CN114094218B - Method, device, equipment and medium for evaluating consistency of voltages of battery modules - Google Patents
Method, device, equipment and medium for evaluating consistency of voltages of battery modules Download PDFInfo
- Publication number
- CN114094218B CN114094218B CN202111325160.XA CN202111325160A CN114094218B CN 114094218 B CN114094218 B CN 114094218B CN 202111325160 A CN202111325160 A CN 202111325160A CN 114094218 B CN114094218 B CN 114094218B
- Authority
- CN
- China
- Prior art keywords
- voltage
- consistency
- battery module
- moment
- time period
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000011156 evaluation Methods 0.000 claims abstract description 49
- 238000012549 training Methods 0.000 claims description 22
- 238000012360 testing method Methods 0.000 claims description 20
- 238000004364 calculation method Methods 0.000 claims description 11
- 238000007781 pre-processing Methods 0.000 claims description 5
- 230000015654 memory Effects 0.000 description 12
- 239000000178 monomer Substances 0.000 description 10
- 238000007637 random forest analysis Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000013210 evaluation model Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Abstract
Description
技术领域Technical Field
本发明实施例涉及计算机技术领域,尤其涉及一种电池模组的电压的一致性评估方法、装置、设备及介质。Embodiments of the present invention relate to the field of computer technology, and in particular to a method, device, equipment and medium for evaluating the consistency of voltage of a battery module.
背景技术Background Art
随着科学技术的不断发展,各类动力电池得到了突飞猛进的发展;这些电池的性能直接影响了诸如汽车、摩托车等需要动力电池提供动力的产品的整体性能,如何对电池的电压进行一致性评估是业内研究的重点内容;由于使用到的动力电池通常是由多个电池模块组成的电池模组,故在本发明实施例中将这些动力电池统称为电池模组。With the continuous development of science and technology, various types of power batteries have achieved rapid development; the performance of these batteries directly affects the overall performance of products such as automobiles and motorcycles that require power batteries to provide power. How to evaluate the consistency of battery voltage is a key research topic in the industry; since the power batteries used are usually battery modules composed of multiple battery modules, these power batteries are collectively referred to as battery modules in the embodiments of the present invention.
现阶段,一种方法是基于统计学的单参数评估方法对电池模组的电压进行一致性评估,例如,通过电池单体电压的标准差,极差等统计量表征电池电压的一致性。该方法忽略工况差异对电压一致性的影响,因此在个别工况下容易出现错误的评估;另一种方法是基于机器学习的多参数评估方法对电池模组电压进行一致性评估,该方法一般基于电池测试数据进行建模,例如,通过电池测试实验,得到电池模组在不同温度下,容量与电压的数值对应关系,然后通过对比待测电池模组的对应关系差异来评价电压一致性。该方法需要大量的测试数据,这使得测试成本剧增,且无法用于在线评估,工程应用意义较弱。At present, one method is to evaluate the consistency of the voltage of the battery module based on a single parameter evaluation method based on statistics. For example, the consistency of the battery voltage is characterized by statistics such as the standard deviation and range of the battery cell voltage. This method ignores the impact of operating condition differences on voltage consistency, so it is easy to make incorrect evaluations under certain operating conditions; another method is to evaluate the consistency of the battery module voltage based on a multi-parameter evaluation method based on machine learning. This method is generally modeled based on battery test data. For example, through battery test experiments, the numerical correspondence between the capacity and voltage of the battery module at different temperatures is obtained, and then the voltage consistency is evaluated by comparing the differences in the corresponding relationships of the battery modules to be tested. This method requires a large amount of test data, which increases the test cost dramatically, and cannot be used for online evaluation, so it has weak engineering application significance.
如何准确地对电池模组的电压进行一致性评估是业内研究的重点内容。How to accurately evaluate the consistency of battery module voltage is a key research topic in the industry.
发明内容Summary of the invention
本发明实施例提供一种电池模组的电压的一致性评估方法、装置、设备及存储介质,以实现准确地对电池模组的电压进行一致性评估。Embodiments of the present invention provide a method, device, equipment and storage medium for evaluating the consistency of the voltage of a battery module, so as to accurately evaluate the consistency of the voltage of the battery module.
第一方面,本发明实施例提供了一种电池模组的电压的一致性评估方法,包括:In a first aspect, an embodiment of the present invention provides a method for evaluating the consistency of voltage of a battery module, comprising:
获取至少两个时间段内待测试电池模组的至少一项属性参数;各所述时间段分别包括至少一个时刻;Acquire at least one attribute parameter of the battery module to be tested in at least two time periods; each of the time periods includes at least one moment;
分别将不同时间段内的各属性参数输入至预先训练的回归森林模型中,得到与每个时间段对应的至少一个时刻电压;Inputting each attribute parameter in different time periods into a pre-trained regression forest model respectively, and obtaining at least one voltage at a time corresponding to each time period;
分别根据各所述时刻电压生成与每个时间段对应状态序列,并根据各所述状态序列对所述待测试电池模组的电压的一致性进行评估。A state sequence corresponding to each time period is generated according to the voltage at each moment, and the consistency of the voltage of the battery module to be tested is evaluated according to each state sequence.
第二方面,本发明实施例还提供了一种电池模组的电压的一致性评估装置,包括:In a second aspect, an embodiment of the present invention further provides a battery module voltage consistency assessment device, comprising:
属性参数获取模块,用于获取至少两个时间段内待测试电池模组的至少一项属性参数;各所述时间段分别包括至少一个时刻;An attribute parameter acquisition module, used to acquire at least one attribute parameter of the battery module to be tested in at least two time periods; each of the time periods includes at least one moment;
时刻电压确定模块,用于分别将不同时间段内的各属性参数输入至预先训练的回归森林模型中,得到与每个时间段对应的至少一个时刻电压;A moment voltage determination module is used to input various attribute parameters in different time periods into a pre-trained regression forest model to obtain at least one moment voltage corresponding to each time period;
一致性评估模块,用于分别根据各所述时刻电压生成与每个时间段对应状态序列,并根据各所述状态序列对所述待测试电池模组的电压的一致性进行评估。The consistency evaluation module is used to generate a state sequence corresponding to each time period according to the voltage at each moment, and evaluate the consistency of the voltage of the battery module to be tested according to each state sequence.
第三方面,本发明实施例还提供了一种电池模组的电压的一致性评估设备,所述电池电压的一致性评估设备包括:In a third aspect, an embodiment of the present invention further provides a battery module voltage consistency evaluation device, the battery voltage consistency evaluation device comprising:
一个或多个处理器;one or more processors;
存储装置,用于存储一个或多个程序,a storage device for storing one or more programs,
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如本发明实施例中任一实施例所述的电池模组的电压的一致性评估方法。When the one or more programs are executed by the one or more processors, the one or more processors implement the method for evaluating the voltage consistency of a battery module as described in any one of the embodiments of the present invention.
第四方面,本发明实施例还提供了一种包含计算机可执行指令的存储介质,其特征在于,所述计算机可执行指令在由计算机处理器执行时用于执行如本发明实施例中任一实施例所述的电池模组的电压的一致性评估方法。In a fourth aspect, an embodiment of the present invention further provides a storage medium comprising computer executable instructions, characterized in that the computer executable instructions, when executed by a computer processor, are used to execute a method for evaluating the voltage consistency of a battery module as described in any one of the embodiments of the present invention.
本发明实施例通过获取至少两个时间段内待测试电池模组的至少一项属性参数;各所述时间段分别包括至少一个时刻;分别将不同时间段内的各属性参数输入至预先训练的回归森林模型中,得到与每个时间段对应的至少一个时刻电压;分别根据各所述时刻电压生成与每个时间段对应状态序列,并根据各所述状态序列对所述待测试电池模组的电压的一致性进行评估,实现了准确地对电池模组的电压进行一致性评估。The embodiment of the present invention obtains at least one attribute parameter of the battery module to be tested in at least two time periods; each of the time periods includes at least one moment; each attribute parameter in different time periods is input into a pre-trained regression forest model to obtain at least one moment voltage corresponding to each time period; a state sequence corresponding to each time period is generated according to each moment voltage, and the consistency of the voltage of the battery module to be tested is evaluated according to each state sequence, thereby achieving accurate consistency evaluation of the voltage of the battery module.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是本发明实施例一中的一种电池模组的电压的一致性评估方法的流程图;FIG1 is a flow chart of a method for evaluating the consistency of voltage of a battery module in Embodiment 1 of the present invention;
图2是本发明实施例二中的一种电池模组的电压的一致性评估方法的流程图;2 is a flow chart of a method for evaluating the consistency of voltage of a battery module in a second embodiment of the present invention;
图3是本发明实施例二中的一种电池模组的电压的一致性评估方法的流程图;3 is a flow chart of a method for evaluating the consistency of voltage of a battery module in Embodiment 2 of the present invention;
图4是本发明实施例三中的一种电池模组的电压的一致性评估装置的结构示意图;4 is a schematic diagram of the structure of a device for evaluating the consistency of voltage of a battery module in Embodiment 3 of the present invention;
图5是本发明实施例四中的一种电池模组的电压的一致性评估设备的结构示意图。FIG5 is a schematic diagram of the structure of a battery module voltage consistency evaluation device in Embodiment 4 of the present invention.
具体实施方式DETAILED DESCRIPTION
下面结合附图和实施例对本发明实施例作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明实施例,而非对本发明实施例的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明实施例相关的部分而非全部结构。The embodiments of the present invention are further described in detail below in conjunction with the accompanying drawings and embodiments. It is to be understood that the specific embodiments described herein are only used to explain the embodiments of the present invention, rather than to limit the embodiments of the present invention. It is also necessary to explain that, for ease of description, only parts related to the embodiments of the present invention are shown in the accompanying drawings, rather than all structures.
实施例一Embodiment 1
图1是本发明实施例一中的一种电池模组的电压的一致性评估方法的流程图,本实施例可适用于对车辆中的电池进行电压的一致性评估的情况,该方法可以由电池模组的电压的一致性评估装置来执行,该装置可以通过软件和/或硬件的方式实现,并集成在电池模组的电压的一致性评估设备中,在本实施例中,电池模组的电压的一致性评估设备可以为计算机、服务器或者平板电脑等;具体的,参考图1,该方法具体包括如下步骤:FIG1 is a flow chart of a method for evaluating the voltage consistency of a battery module in a first embodiment of the present invention. This embodiment is applicable to the case of evaluating the voltage consistency of a battery in a vehicle. The method can be executed by a device for evaluating the voltage consistency of a battery module. The device can be implemented by software and/or hardware and integrated in a device for evaluating the voltage consistency of a battery module. In this embodiment, the device for evaluating the voltage consistency of a battery module can be a computer, a server, or a tablet computer. Specifically, referring to FIG1, the method specifically includes the following steps:
步骤110、获取至少两个时间段内待测试电池模组的至少一项属性参数;各所述时间段分别包括至少一个时刻。Step 110, obtaining at least one attribute parameter of the battery module to be tested in at least two time periods; each of the time periods includes at least one moment.
其中,每个时间段内多可以包括多个时刻,通常情况下,每个时间段内包含的时刻数量相同;示例性的,时间段A的时长可以为10分钟,共包含10个时刻;时间段B的时长也为10分钟,共包含10个时刻,这样可以保证后续生成的状态序列的长度一致,便于计算。Among them, each time period can include multiple moments. Usually, the number of moments contained in each time period is the same; for example, the length of time period A can be 10 minutes, including 10 moments in total; the length of time period B is also 10 minutes, including 10 moments in total, which can ensure that the length of the state sequence generated subsequently is consistent, which is convenient for calculation.
在本实施例中,电池模组可以由多个电池模块组成,其可以应用在新能源汽车中、电动自行车中、摩托车中或者其他需要供电的设备中,本实施例中对其不加以限定。In this embodiment, the battery module may be composed of a plurality of battery modules, which may be used in new energy vehicles, electric bicycles, motorcycles or other devices requiring power supply, which is not limited in this embodiment.
在本实施例中,属性参数可以包括时间、充电比例(State of Charge,SOC)、充电状态、温度以及电压。In this embodiment, the attribute parameters may include time, state of charge (SOC), charging state, temperature, and voltage.
在本实施例中,可以获取多个时间段内的每一个时刻待测试电池模组的属性参数;示例性的,可以分别获取时间段A内的第一时刻至第十时刻的时间参数、SOC参数、充电状态参数、温度参数以及电压参数,以及时间段B内的第一时刻至第十时刻的时间参数、SOC参数、充电状态参数、温度参数以及电压参数。In this embodiment, the property parameters of the battery module to be tested can be obtained at each moment in multiple time periods; illustratively, the time parameters, SOC parameters, charging state parameters, temperature parameters and voltage parameters from the first moment to the tenth moment in time period A, and the time parameters, SOC parameters, charging state parameters, temperature parameters and voltage parameters from the first moment to the tenth moment in time period B can be obtained respectively.
步骤120、分别将不同时间段内的各属性参数输入至预先训练的回归森林模型中,得到与每个时间段对应的至少一个时刻电压。Step 120: Input each attribute parameter in different time periods into a pre-trained regression forest model to obtain at least one voltage at a time corresponding to each time period.
在本实施例的一个可选实现方式中,在获取到至少两个时间段内待测试车辆电池的至少一项属性参数之后,可以进一步的将不同时间段内的各属性参数输入至预先训练得到的回归森林模型中,从而得到与每个时间段对应的至少一个时刻电压。In an optional implementation of the present embodiment, after obtaining at least one attribute parameter of the vehicle battery to be tested in at least two time periods, the attribute parameters in different time periods can be further input into a pre-trained regression forest model to obtain at least one moment voltage corresponding to each time period.
示例性的,在上述例子中,可以先将获取时间段A内的第一时刻至第十时刻的时间参数、SOC参数、充电状态参数、温度参数以及电压参数输入至回归森林模型中,得到十个时刻电压;再将时间段B内的第一时刻至第十时刻的时间参数、SOC参数、充电状态参数、温度参数以及电压参数输入至回归森林模型中,得到十个时刻电压。Exemplarily, in the above example, the time parameters, SOC parameters, charging state parameters, temperature parameters and voltage parameters from the first moment to the tenth moment in time period A can be first input into the regression forest model to obtain the voltages at ten moments; then the time parameters, SOC parameters, charging state parameters, temperature parameters and voltage parameters from the first moment to the tenth moment in time period B can be input into the regression forest model to obtain the voltages at ten moments.
在本实施例的一个可选实现方式中,在分别将不同时间段内的各属性参数输入至预先训练的回归森林模型中之前,还包括:获取多个正常电池模组的至少一项属性参数;对各所述属性参数进行预处理,并按照设定比例将各所述属性参数划分为训练集以及测试集;根据所述训练集以及所述测试集训练得到所述回归森林模型。In an optional implementation of the present embodiment, before inputting each attribute parameter in different time periods into a pre-trained regression forest model, it also includes: obtaining at least one attribute parameter of multiple normal battery modules; preprocessing each of the attribute parameters, and dividing each of the attribute parameters into a training set and a test set according to a set ratio; and obtaining the regression forest model by training the training set and the test set.
在具体实现中,可以采集正常车辆的数据,即电池电压长时间(例如,一个月、半年或者一年等)保持一致的车辆电池的属性参数,例如,字段包括上报时间,SOC,充电状态,单体温度,电流和单体电压;对数据进行预处理,例如,可以剔除数据中的缺失值,根据正常工作电压范围对异常电压进行剔除,根据3σ准则对异常温度进行剔除,充电状态可以采用One-Hot编码,其中,未充电状态可以为(1,0,0),停车充电状态可以为(0,1,0),充电状态完成可以为(0,0,1);数据集根据比例7:3(也可以为8:2或者9:1等,本实施例中对其不加以限定)划分为训练集与测试集,其中,训练集可以用于模型训练,测试集可以用于模型调参;进一步的,可以基于训练集训练随机森林模型,并基于测试集对模型进行调参,然后基于最优的随机森林模型建立回归森林模型。In a specific implementation, data of a normal vehicle may be collected, that is, attribute parameters of a vehicle battery whose battery voltage remains consistent for a long time (e.g., one month, half a year, or one year, etc.), for example, fields include reporting time, SOC, charging state, cell temperature, current, and cell voltage; the data may be preprocessed, for example, missing values in the data may be removed, abnormal voltages may be removed according to the normal operating voltage range, abnormal temperatures may be removed according to the 3σ criterion, and the charging state may be encoded using One-Hot, wherein the uncharged state may be (1, 0, 0), the parking charging state may be (0, 1, 0), and the charging state completion may be (0, 0, 1); the data set may be divided into a training set and a test set according to a ratio of 7:3 (or 8:2 or 9:1, etc., which is not limited in this embodiment), wherein the training set may be used for model training, and the test set may be used for model parameter adjustment; further, a random forest model may be trained based on the training set, and the model parameters may be adjusted based on the test set, and then a regression forest model may be established based on the optimal random forest model.
这样设置的好处在于,可以快速且准确地确定与每个时间段对应的至少一个时刻电压,为后续对待测试电池模组的电压的一致性评估提供依据,提升了算法的执行效率。The advantage of this setting is that at least one voltage at a time corresponding to each time period can be determined quickly and accurately, providing a basis for subsequent consistency evaluation of the voltage of the battery module to be tested, thereby improving the execution efficiency of the algorithm.
需要说明的是,在本实施例中基于训练集训练随机森林模型,并基于测试集对模型进行调参,以及基于最优的随机森林模型建立回归森林模型是本领域的常规技术手段,在本实施例中对其不再进行赘述。It should be noted that in this embodiment, training the random forest model based on the training set, adjusting the model parameters based on the test set, and establishing the regression forest model based on the optimal random forest model are conventional technical means in this field and will not be described in detail in this embodiment.
步骤130、分别根据各所述时刻电压生成与每个时间段对应状态序列,并根据各所述状态序列对所述待测试电池模组的电压的一致性进行评估。Step 130 : generating a state sequence corresponding to each time period according to the voltage at each moment, and evaluating the consistency of the voltage of the battery module to be tested according to each state sequence.
在本实施例的一个可选实现方式中,在得到与每个时间段对应的至少一个时刻电压之后,可以进一步的根据各时刻电压生成与每个时间段对应的状态序列,并根据各状态序列对待测试电池模组的电压的一致性进行评估。In an optional implementation of this embodiment, after obtaining at least one moment voltage corresponding to each time period, a state sequence corresponding to each time period can be further generated based on the voltage at each moment, and the voltage consistency of the battery module to be tested can be evaluated based on each state sequence.
在本实施例中,分别根据各所述时刻电压生成与每个时间段对应状态序列可以包括:获取目标时间段的各时刻电压对应的状态码,并根据各所述状态码形成与所述目标时间段对应的状态序列。其中,目标时间段可以为任一时间段,例如上述例子中涉及到的时间段A或者时间段B,本实施例中对其不加以限定。In this embodiment, generating a state sequence corresponding to each time period according to the voltage at each time moment may include: obtaining a state code corresponding to the voltage at each time moment of the target time period, and forming a state sequence corresponding to the target time period according to each state code. The target time period may be any time period, such as time period A or time period B involved in the above example, which is not limited in this embodiment.
示例性的,若目标时间段包括十个时刻,在获取到这十个时刻对应的时刻电压之后,可以依次确定每个时刻电压对应的状态码,并按照时间顺序对各状态码进行拼接,从而形成与目标时间段对应的状态序列。Exemplarily, if the target time period includes ten moments, after obtaining the moment voltages corresponding to these ten moments, the state code corresponding to the voltage at each moment can be determined in turn, and the state codes can be spliced in chronological order to form a state sequence corresponding to the target time period.
在本实施例的一个可选实现方式中,获取目标时间段的各时刻电压对应的状态码,可以包括:如果目标时刻电压在预设的电压置信区间内,则与目标时刻电压对应的状态码为1,否则为0。In an optional implementation of this embodiment, obtaining the status code corresponding to the voltage at each moment in the target time period may include: if the voltage at the target moment is within a preset voltage confidence interval, the status code corresponding to the voltage at the target moment is 1, otherwise it is 0.
其中,预设的电压置信区间可以通过设定显著性水平来设定,例如,可以设定显著性水平为0.05,进一步的获取电压估算的置信区间[y0.025,y0.975],其中,y0.025和y0.975分别为回归森林模型在分位数为0.025和0.975的预测值。Among them, the preset voltage confidence interval can be set by setting the significance level. For example, the significance level can be set to 0.05, and the confidence interval of the voltage estimate [y 0.025 ,y 0.975 ] can be further obtained, wherein y 0.025 and y 0.975 are the predicted values of the regression forest model at quantiles of 0.025 and 0.975, respectively.
进一步的,如果目标时刻电压在置信区间[y0.025,y0.975]内,则与目标时刻电压对应的状态码为1,否则为0;其中,目标时刻可以为目标时间段内的任一时刻,本实施例中对其不加以限定。Furthermore, if the voltage at the target time is within the confidence interval [y 0.025 ,y 0.975 ], the state code corresponding to the voltage at the target time is 1, otherwise it is 0; wherein the target time may be any time within the target time period, which is not limited in this embodiment.
可以理解的是,在本实施例中,与每个时间段对应状态序列即为一个内部元素为0或者1的序列。It can be understood that, in this embodiment, the state sequence corresponding to each time period is a sequence whose internal elements are 0 or 1.
进一步的,可以根据生成的各状态序列对待测试电池模组的电压的一致性进行评估。示例性的,若生成2个状态序列,则可以计算这两个状态序列之间的相似度,并根据相似度结果对所述待测试电池模组的电压的一致性进行评估;示例性的,若相似度计算结果大于设定阈值(例如,0.9、0.8或者0.85等,本实施例中对其不加以限定),则可以确定待测试车辆电池电压满足一致性要求;若生成10个状态序列,则可以计算每两个状态序列之间的相似度,并根据相似度结果对所述待测试电池模组的电压的一致性进行评估,即当每两个状态序列之间的相似度均大于设定阈值时,则可以确定待测试车辆电池电压满足一致性要求。Furthermore, the consistency of the voltage of the battery module to be tested can be evaluated based on each state sequence generated. Exemplarily, if two state sequences are generated, the similarity between the two state sequences can be calculated, and the consistency of the voltage of the battery module to be tested can be evaluated based on the similarity result; Exemplarily, if the similarity calculation result is greater than a set threshold (for example, 0.9, 0.8 or 0.85, etc., which is not limited in this embodiment), it can be determined that the battery voltage of the vehicle to be tested meets the consistency requirement; If 10 state sequences are generated, the similarity between each two state sequences can be calculated, and the consistency of the voltage of the battery module to be tested can be evaluated based on the similarity result, that is, when the similarity between each two state sequences is greater than the set threshold, it can be determined that the battery voltage of the vehicle to be tested meets the consistency requirement.
本实施例的方案,通过获取至少两个时间段内待测试电池模组的至少一项属性参数;各所述时间段分别包括至少一个时刻;分别将不同时间段内的各属性参数输入至预先训练的回归森林模型中,得到与每个时间段对应的至少一个时刻电压;分别根据各所述时刻电压生成与每个时间段对应状态序列,并根据各所述状态序列对所述待测试电池模组的电压的一致性进行评估,实现了准确地对电池模组的电压进行一致性评估。The solution of this embodiment obtains at least one attribute parameter of the battery module to be tested in at least two time periods; each of the time periods includes at least one moment; each attribute parameter in different time periods is input into a pre-trained regression forest model to obtain at least one moment voltage corresponding to each time period; a state sequence corresponding to each time period is generated according to each moment voltage, and the consistency of the voltage of the battery module to be tested is evaluated according to each state sequence, thereby achieving accurate consistency evaluation of the voltage of the battery module.
实施例二Embodiment 2
图2是本发明实施例二中的一种电池模组的电压的一致性评估方法的流程图,本实施例是对上述各技术方案的进一步细化,本实施例中的技术方案可以与上述一个或者多个实施例中的各个可选方案结合。如图2所示,电池模组的电压的一致性评估方法可以包括如下步骤:FIG2 is a flow chart of a method for evaluating the voltage consistency of a battery module in Embodiment 2 of the present invention. This embodiment is a further refinement of the above-mentioned technical solutions. The technical solution in this embodiment can be combined with each optional solution in one or more of the above-mentioned embodiments. As shown in FIG2, the method for evaluating the voltage consistency of a battery module may include the following steps:
步骤210、获取多个正常电池模组的至少一项属性参数;对各所述属性参数进行预处理,并按照设定比例将各所述属性参数划分为训练集以及测试集;根据所述训练集以及所述测试集训练得到所述回归森林模型。Step 210, obtaining at least one attribute parameter of a plurality of normal battery modules; preprocessing each of the attribute parameters, and dividing each of the attribute parameters into a training set and a test set according to a set ratio; and obtaining the regression forest model by training the training set and the test set.
步骤220、获取至少两个时间段内待测试电池模组的至少一项属性参数;各所述时间段分别包括至少一个时刻。Step 220, obtaining at least one attribute parameter of the battery module to be tested in at least two time periods; each of the time periods includes at least one moment.
步骤230、分别将不同时间段内的各属性参数输入至预先训练的回归森林模型中,得到与每个时间段对应的至少一个时刻电压。Step 230: Input each attribute parameter in different time periods into a pre-trained regression forest model to obtain at least one voltage at a time corresponding to each time period.
步骤240、分别根据各所述时刻电压生成与每个时间段对应状态序列。Step 240: Generate a state sequence corresponding to each time period according to the voltage at each moment.
步骤250、计算每两个状态序列的相似度,并根据各相似度计算结果计算所述待测试电池模组的电压的一致性评分;并根据所述一致性评分对所述待测试电池模组的电压的一致性进行评估。Step 250, calculating the similarity between every two state sequences, and calculating the consistency score of the voltage of the battery module to be tested according to each similarity calculation result; and evaluating the consistency of the voltage of the battery module to be tested according to the consistency score.
在本实施例的一个可选实现方式中,在生成与每个时间段对应状态序列之后,可以进一步的计算每两个状态序列的相似度,并根据各相似度计算结果计算所述待测试电池模组的电压的一致性评分;并根据所述一致性评分对所述待测试电池模组的电压的一致性进行评估。In an optional implementation of the present embodiment, after generating a state sequence corresponding to each time period, the similarity between every two state sequences can be further calculated, and the consistency score of the voltage of the battery module to be tested can be calculated based on the similarity calculation results; and the consistency of the voltage of the battery module to be tested can be evaluated based on the consistency score.
在本实施例的一个可选实现方式中,根据所述一致性评分对所述待测试电池模组的电压的一致性进行评估,可以包括:在设定时间内,确定满足预设一次性标准的一致性评分的数量是否满足一致性通过标准;若是,则确定所述待测试电池模组的电压满足一致性评估。In an optional implementation of the present embodiment, evaluating the consistency of the voltage of the battery module to be tested based on the consistency score may include: determining whether the number of consistency scores that meet a preset one-time standard meets a consistency pass standard within a set time; if so, determining that the voltage of the battery module to be tested meets the consistency evaluation.
在本实施例中可以根据如下公式计算每两个状态序列的相似度:In this embodiment, the similarity between every two state sequences can be calculated according to the following formula:
其中,Similarity(i,j)表示单体(即,时间段)i与单体j的余弦相似度,si,k表示单体i在计算窗口中第k帧的状态,Si表示单体i的状态序列。Wherein, Similarity(i,j) represents the cosine similarity between monomer (i.e., time period) i and monomer j, si ,k represents the state of monomer i in the kth frame in the calculation window, and Si represents the state sequence of monomer i.
进一步的,可以根据相似度计算结果计算所述待测试电池模组的电压的一致性评分,在本实施例中,可以通过如下公式计算待测试电池模组的电压的一致性评分:Furthermore, the consistency score of the voltage of the battery module to be tested may be calculated according to the similarity calculation result. In this embodiment, the consistency score of the voltage of the battery module to be tested may be calculated by the following formula:
其中,Consistency(i)表示为单体i的电压一致性评分。Wherein, Consistency(i) represents the voltage consistency score of cell i.
进一步的,可以根据并根据所述一致性评分对所述待测试电池模组的电压的一致性进行评估。在本实施例中,可以基于3σ准则对同一统计窗口中的单体一致性评分进行判断,若单体i的一致性评分Consistency(i)<80且Consistency(i)<μ-3σ,则判断为未通过一致性检验,否则未通过一致性检验,其中μ为统计窗口中所有单体一致性评分的均值,σ为标准差;Furthermore, the consistency of the voltage of the battery module to be tested can be evaluated based on the consistency score. In this embodiment, the consistency score of the cells in the same statistical window can be judged based on the 3σ criterion. If the consistency score of cell i is Consistency(i)<80 and Consistency(i)<μ-3σ, it is judged as failing the consistency test, otherwise it fails the consistency test, where μ is the mean of all the consistency scores of the cells in the statistical window, and σ is the standard deviation;
在本实施例的另一个具体例子中,也可以按日计算电池模组的电压的一致性评分,计算公式可以如下:In another specific example of this embodiment, the consistency score of the voltage of the battery module may also be calculated on a daily basis, and the calculation formula may be as follows:
其中,Consistency(i,Tj)表示单体i在Tj时刻的电压一致性评分,m为当日划分的统计窗口数。Wherein, Consistency(i,T j ) represents the voltage consistency score of cell i at time T j , and m is the number of statistical windows divided on that day.
相应的,按日统计所有单体的一致性检验通过率,若通过率在区间[0,0.3],则判断单体为严重不一致,若通过率在区间(0.3,0.6],则判断单体为若不一致,若通过率在区间(0.6,0.9],则判断单体为基本一致,若通过率在区间(0.9,1],则判断单体为完全一致。Correspondingly, the consistency test pass rate of all monomers is counted daily. If the pass rate is in the interval [0, 0.3], the monomer is judged to be seriously inconsistent. If the pass rate is in the interval (0.3, 0.6], the monomer is judged to be slightly inconsistent. If the pass rate is in the interval (0.6, 0.9], the monomer is judged to be basically consistent. If the pass rate is in the interval (0.9, 1], the monomer is judged to be completely consistent.
本实施例的方案,通过计算每两个状态序列的相似度,并根据各相似度计算结果计算所述待测试电池模组的电压的一致性评分;并根据所述一致性评分对所述待测试电池模组的电压的一致性进行评估,可以对待测试电池模组的电压进行准确地评估,为电池模组的使用安全提供了保障。The solution of this embodiment calculates the similarity between every two state sequences, and calculates the consistency score of the voltage of the battery module to be tested according to the similarity calculation results; and evaluates the consistency of the voltage of the battery module to be tested according to the consistency score. The voltage of the battery module to be tested can be accurately evaluated, which provides a guarantee for the safe use of the battery module.
为了使本领域技术人员更好地理解本实施例电池模组的电压的一致性评估方法,图3是本发明实施例二中的一种电池模组的电压的一致性评估方法的流程图,参考图3,具体过程包括有:In order to enable those skilled in the art to better understand the voltage consistency evaluation method of the battery module of this embodiment, FIG3 is a flow chart of a voltage consistency evaluation method of a battery module in Embodiment 2 of the present invention. Referring to FIG3, the specific process includes:
步骤310、数据采集。Step 310: Data collection.
步骤311、数据预处理。Step 311: data preprocessing.
步骤312、随机森林模型训练及调参。Step 312: random forest model training and parameter adjustment.
步骤313、得到回归森林模型。Step 313: Obtain a regression forest model.
步骤320、将待评估数据输入至回归森林模型中。Step 320: input the data to be evaluated into the regression forest model.
步骤330、置信区间预测以及获取状态序列。Step 330: predict confidence intervals and obtain state sequences.
步骤340、计算单体电压一致性评分。Step 340: Calculate the cell voltage consistency score.
步骤341、计算电池电压一致性评分。Step 341: Calculate the battery voltage consistency score.
步骤342、识别异常单体。Step 342: Identify abnormal monomers.
步骤350、输出电池电压一致性评估结果。Step 350: output the battery voltage consistency evaluation result.
本实施例的方案,评估模型核心算法为机器学习算法,训练数据包含各种实际工况数据,模型准确率高,适用性强,能够准确评估一致性;评估输入数据与训练数据字段完全一致,能够用于在线评估;无需电芯测试数据支撑,建模成本低。In the solution of this embodiment, the core algorithm of the evaluation model is a machine learning algorithm, the training data contains various actual working condition data, the model has high accuracy, strong applicability, and can accurately evaluate consistency; the evaluation input data is completely consistent with the training data field and can be used for online evaluation; no battery cell test data support is required, and the modeling cost is low.
实施例三Embodiment 3
图4是本发明实施例三中的一种电池模组的电压的一致性评估装置的结构示意图,该装置可以执行上述各实施例中涉及到的电池模组的电压的一致性评估方法。参照图4,该装置包括:属性参数获取模块410、时刻电压确定模块420以及一致性评估模块430。FIG4 is a schematic diagram of a battery module voltage consistency evaluation device in Embodiment 3 of the present invention, which can execute the battery module voltage consistency evaluation method involved in the above embodiments. Referring to FIG4 , the device includes: an attribute parameter acquisition module 410, a moment voltage determination module 420, and a consistency evaluation module 430.
属性参数获取模块410,用于获取至少两个时间段内待测试电池模组的至少一项属性参数;各所述时间段分别包括至少一个时刻;The attribute parameter acquisition module 410 is used to acquire at least one attribute parameter of the battery module to be tested in at least two time periods; each of the time periods includes at least one moment;
时刻电压确定模块420,用于分别将不同时间段内的各属性参数输入至预先训练的回归森林模型中,得到与每个时间段对应的至少一个时刻电压;The moment voltage determination module 420 is used to input each attribute parameter in different time periods into a pre-trained regression forest model to obtain at least one moment voltage corresponding to each time period;
一致性评估模块430,用于分别根据各所述时刻电压生成与每个时间段对应状态序列,并根据各所述状态序列对所述待测试电池模组的电压的一致性进行评估。The consistency evaluation module 430 is used to generate a state sequence corresponding to each time period according to the voltage at each moment, and evaluate the consistency of the voltage of the battery module to be tested according to each state sequence.
本实施例的方案,通过属性参数获取模块获取至少两个时间段内待测试电池模组的至少一项属性参数;各所述时间段分别包括至少一个时刻;通过时刻电压确定模块分别将不同时间段内的各属性参数输入至预先训练的回归森林模型中,得到与每个时间段对应的至少一个时刻电压;通过一致性评估模块分别根据各所述时刻电压生成与每个时间段对应状态序列,并根据各所述状态序列对所述待测试电池模组的电压的一致性进行评估,实现了准确地对电池模组的电压进行一致性评估。The solution of this embodiment is to obtain at least one attribute parameter of the battery module to be tested in at least two time periods through an attribute parameter acquisition module; each of the time periods includes at least one moment; each attribute parameter in different time periods is input into a pre-trained regression forest model through a moment voltage determination module to obtain at least one moment voltage corresponding to each time period; a state sequence corresponding to each time period is generated according to each moment voltage through a consistency evaluation module, and the consistency of the voltage of the battery module to be tested is evaluated according to each state sequence, thereby realizing accurate consistency evaluation of the voltage of the battery module.
在本实施例的一个可选实现方式中,所述属性参数包括下述至少一项:In an optional implementation of this embodiment, the attribute parameter includes at least one of the following:
时间、充电比例SOC、充电状态、温度以及电压。Time, charging ratio SOC, charging state, temperature and voltage.
在本实施例的一个可选实现方式中,电池模组的电压的一致性评估装置,还包括:回归森林模型训练模块,用于获取多个正常电池模组的至少一项属性参数;In an optional implementation of this embodiment, the battery module voltage consistency assessment device further includes: a regression forest model training module, used to obtain at least one attribute parameter of a plurality of normal battery modules;
对各所述属性参数进行预处理,并按照设定比例将各所述属性参数划分为训练集以及测试集;Preprocessing each of the attribute parameters, and dividing each of the attribute parameters into a training set and a test set according to a set ratio;
根据所述训练集以及所述测试集训练得到所述回归森林模型。The regression forest model is obtained by training according to the training set and the test set.
在本实施例的一个可选实现方式中,一致性评估模块430,包括:状态序列生成子模块,用于获取目标时间段的各时刻电压对应的状态码,并根据各所述状态码形成与所述目标时间段对应的状态序列。In an optional implementation of this embodiment, the consistency evaluation module 430 includes: a state sequence generation submodule, which is used to obtain the state code corresponding to the voltage at each moment in the target time period, and form a state sequence corresponding to the target time period according to each state code.
在本实施例的一个可选实现方式中,状态序列生成子模块,具体用于如果目标时刻电压在预设的电压置信区间内,则与目标时刻电压对应的状态码为1,否则为0。In an optional implementation of this embodiment, the state sequence generation submodule is specifically configured to: if the voltage at the target moment is within a preset voltage confidence interval, then the state code corresponding to the voltage at the target moment is 1, otherwise it is 0.
在本实施例的一个可选实现方式中,一致性评估模块430,还包括,评估子模块,用于计算每两个状态序列的相似度,并根据各相似度计算结果计算所述待测试电池模组的电压的一致性评分;In an optional implementation of this embodiment, the consistency evaluation module 430 further includes an evaluation submodule, which is used to calculate the similarity between every two state sequences, and calculate the consistency score of the voltage of the battery module to be tested according to the similarity calculation results;
并根据所述一致性评分对所述待测试电池模组的电压的一致性进行评估。And the consistency of the voltage of the battery module to be tested is evaluated according to the consistency score.
在本实施例的一个可选实现方式中,评估子模块,还具体用于在设定时间内,确定满足预设一次性标准的一致性评分的数量是否满足一致性通过标准;In an optional implementation of this embodiment, the evaluation submodule is further specifically used to determine whether the number of consistency scores that meet the preset one-time standard meets the consistency passing standard within a set time;
若是,则确定所述待测试电池模组的电压满足一致性评估。If so, it is determined that the voltage of the battery module to be tested satisfies the consistency assessment.
本发明实施例所提供的电池模组的电压的一致性评估装置可执行本发明任意实施例所提供的电池模组的电压的一致性评估方法,具备执行方法相应的功能模块和有益效果。The battery module voltage consistency assessment device provided in the embodiment of the present invention can execute the battery module voltage consistency assessment method provided in any embodiment of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
实施例四Embodiment 4
图5为本发明实施例四提供的一种电池模组的电压的一致性评估设备的结构示意图,如图5所示,该电池模组的电压的一致性评估设备包括处理器50、存储器51、输入装置52和输出装置53;电池模组的电压的一致性评估设备中处理器50的数量可以是一个或多个,图5中以一个处理器50为例;电池模组的电压的一致性评估设备中的处理器50、存储器51、输入装置52和输出装置53可以通过总线或其他方式连接,图5中以通过总线连接为例。Figure 5 is a structural schematic diagram of a battery module voltage consistency evaluation device provided in Embodiment 4 of the present invention. As shown in Figure 5, the battery module voltage consistency evaluation device includes a processor 50, a memory 51, an input device 52 and an output device 53; the number of processors 50 in the battery module voltage consistency evaluation device may be one or more, and Figure 5 takes one processor 50 as an example; the processor 50, memory 51, input device 52 and output device 53 in the battery module voltage consistency evaluation device may be connected via a bus or other means, and Figure 5 takes connection via a bus as an example.
存储器51作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本发明实施例中的电池模组的电压的一致性评估方法对应的程序指令/模块(例如,电池模组的电压的一致性评估装置中的属性参数获取模块410、时刻电压确定模块420以及一致性评估模块430)。处理器50通过运行存储在存储器51中的软件程序、指令以及模块,从而执行电池模组的电压的一致性评估设备的各种功能应用以及数据处理,即实现上述的电池模组的电压的一致性评估方法。The memory 51, as a computer-readable storage medium, can be used to store software programs, computer executable programs and modules, such as program instructions/modules corresponding to the voltage consistency evaluation method of the battery module in the embodiment of the present invention (for example, the attribute parameter acquisition module 410, the moment voltage determination module 420 and the consistency evaluation module 430 in the voltage consistency evaluation device of the battery module). The processor 50 executes various functional applications and data processing of the voltage consistency evaluation device of the battery module by running the software programs, instructions and modules stored in the memory 51, that is, realizes the voltage consistency evaluation method of the battery module mentioned above.
存储器51可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器51可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器51可进一步包括相对于处理器50远程设置的存储器,这些远程存储器可以通过网络连接至电池模组的电压的一致性评估设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。The memory 51 may mainly include a program storage area and a data storage area, wherein the program storage area may store an operating system and at least one application required for a function; the data storage area may store data created according to the use of the terminal, etc. In addition, the memory 51 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one disk storage device, a flash memory device, or other non-volatile solid-state storage device. In some instances, the memory 51 may further include a memory remotely arranged relative to the processor 50, and these remote memories may be connected to a voltage consistency evaluation device of the battery module via a network. Examples of the above-mentioned network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
输入装置52可用于接收输入的数字或字符信息,以及产生与电池模组的电压的一致性评估设备的用户设置以及功能控制有关的键信号输入。输出装置53可包括显示屏等显示设备。The input device 52 may be used to receive input digital or character information and generate key signal input related to user settings and function control of the battery module voltage consistency evaluation device. The output device 53 may include a display device such as a display screen.
实施例五Embodiment 5
本发明实施例五还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种电池模组的电压的一致性评估方法,该方法包括:Embodiment 5 of the present invention further provides a storage medium including computer executable instructions, wherein the computer executable instructions are used to execute a method for evaluating the consistency of voltage of a battery module when executed by a computer processor, the method comprising:
获取至少两个时间段内待测试电池模组的至少一项属性参数;各所述时间段分别包括至少一个时刻;Acquire at least one attribute parameter of the battery module to be tested in at least two time periods; each of the time periods includes at least one moment;
分别将不同时间段内的各属性参数输入至预先训练的回归森林模型中,得到与每个时间段对应的至少一个时刻电压;Inputting each attribute parameter in different time periods into a pre-trained regression forest model respectively, and obtaining at least one voltage at a time corresponding to each time period;
分别根据各所述时刻电压生成与每个时间段对应状态序列,并根据各所述状态序列对所述待测试电池模组的电压的一致性进行评估。A state sequence corresponding to each time period is generated according to the voltage at each moment, and the consistency of the voltage of the battery module to be tested is evaluated according to each state sequence.
当然,本发明实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本发明任意实施例所提供的电池模组的电压的一致性评估方法中的相关操作。Of course, the computer executable instructions of a storage medium including computer executable instructions provided in an embodiment of the present invention are not limited to the method operations described above, and can also execute related operations in the battery module voltage consistency evaluation method provided in any embodiment of the present invention.
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本发明可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(RandomAccess Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。Through the above description of the implementation methods, the technicians in the relevant field can clearly understand that the present invention can be implemented by means of software and necessary general hardware, and of course it can also be implemented by hardware, but in many cases the former is a better implementation method. Based on such an understanding, the technical solution of the present invention, in essence, or the part that contributes to the prior art, can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as a computer floppy disk, a read-only memory (ROM), a random access memory (RAM), a flash memory (FLASH), a hard disk or an optical disk, etc., including a number of instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods described in each embodiment of the present invention.
值得注意的是,上述电池模组的电压的一致性评估装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本发明的保护范围。It is worth noting that in the embodiment of the above-mentioned battery module voltage consistency evaluation device, the various units and modules included are only divided according to functional logic, but are not limited to the above-mentioned division, as long as the corresponding functions can be achieved; in addition, the specific names of the functional units are only for the convenience of distinguishing each other, and are not used to limit the scope of protection of the present invention.
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。Note that the above are only preferred embodiments of the present invention and the technical principles used. Those skilled in the art will understand that the present invention is not limited to the specific embodiments described herein, and that various obvious changes, readjustments and substitutions can be made by those skilled in the art without departing from the scope of protection of the present invention. Therefore, although the present invention has been described in more detail through the above embodiments, the present invention is not limited to the above embodiments, and may include more other equivalent embodiments without departing from the concept of the present invention, and the scope of the present invention is determined by the scope of the appended claims.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111325160.XA CN114094218B (en) | 2021-11-10 | 2021-11-10 | Method, device, equipment and medium for evaluating consistency of voltages of battery modules |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111325160.XA CN114094218B (en) | 2021-11-10 | 2021-11-10 | Method, device, equipment and medium for evaluating consistency of voltages of battery modules |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114094218A CN114094218A (en) | 2022-02-25 |
CN114094218B true CN114094218B (en) | 2024-10-18 |
Family
ID=80299875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111325160.XA Active CN114094218B (en) | 2021-11-10 | 2021-11-10 | Method, device, equipment and medium for evaluating consistency of voltages of battery modules |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114094218B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114624613A (en) * | 2022-03-10 | 2022-06-14 | 杭州安脉盛智能技术有限公司 | State monitoring abnormity identification method and system based on system cluster analysis |
CN114879066B (en) * | 2022-05-31 | 2025-04-25 | 合肥国轩高科动力能源有限公司 | A battery pack consistency evaluation method and system |
CN118444182B (en) * | 2024-05-27 | 2025-04-15 | 清华大学 | Voltage consistency evaluation method and device for cascade utilization energy storage system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102569922A (en) * | 2012-03-05 | 2012-07-11 | 同济大学 | Improved storage battery SOC estimation method based on consistency of unit cell |
CN111693884A (en) * | 2020-06-19 | 2020-09-22 | 北京嘀嘀无限科技发展有限公司 | Battery pack consistency detection method and device, readable storage medium and electronic equipment |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2607910B1 (en) * | 2011-12-23 | 2016-03-23 | Samsung SDI Co., Ltd. | A device and method for estimating life of a secondary battery |
CN113111508B (en) * | 2021-04-08 | 2024-08-30 | 东软睿驰汽车技术(沈阳)有限公司 | Evaluation method, device and server for consistency of battery cells |
CN113533995B (en) * | 2021-07-05 | 2023-10-20 | 上海电享信息科技有限公司 | Consistency detection method for power battery |
-
2021
- 2021-11-10 CN CN202111325160.XA patent/CN114094218B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102569922A (en) * | 2012-03-05 | 2012-07-11 | 同济大学 | Improved storage battery SOC estimation method based on consistency of unit cell |
CN111693884A (en) * | 2020-06-19 | 2020-09-22 | 北京嘀嘀无限科技发展有限公司 | Battery pack consistency detection method and device, readable storage medium and electronic equipment |
Also Published As
Publication number | Publication date |
---|---|
CN114094218A (en) | 2022-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114094218B (en) | Method, device, equipment and medium for evaluating consistency of voltages of battery modules | |
WO2022253038A1 (en) | Method and system for predicting state of health of lithium battery on basis of elastic network, and device and medium | |
CN114371409B (en) | Training method of battery state prediction model, battery state prediction method and device | |
CN105912799B (en) | A kind of modeling method of liquid or semi-liquid metal battery | |
CN112858919A (en) | Battery system online fault diagnosis method and system based on cluster analysis | |
CN113189495B (en) | A method, device and electronic device for predicting battery health status | |
WO2023124220A1 (en) | Vehicle detection method and device | |
US20240110986A1 (en) | Method and system for identifying electrochemical model parameters based on capacity change rate | |
CN108876052A (en) | Electric car charging load forecasting method, device and computer equipment | |
CN115389954A (en) | Method for estimating battery capacity, electronic device and readable storage medium | |
CN109840353B (en) | Lithium ion battery two-factor inconsistency prediction method and device | |
CN113238804A (en) | System and method for awakening designated application based on intelligent terminal screen-on-state | |
CN118625156A (en) | A lithium battery status monitoring method, device, medium and equipment | |
CN118033432A (en) | Battery state of charge estimation method and device and computer equipment | |
CN116125279A (en) | Method, device, equipment and storage medium for determining battery health state | |
CN118478695B (en) | A safety warning method, device and electronic equipment for power battery | |
CN118944238B (en) | A new energy storage lithium battery control system and control method | |
CN119780745A (en) | A hybrid energy storage battery status monitoring method and system based on big data | |
CN118378888A (en) | Method and device for predicting thermal runaway risk probability of power battery based on working conditions | |
CN116430260A (en) | Lithium battery SOH estimation method, device, electronic equipment and storage medium | |
Zhang et al. | Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network. | |
CN116627759B (en) | Financial payment equipment circuit safety detection device | |
CN119270115B (en) | Multi-impedance measurement-based on-site battery health assessment method | |
CN119986408B (en) | Battery fault prediction method and device, electronic equipment and storage medium | |
CN115291111B (en) | Training method of battery rest time prediction model and rest time prediction method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |