CN1140930C - AlxGa1-xN/GaN Heterojunction Ferroelectric/Semiconductor Memory Fabrication Method - Google Patents
AlxGa1-xN/GaN Heterojunction Ferroelectric/Semiconductor Memory Fabrication Method Download PDFInfo
- Publication number
- CN1140930C CN1140930C CNB021130051A CN02113005A CN1140930C CN 1140930 C CN1140930 C CN 1140930C CN B021130051 A CNB021130051 A CN B021130051A CN 02113005 A CN02113005 A CN 02113005A CN 1140930 C CN1140930 C CN 1140930C
- Authority
- CN
- China
- Prior art keywords
- gan
- ferroelectric
- growth
- pzt
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 title claims description 8
- 238000004519 manufacturing process Methods 0.000 title abstract 2
- 238000005516 engineering process Methods 0.000 claims abstract description 9
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 claims abstract description 5
- 238000005566 electron beam evaporation Methods 0.000 claims abstract description 4
- 229910052594 sapphire Inorganic materials 0.000 claims abstract description 4
- 239000010980 sapphire Substances 0.000 claims abstract description 4
- 239000000758 substrate Substances 0.000 claims abstract description 4
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 claims description 9
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 claims description 7
- 238000002360 preparation method Methods 0.000 claims description 6
- 238000004549 pulsed laser deposition Methods 0.000 claims description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 4
- 238000000137 annealing Methods 0.000 claims description 4
- 239000010409 thin film Substances 0.000 claims description 4
- 229910021529 ammonia Inorganic materials 0.000 claims description 2
- 239000012159 carrier gas Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 2
- 239000003085 diluting agent Substances 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 claims 1
- 239000002184 metal Substances 0.000 claims 1
- 230000005533 two-dimensional electron gas Effects 0.000 abstract description 5
- 230000004044 response Effects 0.000 abstract description 3
- 230000008901 benefit Effects 0.000 abstract description 2
- 239000000969 carrier Substances 0.000 abstract 1
- 238000010406 interfacial reaction Methods 0.000 abstract 1
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 19
- 230000010287 polarization Effects 0.000 description 16
- 239000000463 material Substances 0.000 description 13
- 239000010408 film Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 238000011161 development Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000005669 field effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000003746 solid phase reaction Methods 0.000 description 2
- 238000010671 solid-state reaction Methods 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002017 high-resolution X-ray diffraction Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
Images
Landscapes
- Semiconductor Memories (AREA)
Abstract
基于AlxGa1-xN/GaN异质结的铁电体/半导体存贮器结构及其制法,在蓝宝石衬底上首先用MOCVD技术生长AlxGa1-xN/GaN调制掺杂异质结构,然后在AlxGa1-xN上用PLD技术生长PZT铁电薄膜,最后用电子束蒸发技术分别在AlxGa1-xN层上淀积Ti/Al欧姆接触电极和在PZT层上淀积Al电极。这种结构利用了PZT/AlxGa1-xN界面的高温稳定性,避免了普通的铁电体/Si MFS结构的界面互扩散和界面反应问题。同时,这种结构以AlxGa1-xN/GaN异质界面高浓度、高迁移率的二维电子气为沟道载流子,有利于提高存贮器结构的响应速度等性质。
Based on Al x Ga 1-x N/GaN heterojunction ferroelectric/semiconductor memory structure and its manufacturing method, Al x Ga 1-x N/GaN modulation doping was first grown on sapphire substrate by MOCVD technology Heterostructure, then grow PZT ferroelectric film on AlxGa 1-x N by PLD technology, finally use electron beam evaporation technology to deposit Ti/Al ohmic contact electrode on AlxGa 1-x N layer and PZT layer Al electrode is deposited on it. This structure takes advantage of the high-temperature stability of the PZT/ AlxGa1 -xN interface and avoids the interfacial interdiffusion and interfacial reaction problems of common ferroelectric/Si MFS structures. At the same time, this structure uses the high-concentration and high-mobility two-dimensional electron gas at the AlxGa1 -xN /GaN heterointerface as channel carriers, which is conducive to improving the response speed of the memory structure and other properties.
Description
一、技术领域1. Technical field
本发明涉及一种基于AlxGa1-xN/GaN异质结的铁电体/半导体存贮器结构,包括铁电体中的铁电极化效应和AlxGa1-xN层中的压电极化效应对AlxGa1-xN/GaN异质界面二维电子气密度的调制机制,以及这种存贮器结构的制备方法。The present invention relates to a ferroelectric/semiconductor memory structure based on AlxGa1 -xN /GaN heterojunction, including ferroelectric polarization effect in ferroelectric and AlxGa1 -xN layer The modulation mechanism of the piezoelectric polarization effect on the two-dimensional electron gas density at the Al x Ga 1-x N/GaN heterointerface, and the preparation method of this memory structure.
二、技术背景2. Technical Background
从上世纪70年代以来,国际上就做出各种努力,想利用铁电材料极强的极化效应和很高的相对介电常数,把铁电体引入以半导体材料为主的微电子技术中,其中最有希望的一种器件结构是金属-铁电体-半导体场效应晶体管(MFS-FET),这种器件可用于制作不挥发型的只读存贮器。Since the 1970s, various efforts have been made internationally to introduce ferroelectrics into microelectronics technology based on semiconductor materials by using the extremely strong polarization effect and high relative permittivity of ferroelectric materials. Among them, the most promising device structure is metal-ferroelectric-semiconductor field-effect transistor (MFS-FET), which can be used to make non-volatile read-only memory.
从半导体器件的角度看,MFS-FET依然属于金属-绝缘体-半导体场效应晶体管(MIS-FET)的范畴,但是在MFS-FET结构中,用铁电体做绝缘体,代替了一般金属-氧化物-半导体(MOS)场效应器件中的SiO2。很长一段时间以来,人们一直用Si材料作为MFS-FET中的半导体沟道材料,主要优势是在器件制备上与现有的半导体MOS器件工艺兼容。但这种结构在技术上遇到的主要问题是Si上淀积铁电薄膜必须在高温下进行,且淀积后铁电薄膜又需进行热退火处理,在这些过程中铁电体/Si界面的原子互扩散非常严重,并发生界面固相反应,从而铁电体/Si界面性质难以控制。同时,铁电体/Si界面存在的高界面态密度严重破坏了MFS-FET存贮器结构的特性。这些问题多年来严重制约了Si基铁电存贮器的发展。From the perspective of semiconductor devices, MFS-FET still belongs to the category of metal-insulator-semiconductor field effect transistor (MIS-FET), but in the MFS-FET structure, ferroelectrics are used as insulators instead of general metal-oxide - SiO2 in semiconductor (MOS) field effect devices. For a long time, people have been using Si material as the semiconductor channel material in MFS-FET. The main advantage is that it is compatible with the existing semiconductor MOS device technology in device preparation. However, the main technical problem of this structure is that the deposition of ferroelectric film on Si must be carried out at high temperature, and the ferroelectric film needs to be subjected to thermal annealing after deposition. During these processes, the ferroelectric/Si interface The interdiffusion of atoms is very serious, and interfacial solid-state reaction occurs, so the properties of the ferroelectric/Si interface are difficult to control. At the same time, the high interface state density existing at the ferroelectric/Si interface seriously destroys the characteristics of the MFS-FET memory structure. These problems have seriously restricted the development of Si-based ferroelectric memory for many years.
III族氮化物宽带隙半导体材料(含GaN、AlN、InN及其三元合金)是近年来国际上高度重视的第三代新型半导体材料,具有耐高温、耐腐蚀,高饱和电子漂移速度,高击穿场强,直接带隙等优异的物理化学性质。AlxGa1-xN/GaN异质结构被认为是发展高温、高功率、高频半导体器件的首选材料体系,AlxGa1-xN/GaN异质结构场效应晶体管(HFET),又称高电子迁移率晶体管(HEMT)的研制水准迅速提高,工艺技术基本成熟,器件性能已接近实用化。同时,以SiO2为栅材料的AlxGa1-xN/GaN MIS-HFET的研究也受到了高度重视。因此,如果用III族氮化物材料,特别是AlxGa1-xN/GaN异质结构材料代替Si材料用于研制MFS-HFET存贮器结构,既可以解决铁电体/Si界面的高温不稳定问题,也能充分利用AlxGa1-xN/GaN异质界面二维电子气(2DEG)很好的输运性质,提高此类存贮器结构的响应速度。Group III nitride wide bandgap semiconductor materials (including GaN, AlN, InN and their ternary alloys) are the third-generation new semiconductor materials that have been highly valued internationally in recent years. They have high temperature resistance, corrosion resistance, high saturation electron drift velocity, and high Excellent physical and chemical properties such as breakdown field strength and direct band gap. Al x Ga 1-x N/GaN heterostructure is considered to be the preferred material system for the development of high-temperature, high-power, and high-frequency semiconductor devices, and Al x Ga 1-x N/GaN heterostructure field-effect transistors (HFETs), and It is said that the development level of high electron mobility transistor (HEMT) has been rapidly improved, the process technology is basically mature, and the device performance is close to practical use. At the same time, the research on AlxGa1 -xN /GaN MIS-HFET with SiO2 as the gate material has also received great attention. Therefore, if the III-nitride material, especially the AlxGa1 -xN /GaN heterostructure material is used to replace the Si material for the development of the MFS-HFET memory structure, the high temperature of the ferroelectric/Si interface can be solved. Instability problems can also make full use of the good transport properties of the AlxGa1 -xN /GaN heterointerface two-dimensional electron gas (2DEG) to improve the response speed of this type of memory structure.
三、发明内容3. Contents of the invention
本发明的目的是研制出以AlxGa1-xN/GaN异质结构为半导体沟道的MFS结构,实现其存贮性能,提高此类存贮器结构的响应速度。The object of the present invention is to develop the MFS structure with AlxGa1 -xN /GaN heterostructure as the semiconductor channel, realize its storage performance, and improve the response speed of this type of memory structure.
本发明的目的是这样实现的:The purpose of the present invention is achieved like this:
以蓝宝石为衬底,设有高质量的AlxGa1-xN/GaN调制掺杂异质结构,X取值在0.15-0.30之间;再在AlxGa1-xN层上生长PZT铁电薄膜,最后分别在AlxGa1-xN层和PZT层上制备底电极和顶电极。Using sapphire as the substrate, there is a high-quality Al x Ga 1-x N/GaN modulation doped heterostructure, and the value of X is between 0.15-0.30; then grow PZT on the Al x Ga 1-x N layer For the ferroelectric thin film, the bottom electrode and the top electrode are respectively prepared on the Al x Ga 1-x N layer and the PZT layer.
GaN厚度1-2um,AlxGa1-xN层厚度10-100nm,PZT层厚度100-500nm。The GaN thickness is 1-2um, the AlxGa1 -xN layer thickness is 10-100nm, and the PZT layer thickness is 100-500nm.
由于AlxGa1-xN和GaN之间的晶格失配,以及AlxGa1-xN很高的压电系数,GaN上AlxGa1-xN层中存在很强的压电极化效应,导致AlxGa1-xN/GaN异质界面形成浓度达~1013cm-2的二维电子气(2DEG),2DEG迁移率达1000cm2/V.s以上,以此形成AlxGa1-xN/GaN基MFS结构中较为理想的沟道。Due to the lattice mismatch between AlxGa1 -xN and GaN, and the high piezoelectric coefficient of AlxGa1 -xN , there is a strong piezoelectricity in the AlxGa1 -xN layer on GaN The polarization effect leads to the formation of a two-dimensional electron gas (2DEG) with a concentration of ~10 13 cm -2 at the heterogeneous interface of Al x Ga 1-x N/GaN, and the mobility of 2DEG reaches more than 1000 cm 2 /Vs, thereby forming Al x An ideal channel in Ga 1-x N/GaN based MFS structure.
以脉冲激光淀积(PLD)技术在AlxGa1-xN层上淀积Pb(Zr0.53Ti0.47)O3(锆钛酸铅,简称PZT)薄膜。PZT是一种典型的铁电材料,其零电场下剩余极化电荷可达10μC/cm2,其相对介电常数可高达1000以上。很薄的PZT膜(几百纳米)就可以产生很强的极化电场来调制AlxGa1-xN/GaN异质界面沟道中的2DEG浓度。A Pb(Zr 0.53 Ti 0.47 )O 3 (lead zirconate titanate, PZT for short) film is deposited on the Al x Ga 1-x N layer by pulsed laser deposition (PLD) technology. PZT is a typical ferroelectric material, its residual polarization charge can reach 10μC/cm 2 under zero electric field, and its relative permittivity can be as high as 1000 or more. A very thin PZT film (hundreds of nanometers) can generate a strong polarization electric field to modulate the 2DEG concentration in the AlxGa1 -xN /GaN heterointerface channel.
最后采用电子束蒸发方法在PZT膜上做出Al电极(顶电极),在AlxGa1-xN/GaN上做出Ti/Al欧姆接触电极(底电极),形成可以进行电学性质测量的AlxGa1-xN/GaN基MFS结构。Finally, the Al electrode (top electrode) is made on the PZT film by the electron beam evaporation method, and the Ti/Al ohmic contact electrode (bottom electrode) is made on the Al x Ga 1-x N/GaN to form an electrical property measurement. AlxGa1 -xN /GaN based MFS structure.
本发明在国际上首次采用AlxGa1-xN/GaN异质结构作为MFS存贮器结构的半导体沟道,主要创新点包括:(1)由于III族氮化物材料的高温稳定性,可以解决铁电体/Si界面的高温不稳定和界面固相反应等问题;(2)利用了AlxGa1-xN层很强的极化效应,一方面使AlxGa1-xN/GaN异质界面产生高浓度、高迁移率的二维电子气,形成了较理想的器件沟道;另一方面,AlxGa1-xN层形成的极化场与PZT层形成的极化场(在负偏压下两者方向相反)共同作用,使得MFS结构的电容-电压(C-V)存贮窗口完全在负偏压下实现。这意味着在不需要PZT铁电薄膜进行极化反转的情况下就可以产生C-V存贮窗口,从而大大减小了Si基MFS结构中由于铁电反转疲劳效应带来的各种问题。这种无需铁电极化反转就可实现C-V存贮窗口的特性是Si基MFS结构不可能实现的。The present invention adopts the Al x Ga 1-x N/GaN heterostructure as the semiconductor channel of the MFS memory structure for the first time in the world. The main innovations include: (1) Due to the high temperature stability of the III-nitride material, Solve the problems of high-temperature instability and interfacial solid-state reaction of the ferroelectric/Si interface; (2) Utilize the strong polarization effect of the Al x Ga 1-x N layer, on the one hand make the Al x Ga 1-x N/ The GaN heterointerface produces a two-dimensional electron gas with high concentration and high mobility, forming an ideal device channel; on the other hand, the polarization field formed by the AlxGa1 -xN layer and the polarization field formed by the PZT layer The fields (in opposite directions under negative bias) act together to make the capacitance-voltage (CV) storage window of the MFS structure fully realized under negative bias. This means that the CV storage window can be created without the need for polarization inversion of the PZT ferroelectric film, thus greatly reducing various problems caused by the ferroelectric inversion fatigue effect in the Si-based MFS structure. This feature of realizing CV storage window without ferroelectric polarization inversion is impossible for Si-based MFS structure.
四、附图说明4. Description of drawings
图1:PZT/Al0.22Ga0.78N/GaN MFS结构示意图Figure 1: Schematic diagram of PZT/Al 0.22 Ga 0.78 N/GaN MFS structure
图2:Al0.22Ga0.78N/GaN调制掺杂异质结构的高分辨X射线衍射ω/2θ摇摆曲线。多个卫星峰说明了异质结构的高质量和异质界面的陡峭。这是在Al0.22Ga0.78N/GaN异质界面形成高浓度、高迁移率2DEG的基础。Figure 2: High-resolution X-ray diffraction ω/2θ rocking curves of Al 0.22 Ga 0.78 N/GaN modulated doped heterostructures. Multiple satellite peaks illustrate the high quality of the heterostructure and the steepness of the heterointerface. This is the basis for the formation of high-concentration and high-mobility 2DEG at the Al 0.22 Ga 0.78 N/GaN heterointerface.
图3:(a)PZT/Al0.22Ga0.78N/GaN MFS结构简图,(b)该结构在负偏压下的电荷分布示意图,(c)导带结构示意图,实线表示存在PZT铁电极化的情形,虚线表示没有PZT铁电极化的情形,Pf表示PZT层中的铁电极化矢量(负偏压下),Pp表示AI0.22Ga0.78N层中的压电极化矢量,Pf与Pp方向相反。Pf随外加偏压变化,它在负偏压下抬高GaN层导带底,使Al0.22Ga0.78N/GaN异质界面三角形量子阱变浅,导致2DEG浓度下降。Pp不随外加偏压变化,它的作用正好与Pf相反,使Al0.22Ga0.78N/GaN界面量子阱变深,导致2DEG浓度上升。Figure 3: (a) Schematic diagram of the PZT/Al 0.22 Ga 0.78 N/GaN MFS structure, (b) schematic diagram of the charge distribution of the structure under negative bias, (c) schematic diagram of the conduction band structure, the solid line indicates the presence of PZT iron electrodes The dotted line represents the case of no PZT ferroelectric polarization, P f represents the ferroelectric polarization vector in the PZT layer (under negative bias), P p represents the piezoelectric polarization vector in the Al 0.22 Ga 0.78 N layer, P f is opposite to P p . P f varies with the applied bias voltage. Under negative bias, it raises the conduction band bottom of the GaN layer and makes the Al 0.22 Ga 0.78 N/GaN heterointerface triangular quantum well shallower, resulting in a decrease in the 2DEG concentration. P p does not change with the applied bias voltage, and its effect is just opposite to that of P f , making the Al 0.22 Ga 0.78 N/GaN interface quantum well deeper, resulting in an increase in the 2DEG concentration.
图4:Al0.22Ga0.78N/GaN基MFS结构1MHz时的高频C-V曲线,全图是整个电压扫描范围的曲线,内图是负偏压下的曲线。当偏压大于0.7V(正偏)时,电容C取决于PZT膜,由于其很大的相对介电常数,C很大;当偏压变为负偏时,电压加在Al0.22Ga0.78N层上,C急剧下降。-9V偏压附近C的变化是由于2DEG的耗尽。Figure 4: High-frequency CV curve of Al 0.22 Ga 0.78 N/GaN-based MFS structure at 1MHz. The whole picture is the curve of the entire voltage scanning range, and the inner picture is the curve under negative bias. When the bias voltage is greater than 0.7V (forward bias), the capacitance C depends on the PZT film. Due to its large relative permittivity, C is very large; when the bias voltage becomes negative bias, the voltage is added to Al 0.22 Ga 0.78 N On the upper layer, C drops sharply. The change in C around -9V bias is due to the depletion of 2DEG.
图5:Al0.22Ga0.78N/GaN基MFS结构的C-V扫描迟滞回线,为反时针方向。C-V铁电存贮窗口在-9V附近,宽度0.2V,它是由于电压正扫和反扫过程中不同的铁电极化状态导致的,整个C-V存贮窗口在负偏压范围内,表明PZT膜的铁电极化未发生反转。Figure 5: The CV scanning hysteresis loop of the Al 0.22 Ga 0.78 N/GaN-based MFS structure, in the counterclockwise direction. The CV ferroelectric storage window is around -9V with a width of 0.2V, which is caused by the different ferroelectric polarization states during the voltage forward scan and reverse scan, and the entire CV storage window is in the negative bias range, indicating that the PZT film The ferroelectric polarization does not reverse.
五、具体实施方法5. Specific implementation methods
以表面为(0001)面的蓝宝石为衬底,用MOCVD生长Al0.22Ga0.78N/GaN调制掺杂异质结构。生长时,以GaN为缓冲层(厚度30nm)生长温度488℃;然后,外延生长GaN层(厚度2μm)生长温度1030℃;然后再生长未掺杂的Al0.22Ga0.78N层,厚度3nm,生长温度1080℃;最后生长Si掺杂n型Al0.22Ga0.78N层,厚度75nm,生长温度1080℃。MOCVD生长在常压下进行,生长源分别为三甲基镓(TMG),三甲基铝(TMA)和高纯氨气(NH3),载气和稀释气体为氢气(H2)。Al0.22Ga0.78N层组份比由TMG和TMA之流量比决定。The Al 0.22 Ga 0.78 N/GaN modulation-doped heterostructure was grown by MOCVD on the sapphire with (0001) plane as the substrate. When growing, use GaN as a buffer layer (thickness 30nm) at a growth temperature of 488°C; then, epitaxially grow a GaN layer (thickness 2μm) at a growth temperature of 1030°C; then grow an undoped Al 0.22 Ga 0.78 N layer with a thickness of 3nm and grow The temperature is 1080°C; finally grow a Si-doped n-type Al 0.22 Ga 0.78 N layer with a thickness of 75nm and a growth temperature of 1080°C. The MOCVD growth is carried out under normal pressure, the growth sources are trimethylgallium (TMG), trimethylaluminum (TMA) and high-purity ammonia (NH 3 ), and the carrier gas and dilution gas are hydrogen (H 2 ). The Al 0.22 Ga 0.78 N layer composition ratio is determined by the flow ratio of TMG and TMA.
在Al0.22Ga0.78N/GaN异质结构上用脉冲激光淀积(PLD)生长PZT薄膜,膜厚400nm,激光器为KrF准分子激光器(波长248nm),淀积时在靶表面形成2.5J/cm2的能量密度,生长温度750℃。On the Al 0.22 Ga 0.78 N/GaN heterostructure, pulsed laser deposition (PLD) is used to grow PZT thin films with a film thickness of 400nm. The laser is a KrF excimer laser (wavelength 248nm), and 2.5J/cm2 is formed on the target surface during deposition. The energy density of 2 , the growth temperature is 750°C.
最后采用电子束蒸发方法在PZT膜上做出Al电极(顶电极),在AlxGa1-xN/GaN上做出Ti/Al欧姆接触电极(底电极),形成Al0.22Ga0.78N/GaN基MFS结构。Finally, the Al electrode (top electrode) is made on the PZT film by electron beam evaporation, and the Ti/Al ohmic contact electrode (bottom electrode) is made on the Al x Ga 1-x N/GaN to form Al 0.22 Ga 0.78 N/ GaN-based MFS structure.
高质量AlxGa1-xN/GaN调制掺杂异质结构的制备是AlxGa1-xN/GaN基MFS存贮结构制备的核心技术,下列过程为典型的Al0.22Ga0.78N/GaN调制掺杂异质结构MOCVD生长工艺:The preparation of high-quality Al x Ga 1-x N/GaN modulation-doped heterostructure is the core technology for the preparation of Al x Ga 1-x N/GaN-based MFS storage structures. The following process is a typical Al 0.22 Ga 0.78 N/ GaN modulation doped heterostructure MOCVD growth process:
GaN缓冲层的生长及退火:Growth and annealing of GaN buffer layer:
TMG流量:15μmol/min,NH3流量:3.5SLM/min,H2流量:3.0SLM/minTMG flow: 15μmol/min, NH 3 flow: 3.5SLM/min, H 2 flow: 3.0SLM/min
生长温度:488℃Growth temperature: 488°C
生长时间:140秒,厚度30nmGrowth time: 140 seconds, thickness 30nm
生长压力:760 TorrGrowth Pressure: 760 Torr
生长后退火:H2流量:1.0SLM/min,NH3流量:0.5SLM/min;1030℃;5minAnnealing after growth: H 2 flow: 1.0SLM/min, NH 3 flow: 0.5SLM/min; 1030°C; 5min
非掺杂GaN(i-GaN)外延层生长:Non-doped GaN (i-GaN) epitaxial layer growth:
TMG流量:60μmol/min,NH3流量:4.0SLM/min,H2流量:0.5SLM/minTMG flow: 60μmol/min, NH 3 flow: 4.0SLM/min, H 2 flow: 0.5SLM/min
生长温度:1030℃Growth temperature: 1030°C
生长时间:60min,厚度2μmGrowth time: 60min, thickness 2μm
生长压力:760TorrGrowth pressure: 760Torr
非掺杂Al0.22Ga0.78N(i-AlGaN)外延层生长:Growth of non-doped Al 0.22 Ga 0.78 N (i-AlGaN) epitaxial layer:
TMG流量:10μmol/min,TMA流量:12μmol/min,NH3流量:4.0SLM/min,TMG flow: 10μmol/min, TMA flow: 12μmol/min, NH 3 flow: 4.0SLM/min,
H2流量:0.5SLM/minH 2 flow rate: 0.5SLM/min
生长温度:1080℃Growth temperature: 1080°C
生长时间:39秒,厚度3nmGrowth time: 39 seconds, thickness 3nm
生长压力:760TorrGrowth pressure: 760Torr
Si掺杂n型Al0.22Ga0.78N(n-AlGaN)外延层生长:Si-doped n-type Al 0.22 Ga 0.78 N (n-AlGaN) epitaxial layer growth:
TMG流量:10μmol/min,TMA流量:12μmol/min,NH3流量:4.0SLM/min,TMG flow: 10μmol/min, TMA flow: 12μmol/min, NH 3 flow: 4.0SLM/min,
H2流量:0.5SLM/min,SiH4流量:1.0sccm/minH 2 flow: 0.5SLM/min, SiH 4 flow: 1.0sccm/min
生长温度:1080℃Growth temperature: 1080°C
生长时间:675秒,厚度75nmGrowth time: 675 seconds, thickness 75nm
生长压力;760TorrGrowth pressure; 760Torr
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB021130051A CN1140930C (en) | 2002-05-15 | 2002-05-15 | AlxGa1-xN/GaN Heterojunction Ferroelectric/Semiconductor Memory Fabrication Method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB021130051A CN1140930C (en) | 2002-05-15 | 2002-05-15 | AlxGa1-xN/GaN Heterojunction Ferroelectric/Semiconductor Memory Fabrication Method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1381897A CN1381897A (en) | 2002-11-27 |
CN1140930C true CN1140930C (en) | 2004-03-03 |
Family
ID=4742383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB021130051A Expired - Fee Related CN1140930C (en) | 2002-05-15 | 2002-05-15 | AlxGa1-xN/GaN Heterojunction Ferroelectric/Semiconductor Memory Fabrication Method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1140930C (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2662884B1 (en) | 2012-05-09 | 2015-04-01 | Nxp B.V. | Group 13 nitride semiconductor device and method of its manufacture |
CN105483629B (en) * | 2014-09-18 | 2018-04-10 | 清华大学 | High temperature resistant multiferroic aluminium nitride film and preparation method thereof |
CN111640833B (en) * | 2019-03-01 | 2021-03-12 | 华南师范大学 | Method for modulating internal polarization of InGaN/GaN heterojunction film |
-
2002
- 2002-05-15 CN CNB021130051A patent/CN1140930C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN1381897A (en) | 2002-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8405064B2 (en) | Nitride semiconductor device | |
JP4381380B2 (en) | Semiconductor device and manufacturing method thereof | |
JP4530171B2 (en) | Semiconductor device | |
US7709859B2 (en) | Cap layers including aluminum nitride for nitride-based transistors | |
US7544963B2 (en) | Binary group III-nitride based high electron mobility transistors | |
EP2311095B1 (en) | Normally-off semiconductor devices and methods of fabricating the same | |
US7253454B2 (en) | High electron mobility transistor | |
US7550784B2 (en) | Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses | |
US8525225B2 (en) | Semiconductor device | |
Iwakami et al. | AlGaN/GaN heterostructure field-effect transistors (HFETs) on Si substrates for large-current operation | |
US20070045639A1 (en) | Semiconductor electronic device | |
US20090001384A1 (en) | Group III Nitride semiconductor HFET and method for producing the same | |
CN104078500B (en) | Compound semiconductor device and its manufacture method | |
US20120299060A1 (en) | Nitride semiconductor device and manufacturing method thereof | |
US20130149828A1 (en) | GaN-based Semiconductor Element and Method of Manufacturing the Same | |
CN111916351A (en) | Semiconductor device and method for manufacturing the same | |
JP2010192633A (en) | METHOD FOR MANUFACTURING GaN-BASED FIELD-EFFECT TRANSISTOR | |
JP2008227479A (en) | Epitaxial substrate for field effect transistor | |
TW201310638A (en) | Compound semiconductor device and method of manufacturing same | |
JP2013004735A (en) | Semiconductor device and semiconductor device manufacturing method | |
US9431526B2 (en) | Heterostructure with carrier concentration enhanced by single crystal REO induced strains | |
JP4776162B2 (en) | High electron mobility transistor and method of manufacturing high electron mobility transistor | |
JP2013074045A (en) | Semiconductor device | |
CN113745332A (en) | Enhanced high electron mobility transistor based on ferroelectric group III nitride polarization reversal | |
CN105870165A (en) | InAlN/GaN HEMT device comprising barrier layer with gradually varied components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |