全部被还原为还原态氧载体,调节调节空气入口三通阀1和空气出口三通阀5使空气进入反应器B 4的管程,调节燃料入口三通阀2和燃料出口三通阀6,使燃料进入反应器A 3的管程,调节工质入口三通阀7和工质出口三通阀8,使工质进入反应器B 4的壳程。在反应器B 4管程中,空气中的氧气与还原态氧载体反应,还原态氧载体被氧化成氧载体,释放出热量,热量被反应器B 4的壳程的二氧化碳工质吸收。在反应器A 3的管程中,氨燃料与氧载体反应,生成氮气和水蒸气,通过燃料出口三通阀6排出,管程中装载的氧载体被还原成还原态氧载体。After the reaction has been carried out for a period of time, the reduced oxygen carriers in the tube side of
透平9通过联轴器拖动压缩机12和发电机13转动。The
本发明的有益效果:Beneficial effects of the present invention:
本发明所述的基于氨燃料化学链燃烧的超临界二氧化碳发电系统在具体工作时,利用化学链燃烧技术燃烧氨燃料,减少了二氧化碳和氮氧化物的排放。采用固定床反应器,相较于流化床化学链燃烧反应器,节省了床料流化所需的动力消耗,同时,减少了氧载体的磨损消耗。The supercritical carbon dioxide power generation system based on ammonia fuel chemical looping combustion of the present invention uses chemical looping combustion technology to burn ammonia fuel during specific work, reducing the emission of carbon dioxide and nitrogen oxides. Compared with the fluidized bed chemical looping combustion reactor, the fixed bed reactor saves the power consumption required for the fluidization of the bed material, and at the same time reduces the wear and tear consumption of the oxygen carrier.
附图说明Description of drawings
图1为本发明的系统示意图。Fig. 1 is a schematic diagram of the system of the present invention.
其中,1为空气入口三通阀、2为燃料入口三通阀、3为反应器A、4为反应器B、5为空气出口三通阀、6为燃料出口三通阀、7为工质入口三通阀、8为工质出口三通阀、9为透平、10为回热器、11为预冷器、12为压缩机、13为发电机。Among them, 1 is the air inlet three-way valve, 2 is the fuel inlet three-way valve, 3 is the reactor A, 4 is the reactor B, 5 is the air outlet three-way valve, 6 is the fuel outlet three-way valve, 7 is the working medium Inlet three-way valve, 8 is working medium outlet three-way valve, 9 is turbine, 10 is regenerator, 11 is precooler, 12 is compressor, 13 is generator.
具体实施方式Detailed ways
下面结合实施例对本发明作进一步详细说明。The present invention is described in further detail below in conjunction with embodiment.
参考图1,本发明所述的基于氨燃料化学链燃烧的超临界二氧化碳发电系统,包括空气入口三通阀1、燃料入口三通阀2、反应器A 3、反应器B 4、空气出口三通阀5、燃料出口三通阀6、工质入口三通阀7、工质出口三通阀8、透平9、回热器10、预冷器11、压缩机12和发电机13。Referring to Fig. 1, the supercritical carbon dioxide power generation system based on ammonia fuel chemical looping combustion according to the present invention comprises an air inlet three-way valve 1, a fuel inlet three-way valve 2, a
空气入口三通阀1的两个出口与反应器A 3和反应器B 4的空气入口相连通,燃料入口三通阀2的两个出口与反应器A 3和反应器B 4的燃料入口相连通,反应器A 3和反应器B 4的空气出口与空气出口三通阀5相连通,反应器A 3和反应器B 4的燃料出口与燃料出口三通阀6相连通。反应器A 3和反应器B 4的壳程出口与工质出口三通阀8向连通,工质出口三通阀8的出口与透平9的入口相连通,透平9的出口与回热器10的热侧入口相连通,回热器10的热侧出口与预冷器11的热侧入口相连通,预冷器11的热侧出口与压缩机12的入口相连通,压缩机12的出口与回热器10的冷侧入口相连通,回热器10的冷侧出口与工质入口三通阀7相连通,工质入口三通阀7的出口与反应器A 3和反应器B 4的壳程入口相连通。The two outlets of air inlet three-way valve 1 are connected with the air inlets of
反应器A 3和反应器B 4的管程中装载有氧载体。The tube side of
透平9与压缩机12通过联轴器联动,压缩机12与发电机13通过联轴器联动。The
反应器A 3和反应器B 4为管壳式。
调节空气入口三通阀1和空气出口三通阀5,使空气进入反应器A 3的管程,调节燃料入口三通阀2和燃料出口三通阀6,使燃料进入反应器B 4的管程,调节工质入口三通阀7和工质出口三通阀8,使工质进入反应器A 3的壳程。在反应器A 3管程中,空气中的氧气与还原态氧载体反应,还原态氧载体被氧化成氧载体,释放出热量,温度升高从700℃升到900℃,热量被反应器A 3的壳程的二氧化碳工质吸收,吸热后的二氧化碳进入透平9中做功,做功后的二氧化碳进入回热器10的热侧,与低温的二氧化碳工质换热后,进入预冷器11的热侧,与循环水换热,进一步降温,之后进入压缩机12加压,加压后的二氧化碳进入回热器10的冷侧,与高温的二氧化碳工质换热后,进入反应器A 3的壳程吸热,完成循环。在反应器B4的管程中,氨燃料与氧载体反应,生成氮气和水蒸气,通过燃料出口三通阀6排出,管程中装载的氧载体被还原成还原态氧载体,温度从900℃逐渐下降到700℃。Adjust the air inlet three-way valve 1 and the air outlet three-
反应进行一段时间后,反应器A 3管程中的还原态氧载体被全部氧化成氧载体,反应器B 4的管程中的氧载体全部被还原为还原态氧载体,调节调节空气入口三通阀1和空气出口三通阀5使空气进入反应器B 4的管程,调节燃料入口三通阀2和燃料出口三通阀6,使燃料进入反应器A 3的管程,调节工质入口三通阀7和工质出口三通阀8,使工质进入反应器B 4的壳程。在反应器B 4管程中,空气中的氧气与还原态氧载体反应,还原态氧载体被氧化成氧载体,温度从700℃逐渐升到900℃,释放出热量,热量被反应器B 4的壳程的二氧化碳工质吸收。在反应器A 3的管程中,氨燃料与氧载体反应,生成氮气和水蒸气,通过燃料出口三通阀6排出,管程中装载的氧载体被还原成还原态氧载体,温度从900℃降低到700℃。After the reaction has been carried out for a period of time, the reduced oxygen carriers in the tube side of
透平9通过联轴器拖动压缩机12和发电机13转动发电。The
需要指出的是,上述实施例只为说明本发明的技术构思和特点,具体的实施方法,如反应器A和反应器B的操作温度等等仍可进行修改和改进,但都不会由此而背离权利要求书中所规定的本发明的范围和基本精神。It should be pointed out that the above-mentioned examples are only to illustrate the technical concept and characteristics of the present invention, and the specific implementation methods, such as the operating temperature of reactor A and reactor B, etc., can still be modified and improved, but they will not It departs from the scope and basic spirit of the present invention defined in the claims.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111405889.8A CN114109548B (en) | 2021-11-24 | 2021-11-24 | A supercritical carbon dioxide power generation system and method based on chemical looping combustion of ammonia fuel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111405889.8A CN114109548B (en) | 2021-11-24 | 2021-11-24 | A supercritical carbon dioxide power generation system and method based on chemical looping combustion of ammonia fuel |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114109548A CN114109548A (en) | 2022-03-01 |
CN114109548B true CN114109548B (en) | 2023-02-28 |
Family
ID=80372032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111405889.8A Active CN114109548B (en) | 2021-11-24 | 2021-11-24 | A supercritical carbon dioxide power generation system and method based on chemical looping combustion of ammonia fuel |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114109548B (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BRPI0805566B1 (en) * | 2008-12-18 | 2018-02-14 | Petróleo Brasileiro S/A - Petrobras | INTEGRATED PROCESS FOR THE MANUFACTURE OF OLEFINES AND INTERMEDIARIES FOR THE PRODUCTION OF AMMONIA AND UREIA |
EP2446122B1 (en) * | 2009-06-22 | 2017-08-16 | Echogen Power Systems, Inc. | System and method for managing thermal issues in one or more industrial processes |
US20110041740A1 (en) * | 2009-08-20 | 2011-02-24 | Reilly Timothy J | Recuperative combustion system |
CN106438043B (en) * | 2016-09-13 | 2018-01-16 | 西安热工研究院有限公司 | A kind of coal derived fuel burning chemistry chains electricity generation system and method based on supercritical carbon dioxide |
CN110305704A (en) * | 2019-05-23 | 2019-10-08 | 东南大学 | A system and method for coupling new energy and low energy consumption to realize CO2 capture and utilization |
CN112267920A (en) * | 2020-09-14 | 2021-01-26 | 华北电力大学(保定) | A closed-type supercritical carbon dioxide power generation system and method with carbon capture and utilization and gas cycle waste heat utilization |
CN113028376A (en) * | 2021-05-06 | 2021-06-25 | 西安热工研究院有限公司 | Ammonia chemical looping combustion power generation system and method |
-
2021
- 2021-11-24 CN CN202111405889.8A patent/CN114109548B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN114109548A (en) | 2022-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106438043B (en) | A kind of coal derived fuel burning chemistry chains electricity generation system and method based on supercritical carbon dioxide | |
CN109555569B (en) | Supercritical carbon dioxide cycle cold end waste heat recovery power generation system and operation method | |
CN112901297B (en) | A sodium-cooled fast reactor supercritical carbon dioxide two-stage split flow high-efficiency power generation system and method | |
CN107859539B (en) | A carbon dioxide double Brayton cycle power generation system with integrated carbon capture | |
CN105508051B (en) | High-temperature gas-cooled reactor helium gas indirect cyclic process hydrogen manufacturing coupled electricity-generation system and method | |
CN214741519U (en) | Sodium-cooled fast reactor supercritical carbon dioxide two-stage shunting high-efficiency power generation system | |
CN207598304U (en) | A kind of double Brayton cycle power generator of supercritical carbon dioxide with carbon trapping function | |
CN111810297A (en) | A gas supercritical carbon dioxide combined cycle power generation system and operation method based on LNG cold source | |
CN206539381U (en) | A kind of supercritical carbon dioxide cycle generating system based on combustion gas and solar heat | |
CN102444993A (en) | Middle-low temperature solar energy thermochemical energy storage system | |
CN109148919B (en) | Integrated coal gasification fuel cell power generation system and method utilizing gas high-temperature sensible heat | |
CN101298023A (en) | Device and method for dry removal of CO2 from flue gas with high activity potassium-based absorbent | |
CN111663975A (en) | Supercritical carbon dioxide power generation system and method based on methane reforming energy storage | |
CN206016976U (en) | A kind of coal derived fuel burning chemistry chains electricity generation system based on supercritical carbon dioxide | |
CN108843418A (en) | A kind of double pressure high efficiency burnt gas supercritical carbon dioxide association circulating power generation systems | |
CN114109548B (en) | A supercritical carbon dioxide power generation system and method based on chemical looping combustion of ammonia fuel | |
CN114005557A (en) | High-efficiency dual-cycle sodium-cooled fast reactor power generation system and method using supercritical carbon dioxide into the reactor | |
CN212642880U (en) | A gas supercritical carbon dioxide combined cycle power generation system based on LNG cold source | |
CN209943012U (en) | A solar thermal power generation system based on thermochemical energy storage | |
CN114592939A (en) | Photo-thermal compressed air energy storage system and method | |
CN111895836A (en) | A combined energy storage system and method for thermochemical energy storage and sensible heat energy storage | |
CN110242522B (en) | Solar photo-thermal power generation system and method based on thermochemical energy storage | |
CN111219218A (en) | A coal-based supercritical carbon dioxide power generation system and method with waste heat recovery | |
CN109973165A (en) | A natural gas low-carbon combustion and waste heat power generation system | |
CN211644593U (en) | Based on CO before burning2Isothermal conversion system of trapping system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |