[go: up one dir, main page]

CN114047682B - A Time-to-Digital Converter Based on Fully Differential Ring Oscillator with PVT Robustness - Google Patents

A Time-to-Digital Converter Based on Fully Differential Ring Oscillator with PVT Robustness Download PDF

Info

Publication number
CN114047682B
CN114047682B CN202111357564.7A CN202111357564A CN114047682B CN 114047682 B CN114047682 B CN 114047682B CN 202111357564 A CN202111357564 A CN 202111357564A CN 114047682 B CN114047682 B CN 114047682B
Authority
CN
China
Prior art keywords
fully differential
inverter
differential inverter
nmos transistor
flip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111357564.7A
Other languages
Chinese (zh)
Other versions
CN114047682A (en
Inventor
周绍林
陈景梵
吴朝晖
李斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202111357564.7A priority Critical patent/CN114047682B/en
Publication of CN114047682A publication Critical patent/CN114047682A/en
Application granted granted Critical
Publication of CN114047682B publication Critical patent/CN114047682B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F10/00Apparatus for measuring unknown time intervals by electric means
    • G04F10/005Time-to-digital converters [TDC]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/03Astable circuits
    • H03K3/0315Ring oscillators
    • H03K3/0322Ring oscillators with differential cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manipulation Of Pulses (AREA)

Abstract

本发明公开了一种有PVT鲁棒性基于全差分环形振荡器的时间数字转换器,涉及一种时间数字转换器,针对工艺的不确定性和PVT鲁棒性的变化都严重制约着TDC的实际生产应用的矛盾提出本方案,依次电性连接的前端模块、全局控制模块、延迟单元和解码模块;还设置一延迟校准模块分别连接所述延迟单元和解码模块,用于对延迟单元的延迟校准,所述的延迟单元是全差分环形振荡器模块。优点在于,能够同时实现较高的精度和动态范围,通过一种简便的校准方式提高TDC的PVT鲁棒性耐受性和线性度。

Figure 202111357564

The invention discloses a time-to-digital converter with PVT robustness based on a fully differential ring oscillator, and relates to a time-to-digital converter. The uncertainty of the process and the change of PVT robustness seriously restrict the performance of TDC. Contradictions in actual production and application propose this scheme, which is to electrically connect the front-end module, the global control module, the delay unit and the decoding module in sequence; a delay calibration module is also set to connect the delay unit and the decoding module respectively, for delaying the delay unit. For calibration, the delay unit is a fully differential ring oscillator module. The advantage is that high accuracy and dynamic range can be achieved at the same time, and the PVT robustness tolerance and linearity of the TDC can be improved through a simple calibration method.

Figure 202111357564

Description

一种有PVT鲁棒性基于全差分环形振荡器的时间数字转换器A Time-to-Digital Converter Based on Fully Differential Ring Oscillator with PVT Robustness

技术领域technical field

本发明涉及一种时间数字转换器,尤其涉及一种有PVT鲁棒性基于全差分环形振荡器的时间数字转换器。The invention relates to a time-to-digital converter, in particular to a time-to-digital converter based on a fully differential ring oscillator with PVT robustness.

背景技术Background technique

近年来,全数字锁相环技术快速发展,时间数字转换器(time digitalconverter,TDC)作为其中关键模块之一得到高度的重视。基于TDC的数字锁相环有着集成度高、易校准和可编程的特点,随着工艺节点的演进,全数字锁相环还表现出面积和性能方面的优势。传统电荷泵锁相环结构包含鉴频鉴相器、电荷泵、环路滤波器、压控制振荡器和分频器等模块,其中电荷泵和环路滤波器包含的电容和电阻等无源器件,除了消耗面积外,还恶化了锁相环的相位噪声性能。在新型全数字锁相环中,使用TDC取代了鉴频鉴相器和电荷泵,直接在时间域上处理相位信息,进一步通过片上数字滤波器处理。由于数字滤波器的可编程性,数字锁相环的环路动态特性可实时的改变,因此可以在快速锁定的同时保持较低的相位噪声。而且,由于去除了模拟滤波器中所使用的的大电容,数字锁相环的面积将大大减小。但是,TDC跟普通数模转换器一样存在精度受限的问题,所引入的量化噪声决定了全数字锁相环的带内噪声。除了精度要求外,TDC的测量范围还需覆盖一个完整的输入参考时钟周期,避免数字锁相环失锁的问题。另外,工艺的不确定性和PVT鲁棒性的变化都严重制约着TDC的实际生产应用,主要原因就是普通TDC的测量精度由延迟单元的延迟时间决定,而延迟时间随工艺角、电压、温度的变化而变化。In recent years, with the rapid development of all-digital phase-locked loop technology, time digital converter (TDC) has received high attention as one of the key modules. TDC-based digital phase-locked loops have the characteristics of high integration, easy calibration and programmability. With the evolution of process nodes, all-digital phase-locked loops also show advantages in area and performance. The traditional charge pump phase-locked loop structure includes modules such as frequency discriminator, charge pump, loop filter, voltage controlled oscillator and frequency divider. The charge pump and loop filter contain passive components such as capacitors and resistors. , in addition to consuming area, it also degrades the phase-noise performance of the phase-locked loop. In the new all-digital phase-locked loop, TDC is used to replace the frequency detector and the charge pump, and the phase information is directly processed in the time domain, which is further processed by an on-chip digital filter. Due to the programmability of the digital filter, the loop dynamics of the digital phase-locked loop can be changed in real time, so it can lock quickly while maintaining low phase noise. Also, the area of the digital phase-locked loop will be greatly reduced due to the removal of the large capacitors used in the analog filters. However, TDC has the same problem of limited accuracy as ordinary digital-to-analog converters, and the introduced quantization noise determines the in-band noise of the all-digital phase-locked loop. In addition to the accuracy requirements, the measurement range of the TDC also needs to cover a complete input reference clock cycle to avoid the problem of the digital phase-locked loop losing lock. In addition, the uncertainty of the process and the change of PVT robustness seriously restrict the actual production application of TDC. The main reason is that the measurement accuracy of ordinary TDC is determined by the delay time of the delay unit, and the delay time varies with process angle, voltage, temperature changes with the change.

反相器链型TDC实现简单,且测量范围大,但精度受限于工艺节点。游标链型TDC具有较高的精度,但往往为了增大测量范围,牺牲了面积和功耗等指标。两步型TDC是反相器链型TDC和游标型TDC的结合,同时具有较高的精度和较大的测量范围,但不具有PVT(Pyramid Vision Transformer)鲁棒性。游标环型TDC理论上能提供无限的精度和测量范围,测量结果由两个环形振荡器的绝对延迟和相对延迟组成,因此线性度和精度等性能受这两方面影响。除此之外,由于环形振荡器常由奇数级反相器构成,版图设计工作比较困难,导致前后仿性能相差较大。The inverter chain TDC is simple to implement and has a large measurement range, but the accuracy is limited by the process node. The cursor chain type TDC has high accuracy, but often sacrifices indicators such as area and power consumption in order to increase the measurement range. Two-step TDC is a combination of inverter chain TDC and vernier TDC, which has higher accuracy and larger measurement range, but does not have the robustness of PVT (Pyramid Vision Transformer). Vernier ring TDC can theoretically provide infinite accuracy and measurement range. The measurement result consists of the absolute delay and relative delay of the two ring oscillators, so performance such as linearity and accuracy are affected by these two aspects. In addition, because the ring oscillator is often composed of odd-numbered inverters, the layout design is difficult, resulting in a large difference in imitation performance before and after.

发明内容SUMMARY OF THE INVENTION

本发明目的在于提供一种有PVT鲁棒性基于全差分环形振荡器的时间数字转换器,以解决上述现有技术存在的问题。The purpose of the present invention is to provide a time-to-digital converter based on a fully differential ring oscillator with PVT robustness, so as to solve the above-mentioned problems in the prior art.

本发明所述一种有PVT鲁棒性基于全差分环形振荡器的时间数字转换器,包括依次电性连接的前端模块、全局控制模块、延迟单元和解码模块;还设置一延迟校准模块分别连接所述延迟单元和解码模块,用于对所述延迟单元的延迟校准;The time-to-digital converter based on a fully differential ring oscillator with PVT robustness according to the present invention includes a front-end module, a global control module, a delay unit and a decoding module that are electrically connected in sequence; a delay calibration module is also arranged to be connected respectively The delay unit and the decoding module are used for delay calibration of the delay unit;

所述的延迟单元是全差分环形振荡器模块。The delay unit is a fully differential ring oscillator module.

所述的全差分环形振荡器模块包括,The fully differential ring oscillator module includes,

首尾相接组成慢环的四个全差分反相器;Four fully differential inverters connected end to end to form a slow loop;

首尾相接组成快环的另外四个全差分反相器;以及,four additional fully differential inverters connected end to end to form a fast loop; and,

用于采集比较慢环与快环中节点信号超前或滞后的四个边沿SR触发器。Four edge SR flip-flops used to collect and compare the lead or lag of the node signal in the slow loop and the fast loop.

组成慢环的四个全差分反相器分别是第一全差分反相器、第二全差分反相器、第三全差分反相器和第四全差分反相器:所述的第一全差分反相器同相输出端连接第二全差分反相器的反相输入端,所述的第一全差分反相器反相输出端连接第二全差分反相器的同相输入端;所述的第二全差分反相器同相输出端连接第三全差分反相器的反相输入端,所述的第二全差分反相器反相输出端连接第三全差分反相器的同相输入端;所述的第三全差分反相器同相输出端连接第四全差分反相器的反相输入端,所述的第三全差分反相器反相输出端连接第四全差分反相器的同相输入端;所述的第四全差分反相器同相输出端连接第一全差分反相器的同相输入端,所述的第四全差分反相器反相输出端连接第一全差分反相器的反相输入端;The four fully differential inverters that form the slow loop are the first fully differential inverter, the second fully differential inverter, the third fully differential inverter and the fourth fully differential inverter: the first fully differential inverter The non-inverting output terminal of the fully differential inverter is connected to the inverting input terminal of the second fully differential inverter, and the inverting output terminal of the first fully differential inverter is connected to the non-inverting input terminal of the second fully differential inverter; The non-inverting output terminal of the second fully differential inverter is connected to the inverting input terminal of the third fully differential inverter, and the inverting output terminal of the second fully differential inverter is connected to the non-inverting output terminal of the third fully differential inverter. Input terminal; the non-inverting output terminal of the third fully differential inverter is connected to the inverting input terminal of the fourth fully differential inverter, and the inverting output terminal of the third fully differential inverter is connected to the fourth fully differential inverter. The non-inverting input terminal of the inverter; the non-inverting output terminal of the fourth fully differential inverter is connected to the non-inverting input terminal of the first fully differential inverter, and the inverting output terminal of the fourth fully differential inverter is connected to the first fully differential inverter. The inverting input of a fully differential inverter;

组成快环的四个全差分反相器分别是第五全差分反相器、第六全差分反相器、第七全差分反相器和第八全差分反相器:所述的第五全差分反相器同相输出端连接第六全差分反相器的反相输入端,所述的第五全差分反相器反相输出端连接第六全差分反相器的同相输入端;所述的第六全差分反相器同相输出端连接第七全差分反相器的反相输入端,所述的第六全差分反相器反相输出端连接第七全差分反相器的同相输入端;所述的第七全差分反相器同相输出端连接第八全差分反相器的反相输入端,所述的第七全差分反相器反相输出端连接第八全差分反相器的同相输入端;所述的第八全差分反相器同相输出端连接第五全差分反相器的同相输入端,所述的第八全差分反相器反相输出端连接第五全差分反相器的反相输入端;The four fully differential inverters that make up the fast loop are the fifth fully differential inverter, the sixth fully differential inverter, the seventh fully differential inverter and the eighth fully differential inverter: the fifth fully differential inverter The non-inverting output terminal of the fully differential inverter is connected to the inverting input terminal of the sixth fully differential inverter, and the inverting output terminal of the fifth fully differential inverter is connected to the non-inverting input terminal of the sixth fully differential inverter; The non-inverting output terminal of the sixth fully differential inverter is connected to the inverting input terminal of the seventh fully differential inverter, and the inverting output terminal of the sixth fully differential inverter is connected to the non-inverting input terminal of the seventh fully differential inverter. Input terminal; the non-inverting output terminal of the seventh fully differential inverter is connected to the inverting input terminal of the eighth fully differential inverter, and the inverting output terminal of the seventh fully differential inverter is connected to the eighth fully differential inverter The non-inverting input terminal of the inverter; the non-inverting output terminal of the eighth fully differential inverter is connected to the non-inverting input terminal of the fifth fully differential inverter, and the inverting output terminal of the eighth fully differential inverter is connected to the fifth fully differential inverter. The inverting input of a fully differential inverter;

四个边沿SR触发器分别是第一边沿SR触发器、第二边沿SR触发器、第三边沿SR触发器和第四边沿SR触发器:所述的第一边沿SR触发器慢环输入端连接第一全差分反相器的反相输出端,所述的第一边沿SR触发器快环输入端连接第五全差分反相器的反相输出端,所述的第一边沿SR触发器复位端RST_E连接第三全差分反相器的反相输出端;所述的第二边沿SR触发器慢环输入端连接第一全差分反相器的同相输出端,所述的第二边沿SR触发器快环输入端连接第五全差分反相器的同相输出端,所述的第二边沿SR触发器复位端RST_E连接第三全差分反相器的同相输出端;所述的第三边沿SR触发器慢环输入端连接第三全差分反相器的反相输出端,所述的第三边沿SR触发器快环输入端连接第七全差分反相器的反相输出端,所述的第三边沿SR触发器复位端RST_E连接第一全差分反相器的同相输出端;所述的第四边沿SR触发器慢环输入端连接第三全差分反相器的同相输出端,所述的第四边沿SR触发器快环输入端连接第七全差分反相器的同相输出端,所述的第四边沿SR触发器复位端RST_E连接第一全差分反相器的反相输出端;所述的第一边沿SR触发器、第二边沿SR触发器、第三边沿SR触发器和第四边沿SR触发器各自复位端RST_I均接到外部的全局复位信号RST,各自输出端分别接入所述的解码模块。The four edge SR flip-flops are the first edge SR flip-flop, the second edge SR flip-flop, the third edge SR flip-flop and the fourth edge SR flip-flop: the first edge SR flip-flop is connected to the slow loop input The inverting output terminal of the first fully differential inverter, the fast loop input terminal of the first edge SR flip-flop is connected to the inverting output terminal of the fifth fully differential inverter, and the first edge SR flip-flop is reset The terminal RST_E is connected to the inverting output terminal of the third fully differential inverter; the slow loop input terminal of the second edge SR flip-flop is connected to the non-inverting output terminal of the first fully differential inverter, and the second edge SR triggering The input terminal of the fast loop of the inverter is connected to the non-inverting output terminal of the fifth fully differential inverter, and the reset terminal RST_E of the second edge SR flip-flop is connected to the non-inverting output terminal of the third fully differential inverter; the third edge SR The trigger slow loop input terminal is connected to the inverting output terminal of the third full differential inverter, the fast loop input terminal of the third edge SR flip-flop is connected to the inverting output terminal of the seventh full differential inverter, and the The reset terminal RST_E of the third edge SR flip-flop is connected to the non-inverting output terminal of the first fully differential inverter; the slow loop input terminal of the fourth edge SR flip-flop is connected to the non-inverting output terminal of the third fully differential inverter. The fourth edge SR flip-flop fast loop input terminal is connected to the non-inverting output terminal of the seventh fully differential inverter, and the fourth edge SR flip-flop reset terminal RST_E is connected to the inverting output terminal of the first fully differential inverter; The reset terminals RST_I of the first edge SR flip-flop, the second edge SR flip-flop, the third edge SR flip-flop and the fourth edge SR flip-flop are all connected to the external global reset signal RST, and the respective output terminals are connected to the the decoding module.

所述的四个边沿SR触发器结构相同,每一边沿SR触发器主要由三个缓冲器模块、三个上升沿检测模块、四个PMOS晶体管和六个NMOS晶体管构成;The four edge SR flip-flops have the same structure, and each edge SR flip-flop is mainly composed of three buffer modules, three rising edge detection modules, four PMOS transistors and six NMOS transistors;

第五PMOS晶体管的源极和第六PMOS晶体管的源极共点连接VDD;The source of the fifth PMOS transistor and the source of the sixth PMOS transistor are connected to VDD in common;

第五PMOS晶体管的栅极前置第一上升沿检测模块后作为快环输入端,第六PMOS晶体管的栅极前置第二上升沿检测模块后作为快、慢环输入端;The gate of the fifth PMOS transistor is preceded by the first rising edge detection module and used as the fast loop input terminal, and the gate of the sixth PMOS transistor is preceded by the second rising edge detection module and used as the fast and slow loop input terminals;

第五PMOS晶体管的漏极连接第七PMOS晶体管的源极,第六PMOS晶体管的漏极连接第八PMOS晶体管的源极;The drain of the fifth PMOS transistor is connected to the source of the seventh PMOS transistor, and the drain of the sixth PMOS transistor is connected to the source of the eighth PMOS transistor;

第七PMOS晶体管的漏极、第八PMOS晶体管的栅极、第九NMOS晶体管的漏极、第十一NMOS晶体管的漏极、第八NMOS晶体管的栅极、第七NMOS晶体管的漏极以及第一缓冲器模块输入共点,第一缓冲器模块输出端QB悬空;The drain of the seventh PMOS transistor, the gate of the eighth PMOS transistor, the drain of the ninth NMOS transistor, the drain of the eleventh NMOS transistor, the gate of the eighth NMOS transistor, the drain of the seventh NMOS transistor, and the drain of the The input of a buffer module has a common point, and the output terminal QB of the first buffer module is suspended;

第八PMOS晶体管的漏极、第七PMOS晶体管的栅极、第十二NMOS晶体管的漏极、第十NMOS晶体管的漏极、第七NMOS晶体管的栅极、第八NMOS晶体管的漏极以及第二缓冲器模块的输入端共点,第二缓冲器模块的输出端Q接入所述的解码模块;The drain of the eighth PMOS transistor, the gate of the seventh PMOS transistor, the drain of the twelfth NMOS transistor, the drain of the tenth NMOS transistor, the gate of the seventh NMOS transistor, the drain of the eighth NMOS transistor, and the drain of the The input ends of the two buffer modules share the same point, and the output end Q of the second buffer module is connected to the decoding module;

第九NMOS晶体管和第十NMOS晶体管栅极共点连接到第三缓冲器模块的输入端,第三缓冲器模块的输出端连接复位端RST_I,RST_I外接全局复位端RST;第十一NMOS晶体管和第十二NMOS晶体管栅极共点后前置第三上升沿检测模块作为复位端RST_E;The gates of the ninth NMOS transistor and the tenth NMOS transistor are connected to the input terminal of the third buffer module in common, and the output terminal of the third buffer module is connected to the reset terminal RST_I, which is connected to the global reset terminal RST; the eleventh NMOS transistor and After the gates of the twelfth NMOS transistors share the same point, the front third rising edge detection module is used as the reset terminal RST_E;

第七NMOS晶体管、第八NMOS晶体管、第九NMOS晶体管、第十NMOS晶体管、第十一NMOS晶体管和第十二NMOS晶体管源极共点连接VSS。The sources of the seventh NMOS transistor, the eighth NMOS transistor, the ninth NMOS transistor, the tenth NMOS transistor, the eleventh NMOS transistor and the twelfth NMOS transistor are connected to VSS in common.

组成慢环的四个全差分反相器和组成快环的另外四个全差分反相器结构相同,每一全差分反相器主要由两个反相器、四个PMOS晶体管、六个NMOS晶体管和两个电容阵列组成;The four fully differential inverters that make up the slow loop have the same structure as the other four fully differential inverters that make up the fast loop. Each fully differential inverter mainly consists of two inverters, four PMOS transistors, and six NMOS transistors. It consists of a transistor and two capacitor arrays;

第三PMOS晶体管的源极连接VDD、栅极连接第一反相器的输出端、漏极分别连接第一PMOS晶体管和第二PMOS晶体管的源极;The source of the third PMOS transistor is connected to VDD, the gate is connected to the output end of the first inverter, and the drain is connected to the sources of the first PMOS transistor and the second PMOS transistor, respectively;

第一反相器输入端作为全差分反相器的使能端;The first inverter input terminal is used as the enabling terminal of the fully differential inverter;

第一PMOS晶体管的栅极和第一NMOS晶体管的栅极共点作为同相输入端,第二PMOS晶体管和第二NMOS晶体管的栅极共点作为反相输入端;The gate of the first PMOS transistor and the gate of the first NMOS transistor share a common point as a non-inverting input terminal, and the gate of the second PMOS transistor and the second NMOS transistor share a common point as an inverting input terminal;

第一PMOS晶体管漏极、第六NMOS晶体管漏极、第一NMOS晶体管漏极、第三NMOS晶体管漏极、第四NMOS晶体管栅极和第一电容阵列上极板共点作为反相输出端;The drain of the first PMOS transistor, the drain of the sixth NMOS transistor, the drain of the first NMOS transistor, the drain of the third NMOS transistor, the gate of the fourth NMOS transistor and the upper plate of the first capacitor array are in common as an inverting output terminal;

第二PMOS晶体管漏极、第四PMOS晶体管漏极、第二NMOS晶体管漏极、第四NMOS晶体管漏极、第三NMOS晶体管栅极和第二电容阵列上极板共点作为同相输出端;The drain of the second PMOS transistor, the drain of the fourth PMOS transistor, the drain of the second NMOS transistor, the drain of the fourth NMOS transistor, the gate of the third NMOS transistor and the upper plate of the second capacitor array share a common point as a non-inverting output terminal;

第六NMOS晶体管的源极连接VSS,栅极连接第一反相器的输出端;第四PMOS晶体管的源极连接VDD,栅极连接第二反相器的输出端;第一电容阵列和第二电容阵列的下极板分别连接VSS;The source of the sixth NMOS transistor is connected to VSS, and the gate is connected to the output terminal of the first inverter; the source of the fourth PMOS transistor is connected to VDD, and the gate is connected to the output terminal of the second inverter; The lower plates of the two capacitor arrays are respectively connected to VSS;

第一NMOS晶体管、第二NMOS晶体管、第三NMOS晶体管和第四NMOS晶体管的源极共点后连接第五NMOS晶体管的漏极;The source of the first NMOS transistor, the second NMOS transistor, the third NMOS transistor and the fourth NMOS transistor are connected to the drain of the fifth NMOS transistor after a common point;

第五NMOS晶体管的源极连接VSS,栅极连接第二反相器的输出端;The source of the fifth NMOS transistor is connected to VSS, and the gate is connected to the output end of the second inverter;

第二反相器的输入端连接第一反相器的输出端。The input terminal of the second inverter is connected to the output terminal of the first inverter.

本发明所述一种有PVT鲁棒性基于全差分环形振荡器的时间数字转换器,其优点在于,能够同时实现较高的精度和动态范围,通过一种简便的校准方式提高TDC的PVT鲁棒性耐受性和线性度。The invention has the advantages of a time-to-digital converter based on a fully differential ring oscillator with PVT robustness, which has the advantages of simultaneously achieving high precision and dynamic range, and improving the PVT robustness of TDC through a simple calibration method. Rod tolerance and linearity.

附图说明Description of drawings

图1是本发明所述时间数字转换器的结构示意图;Fig. 1 is the structural representation of the time-to-digital converter of the present invention;

图2是本发明所述全差分环形振荡器的电路原理图;Fig. 2 is the circuit schematic diagram of the fully differential ring oscillator according to the present invention;

图3是本发明所述所述边沿SR触发器的电路原理图;3 is a circuit schematic diagram of the edge SR flip-flop according to the present invention;

图4是本发明所述全差分反相器的电路原理图。FIG. 4 is a circuit schematic diagram of the fully differential inverter according to the present invention.

附图标记:Reference number:

FDINV1至FDINV8:第一全差分反相器至第八全差分反相器;FDINV1 to FDINV8: the first fully differential inverter to the eighth fully differential inverter;

ARB1至ARB4:第一边沿SR触发器至第四边沿SR触发器;ARB1 to ARB4: the first edge SR flip-flop to the fourth edge SR flip-flop;

RUD1至RUD3:第一上升沿检测模块至第三上升沿检测模块;RUD1 to RUD3: the first rising edge detection module to the third rising edge detection module;

BUF1至BUF3:第一缓冲器模块至第三缓冲器模块;BUF1 to BUF3: the first buffer module to the third buffer module;

INV1-第一反相器,INV2-第二反相器;INV1-first inverter, INV2-second inverter;

MP1至MP8:第一PMOS晶体管至第八PMOS晶体管;MP1 to MP8: first to eighth PMOS transistors;

MN1至MN12:第一NMOS晶体管至第十二NMOS晶体管;MN1 to MN12: first to twelfth NMOS transistors;

CDAC1-第一电容阵列,CDAC2-第二电容阵列;CDAC1-the first capacitor array, CDAC2-the second capacitor array;

Von-反相输出端,Vop-同相输出端。Von-inverting output, Vop-non-inverting output.

具体实施方式Detailed ways

如图1所示,本发明所述一种有PVT鲁棒性基于全差分环形振荡器的时间数字转换器,包括依次电性连接的前端模块、全局控制模块、延迟单元和解码模块;还设置一延迟校准模块分别连接所述延迟单元和解码模块,所述的延迟单元类型为全差分环形振荡器模块。As shown in FIG. 1 , a time-to-digital converter based on a fully differential ring oscillator with PVT robustness according to the present invention includes a front-end module, a global control module, a delay unit and a decoding module that are electrically connected in sequence; A delay calibration module is respectively connected to the delay unit and the decoding module, and the type of the delay unit is a fully differential ring oscillator module.

所述的前端模块的两个输入接时钟REF和分频器输出时钟DIV,判断两个时钟信号的相位先后,生成两个对应的输出,分别是快信号LEAD_PUS和慢信号LAG_PUS,同时输出TDC的最高位MSB以及全局复位信号RST。前端模块判断两个时钟的到达快慢,若时钟REF先到达,则将时钟REF送到快信号LEAD_PUS输出,将时钟LAG送到慢信号LAG_PUS输出,最高位MSB变为1;若时钟DIV先到达,则将时钟REF送到慢信号LAG_PUS输出,将时钟DIV送到快信号LEAD_PUS输出,最高位MSB变为0。The two inputs of the front-end module are connected to the clock REF and the frequency divider output clock DIV, the phases of the two clock signals are judged successively, and two corresponding outputs are generated, which are respectively the fast signal LEAD_PUS and the slow signal LAG_PUS, and simultaneously output the TDC. The most significant MSB and the global reset signal RST. The front-end module judges the arrival speed of the two clocks. If the clock REF arrives first, the clock REF is sent to the fast signal LEAD_PUS output, and the clock LAG is sent to the slow signal LAG_PUS output, and the MSB of the highest bit becomes 1; if the clock DIV arrives first, Then the clock REF is sent to the slow signal LAG_PUS output, the clock DIV is sent to the fast signal LEAD_PUS output, and the MSB of the highest bit becomes 0.

所述的全局控制模块有两种工作模式,信号CAL_EN为0时工作于第一种模式,信号CAL_EN为1时工作于第二种模式。第一种模式用于接收快信号LEAD_PUS和慢信号LAG_PUS,且根据信号STOP分别转化成具有一定脉宽的快信号LEAD_PUS和慢信号LAG_PUS,用于控制全差分环形振荡器模块的工作和关断;第二种模式用于接收校准信号CAL_EN,并将该时钟的周期转化成两个对应间隔的快信号LEAD_PUS和慢信号LAG_PUS,进一步通过与延迟校准模块的协同配合,完成对全差分环形振荡器模块的延迟校准。当接收到全局复位信号RST为1时,所述的全局控制模块复位,并等待下一对LEAD_PUS和LAG_PUS的到来。当接收到信号STOP为1时,快信号LEAD_PUS和慢信号LAG_PUS既同时从1变为0,又同时产生下降沿,用于关断下一级的全差分环形振荡器模块,以免继续产生功耗。The global control module has two working modes. When the signal CAL_EN is 0, it works in the first mode, and when the signal CAL_EN is 1, it works in the second mode. The first mode is used to receive the fast signal LEAD_PUS and the slow signal LAG_PUS, and convert it into the fast signal LEAD_PUS and the slow signal LAG_PUS with a certain pulse width according to the signal STOP, which is used to control the operation and shutdown of the fully differential ring oscillator module; The second mode is used to receive the calibration signal CAL_EN, and convert the cycle of the clock into two correspondingly spaced fast signals LEAD_PUS and slow signals LAG_PUS, and further cooperate with the delay calibration module to complete the full differential ring oscillator module. delay calibration. When the global reset signal RST is received as 1, the global control module is reset and waits for the arrival of the next pair of LEAD_PUS and LAG_PUS. When the received signal STOP is 1, the fast signal LEAD_PUS and the slow signal LAG_PUS not only change from 1 to 0 at the same time, but also generate a falling edge, which is used to turn off the fully differential ring oscillator module of the next stage, so as not to continue to generate power consumption .

全差分环形振荡器模块将先接收到的快信号LEAD_PUS送到慢环,慢环开始震荡;将后接收到的慢信号LAG_PUS送到快环,快环也开始震荡,同时开始追赶慢环。两个环转的圈数和追赶上的具体位置将通过SLAP端、FLAP端和Q端输出到下一级解码模块。The fully differential ring oscillator module sends the fast signal LEAD_PUS received first to the slow ring, and the slow ring starts to oscillate; it sends the slow signal LAG_PUS received later to the fast ring, and the fast ring also starts to oscillate and starts to catch up with the slow ring. The number of turns of the two loops and the specific position of the catch-up will be output to the next-level decoding module through the SLAP terminal, the FLAP terminal and the Q terminal.

所述解码模块包括两个3bit计数器、一个温度计码解析器和一个数字逻辑单元。其中,两个计数器分别用于记录快环、慢环的圈数,温度计码解析器用于产生TDC的最低有效位,数字逻辑单元用于将计数器和温度计码解析器的输出综合并转化成TDC的输出信号D,并产生信号STOP。The decoding module includes two 3bit counters, a thermometer code parser and a digital logic unit. Among them, the two counters are used to record the number of turns of the fast loop and the slow loop respectively, the thermometer code parser is used to generate the least significant bit of TDC, and the digital logic unit is used to synthesize and convert the output of the counter and the thermometer code parser into TDC Output signal D, and generate signal STOP.

所述延迟校准模块为数字电路,输入接到时间数字转换器的输出信号D,两个输出分别接到全差分环形振荡器模块的CFGS端和CFGF端,用于调整所述慢环、快环中延迟单元的延迟时间。在校准阶段直接读取对应数字输出信号D,并与预设的数值相比较,根据SAR逻辑逐次逼近设置CFGF端、CFGS端,进一步调整时间数字转换器的精度。The delay calibration module is a digital circuit, the input is connected to the output signal D of the time-to-digital converter, and the two outputs are respectively connected to the CFGS terminal and the CFGF terminal of the fully differential ring oscillator module for adjusting the slow loop and fast loop. The delay time of the medium delay unit. In the calibration stage, the corresponding digital output signal D is directly read, and compared with the preset value, the CFGF terminal and the CFGS terminal are set according to the SAR logic successive approximation, and the accuracy of the time-to-digital converter is further adjusted.

如图2所示,所述的全差分环形振荡器模块包括:外围的四个全差分反相器和内围的另外四个全差分反相器,以及用于采集比较慢环与快环中节点信号超前或滞后于慢环与快环之间的四个边沿SR触发器。外围的四个全差分反相器首尾相接组成慢环(slowlyround,SR),内围的四个全差分反相器首尾相接组成快环(fast round,FR)。As shown in Fig. 2, the fully differential ring oscillator module includes: four peripheral fully differential inverters and another four inner peripheral fully differential inverters, as well as a method for collecting and comparing the slow ring and the fast ring. The node signal leads or lags the four edge SR flip-flops between the slow loop and the fast loop. The four peripheral fully differential inverters are connected end to end to form a slow ring (slowly round, SR), and the four inner peripheral fully differential inverters are connected end to end to form a fast round (FR).

组成慢环的四个全差分反相器分别是第一全差分反相器FDINV1、第二全差分反相器FDINV2、第三全差分反相器FDINV3和第四全差分反相器FDINV4:所述的第一全差分反相器FDINV1同相输出端连接第二全差分反相器FDINV2的反相输入端,所述的第一全差分反相器FDINV1反相输出端连接第二全差分反相器FDINV2的同相输入端;所述的第二全差分反相器FDINV2同相输出端连接第三全差分反相器FDINV3的反相输入端,所述的第二全差分反相器FDINV2反相输出端连接第三全差分反相器FDINV3的同相输入端;所述的第三全差分反相器FDINV3同相输出端连接第四全差分反相器FDINV4的反相输入端,所述的第三全差分反相器FDINV3反相输出端连接第四全差分反相器FDINV4的同相输入端;所述的第四全差分反相器FDINV4同相输出端连接第一全差分反相器FDINV1的同相输入端,所述的第四全差分反相器FDINV4反相输出端连接第一全差分反相器FDINV1的反相输入端。The four fully differential inverters that form the slow loop are the first fully differential inverter FDINV1, the second fully differential inverter FDINV2, the third fully differential inverter FDINV3, and the fourth fully differential inverter FDINV4: The non-inverting output terminal of the first fully differential inverter FDINV1 is connected to the inverting input terminal of the second fully differential inverter FDINV2, and the inverting output terminal of the first fully differential inverter FDINV1 is connected to the second fully differential inverter. The non-inverting input terminal of the inverter FDINV2; the non-inverting output terminal of the second fully differential inverter FDINV2 is connected to the inverting input terminal of the third fully differential inverter FDINV3, and the inverting output terminal of the second fully differential inverter FDINV2 The terminal is connected to the non-inverting input terminal of the third fully differential inverter FDINV3; the non-inverting output terminal of the third fully differential inverter FDINV3 is connected to the inverting input terminal of the fourth fully differential inverter FDINV4, and the third fully differential inverter FDINV3 non-phase output terminal is connected. The inverting output terminal of the differential inverter FDINV3 is connected to the non-inverting input terminal of the fourth fully differential inverter FDINV4; the non-inverting output terminal of the fourth fully differential inverter FDINV4 is connected to the non-inverting input terminal of the first fully differential inverter FDINV1 , the inverting output terminal of the fourth fully differential inverter FDINV4 is connected to the inverting input terminal of the first fully differential inverter FDINV1.

组成快环的四个全差分反相器分别是第五全差分反相器FDINV5、第六全差分反相器FDINV6、第七全差分反相器FDINV7和第八全差分反相器FDINV8:所述的第五全差分反相器FDINV5同相输出端连接第六全差分反相器FDINV6的反相输入端,所述的第五全差分反相器FDINV5反相输出端连接第六全差分反相器FDINV6的同相输入端;所述的第六全差分反相器FDINV6同相输出端连接第七全差分反相器FDINV7的反相输入端,所述的第六全差分反相器FDINV6反相输出端连接第七全差分反相器FDINV7的同相输入端;所述的第七全差分反相器FDINV7同相输出端连接第八全差分反相器FDINV8的反相输入端,所述的第七全差分反相器FDINV7反相输出端连接第八全差分反相器FDINV8的同相输入端;所述的第八全差分反相器FDINV8同相输出端连接第五全差分反相器FDINV5的同相输入端,所述的第八全差分反相器FDINV8反相输出端连接第五全差分反相器FDINV5的反相输入端。The four fully differential inverters that make up the fast loop are the fifth fully differential inverter FDINV5, the sixth fully differential inverter FDINV6, the seventh fully differential inverter FDINV7 and the eighth fully differential inverter FDINV8: The non-inverting output terminal of the fifth fully differential inverter FDINV5 is connected to the inverting input terminal of the sixth fully differential inverter FDINV6, and the inverting output terminal of the fifth fully differential inverter FDINV5 is connected to the sixth fully differential inverter. The non-inverting input terminal of the inverter FDINV6; the non-inverting output terminal of the sixth fully differential inverter FDINV6 is connected to the inverting input terminal of the seventh fully differential inverter FDINV7, and the sixth fully differential inverter FDINV6 inverting output The terminal is connected to the non-inverting input terminal of the seventh fully differential inverter FDINV7; the non-inverting output terminal of the seventh fully differential inverter FDINV7 is connected to the inverting input terminal of the eighth fully differential inverter FDINV8. The inverting output terminal of the differential inverter FDINV7 is connected to the non-inverting input terminal of the eighth fully differential inverter FDINV8; the non-inverting output terminal of the eighth fully differential inverter FDINV8 is connected to the non-inverting input terminal of the fifth fully differential inverter FDINV5 , the inverting output terminal of the eighth fully differential inverter FDINV8 is connected to the inverting input terminal of the fifth fully differential inverter FDINV5.

四个边沿SR触发器分别是第一边沿SR触发器ARB1、第二边沿SR触发器ARB2、第三边沿SR触发器ARB3和第四边沿SR触发器ARB4:所述的第一边沿SR触发器ARB1慢环输入端连接第一全差分反相器FDINV1的反相输出端,所述的第一边沿SR触发器ARB1快环输入端连接第五全差分反相器FDINV5的反相输出端,所述的第一边沿SR触发器ARB1复位端RST_E连接第三全差分反相器FDINV3的反相输出端;所述的第二边沿SR触发器ARB2慢环输入端连接第一全差分反相器FDINV1的同相输出端,所述的第二边沿SR触发器ARB2快环输入端连接第五全差分反相器FDINV5的同相输出端,所述的第二边沿SR触发器ARB2复位端RST_E连接第三全差分反相器FDINV3的同相输出端;所述的第三边沿SR触发器ARB3慢环输入端连接第三全差分反相器FDINV3的反相输出端,所述的第三边沿SR触发器ARB3快环输入端连接第七全差分反相器FDINV7的反相输出端,所述的第三边沿SR触发器ARB3复位端RST_E连接第一全差分反相器FDINV1的同相输出端;所述的第四边沿SR触发器ARB4慢环输入端连接第三全差分反相器FDINV3的同相输出端,所述的第四边沿SR触发器ARB4快环输入端连接第七全差分反相器FDINV7的同相输出端,所述的第四边沿SR触发器ARB4复位端RST_E连接第一全差分反相器FDINV1的反相输出端;所述的第一边沿SR触发器ARB1、第二边沿SR触发器ARB2、第三边沿SR触发器ARB3和第四边沿SR触发器ARB4各自复位端RST_I均接到外部的全局复位信号RST,各自输出端分别接入所述的解码模块。The four edge SR flip-flops are the first edge SR flip-flop ARB1, the second edge SR flip-flop ARB2, the third edge SR flip-flop ARB3 and the fourth edge SR flip-flop ARB4: the first edge SR flip-flop ARB1 The slow loop input terminal is connected to the inverting output terminal of the first full differential inverter FDINV1, the fast loop input terminal of the first edge SR flip-flop ARB1 is connected to the inverting output terminal of the fifth full differential inverter FDINV5, and the The reset terminal RST_E of the first edge SR flip-flop ARB1 is connected to the inverting output terminal of the third fully differential inverter FDINV3; the slow loop input terminal of the second edge SR flip-flop ARB2 is connected to the first fully differential inverter FDINV1. Non-inverting output terminal, the fast loop input terminal of the second edge SR flip-flop ARB2 is connected to the non-inverting output terminal of the fifth fully differential inverter FDINV5, and the reset terminal RST_E of the second edge SR flip-flop ARB2 is connected to the third fully differential inverter. The non-inverting output end of the inverter FDINV3; the slow loop input end of the third edge SR flip-flop ARB3 is connected to the inverting output end of the third full differential inverter FDINV3, and the third edge SR flip-flop ARB3 fast loop The input terminal is connected to the inverting output terminal of the seventh fully differential inverter FDINV7, and the reset terminal RST_E of the third edge SR flip-flop ARB3 is connected to the non-inverting output terminal of the first fully differential inverter FDINV1; the fourth edge The slow loop input end of the SR flip-flop ARB4 is connected to the non-inverting output end of the third full differential inverter FDINV3, and the fast loop input end of the fourth edge SR flip-flop ARB4 is connected to the non-inverting output end of the seventh full differential inverter FDINV7, The reset terminal RST_E of the fourth edge SR flip-flop ARB4 is connected to the inverting output terminal of the first fully differential inverter FDINV1; the first edge SR flip-flop ARB1, the second edge SR flip-flop ARB2, the third edge The reset terminals RST_I of the SR flip-flop ARB3 and the fourth-edge SR flip-flop ARB4 are both connected to the external global reset signal RST, and the respective output terminals are respectively connected to the decoding module.

初始阶段,两个环的第一级反相器都工作在使能无效既预设的状态,而其他三级均工作在使能有效的状态。当快信号LEAD_PUS到达后,慢环开始震荡,快信号LEAD_PUS沿着慢环传输;当慢信号LAG_PUS到达后,快环也开始震荡,慢信号LAG_PUS沿着快环传输,并开始追赶慢环中的快信号LEAD_PUS。同时,4个边沿SR触发器用于判断同一节点处快信号LEAD_PUS和慢信号LAG_PUS到达的先后顺序,若FN<0>端的慢信号LAG_PUS比SN<0>端的快信号LEAD_PUS先到达,边沿SR触发器的输出为1,反之为0。In the initial stage, the first-stage inverters of the two loops all work in the preset state of enabling invalidation, while the other three stages work in the enabling and valid state. When the fast signal LEAD_PUS arrives, the slow loop starts to oscillate, and the fast signal LEAD_PUS is transmitted along the slow loop; when the slow signal LAG_PUS arrives, the fast loop also starts to oscillate, and the slow signal LAG_PUS transmits along the fast loop and starts to chase the slow loop. Fast signal LEAD_PUS. At the same time, the four edge SR flip-flops are used to determine the order in which the fast signal LEAD_PUS and the slow signal LAG_PUS arrive at the same node. If the slow signal LAG_PUS at the FN<0> end arrives earlier than the fast signal LEAD_PUS at the SN<0> end, the edge SR flip-flop The output is 1, otherwise it is 0.

与传统的用D触发器来采样方式相比,用该种边沿SR触发器具有以下优势:D触发器通过时钟端CLK和数据端D比较两个信号的快慢,但时钟端CLK和数据端D的结构不对称,因此存在一个受PVT影响的offset,而边沿SR触发器结构严格对称,offset更小;另外,D触发器采样需要分情况010和情况10处理,导致后面数字处理电路更复杂冗余,而用边沿SR触发器对两个环采样只会出现情况10,因此降低了后续的设计工作和难度。由于是以慢环为参照来判别快信号LEAD_PUS和慢信号LAG_PUS的到达快慢,边沿SR触发器的复位由慢环的输出节点给,下一级边沿SR触发器的复位由上一级慢环的节点给。Compared with the traditional sampling method with D flip-flop, this edge SR flip-flop has the following advantages: D flip-flop compares the speed of the two signals through the clock terminal CLK and the data terminal D, but the clock terminal CLK and the data terminal D compare the speed of the two signals. The structure is asymmetric, so there is an offset affected by PVT, while the structure of the edge SR flip-flop is strictly symmetrical, and the offset is smaller; in addition, the D flip-flop sampling needs to be processed in case 010 and case 10, resulting in more complicated and redundant digital processing circuits. However, using edge SR flip-flops to sample two loops only occurs in case 10, thus reducing the subsequent design work and difficulty. Since the slow loop is used as a reference to determine the arrival speed of the fast signal LEAD_PUS and the slow signal LAG_PUS, the reset of the edge SR flip-flop is given by the output node of the slow loop, and the reset of the next-level edge SR flip-flop is given by the slow loop of the previous stage. Node gives.

如图3所示,所述的四个边沿SR触发器结构相同,每一边沿SR触发器主要由三个上升沿检测模块、四个PMOS晶体管和六个NMOS晶体管构成。所述时间数字转换器在配合全差分环形振荡器的基础上,仅用四个边沿SR触发器便实现对信号传输路径上位置的抓取,降低了整体的设计复杂度。As shown in FIG. 3 , the four edge SR flip-flops have the same structure, and each edge SR flip-flop is mainly composed of three rising edge detection modules, four PMOS transistors and six NMOS transistors. On the basis of the fully differential ring oscillator, the time-to-digital converter only uses four edge SR flip-flops to realize the capture of the position on the signal transmission path, thereby reducing the overall design complexity.

第五PMOS晶体管MP5的源极和第六PMOS晶体管MP6的源极共点连接VDD;第五PMOS晶体管MP5的栅极前置第一上升沿检测模块RUD1后作为慢环输入端,第六PMOS晶体管MP6的栅极前置第二上升沿检测模块RUD2后作为快环输入端。The source of the fifth PMOS transistor MP5 and the source of the sixth PMOS transistor MP6 are connected to VDD in common; the gate of the fifth PMOS transistor MP5 is preceded by the first rising edge detection module RUD1 as a slow loop input terminal, and the sixth PMOS transistor The gate of MP6 is preceded by the second rising edge detection module RUD2 and then used as the input terminal of the fast loop.

第五PMOS晶体管MP5的漏极连接第七PMOS晶体管MP7的源极,第六PMOS晶体管MP6的漏极连接第八PMOS晶体管MP8的源极。The drain of the fifth PMOS transistor MP5 is connected to the source of the seventh PMOS transistor MP7, and the drain of the sixth PMOS transistor MP6 is connected to the source of the eighth PMOS transistor MP8.

第七PMOS晶体管MP7的漏极、第八PMOS晶体管MP8的栅极、第九NMOS晶体管MN9的漏极、第十一NMOS晶体管MN11的漏极、第八NMOS晶体管MN8的栅极、第七NMOS晶体管MN7的漏极以及第一缓冲器模块(BUF1)输入共点,第一缓冲器模块(BUF1)输出端QB悬空;The drain of the seventh PMOS transistor MP7, the gate of the eighth PMOS transistor MP8, the drain of the ninth NMOS transistor MN9, the drain of the eleventh NMOS transistor MN11, the gate of the eighth NMOS transistor MN8, the seventh NMOS transistor The drain of MN7 and the input of the first buffer module (BUF1) share the same point, and the output terminal QB of the first buffer module (BUF1) is suspended;

第八PMOS晶体管MP8的漏极、第七PMOS晶体管MP7的栅极、第十二NMOS晶体管MN12的漏极、第十NMOS晶体管MN10的漏极、第七NMOS晶体管MN7的栅极、第八NMOS晶体管MN8的漏极以及第二缓冲器模块BUF2的输入端共点,第二缓冲器模块BUF2的输出端Q接入所述的解码模块;The drain of the eighth PMOS transistor MP8, the gate of the seventh PMOS transistor MP7, the drain of the twelfth NMOS transistor MN12, the drain of the tenth NMOS transistor MN10, the gate of the seventh NMOS transistor MN7, the eighth NMOS transistor The drain of MN8 and the input end of the second buffer module BUF2 are in common, and the output end Q of the second buffer module BUF2 is connected to the decoding module;

第九NMOS晶体管MN9和第十NMOS晶体管MN10栅极共点连接到第三缓冲器模块BUF3的输入端,第三缓冲器模块的输出端连接复位端RST_I,RST_I外接全局复位端RST;第十一NMOS晶体管MN11和第十二NMOS晶体管MN12栅极共点后前置第三上升沿检测模块RUD3作为复位端RST_E;The gates of the ninth NMOS transistor MN9 and the tenth NMOS transistor MN10 are connected to the input terminal of the third buffer module BUF3 in common, and the output terminal of the third buffer module is connected to the reset terminal RST_I, which is connected to the global reset terminal RST; the eleventh After the gates of the NMOS transistor MN11 and the twelfth NMOS transistor MN12 share the same point, the third rising edge detection module RUD3 is set as the reset terminal RST_E;

第七NMOS晶体管MN7、第八NMOS晶体管MN8、第九NMOS晶体管MN9、第十NMOS晶体管MN10、第一NMOS晶体管MN1和第十二NMOS晶体管MN12源极共点连接VSS。The sources of the seventh NMOS transistor MN7, the eighth NMOS transistor MN8, the ninth NMOS transistor MN9, the tenth NMOS transistor MN10, the first NMOS transistor MN1 and the twelfth NMOS transistor MN12 are connected in common to VSS.

初始阶段,复位端RST_I为1,Q端、QB端均通过第九NMOS晶体管MN9、第十NMOS晶体管MN10放电至0,第七PMOS晶体管MP7、第八PMOS晶体管MP8预导通。复位完成后复位端RST_I变为0。若S端先检测到上升沿,则会通过第二上升沿检测模块RUD2产生一个短暂的负脉冲,第六PMOS晶体管MP6导通,进而Q端充电置高电平,第七NMOS晶体管MN7导通,QB端进一步放电置低电平。反之,若R端先检测到上升沿,则Q端变为0。另外的复位端RST_E用于局部复位,当第三上升沿检测模块RUD3检测到复位端RST_E的上升沿后,将在输出产生一个短暂的正脉冲,进而导通第十一NMOS晶体管MN11、第十二NMOS晶体管MN12,进行复位。In the initial stage, the reset terminal RST_I is 1, the Q terminal and the QB terminal are both discharged to 0 through the ninth NMOS transistor MN9 and the tenth NMOS transistor MN10, and the seventh PMOS transistor MP7 and the eighth PMOS transistor MP8 are pre-conducted. After the reset is completed, the reset terminal RST_I becomes 0. If the S terminal detects the rising edge first, a short negative pulse will be generated by the second rising edge detection module RUD2, the sixth PMOS transistor MP6 is turned on, and then the Q terminal is charged to a high level, and the seventh NMOS transistor MN7 is turned on , the QB terminal is further discharged and set to low level. On the contrary, if the R terminal detects the rising edge first, the Q terminal becomes 0. The other reset terminal RST_E is used for local reset. When the third rising edge detection module RUD3 detects the rising edge of the reset terminal RST_E, it will output a short positive pulse, and then turn on the eleventh NMOS transistors MN11 and tenth Two NMOS transistors MN12 are reset.

如图4所示,组成慢环的四个全差分反相器和组成快环的另外四个全差分反相器结构相同,每一全差分反相器主要由两个反相器、四个PMOS晶体管、六个NMOS晶体管和两个电容阵列组成。As shown in Figure 4, the four fully differential inverters that form the slow loop have the same structure as the other four fully differential inverters that form the fast loop. Each fully differential inverter mainly consists of two inverters, four It consists of PMOS transistors, six NMOS transistors and two capacitor arrays.

第三PMOS晶体管MP3的源极连接VDD、栅极连接第一反相器INV1的输出端、漏极分别连接第一PMOS晶体管MP1和第二PMOS晶体管MP2的源极。The source of the third PMOS transistor MP3 is connected to VDD, the gate is connected to the output terminal of the first inverter INV1, and the drain is connected to the sources of the first PMOS transistor MP1 and the second PMOS transistor MP2, respectively.

第一反相器INV1输入端作为全差分反相器的使能端;第一反相器INV1的输出端连接第二反相器INV2的输入端。第一PMOS晶体管MP1的栅极和第一NMOS晶体管MN1的栅极共点作为同相输入端,第二PMOS晶体管MP2和第二NMOS晶体管MN2的栅极共点作为反相输入端。The input end of the first inverter INV1 is used as the enabling end of the fully differential inverter; the output end of the first inverter INV1 is connected to the input end of the second inverter INV2. The gate of the first PMOS transistor MP1 and the gate of the first NMOS transistor MN1 share a common point as a non-inverting input terminal, and the gates of the second PMOS transistor MP2 and the second NMOS transistor MN2 share a common point as an inverting input terminal.

第一PMOS晶体管MP1漏极、第六NMOS晶体管MN6漏极、第一NMOS晶体管MN1漏极、第三NMOS晶体管MN3漏极、第四NMOS晶体管MN4栅极和第一电容阵列CDAC1上极板共点作为反相输出端。The drain of the first PMOS transistor MP1, the drain of the sixth NMOS transistor MN6, the drain of the first NMOS transistor MN1, the drain of the third NMOS transistor MN3, the gate of the fourth NMOS transistor MN4 and the upper plate of the first capacitor array CDAC1 are in common as the inverting output.

第二PMOS晶体管MP2漏极、第四PMOS晶体管MP4漏极、第二NMOS晶体管MN2漏极、第四NMOS晶体管MN4漏极、第三NMOS晶体管MN3栅极和第二电容阵列CDAC2上极板共点作为同相输出端。The drain of the second PMOS transistor MP2, the drain of the fourth PMOS transistor MP4, the drain of the second NMOS transistor MN2, the drain of the fourth NMOS transistor MN4, the gate of the third NMOS transistor MN3 and the upper plate of the second capacitor array CDAC2 are in common as a non-inverting output.

第六NMOS晶体管MN6的源极连接VSS,栅极连接第一反相器INV1的输出端;第四PMOS晶体管MP4的源极连接VDD,栅极连接第二反相器INV2的输出端;第一电容阵列CDAC1和第二电容阵列CDAC2的下极板分别连接VSS。The source of the sixth NMOS transistor MN6 is connected to VSS, and the gate is connected to the output terminal of the first inverter INV1; the source of the fourth PMOS transistor MP4 is connected to VDD, and the gate is connected to the output terminal of the second inverter INV2; the first The lower plates of the capacitor array CDAC1 and the second capacitor array CDAC2 are respectively connected to the VSS.

第一NMOS晶体管MN1、第二NMOS晶体管MN2、第三NMOS晶体管MN3和第四NMOS晶体管MN4的源极共点后连接第五NMOS晶体管MN5的漏极。The sources of the first NMOS transistor MN1 , the second NMOS transistor MN2 , the third NMOS transistor MN3 and the fourth NMOS transistor MN4 are connected to the drain of the fifth NMOS transistor MN5 after a common point.

第五NMOS晶体管MN5的源极连接VSS,栅极连接第二反相器INV2的输出端。The source of the fifth NMOS transistor MN5 is connected to VSS, and the gate is connected to the output terminal of the second inverter INV2.

EN有两种状态,分别为置于0、1。EN为0时,第三PMOS晶体管MP3、第五NMOS晶体管MN5均关断,第六NMOS晶体管MN6、第四PMOS晶体管MP4导通,Von放电至低电平,Vop充电至高电平;EN为1时,第三PMOS晶体管MP3、第五NMOS晶体管MN5导通,反相器正常工作,进一步地,第三NMOS晶体管MN3和第四NMOS晶体管MN4通过正反馈作用加速输出状态的转变。位于输出的第一电容阵列CDAC1、第二电容阵列CDAC2用于对反相器的延迟进行调整,目的是在校准阶段对延迟时间进行校准,克服PVT鲁棒性对反相器延迟的影响,提高TDC的精度,与现有时间TDC相比,抗PVT鲁棒性更好。EN has two states, which are set to 0 and 1 respectively. When EN is 0, the third PMOS transistor MP3 and the fifth NMOS transistor MN5 are both turned off, the sixth NMOS transistor MN6 and the fourth PMOS transistor MP4 are turned on, Von is discharged to a low level, and Vop is charged to a high level; EN is 1 At this time, the third PMOS transistor MP3 and the fifth NMOS transistor MN5 are turned on, and the inverter works normally. Further, the third NMOS transistor MN3 and the fourth NMOS transistor MN4 accelerate the transition of the output state through positive feedback. The first capacitor array CDAC1 and the second capacitor array CDAC2 located at the output are used to adjust the delay of the inverter. The purpose is to calibrate the delay time in the calibration stage, overcome the influence of PVT robustness on the delay of the inverter, and improve the The accuracy of TDC, compared with existing temporal TDC, is more robust against PVT.

对于本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及形变,而所有的这些改变以及形变都应该属于本发明权利要求的保护范围之内。For those skilled in the art, various other corresponding changes and deformations can be made according to the technical solutions and concepts described above, and all these changes and deformations should fall within the protection scope of the claims of the present invention.

Claims (3)

1.一种有PVT鲁棒性基于全差分环形振荡器的时间数字转换器,包括依次电性连接的前端模块、全局控制模块、延迟单元和解码模块;还设置一延迟校准模块分别连接所述延迟单元和解码模块,用于对所述延迟单元的延迟校准;1. a time-to-digital converter based on a fully differential ring oscillator with PVT robustness, comprising a front-end module, a global control module, a delay unit and a decoding module that are electrically connected in turn; a delay calibration module is also provided to connect the described a delay unit and a decoding module for delay calibration of the delay unit; 其特征在于,It is characterized in that, 所述的延迟单元是全差分环形振荡器模块;The delay unit is a fully differential ring oscillator module; 所述的全差分环形振荡器模块包括,The fully differential ring oscillator module includes, 首尾相接组成慢环的四个全差分反相器;Four fully differential inverters connected end to end to form a slow loop; 首尾相接组成快环的另外四个全差分反相器;The other four fully differential inverters are connected end to end to form a fast loop; 以及,as well as, 用于采集比较慢环与快环中节点信号超前或滞后的四个边沿SR触发器;Four edge SR flip-flops for collecting and comparing node signals in the slow loop and the fast loop leading or lagging; 组成慢环的四个全差分反相器分别是第一全差分反相器(FDINV1)、第二全差分反相器(FDINV2)、第三全差分反相器(FDINV3)和第四全差分反相器(FDINV4):所述的第一全差分反相器(FDINV1)同相输出端连接第二全差分反相器(FDINV2)的反相输入端,所述的第一全差分反相器(FDINV1)反相输出端连接第二全差分反相器(FDINV2)的同相输入端;所述的第二全差分反相器(FDINV2)同相输出端连接第三全差分反相器(FDINV3)的反相输入端,所述的第二全差分反相器(FDINV2)反相输出端连接第三全差分反相器(FDINV3)的同相输入端;所述的第三全差分反相器(FDINV3)同相输出端连接第四全差分反相器(FDINV4)的反相输入端,所述的第三全差分反相器(FDINV3)反相输出端连接第四全差分反相器(FDINV4)的同相输入端;所述的第四全差分反相器(FDINV4)同相输出端连接第一全差分反相器(FDINV1)的同相输入端,所述的第四全差分反相器(FDINV4)反相输出端连接第一全差分反相器(FDINV1)的反相输入端;The four fully differential inverters that make up the slow loop are the first fully differential inverter (FDINV1), the second fully differential inverter (FDINV2), the third fully differential inverter (FDINV3) and the fourth fully differential inverter. Inverter (FDINV4): the non-inverting output terminal of the first fully differential inverter (FDINV1) is connected to the inverting input terminal of the second fully differential inverter (FDINV2), and the first fully differential inverter (FDINV2) (FDINV1) The inverting output terminal is connected to the non-inverting input terminal of the second fully differential inverter (FDINV2); the non-inverting output terminal of the second fully differential inverter (FDINV2) is connected to the third fully differential inverter (FDINV3) The inverting input terminal of the second fully differential inverter (FDINV2) is connected to the non-inverting input terminal of the third fully differential inverter (FDINV3); the third fully differential inverter (FDINV3) The non-inverting output terminal of FDINV3) is connected to the inverting input terminal of the fourth fully differential inverter (FDINV4), and the inverting output terminal of the third fully differential inverter (FDINV3) is connected to the fourth fully differential inverter (FDINV4) The non-inverting input terminal of the fourth fully differential inverter (FDINV4) is connected to the non-inverting input terminal of the first fully differential inverter (FDINV1), and the fourth fully differential inverter (FDINV4) The inverting output terminal is connected to the inverting input terminal of the first fully differential inverter (FDINV1); 组成快环的四个全差分反相器分别是第五全差分反相器(FDINV5)、第六全差分反相器(FDINV6)、第七全差分反相器(FDINV7)和第八全差分反相器(FDINV8):所述的第五全差分反相器(FDINV5)同相输出端连接第六全差分反相器(FDINV6)的反相输入端,所述的第五全差分反相器(FDINV5)反相输出端连接第六全差分反相器(FDINV6)的同相输入端;所述的第六全差分反相器(FDINV6)同相输出端连接第七全差分反相器(FDINV7)的反相输入端,所述的第六全差分反相器(FDINV6)反相输出端连接第七全差分反相器(FDINV7)的同相输入端;所述的第七全差分反相器(FDINV7)同相输出端连接第八全差分反相器(FDINV8)的反相输入端,所述的第七全差分反相器(FDINV7)反相输出端连接第八全差分反相器(FDINV8)的同相输入端;所述的第八全差分反相器(FDINV8)同相输出端连接第五全差分反相器(FDINV5)的同相输入端,所述的第八全差分反相器(FDINV8)反相输出端连接第五全差分反相器(FDINV5)的反相输入端;The four fully differential inverters that make up the fast loop are the fifth fully differential inverter (FDINV5), the sixth fully differential inverter (FDINV6), the seventh fully differential inverter (FDINV7) and the eighth fully differential inverter. Inverter (FDINV8): the non-inverting output terminal of the fifth fully differential inverter (FDINV5) is connected to the inverting input terminal of the sixth fully differential inverter (FDINV6), and the fifth fully differential inverter (FDINV6) (FDINV5) the inverting output terminal is connected to the non-inverting input terminal of the sixth fully differential inverter (FDINV6); the non-inverting output terminal of the sixth fully differential inverter (FDINV6) is connected to the seventh fully differential inverter (FDINV7) The inverting input terminal of the sixth fully differential inverter (FDINV6) is connected to the non-inverting input terminal of the seventh fully differential inverter (FDINV7); the seventh fully differential inverter (FDINV7) The non-inverting output terminal of FDINV7) is connected to the inverting input terminal of the eighth fully differential inverter (FDINV8), and the inverting output terminal of the seventh fully differential inverter (FDINV7) is connected to the eighth fully differential inverter (FDINV8) The non-inverting input terminal of the eighth fully differential inverter (FDINV8) is connected to the non-inverting input terminal of the fifth fully differential inverter (FDINV5), and the eighth fully differential inverter (FDINV8) The inverting output terminal is connected to the inverting input terminal of the fifth fully differential inverter (FDINV5); 四个边沿SR触发器分别是第一边沿SR触发器(ARB1)、第二边沿SR触发器(ARB2)、第三边沿SR触发器(ARB3)和第四边沿SR触发器(ARB4):所述的第一边沿SR触发器(ARB1)慢环输入端连接第一全差分反相器(FDINV1)的反相输出端,所述的第一边沿SR触发器(ARB1)快环输入端连接第五全差分反相器(FDINV5)的反相输出端,所述的第一边沿SR触发器(ARB1)复位端RST_E连接第三全差分反相器(FDINV3)的反相输出端;所述的第二边沿SR触发器(ARB2)慢环输入端连接第一全差分反相器(FDINV1)的同相输出端,所述的第二边沿SR触发器(ARB2)快环输入端连接第五全差分反相器(FDINV5)的同相输出端,所述的第二边沿SR触发器(ARB2)复位端RST_E连接第三全差分反相器(FDINV3)的同相输出端;所述的第三边沿SR触发器(ARB3)慢环输入端连接第三全差分反相器(FDINV3)的反相输出端,所述的第三边沿SR触发器(ARB3)快环输入端连接第七全差分反相器(FDINV7)的反相输出端,所述的第三边沿SR触发器(ARB3)复位端RST_E连接第一全差分反相器(FDINV1)的同相输出端;所述的第四边沿SR触发器(ARB4)慢环输入端连接第三全差分反相器(FDINV3)的同相输出端,所述的第四边沿SR触发器(ARB4)快环输入端连接第七全差分反相器(FDINV7)的同相输出端,所述的第四边沿SR触发器(ARB4)复位端RST_E连接第一全差分反相器(FDINV1)的反相输出端;所述的第一边沿SR触发器(ARB1)、第二边沿SR触发器(ARB2)、第三边沿SR触发器(ARB3)和第四边沿SR触发器(ARB4)各自复位端RST_I均接到外部的全局复位信号RST,各自输出端分别接入所述的解码模块。The four edge SR flip-flops are the first edge SR flip-flop (ARB1), the second edge SR flip-flop (ARB2), the third edge SR flip-flop (ARB3) and the fourth edge SR flip-flop (ARB4): the The slow loop input of the first edge SR flip-flop (ARB1) is connected to the inverting output of the first fully differential inverter (FDINV1), and the fast loop input of the first edge SR flip-flop (ARB1) is connected to the fifth The inverting output terminal of the fully differential inverter (FDINV5), the reset terminal RST_E of the first edge SR flip-flop (ARB1) is connected to the inverting output terminal of the third fully differential inverter (FDINV3); The slow loop input end of the two-edge SR flip-flop (ARB2) is connected to the non-inverting output end of the first fully differential inverter (FDINV1), and the fast loop input end of the second edge SR flip-flop (ARB2) is connected to the fifth fully differential inverter. The non-inverting output terminal of the inverter (FDINV5), the reset terminal RST_E of the second edge SR flip-flop (ARB2) is connected to the non-inverting output terminal of the third fully differential inverter (FDINV3); the third edge SR flip-flop (ARB3) slow loop input terminal is connected to the inverting output terminal of the third full differential inverter (FDINV3), and the fast loop input terminal of the third edge SR flip-flop (ARB3) is connected to the seventh full differential inverter (FDINV7) ), the reset terminal RST_E of the third edge SR flip-flop (ARB3) is connected to the non-inverting output terminal of the first fully differential inverter (FDINV1); the fourth edge SR flip-flop (ARB4) The slow loop input terminal is connected to the non-inverting output terminal of the third fully differential inverter (FDINV3), and the fast loop input terminal of the fourth edge SR flip-flop (ARB4) is connected to the non-inverting output terminal of the seventh fully differential inverter (FDINV7). terminal, the reset terminal RST_E of the fourth edge SR flip-flop (ARB4) is connected to the inverting output terminal of the first fully differential inverter (FDINV1); the first edge SR flip-flop (ARB1), the second edge The reset terminals RST_I of the SR flip-flop (ARB2), the third-edge SR flip-flop (ARB3) and the fourth-edge SR flip-flop (ARB4) are all connected to the external global reset signal RST, and their respective output terminals are connected to the decoding module. 2.根据权利要求1所述一种有PVT鲁棒性基于全差分环形振荡器的时间数字转换器,其特征在于,所述的四个边沿SR触发器结构相同,每一边沿SR触发器主要由三个缓冲器模块、三个上升沿检测模块、四个PMOS晶体管和六个NMOS晶体管构成;2. a kind of time-to-digital converter with PVT robustness based on fully differential ring oscillator according to claim 1, is characterized in that, described four edge SR flip-flops have the same structure, and each edge SR flip-flop is mainly It consists of three buffer modules, three rising edge detection modules, four PMOS transistors and six NMOS transistors; 第五PMOS晶体管(MP5)的源极和第六PMOS晶体管(MP6)的源极共点连接VDD;The source of the fifth PMOS transistor (MP5) and the source of the sixth PMOS transistor (MP6) are connected to VDD in common; 第五PMOS晶体管(MP5)的栅极前置第一上升沿检测模块(RUD1)后作为慢环输入端,第六PMOS晶体管(MP6)的栅极前置第二上升沿检测模块(RUD2)后作为快环输入端;The gate of the fifth PMOS transistor (MP5) is preceded by the first rising edge detection module (RUD1) as a slow loop input terminal, and the gate of the sixth PMOS transistor (MP6) is preceded by the second rising edge detection module (RUD2) As a fast loop input; 第五PMOS晶体管(MP5)的漏极连接第七PMOS晶体管(MP7)的源极,第六PMOS晶体管(MP6)的漏极连接第八PMOS晶体管(MP8)的源极;The drain of the fifth PMOS transistor (MP5) is connected to the source of the seventh PMOS transistor (MP7), and the drain of the sixth PMOS transistor (MP6) is connected to the source of the eighth PMOS transistor (MP8); 第七PMOS晶体管(MP7)的漏极、第八PMOS晶体管(MP8)的栅极、第九NMOS晶体管(MN9)的漏极、第十一NMOS晶体管(MN11)的漏极、第八NMOS晶体管(MN8)的栅极、第七NMOS晶体管(MN7)的漏极以及第一缓冲器模块(BUF1)输入共点,第一缓冲器模块(BUF1)输出端QB悬空;The drain of the seventh PMOS transistor (MP7), the gate of the eighth PMOS transistor (MP8), the drain of the ninth NMOS transistor (MN9), the drain of the eleventh NMOS transistor (MN11), the drain of the eighth NMOS transistor ( The gate of MN8), the drain of the seventh NMOS transistor (MN7) and the input of the first buffer module (BUF1) share the same point, and the output terminal QB of the first buffer module (BUF1) is floating; 第八PMOS晶体管(MP8)的漏极、第七PMOS晶体管(MP7)的栅极、第十二NMOS晶体管(MN12)的漏极、第十NMOS晶体管(MN10)的漏极、第七NMOS晶体管(MN7)的栅极、第八NMOS晶体管(MN8)的漏极以及第二缓冲器模块(BUF2)的输入端共点,第二缓冲器模块(BUF2)的输出端Q接入所述的解码模块;The drain of the eighth PMOS transistor (MP8), the gate of the seventh PMOS transistor (MP7), the drain of the twelfth NMOS transistor (MN12), the drain of the tenth NMOS transistor (MN10), the drain of the seventh NMOS transistor ( The gate of MN7), the drain of the eighth NMOS transistor (MN8) and the input terminal of the second buffer module (BUF2) are in common, and the output terminal Q of the second buffer module (BUF2) is connected to the decoding module ; 第九NMOS晶体管(MN9)和第十NMOS晶体管(MN10)栅极共点连接到第三缓冲器模块(BUF3)的输入端,第三缓冲器模块的输出端连接复位端RST_I,RST_I外接全局复位端RST;第十一NMOS晶体管(MN11)和第十二NMOS晶体管(MN12)栅极共点后前置第三上升沿检测模块(RUD3)作为复位端RST_E;The gates of the ninth NMOS transistor (MN9) and the tenth NMOS transistor (MN10) are connected to the input terminal of the third buffer module (BUF3) in common, and the output terminal of the third buffer module is connected to the reset terminal RST_I, and RST_I is externally connected to the global reset terminal RST; after the gates of the eleventh NMOS transistor (MN11) and the twelfth NMOS transistor (MN12) are at the same point, the third rising edge detection module (RUD3) is used as the reset terminal RST_E; 第七NMOS晶体管(MN7)、第八NMOS晶体管(MN8)、第九NMOS晶体管(MN9)、第十NMOS晶体管(MN10)、第十一NMOS晶体管(MN11)和第十二NMOS晶体管(MN12)源极共点连接VSS。Seventh NMOS transistor (MN7), eighth NMOS transistor (MN8), ninth NMOS transistor (MN9), tenth NMOS transistor (MN10), eleventh NMOS transistor (MN11) and twelfth NMOS transistor (MN12) source The pole common point is connected to VSS. 3.根据权利要求1所述一种有PVT鲁棒性基于全差分环形振荡器的时间数字转换器,其特征在于,组成慢环的四个全差分反相器和组成快环的另外四个全差分反相器结构相同,每一全差分反相器主要由两个反相器、四个PMOS晶体管、六个NMOS晶体管和两个电容阵列组成;3. a kind of time-to-digital converter based on fully differential ring oscillator with PVT robustness according to claim 1 is characterized in that, four fully differential inverters that form slow loop and another four that form fast loop The fully differential inverter has the same structure, and each fully differential inverter is mainly composed of two inverters, four PMOS transistors, six NMOS transistors and two capacitor arrays; 第三PMOS晶体管(MP3)的源极连接VDD、栅极连接第一反相器(INV1)的输出端、漏极分别连接第一PMOS晶体管(MP1)和第二PMOS晶体管(MP2)的源极;The source of the third PMOS transistor (MP3) is connected to VDD, the gate is connected to the output terminal of the first inverter (INV1), and the drain is connected to the sources of the first PMOS transistor (MP1) and the second PMOS transistor (MP2), respectively ; 第一反相器(INV1)输入端作为全差分反相器的使能端;The input end of the first inverter (INV1) is used as the enabling end of the fully differential inverter; 第一PMOS晶体管(MP1)的栅极和第一NMOS晶体管(MN1)的栅极共点作为同相输入端,第二PMOS晶体管(MP2)和第二NMOS晶体管(MN2)的栅极共点作为反相输入端;The gate of the first PMOS transistor (MP1) and the gate of the first NMOS transistor (MN1) are in common as a non-inverting input terminal, and the gates of the second PMOS transistor (MP2) and the second NMOS transistor (MN2) are in common as an inverting input. phase input; 第一PMOS晶体管(MP1)漏极、第六NMOS晶体管(MN6)漏极、第一NMOS晶体管(MN1)漏极、第三NMOS晶体管(MN3)漏极、第四NMOS晶体管(MN4)栅极和第一电容阵列(CDAC1)上极板共点作为反相输出端;The drain of the first PMOS transistor (MP1), the drain of the sixth NMOS transistor (MN6), the drain of the first NMOS transistor (MN1), the drain of the third NMOS transistor (MN3), the gate of the fourth NMOS transistor (MN4) and The common point of the upper plate of the first capacitor array (CDAC1) is used as an inverting output terminal; 第二PMOS晶体管(MP2)漏极、第四PMOS晶体管(MP4)漏极、第二NMOS晶体管(MN2)漏极、第四NMOS晶体管(MN4)漏极、第三NMOS晶体管(MN3)栅极和第二电容阵列(CDAC2)上极板共点作为同相输出端;Second PMOS transistor (MP2) drain, fourth PMOS transistor (MP4) drain, second NMOS transistor (MN2) drain, fourth NMOS transistor (MN4) drain, third NMOS transistor (MN3) gate and The upper plate of the second capacitor array (CDAC2) has a common point as a non-inverting output terminal; 第六NMOS晶体管(MN6)的源极连接VSS,栅极连接第一反相器(INV1)的输出端;第四PMOS晶体管(MP4)的源极连接VDD,栅极连接第二反相器(INV2)的输出端;第一电容阵列(CDAC1)和第二电容阵列(CDAC2)的下极板分别连接VSS;The source of the sixth NMOS transistor (MN6) is connected to VSS, and the gate is connected to the output terminal of the first inverter (INV1); the source of the fourth PMOS transistor (MP4) is connected to VDD, and the gate is connected to the second inverter ( The output end of INV2); the lower plates of the first capacitor array (CDAC1) and the second capacitor array (CDAC2) are respectively connected to VSS; 第一NMOS晶体管(MN1)、第二NMOS晶体管(MN2)、第三NMOS晶体管(MN3)和第四NMOS晶体管(MN4)的源极共点后连接第五NMOS晶体管(MN5)的漏极;The sources of the first NMOS transistor (MN1), the second NMOS transistor (MN2), the third NMOS transistor (MN3) and the fourth NMOS transistor (MN4) are connected to the drain of the fifth NMOS transistor (MN5) after the source is common; 第五NMOS晶体管(MN5)的源极连接VSS,栅极连接第二反相器(INV2)的输出端;The source of the fifth NMOS transistor (MN5) is connected to VSS, and the gate is connected to the output end of the second inverter (INV2); 第二反相器(INV2)的输入端连接第一反相器(INV1)的输出端。The input terminal of the second inverter (INV2) is connected to the output terminal of the first inverter (INV1).
CN202111357564.7A 2021-11-16 2021-11-16 A Time-to-Digital Converter Based on Fully Differential Ring Oscillator with PVT Robustness Active CN114047682B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111357564.7A CN114047682B (en) 2021-11-16 2021-11-16 A Time-to-Digital Converter Based on Fully Differential Ring Oscillator with PVT Robustness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111357564.7A CN114047682B (en) 2021-11-16 2021-11-16 A Time-to-Digital Converter Based on Fully Differential Ring Oscillator with PVT Robustness

Publications (2)

Publication Number Publication Date
CN114047682A CN114047682A (en) 2022-02-15
CN114047682B true CN114047682B (en) 2022-08-12

Family

ID=80209556

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111357564.7A Active CN114047682B (en) 2021-11-16 2021-11-16 A Time-to-Digital Converter Based on Fully Differential Ring Oscillator with PVT Robustness

Country Status (1)

Country Link
CN (1) CN114047682B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114967409B (en) * 2022-03-28 2023-06-20 中山大学 A high-precision time-to-digital converter resistant to PVT changes and its realization method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1497849A (en) * 2002-10-10 2004-05-19 威盛电子股份有限公司 Method for multi-phase division with frequency-doubled phase interpolation
US8390349B1 (en) * 2012-06-26 2013-03-05 Intel Corporation Sub-picosecond resolution segmented re-circulating stochastic time-to-digital converter
CN204272278U (en) * 2014-12-23 2015-04-15 天津大学 High-speed TDC-based column-level ADC for image sensors
CN106200356A (en) * 2016-09-23 2016-12-07 中国科学院上海高等研究院 Vernier annular time-to-digit converter
CN109428569A (en) * 2017-09-01 2019-03-05 瑞萨电子株式会社 Semiconductor devices, semiconductor system and method, semi-conductor device manufacturing method
US10567154B1 (en) * 2018-11-21 2020-02-18 The Regents Of The University Of Michigan Ring oscillator based all-digital Bluetooth low energy transmitter
CN111869106A (en) * 2018-02-23 2020-10-30 高通股份有限公司 Clock filtering via programmable counter-based clock interface and time-to-digital converter with high resolution and wide operating range
CN112838851A (en) * 2021-02-25 2021-05-25 中国科学技术大学 A residual time sampling circuit and time-to-digital converter based on differential sampling
CN214480526U (en) * 2021-02-25 2021-10-22 中国科学技术大学 A residual time sampling circuit and time-to-digital converter based on differential sampling

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7750305B2 (en) * 2006-06-15 2010-07-06 Koninklijke Philips Electronics N.V. Integrated multi-channel time-to-digital converter for time-of-flight pet
JP6351058B2 (en) * 2013-11-28 2018-07-04 株式会社メガチップス Time digital converter and PLL circuit using the same
CN103795406B (en) * 2014-01-23 2017-02-15 复旦大学 High-performance gating vernier type time digital converter
US9722537B2 (en) * 2014-08-20 2017-08-01 Short Circuit Technologies Llc Fractional-N frequency synthesizer incorporating cyclic digital-to-time and time-to-digital circuit pair
EP3035536B1 (en) * 2014-12-19 2020-04-29 Stichting IMEC Nederland An ADPLL having a TDC circuit with a dynamically adjustable offset delay
US9941891B2 (en) * 2015-06-01 2018-04-10 University Of Southern California Adaptive spur cancellation techniques and multi-phase injection locked TDC for digital phase locked loop circuit
US10326454B2 (en) * 2017-06-02 2019-06-18 Taiwan Semiconductor Manufacturing Co., Ltd. All-digital phase locked loop using switched capacitor voltage doubler
WO2019039728A1 (en) * 2017-08-21 2019-02-28 (주)유진로봇 Ultra-small three-dimensional scanning lidar sensor
US10474110B1 (en) * 2018-12-21 2019-11-12 Intel Corporation Adaptive time-to-digital converter and method
CN112506030B (en) * 2021-02-04 2021-07-13 南京邮电大学 A Time-to-Digital Converter Based on PVT Detection Circuit

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1497849A (en) * 2002-10-10 2004-05-19 威盛电子股份有限公司 Method for multi-phase division with frequency-doubled phase interpolation
US8390349B1 (en) * 2012-06-26 2013-03-05 Intel Corporation Sub-picosecond resolution segmented re-circulating stochastic time-to-digital converter
CN204272278U (en) * 2014-12-23 2015-04-15 天津大学 High-speed TDC-based column-level ADC for image sensors
CN106200356A (en) * 2016-09-23 2016-12-07 中国科学院上海高等研究院 Vernier annular time-to-digit converter
CN109428569A (en) * 2017-09-01 2019-03-05 瑞萨电子株式会社 Semiconductor devices, semiconductor system and method, semi-conductor device manufacturing method
CN111869106A (en) * 2018-02-23 2020-10-30 高通股份有限公司 Clock filtering via programmable counter-based clock interface and time-to-digital converter with high resolution and wide operating range
US10567154B1 (en) * 2018-11-21 2020-02-18 The Regents Of The University Of Michigan Ring oscillator based all-digital Bluetooth low energy transmitter
CN112838851A (en) * 2021-02-25 2021-05-25 中国科学技术大学 A residual time sampling circuit and time-to-digital converter based on differential sampling
CN214480526U (en) * 2021-02-25 2021-10-22 中国科学技术大学 A residual time sampling circuit and time-to-digital converter based on differential sampling

Also Published As

Publication number Publication date
CN114047682A (en) 2022-02-15

Similar Documents

Publication Publication Date Title
EP3756276B1 (en) Time-to-digital converter and method for measuring the time between clock edges
KR100377235B1 (en) Time counting circuit, sampling circuit, skew adjusting circuit and logic analyzing circuit
EP1971032A2 (en) Circuit structure of high performance time-to-digital converter
US20080069292A1 (en) Gated ring oscillator for a time-to-digital converter with shaped quantization noise
US8736327B2 (en) Time-to-digital converter
CN100501423C (en) High frequency clock jitter measurement circuit and its calibration method
CN112838851B (en) A residual time sampling circuit and time-to-digital converter based on differential sampling
CN103141029B (en) Sampler circuit
CN104333365A (en) Three-segment time digital converter (TDC) circuit
CN106209080A (en) A kind of all-digital phase-locked loop of low jitter width capture frequency scope
CN107302356B (en) Reset delay phase frequency detector and phase-locked loop frequency synthesizer
CN110376872A (en) A kind of time-to-digit converter applied to TADC based on asynchronous reset
CN110752846A (en) Delay control circuit of asynchronous successive approximation analog-digital converter
CN114047682B (en) A Time-to-Digital Converter Based on Fully Differential Ring Oscillator with PVT Robustness
WO2018058915A1 (en) Clock signal loss detection device
CN108847842B (en) Asynchronous frequency division circuit with self-refreshing function and capable of resisting single event upset effect
US7932848B2 (en) Pulse delay circuit and A/D converter including same
CN114509929A (en) Time-to-digital conversion system
CN113098482A (en) Delay difference measuring method of vernier type annular time-to-digital converter
CN102035527A (en) Offset voltage elimination technology for differential time domain comparator
Savaliya et al. A 0.3 V, 12nW, 47fJ/conv, fully digital capacitive sensor interface in 0.18 µm CMOS
CN214480526U (en) A residual time sampling circuit and time-to-digital converter based on differential sampling
CN106338909A (en) Phase comparator and gating cursor type time-digital conversion circuit
CN212969610U (en) Two-step high-resolution time-to-digital converter circuit
CN110958015A (en) High-speed clock phase detection circuit without dead zone

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant