CN111663975A - Supercritical carbon dioxide power generation system and method based on methane reforming energy storage - Google Patents
Supercritical carbon dioxide power generation system and method based on methane reforming energy storage Download PDFInfo
- Publication number
- CN111663975A CN111663975A CN202010656096.2A CN202010656096A CN111663975A CN 111663975 A CN111663975 A CN 111663975A CN 202010656096 A CN202010656096 A CN 202010656096A CN 111663975 A CN111663975 A CN 111663975A
- Authority
- CN
- China
- Prior art keywords
- carbon dioxide
- reactor
- methane
- energy storage
- compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 186
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 156
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 93
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 93
- 238000004146 energy storage Methods 0.000 title claims abstract description 61
- 238000010248 power generation Methods 0.000 title claims abstract description 31
- 238000002407 reforming Methods 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims abstract description 8
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 46
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 46
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 46
- 239000001257 hydrogen Substances 0.000 claims abstract description 46
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 43
- 239000012530 fluid Substances 0.000 claims abstract description 21
- 238000006243 chemical reaction Methods 0.000 claims description 23
- 239000003054 catalyst Substances 0.000 claims description 17
- 230000008878 coupling Effects 0.000 claims description 13
- 238000010168 coupling process Methods 0.000 claims description 13
- 238000005859 coupling reaction Methods 0.000 claims description 13
- 230000005855 radiation Effects 0.000 claims description 12
- 238000006057 reforming reaction Methods 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 7
- 230000005611 electricity Effects 0.000 claims description 6
- 230000003197 catalytic effect Effects 0.000 claims description 3
- 150000002431 hydrogen Chemical class 0.000 claims description 3
- 238000004891 communication Methods 0.000 abstract 2
- 239000000126 substance Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
- F01K25/10—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
- F01K25/103—Carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01D15/08—Adaptations for driving, or combinations with, pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01D15/10—Adaptations for driving, or combinations with, electric generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K27/00—Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S20/00—Solar heat collectors specially adapted for particular uses or environments
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/70—Arrangements for concentrating solar-rays for solar heat collectors with reflectors
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/54—Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
本发明公开了一种基于甲烷重整储能的超临界二氧化碳发电系统及方法,包括储能分系统和发电分系统,储能分系统包括集热反应器,集热反应器的与一氧化碳和氢气储罐相连通,一氧化碳和氢气储罐与储能工质压缩机相连通,储能工质压缩机与放热反应器相连通,放热反应器与甲烷和二氧化碳储罐相连通,甲烷和二氧化碳储罐与集热反应器相连通;发电分系统包括透平,透平与回热器相连通,回热器与预冷器相连通,预冷器与压缩机相连通,压缩机与回热器相连通,回热器与放热反应器相连通,放热反应器与透平相连通。该系统能够实现太阳能甲烷重整储能与超临界二氧化碳发电有机的结合,能够实现对太阳能进行平稳持续的利用。
The invention discloses a supercritical carbon dioxide power generation system and method based on methane reforming and energy storage, including an energy storage sub-system and a power generation sub-system. The storage tank is connected, the carbon monoxide and hydrogen storage tanks are connected with the energy storage working fluid compressor, the energy storage working fluid compressor is connected with the exothermic reactor, the exothermic reactor is connected with the methane and carbon dioxide storage tanks, methane and carbon dioxide The storage tank is communicated with the heat collecting reactor; the power generation sub-system includes a turbine, the turbine communicates with the regenerator, the regenerator communicates with the precooler, the precooler communicates with the compressor, and the compressor communicates with the regenerator The regenerator is in communication with the exothermic reactor, and the exothermic reactor is in communication with the turbine. The system can realize the organic combination of solar methane reforming energy storage and supercritical carbon dioxide power generation, and can realize the stable and continuous utilization of solar energy.
Description
技术领域technical field
本发明涉及太阳能利用技术领域,特别涉及一种基于甲烷重整储能的超临界二氧化碳发电系统及方法。The invention relates to the technical field of solar energy utilization, in particular to a supercritical carbon dioxide power generation system and method based on methane reforming and energy storage.
背景技术Background technique
太阳能具有清洁、取之不尽用之不竭等特点,但是存在时间分布不均问题,太阳能用于发电时一般都需要使用储能等技术。Solar energy is clean and inexhaustible, but there is a problem of uneven time distribution. When solar energy is used for power generation, technologies such as energy storage are generally required.
热化学储能主要是基于一种可逆的热化学反应,通过化学键的断裂重组实现能量的存储和释放,在储能反应中,储能材料吸收热量分解成两种物质单独储存,当需要供能时,两种物质充分接触发生反应,将储存的化学能转化为热能并释放出来。热化学储能密度和效率高,适用于太阳能热能的高温高密度储存。热化学储能的体积和重量储能密度远高于显热或者相变蓄热,储能载体可以在常温下长期储存,热化学储能通常可以得到高品位热能,大多数热化学储能载体安全、无毒、价格低廉,而且便于处理。其中,甲烷重整是一种常见的热化学储能体系,储能密度高,原料来源丰富。Thermochemical energy storage is mainly based on a reversible thermochemical reaction, which stores and releases energy through the breaking and recombination of chemical bonds. In the energy storage reaction, the energy storage material absorbs heat and decomposes it into two substances for separate storage. When energy is needed When the two substances are fully contacted and reacted, the stored chemical energy is converted into heat energy and released. Thermochemical energy storage has high density and efficiency, and is suitable for high temperature and high density storage of solar thermal energy. The volume and weight energy storage density of thermochemical energy storage is much higher than that of sensible heat or phase change heat storage. Safe, non-toxic, inexpensive, and easy to handle. Among them, methane reforming is a common thermochemical energy storage system with high energy storage density and abundant raw material sources.
超临界二氧化碳具有能量密度大、传热效率高等特点,是环保、清洁的天然工质流体。以超临界二氧化碳为工质的发电技术也是目前国际上新型、高效的发电技术之一。Supercritical carbon dioxide has the characteristics of high energy density and high heat transfer efficiency, and is an environmentally friendly and clean natural working fluid. The power generation technology using supercritical carbon dioxide as the working medium is also one of the new and efficient power generation technologies in the world.
在我国西北地区,太阳能资源丰富,水资源匮乏,因此,如果能够开发出一种新的系统,该系统可以将太阳能甲烷重整热化学储能与超临界二氧化碳发电进行有机的结合,会对太阳能光热发电带来巨大变化。In Northwest China, solar energy resources are abundant and water resources are scarce. Therefore, if a new system can be developed, which can organically combine solar methane reforming thermochemical energy storage with supercritical carbon dioxide power generation, it will be beneficial to solar energy. Solar thermal power generation brings great changes.
发明内容SUMMARY OF THE INVENTION
为了克服上述现有技术的不足,本发明的目的在于提供一种基于甲烷重整储能的超临界二氧化碳发电系统及方法,将太阳能甲烷重整储能与超临界二氧化碳发电相结合,能够实现对太阳能进行平稳持续的利用。In order to overcome the above-mentioned deficiencies of the prior art, the purpose of the present invention is to provide a supercritical carbon dioxide power generation system and method based on methane reforming energy storage, which combines solar energy methane reforming energy storage with supercritical carbon dioxide power generation, and can Solar energy is used steadily and continuously.
为了实现上述目的,本发明采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种基于甲烷重整储能的超临界二氧化碳发电系统,包括储能分系统和发电分系统;A supercritical carbon dioxide power generation system based on methane reforming energy storage, comprising an energy storage sub-system and a power generation sub-system;
所述的储能分系统包括集热反应器2,集热反应器2的出口与一氧化碳和氢气储罐3的入口相连通,一氧化碳和氢气储罐3的出口与储能工质压缩机4的入口相连通,储能工质压缩机4的出口与放热反应器5的管程入口相连通,放热反应器5的管程出口与甲烷和二氧化碳储罐6的入口相连通,甲烷和二氧化碳储罐6的出口与集热反应器2的入口相连通;Described energy storage sub-system comprises
所述的发电分系统包括透平8,所述的透平8的出口与回热器9的热侧入口相连通,回热器9的热侧出口与预冷器10的热侧入口相连通,预冷器10的热侧出口与压缩机11的入口相连通,压缩机11的出口与回热器9的冷侧入口相连通,回热器9的冷侧出口与放热反应器5的壳程入口相连通,放热反应器5的壳程出口与透平8的入口相连通。The power generation sub-system includes a
所述的集热反应器2对应位置设置有用于将太阳光聚焦于集热反应器2上的镜场1。A
所述的集热反应器2中装载有甲烷重整催化剂,放热反应器5的管程中装载有甲烷化催化剂。The
所述的透平8与储能工质压缩机4通过联轴器联动,透平8与压缩机11和发电机12通过联轴器联动。The
所述的甲烷和二氧化碳储罐6的出口与集热反应器2的入口之间设置有阀门7。A
所述的放热反应器5为管壳式。The
一种基于甲烷重整储能的超临界二氧化碳发电方法,包括以下步骤;A supercritical carbon dioxide power generation method based on methane reforming energy storage, comprising the following steps;
当太阳辐射充足时,阀门7打开,甲烷和二氧化碳储罐6中的甲烷和二氧化碳进入集热反应器2,在甲烷重整催化剂的催化作用下,发生甲烷重整反应,吸收集热反应器2的热量,生成一氧化碳和氢气,进入一氧化碳和氢气储罐3,一氧化碳和氢气经过储能工质压缩机4加压后,进入放热反应器5的管程,与管程中的甲烷化催化剂接触,一氧化碳和氢气发生甲烷化反应,释放出热量,生成甲烷和二氧化碳,进入甲烷和二氧化碳储罐6;放热反应器5的壳程的二氧化碳吸收管程甲烷化反应释放的热量后,进入透平8做功,做功后的二氧化碳进入回热器9的热侧,与回热器9冷侧的二氧化碳换热后,进入预冷器10的热侧,进一步冷却后,进入压缩机11的入口,经过压缩机11压缩后,进入回热器9的热侧,与回热器9热侧的二氧化碳换热,进入放热反应器5的壳程,由于太阳辐射充足,甲烷重整反应的量要大于甲烷化反应的量,一部分一氧化碳和氢气储存在一氧化碳和氢气储罐3中,透平8通过联轴器拖动储能工质压缩机4、压缩机11转动,多余的功拖动发电机12转动发电;When the solar radiation is sufficient, the
当没有太阳辐射时,阀门7关闭,一氧化碳和氢气储罐3中储存的一氧化碳和氢气,经过储能工质压缩机4加压后,进入放热反应器5的管程,与管程中的甲烷化催化剂接触,一氧化碳和氢气发生甲烷化反应,释放出热量,生成甲烷和二氧化碳,进入甲烷和二氧化碳储罐6;放热反应器5的壳程的二氧化碳吸收管程甲烷化反应释放的热量后,进入透平8做功,做功后的二氧化碳进入回热器9的热侧,与回热器9冷侧的二氧化碳换热后,进入预冷器10的热侧,进一步冷却后,进入压缩机11的入口,经过压缩机11压缩后,进入回热器9的热侧,与回热器9热侧的二氧化碳换热,进入放热反应器5的壳程,由于没有太阳辐射,只发生甲烷化反应,储存在一氧化碳和氢气储罐3中的一氧化碳和氢气经过放热反应器5后生成甲烷和二氧化碳,储存在甲烷和二氧化碳储罐6中,透平8通过联轴器拖动储能工质压缩机4、压缩机11转动,多余的功拖动发电机12转动发电。When there is no solar radiation, the
本发明的有益效果:Beneficial effects of the present invention:
本发明所述的基于甲烷重整储能的超临界二氧化碳发电系统在具体工作时,通过集热反应器利用太阳能为甲烷重整提供热量,通过放热反应器中甲烷化反应放热为超临界二氧化碳布雷顿循环发电提供热量,从而实现太阳能甲烷重整储能与超临界二氧化碳发电的有机结合。During specific operation, the supercritical carbon dioxide power generation system based on methane reforming and energy storage of the present invention utilizes solar energy to provide heat for methane reforming through a heat collector reactor, and generates supercritical carbon dioxide through the methanation reaction in the exothermic reactor. Carbon dioxide Brayton cycle power generation provides heat, thereby realizing the organic combination of solar methane reforming energy storage and supercritical carbon dioxide power generation.
附图说明Description of drawings
图1为本发明的系统示意图。FIG. 1 is a schematic diagram of the system of the present invention.
其中,1为镜场、2为集热反应器、3为一氧化碳和氢气储罐、4为储能工质压缩机、5为放热反应器、6为甲烷和二氧化碳储罐、7为阀门、8为透平、9为回热器、10为预冷器、11为压缩机、12为发电机。Among them, 1 is a mirror field, 2 is a collector reactor, 3 is a carbon monoxide and hydrogen storage tank, 4 is an energy storage working fluid compressor, 5 is an exothermic reactor, 6 is a methane and carbon dioxide storage tank, 7 is a valve, 8 is a turbine, 9 is a regenerator, 10 is a pre-cooler, 11 is a compressor, and 12 is a generator.
具体实施方式Detailed ways
下面结合实施例对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the embodiments.
参考图1,本发明所述的基于甲烷重整储能的超临界二氧化碳发电系统,包括储能分系统和发电分系统,储能分系统包括镜场1、集热反应器2、一氧化碳和氢气储罐3、储能工质压缩机4、放热反应器5、甲烷和二氧化碳储罐6、阀门7。发电分系统包括透平8、回热器9、预冷器10、压缩机11、发电机12。Referring to FIG. 1, the supercritical carbon dioxide power generation system based on methane reforming energy storage according to the present invention includes an energy storage sub-system and a power generation sub-system, and the energy storage sub-system includes a
集热反应器2的出口与一氧化碳和氢气储罐3的入口相连通,一氧化碳和氢气储罐3的出口与储能工质压缩机4的入口相连通,储能工质压缩机4的出口与放热反应器5的管程入口相连通,放热反应器5的管程出口与甲烷和二氧化碳储罐6的入口相连通,甲烷和二氧化碳储罐6的出口与阀门7的入口相连通,阀门7的出口与集热反应器2的入口相连通。The outlet of the
集热反应器2中装载有甲烷重整催化剂,放热反应器5的管程中装载有甲烷化催化剂。The
放热反应器5的壳程出口与透平8的入口相连通,透平8的出口与回热器9的热侧入口相连通,回热器9的热侧出口与预冷器10的热侧入口相连通,预冷器10的热侧出口与压缩机11的入口相连通,压缩机11的出口与回热器9的冷侧入口相连通,回热器9的冷侧出口与放热反应器5的壳程入口相连通。The shell side outlet of the
透平8与储能工质压缩机4通过联轴器联动,透平8与压缩机11和发电机12通过联轴器联动。The
优选的,甲烷和二氧化碳储罐6的出口与集热反应器2的入口之间设置有阀门7。Preferably, a
镜场1将太阳光聚集到集热反应器2上,甲烷和二氧化碳经过集热反应器2中的甲烷重整催化剂,甲烷和二氧化碳在700-800℃、常压下发生甲烷重整反应,吸收集热反应器2的热量,生成一氧化碳和氢气,进入一氧化碳和氢气储罐3,一氧化碳和氢气经过储能工质压缩机4压缩后,加压到1.5MPa,进入放热反应器5的管程,与管程中的甲烷化催化剂接触,一氧化碳和氢气在1.5MPa、500-600℃发生甲烷化反应,释放出热量,生成甲烷和二氧化碳,进入甲烷和二氧化碳储罐6,甲烷和二氧化碳经过阀门7后进入集热反应器2继续发生甲烷重整反应,完成循环。The
放热反应器5的壳程的二氧化碳吸收管程甲烷化反应释放的热量后,进入透平8做功,做功后的二氧化碳进入回热器9的热侧,与回热器9冷侧的二氧化碳换热后,进入预冷器10的热侧,进一步冷却后,进入压缩机11的入口,经过压缩机11压缩后,进入回热器9的热侧,与回热器9热侧的二氧化碳换热,进入放热反应器5的壳程,完成循环。After the carbon dioxide on the shell side of the
透平8通过联轴器拖动储能工质压缩机4、压缩机11和发电机12转动。The
当太阳辐射充足时,阀门7打开,甲烷和二氧化碳储罐6中的甲烷和二氧化碳进入集热反应器2,在甲烷重整催化剂的催化作用下,甲烷和二氧化碳在700-800℃、常压下发生甲烷重整反应,吸收集热反应器2的热量,生成一氧化碳和氢气,进入一氧化碳和氢气储罐3,一氧化碳和氢气经过储能工质压缩机4压缩后,加压到1.5MPa,进入放热反应器5的管程,与管程中的甲烷化催化剂接触,一氧化碳和氢气在1.5MPa、500-600℃发生甲烷化反应,释放出热量,生成甲烷和二氧化碳,进入甲烷和二氧化碳储罐6。放热反应器5的壳程的二氧化碳吸收管程甲烷化反应释放的热量后,进入透平8做功,做功后的二氧化碳进入回热器9的热侧,与回热器9冷侧的二氧化碳换热后,进入预冷器10的热侧,进一步冷却后,进入压缩机11的入口,经过压缩机11压缩后,进入回热器9的热侧,与回热器9热侧的二氧化碳换热,进入放热反应器5的壳程,由于太阳辐射充足,甲烷重整反应的量要大于甲烷化反应的量,一部分一氧化碳和氢气储存在一氧化碳和氢气储罐3中。透平8通过联轴器拖动储能工质压缩机4、压缩机11转动,多余的功拖动发电机12转动发电。When the solar radiation is sufficient, the
当没有太阳辐射时,阀门7关闭,一氧化碳和氢气储罐3中储存的一氧化碳和氢气,经过储能工质压缩机4加压后,进入放热反应器5的管程,与管程中的甲烷化催化剂接触,一氧化碳和氢气在1.5MPa、500-600℃发生甲烷化反应,释放出热量,生成甲烷和二氧化碳,进入甲烷和二氧化碳储罐6。放热反应器5的壳程的二氧化碳吸收管程甲烷化反应释放的热量后,进入透平8做功,做功后的二氧化碳进入回热器9的热侧,与回热器9冷侧的二氧化碳换热后,进入预冷器10的热侧,进一步冷却后,进入压缩机11的入口,经过压缩机11压缩后,进入回热器9的热侧,与回热器9热侧的二氧化碳换热,进入放热反应器5的壳程,由于没有太阳辐射,只发生甲烷化反应,储存在一氧化碳和氢气储罐3中的一氧化碳和氢气经过放热反应器5后生成甲烷和二氧化碳,储存在甲烷和二氧化碳储罐6中。透平8通过联轴器拖动储能工质压缩机4、压缩机11转动,多余的功拖动发电机12转动发电。When there is no solar radiation, the
需要指出的是,上述实施例只为说明本发明的技术构思和特点,具体的实施方法,如集热反应器2和放热反应器5的操作条件等等仍可进行修改和改进,但都不会由此而背离权利要求书中所规定的本发明的范围和基本精神。It should be pointed out that the above examples are only to illustrate the technical concept and characteristics of the present invention, and the specific implementation methods, such as the operating conditions of the
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010656096.2A CN111663975A (en) | 2020-07-09 | 2020-07-09 | Supercritical carbon dioxide power generation system and method based on methane reforming energy storage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010656096.2A CN111663975A (en) | 2020-07-09 | 2020-07-09 | Supercritical carbon dioxide power generation system and method based on methane reforming energy storage |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111663975A true CN111663975A (en) | 2020-09-15 |
Family
ID=72391692
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010656096.2A Pending CN111663975A (en) | 2020-07-09 | 2020-07-09 | Supercritical carbon dioxide power generation system and method based on methane reforming energy storage |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111663975A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112539673A (en) * | 2020-12-02 | 2021-03-23 | 上海发电设备成套设计研究院有限责任公司 | Electric-thermal-electric energy storage system and method |
CN113860329A (en) * | 2021-10-29 | 2021-12-31 | 西安热工研究院有限公司 | A kind of chemical energy storage system and method based on synthetic ammonia |
CN113982835A (en) * | 2021-11-04 | 2022-01-28 | 西安热工研究院有限公司 | Chemical energy storage system and method based on synthetic methanol |
CN114262262A (en) * | 2021-12-27 | 2022-04-01 | 西安热工研究院有限公司 | A kind of energy storage system and method for producing methanol by utilizing synthetic methanol waste gas |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109944756A (en) * | 2019-04-12 | 2019-06-28 | 西安热工研究院有限公司 | A solar thermal power generation system and method based on methane reforming energy storage |
CN110242522A (en) * | 2019-04-12 | 2019-09-17 | 西安热工研究院有限公司 | A solar thermal power generation system and method based on thermochemical energy storage |
-
2020
- 2020-07-09 CN CN202010656096.2A patent/CN111663975A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109944756A (en) * | 2019-04-12 | 2019-06-28 | 西安热工研究院有限公司 | A solar thermal power generation system and method based on methane reforming energy storage |
CN110242522A (en) * | 2019-04-12 | 2019-09-17 | 西安热工研究院有限公司 | A solar thermal power generation system and method based on thermochemical energy storage |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112539673A (en) * | 2020-12-02 | 2021-03-23 | 上海发电设备成套设计研究院有限责任公司 | Electric-thermal-electric energy storage system and method |
CN113860329A (en) * | 2021-10-29 | 2021-12-31 | 西安热工研究院有限公司 | A kind of chemical energy storage system and method based on synthetic ammonia |
CN113982835A (en) * | 2021-11-04 | 2022-01-28 | 西安热工研究院有限公司 | Chemical energy storage system and method based on synthetic methanol |
CN114262262A (en) * | 2021-12-27 | 2022-04-01 | 西安热工研究院有限公司 | A kind of energy storage system and method for producing methanol by utilizing synthetic methanol waste gas |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111663975A (en) | Supercritical carbon dioxide power generation system and method based on methane reforming energy storage | |
CN207829962U (en) | Nuclear energy based on supercritical carbon dioxide cycle and solar energy hybrid power system | |
CN111895836B (en) | A combined energy storage system and method for thermochemical energy storage and sensible heat energy storage | |
CN109944756A (en) | A solar thermal power generation system and method based on methane reforming energy storage | |
CN106524809A (en) | Gradient energy storage and energy release system and method based on reversible chemical reaction | |
CN209704778U (en) | A kind of tower-type solar thermal power generating system | |
CN113860329A (en) | A kind of chemical energy storage system and method based on synthetic ammonia | |
CN112944697A (en) | Solar photo-thermal/photovoltaic comprehensive energy cascade utilization system | |
CN108981201A (en) | Supercritical CO2The amino thermochemical energy storage reactor of solar heat power generation system | |
CN114033511B (en) | A photothermal coupled hydrogen energy storage peak-shaving power generation system and its operation method | |
CN113824139B (en) | Thermal power plant Carnot battery energy storage transformation method and device | |
CN210087560U (en) | A solar thermal power generation system based on methane reforming energy storage | |
CN113005475A (en) | System and process for solar high-temperature water electrolysis coupling hydrogen production based on amino thermochemical energy storage | |
CN209943012U (en) | A solar thermal power generation system based on thermochemical energy storage | |
CN209875395U (en) | Trough type solar thermal power generation system | |
CN107628589A (en) | A kind of high temperature bubble type methane Direct Pyrolysis High Purity Hydrogen system and method for Photospot solar driving | |
CN208720539U (en) | Ammonia thermochemical energy storage reactor for supercritical CO2 solar thermal power generation system | |
CN110242522B (en) | Solar photo-thermal power generation system and method based on thermochemical energy storage | |
CN114005557A (en) | High-efficiency dual-cycle sodium-cooled fast reactor power generation system and method using supercritical carbon dioxide into the reactor | |
CN114262262A (en) | A kind of energy storage system and method for producing methanol by utilizing synthetic methanol waste gas | |
CN212296521U (en) | A supercritical carbon dioxide power generation system based on methane reforming and energy storage | |
CN110260535B (en) | A solar continuous baking system and method | |
CN216198339U (en) | Photo-thermal coupling hydrogen energy storage peak regulation power generation system | |
CN213931513U (en) | A kind of solar energy utilization device based on amino reaction | |
CN209942945U (en) | A solar thermal energy storage and power generation system based on methane reforming |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |