[go: up one dir, main page]

CN113924367B - Method for improving rice grain yield - Google Patents

Method for improving rice grain yield Download PDF

Info

Publication number
CN113924367B
CN113924367B CN202080037035.6A CN202080037035A CN113924367B CN 113924367 B CN113924367 B CN 113924367B CN 202080037035 A CN202080037035 A CN 202080037035A CN 113924367 B CN113924367 B CN 113924367B
Authority
CN
China
Prior art keywords
plant
promoter
seq
mutation
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080037035.6A
Other languages
Chinese (zh)
Other versions
CN113924367A (en
Inventor
范晓荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Agricultural University
Original Assignee
Nanjing Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Agricultural University filed Critical Nanjing Agricultural University
Publication of CN113924367A publication Critical patent/CN113924367A/en
Application granted granted Critical
Publication of CN113924367B publication Critical patent/CN113924367B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及通过增加硝酸盐转运蛋白基因的表达来增加水稻籽粒产量和氮利用效率的方法,以及表达增加的基因表达的转基因植物和制备此类植物的方法。

The present invention relates to methods for increasing rice grain yield and nitrogen utilization efficiency by increasing the expression of a nitrate transporter gene, as well as transgenic plants expressing increased gene expression and methods for preparing such plants.

Description

提高水稻籽粒产量的方法Methods for increasing rice grain yield

技术领域Technical Field

本发明涉及通过改变硝酸盐转运蛋白基因的剪接来增加水稻籽粒产量和氮利用效率的方法,以及具有增加的产量的遗传改变的植物和制备此类植物的方法。The present invention relates to methods for increasing rice grain yield and nitrogen utilization efficiency by altering the splicing of a nitrate transporter gene, as well as genetically altered plants having increased yield and methods for making such plants.

背景技术Background technique

在自然环境中,植物的生长和发育受到生物和非生物胁迫的不利影响。环境变化也是影响农作物正常生长的重要因素。因此,植物已经发展出许多独特的机制来应对环境波动。In the natural environment, the growth and development of plants are adversely affected by biotic and abiotic stresses. Environmental changes are also an important factor affecting the normal growth of crops. Therefore, plants have developed many unique mechanisms to cope with environmental fluctuations.

水稻是世界上最重要的主要粮食之一,被世界上超过50%的人口,尤其是亚洲人口消费(粮农组织(FAO),2015)。它在营养上也是最重要的粮食作物之一。然而,在田间,水稻可能会受到许多不利条件的影响,这会导致产量的巨大损失。影响产量的主要限制因素之一是低氮可用性。Rice is one of the most important staple foods in the world, consumed by more than 50% of the world's population, especially in Asia (FAO, 2015). It is also one of the most important food crops nutritionally. However, in the field, rice can be affected by many adverse conditions, which can lead to huge losses in yield. One of the main limiting factors affecting yield is low nitrogen availability.

氮(N)是作物发育的基础,因为它是许多有机分子、核酸和蛋白质的基本成分。氮营养影响植物功能的各个层面,从新陈代谢到资源分配、生长和发育。由于施用的有机和肥料N的强烈硝化作用,植物根系获得N的最丰富来源是天然需氧土壤中的硝酸盐(NO3-)。相比之下,由于厌氧土壤条件,铵(NH4+)是水淹稻田中可获得的N的主要形式(Sasakawa和Yamamoto,1978)。Nitrogen (N) is fundamental to crop development as it is a building block of many organic molecules, nucleic acids, and proteins. Nitrogen nutrition affects all levels of plant function, from metabolism to resource allocation, growth, and development. The most abundant source of N available to plant roots is nitrate (NO3-) in natural aerobic soils due to the intense nitrification of applied organic and fertilizer N. In contrast, ammonium (NH4+) is the major form of N available in flooded rice fields due to anaerobic soil conditions (Sasakawa and Yamamoto, 1978).

因此,土壤无机氮(N)在好氧高地和排水良好的土壤中主要以硝酸盐形式供植物使用,而在排水不良的土壤和水淹厌氧稻田中以铵形式供植物使用。在许多植物中,根获得的硝酸盐在被同化之前被输送到茎干。相比之下,来自硝酸盐还原或直接来自铵吸收的铵优先在根部中同化,然后以有机形式被输送到地茎干。为了应对土壤中不同浓度的硝酸盐,植物根部至少发展出三种硝酸盐摄取系统,两种高亲和力运输系统(HATS)和一种低64亲和力运输系统(LATS),负责硝酸盐的获取。组成型HATS(cHATS)和硝酸盐诱导型HATS(iHATS)在外部培养基中以低硝酸盐浓度吸收硝酸盐,饱和度范围为0.2-0.5mM。相比之下,LATS在较高的外部硝酸盐浓度下在硝酸盐获取中起作用。LATS和HATS的摄取分别由属于NRT1和NRT2家族的硝酸盐转运蛋白介导。根部的摄取受负反馈调节,将硝酸盐摄取的表达和活性与植物的N状态联系起来(Miller等人,2007)。Therefore, soil inorganic nitrogen (N) is available to plants mainly in the form of nitrate in aerobic uplands and well-drained soils, and in the form of ammonium in poorly drained soils and flooded anaerobic rice fields. In many plants, nitrate acquired by roots is transported to the stem before being assimilated. In contrast, ammonium from nitrate reduction or directly from ammonium uptake is preferentially assimilated in the roots and then transported to the stem in organic form. In response to different concentrations of nitrate in the soil, plant roots have developed at least three nitrate uptake systems, two high-affinity transport systems (HATS) and one low-affinity transport system (LATS), responsible for nitrate acquisition. Constitutive HATS (cHATS) and nitrate-inducible HATS (iHATS) take up nitrate at low nitrate concentrations in the external medium, with a saturation range of 0.2-0.5 mM. In contrast, LATS functions in nitrate acquisition at higher external nitrate concentrations. Uptake by LATS and HATS is mediated by nitrate transporters belonging to the NRT1 and NRT2 families, respectively. Uptake in roots is regulated by negative feedback, linking the expression and activity of nitrate uptake to the N status of the plant (Miller et al., 2007).

尽管高等植物具有利用有机氮的能力,但根系获取氮的主要来源被认为是NO3-和NH4。植物对这两种N源的相对适应性差异很大。虽然NH4应该是优选的N源,因为其代谢需要的能量比NO3-少,但当NH4作为唯一的N源提供时,只有少数物种实际上表现良好。后者是北方针叶树、杜鹃花科植物、一些蔬菜作物和水稻(Oryza sativa L.)。与这些物种相反,大多数农业物种有时会在NH4上出现严重的毒性症状,因此,可见这些物种在NO3-上的生长速度更快。然而,当同时提供两种N源时,与单独在NH4或NO3-上生长相比,生长和产量通常会显著提高(Kronzucker等人,1999)。Despite the ability of higher plants to utilize organic nitrogen, the main sources of nitrogen acquisition by roots are thought to be NO3- and NH4. The relative adaptability of plants to these two N sources varies greatly. Although NH4 should be the preferred N source because its metabolism requires less energy than NO3- , only a few species actually perform well when NH4 is provided as the sole N source. The latter are boreal conifers, Ericaceae plants, some vegetable crops and rice (Oryza sativa L.). In contrast to these species, most agricultural species sometimes show severe toxicity symptoms on NH4, and therefore, it can be seen that these species grow faster on NO3- . However, when both N sources are provided simultaneously, growth and yield are usually significantly improved compared to growth on NH4 or NO3- alone (Kronzucker et al., 1999).

水稻与其他作物的不同之处在于它能够完全依靠NH4作为唯一的氮源生长。水稻传统上在淹水厌氧土壤条件下种植,其中铵是主要的氮源。然而,水稻根部特化的通气组织细胞可以将氧气从茎干转移到根部并将其释放到根际,在那里会发生细菌将铵盐转化为硝酸盐(硝化作用)。淹水水稻根际的硝化作用可导致25-40%的总作物N以硝酸盐的形式被吸收,主要是通过高亲和力运输系统(HATS)。硝酸盐的吸收是通过与质子(H+)的共转运来介导的,质子(H+)可以通过质膜H+-ATP酶从细胞中排出。水稻中硝酸盐吸收和转运的分子机制尚不完全清楚。由于稻田根际中的硝酸盐浓度估计小于10μM(Kirk和Kronzucker,2005),NRT2家族成员在水稻吸收硝酸盐方面起主要作用(Araki和Hasegawa,2006;Yan等人,2011)。因此,在湿地条件下生长的水稻根系吸收的总N中,高达40%可能以硝酸盐的形式存在,并且吸收率可与铵的吸收率相媲美(Kronzucker等人,2000;Kirk和Kronzucker,2005)。Rice differs from other crops in its ability to grow completely on NH4 as the sole nitrogen source. Rice is traditionally grown under flooded anaerobic soil conditions, where ammonium is the major nitrogen source. However, specialized aerenchyma cells in rice roots can transfer oxygen from the stem to the roots and release it into the rhizosphere, where bacterial conversion of ammonium to nitrate (nitrification) occurs. Nitrification in the flooded rice rhizosphere can result in 25-40% of the total crop N being absorbed as nitrate, primarily via the high affinity transport system (HATS). Nitrate uptake is mediated by co-transport with protons (H + ), which can be expelled from the cell by plasma membrane H + -ATPases. The molecular mechanisms of nitrate uptake and transport in rice are not fully understood. Since the nitrate concentration in the rhizosphere of rice fields is estimated to be less than 10 μM (Kirk and Kronzucker, 2005), NRT2 family members play a major role in nitrate uptake by rice (Araki and Hasegawa, 2006; Yan et al., 2011). Therefore, up to 40% of the total N uptake by rice roots grown under wetland conditions may be in the form of nitrate, and the uptake rate is comparable to that of ammonium (Kronzucker et al., 2000; Kirk and Kronzucker, 2005).

在水稻基因组中,已鉴定出五个NRT2基因(Araki和Hasegawa,2006;Feng等人,2011)。OsNRT2.1和OsNRT2.2具有相同的编码区序列,但具有不同的5'-和3'-非转录区(UTR),与其他单子叶植物的NRT2基因具有高度相似性,而OsNRT2.3和OsNRT2.4更紧密地与拟南芥NRT2基因相关。OsNRT2.3mRNA实际上被剪接成两个基因产物,OsNRT2.3a(AK109776)和OsNRT2.3b(AK072215),它们推定的氨基酸序列有94.2%的相似性(Feng等人,2011;Yan等人,2011)。OsNRT2.3a主要在根部表达,并且这种模式因硝酸盐供应而增强,而OsNRT2.3b在根部表达较弱而在茎干中相对丰富,N形式和浓度对转录物数量没有影响(Feng等人,2011,Feng 2012)。有趣的是,OsNRT2.3b的过表达已被证明提高转基因植物的产量、生长和NUE(Fan等人,2016)。In the rice genome, five NRT2 genes have been identified (Araki and Hasegawa, 2006; Feng et al., 2011). OsNRT2.1 and OsNRT2.2 have the same coding region sequence but different 5'- and 3'-untranscribed regions (UTRs), showing high similarity to NRT2 genes from other monocots, while OsNRT2.3 and OsNRT2.4 are more closely related to Arabidopsis NRT2 genes. OsNRT2.3 mRNA is actually spliced into two gene products, OsNRT2.3a (AK109776) and OsNRT2.3b (AK072215), whose deduced amino acid sequences have 94.2% similarity (Feng et al., 2011; Yan et al., 2011). OsNRT2.3a is mainly expressed in roots, and this pattern is enhanced by nitrate supply, while OsNRT2.3b is weakly expressed in roots and relatively abundant in shoots, with no effect of N form and concentration on transcript numbers (Feng et al., 2011, Feng 2012). Interestingly, overexpression of OsNRT2.3b has been shown to improve yield, growth, and NUE in transgenic plants (Fan et al., 2016).

总而言之,仍然需要为作物植物提供营养效率更高的基因型,以确保可持续的作物生产而实现全球粮食安全,并降低矿物肥料投入的成本和负面环境影响,例如空气和水的质量和生物多样性损失。本发明旨在解决这种需要。In summary, there remains a need to provide crop plants with more nutritionally efficient genotypes to ensure sustainable crop production for global food security and to reduce the cost of mineral fertilizer inputs and negative environmental impacts, such as air and water quality and biodiversity loss. The present invention is intended to address this need.

发明内容Summary of the invention

我们描述了使用靶向诱导的基因组局部损伤(TILLING)产生水稻OsNRT2.3突变系。我们鉴定了所得的突变系共享在OsNRT2.3基因的翻译起始密码子上游的位置-83处的单突变。有趣的是,NRT2.3启动子在该位置的突变增加了NRT2.3b与NRT2.3a的相对表达,此外,显著增加了突变系的生长、产量和氮利用效率(NUE)。We describe the generation of rice OsNRT2.3 mutant lines using targeted induced localized lesions in the genome (TILLING). We identified the resulting mutant lines as sharing a single mutation at position -83, upstream of the translation start codon of the OsNRT2.3 gene. Interestingly, mutation of the NRT2.3 promoter at this position increased the relative expression of NRT2.3b to NRT2.3a and, moreover, significantly increased growth, yield, and nitrogen use efficiency (NUE) of the mutant lines.

启动子上的顺式作用元件在基因表达和转录翻译中也起着重要的调节作用。我们的详细分析表明,TATA-盒是OsNRT2.3转录为OsNRT2.3a和OsNRT2.3b的关键顺式调控元件。在这项研究中,我们鉴定了一种TATA-盒结合蛋白OsTBP2.1,它与OsNRT2.3启动子上的TATA-盒基序结合。结果表明,OsNRT2.3b的5'UTR中的TATA-盒突变体和结合蛋白OsTBP2.1一起增加了OsNRT2.3b与OsNRT2.3a的比值,从而增加了产量和NUE两者。Cis-acting elements on promoters also play important regulatory roles in gene expression and transcriptional translation. Our detailed analysis showed that the TATA-box is a key cis-regulatory element for the transcription of OsNRT2.3 into OsNRT2.3a and OsNRT2.3b. In this study, we identified a TATA-box binding protein, OsTBP2.1, which binds to the TATA-box motif on the OsNRT2.3 promoter. The results showed that the TATA-box mutant in the 5'UTR of OsNRT2.3b and the binding protein OsTBP2.1 together increased the ratio of OsNRT2.3b to OsNRT2.3a, thereby increasing both yield and NUE.

因此,结果揭示,OsNRT2.3基因翻译起始密码子上游的-83bp区域对于OsNRT2.3a和OsNRT2.3b的差异转录以及最终的作物生长很重要。Therefore, the results revealed that the -83 bp region upstream of the translation start codon of the OsNRT2.3 gene is important for the differential transcription of OsNRT2.3a and OsNRT2.3b and ultimately crop growth.

在本发明的一个方面,提供了增加植物的产量、生物量、氮利用效率(NUE)、氮转运和/或氮含量中的至少一种的方法,该方法包括将至少一个突变引入编码NRT2.3启动子的核酸序列。在优选的实施方案中,植物是水稻。In one aspect of the invention, a method for increasing at least one of the yield, biomass, nitrogen utilization efficiency (NUE), nitrogen transport and/or nitrogen content of a plant is provided, the method comprising introducing at least one mutation into a nucleic acid sequence encoding a NRT2.3 promoter. In a preferred embodiment, the plant is rice.

在优选的实施方案中,编码NRT2.3启动子的核酸序列包含SEQ ID NO:9或其功能变体。在进一步优选的实施方案中,编码NRT2.3启动子的核酸序列包含SEQ ID NO:1或其功能变体。In a preferred embodiment, the nucleic acid sequence encoding the NRT2.3 promoter comprises SEQ ID NO: 9 or a functional variant thereof. In a further preferred embodiment, the nucleic acid sequence encoding the NRT2.3 promoter comprises SEQ ID NO: 1 or a functional variant thereof.

在一个实施方案中,使用诱变引入突变。在优选的实施方案中,使用TILLING或T-DNA插入引入突变。在备选实施方案中,使用靶向基因组修饰,优选ZFN、TALEN或CRISPR/Cas9引入突变。In one embodiment, mutations are introduced using mutagenesis. In a preferred embodiment, mutations are introduced using TILLING or T-DNA insertion. In an alternative embodiment, mutations are introduced using targeted genome modification, preferably ZFN, TALEN or CRISPR/Cas9.

优选地,将突变引入SEQ ID NO:1,并且优选引入SEQ ID NO:9。更优选地,突变是插入、缺失和/或取代。甚至更优选地,突变是至少一个核苷酸的取代。Preferably, the mutation is introduced into SEQ ID NO: 1, and preferably into SEQ ID NO: 9. More preferably, the mutation is an insertion, deletion and/or substitution. Even more preferably, the mutation is a substitution of at least one nucleotide.

如权利要求10所述的方法,其中所述取代在SEQ ID NO:1的位置160、位置201或位置222。The method of claim 10, wherein the substitution is at position 160, position 201 or position 222 of SEQ ID NO:1.

在一个实施方案中,突变是位置160处的取代。优选地,突变是T到C的取代。In one embodiment, the mutation is a substitution at position 160. Preferably, the mutation is a T to C substitution.

在另一个实施方案中,突变是至少一个核苷酸的缺失。更优选地,突变是SEQ IDNO:1的至少50个、更优选60个5’核苷酸的缺失。在另一个实施方案中,所述突变是SEQ IDNO:1的至少90个、更优选100个5’核苷酸的缺失。In another embodiment, the mutation is a deletion of at least one nucleotide. More preferably, the mutation is a deletion of at least 50, more preferably 60 5' nucleotides of SEQ ID NO: 1. In another embodiment, the mutation is a deletion of at least 90, more preferably 100 5' nucleotides of SEQ ID NO: 1.

在进一步的实施方案中,该方法进一步包括再生植物并筛选所述植物的产量、生物量、氮利用效率(NUE)、氮转运和/或氮含量中的至少一种的增加。In further embodiments, the method further comprises regenerating the plant and screening the plant for an increase in at least one of yield, biomass, nitrogen use efficiency (NUE), nitrogen transport, and/or nitrogen content.

在本发明的另一方面,提供了遗传改变的植物,其植物细胞的一部分,其中所述植物包含在至少一种编码NRT2.3启动子的核酸序列中的至少一个突变。In another aspect of the present invention, a genetically altered plant, or a part of a plant cell thereof, is provided, wherein the plant comprises at least one mutation in at least one nucleic acid sequence encoding a NRT2.3 promoter.

在优选的实施方案中,核酸序列包含SEQ ID NO:9或其功能变体。在另一个实施方案中,核酸序列包含SEQ ID NO:1或其功能变体。In a preferred embodiment, the nucleic acid sequence comprises SEQ ID NO: 9 or a functional variant thereof. In another embodiment, the nucleic acid sequence comprises SEQ ID NO: 1 or a functional variant thereof.

在一个实施方案中,植物的特征在于产量、生物量、氮利用效率(NUE)、氮转运和/或氮含量中的至少一项的增加中的至少一项的增加。In one embodiment, the plant is characterized by an increase in at least one of yield, biomass, nitrogen use efficiency (NUE), nitrogen transport and/or nitrogen content.

在一个实施方案中,将突变引入SEQ ID NO:1,优选引入SEQ ID NO:9。优选地,突变是插入、缺失和/或取代。在一个实施方案中,突变是至少一个核苷酸的取代,并且在一个实例中,是在SEQ ID NO:1的位置160、位置201或位置222处的取代。在另一实例中,突变是在位置160的取代。在一个实施方案中,突变是T到C的取代。In one embodiment, a mutation is introduced into SEQ ID NO: 1, preferably into SEQ ID NO: 9. Preferably, the mutation is an insertion, a deletion and/or a substitution. In one embodiment, the mutation is a substitution of at least one nucleotide, and in one example, a substitution at position 160, position 201 or position 222 of SEQ ID NO: 1. In another example, the mutation is a substitution at position 160. In one embodiment, the mutation is a substitution from T to C.

在备选的实施方案中,突变是至少一种核苷酸的缺失。在一个实施方案中,突变是SEQ ID NO:1的至少50个,更优选60个5’核苷酸的缺失。In an alternative embodiment, the mutation is a deletion of at least one nucleotide. In one embodiment, the mutation is a deletion of at least 50, more preferably 60 5' nucleotides of SEQ ID NO: 1.

优选地,遗传改变的植物是水稻。Preferably, the genetically altered plant is rice.

在本发明的另一方面,提供了鉴定和/或选择具有或将具有增加的产量、生物量、氮利用效率(NUE)、氮转运和/或氮含量的植物的方法,优选与对照或野生型植物相比,该方法包括检测在植物或植物种质中的NRT2.3启动子基因序列中的至少一种多态性并选择所述植物或其后代。In another aspect of the invention, a method is provided for identifying and/or selecting plants having or which will have increased yield, biomass, nitrogen utilization efficiency (NUE), nitrogen transport and/or nitrogen content, preferably compared to control or wild-type plants, the method comprising detecting at least one polymorphism in the NRT2.3 promoter gene sequence in a plant or plant germplasm and selecting the plant or its progeny.

在一个实施方案中,NRT2.3启动子基因序列包含SEQ ID NO:9,且更优选SEQ IDNO:1或其功能变体。In one embodiment, the NRT2.3 promoter gene sequence comprises SEQ ID NO: 9, and more preferably SEQ ID NO: 1 or a functional variant thereof.

在一个实施方案中,多态性是在SEQ ID NO:1的至少位置160处的至少一种取代。在备选实施方案中,多态性是SEQ ID NO:1的至少一个5’核苷酸的缺失,更优选SEQ ID NO:1的至少第一60个5’核苷酸的缺失。In one embodiment, the polymorphism is at least one substitution at least at position 160 of SEQ ID NO: 1. In an alternative embodiment, the polymorphism is a deletion of at least one 5' nucleotide of SEQ ID NO: 1, more preferably a deletion of at least the first 60 5' nucleotides of SEQ ID NO: 1.

在另一个实施方案中,该方法进一步包括将在NRT2.3启动子中包含至少一种多态性的染色体区域渐渗第二植物或植物种质中以产生渐渗的植物或植物种质。In another embodiment, the method further comprises introgressing the chromosomal region comprising at least one polymorphism in the NRT2.3 promoter into a second plant or plant germplasm to produce an introgressed plant or plant germplasm.

在本发明的另一方面,提供了增加植物的产量、生物量、氮利用效率(NUE)、氮转运和/或氮含量中的至少一种的方法,该方法包括在所述植物中引入并表达核酸构建体,所述核酸构建体包含与NRT2.3基因序列可操作地连接的NRT2.3启动子序列,其中NRT2.3启动子序列选自包含SEQ ID NO:2、3、4或5或其功能变体的组。In another aspect of the present invention, a method for increasing at least one of the yield, biomass, nitrogen utilization efficiency (NUE), nitrogen transport and/or nitrogen content of a plant is provided, the method comprising introducing and expressing a nucleic acid construct in the plant, the nucleic acid construct comprising a NRT2.3 promoter sequence operably linked to a NRT2.3 gene sequence, wherein the NRT2.3 promoter sequence is selected from the group comprising SEQ ID NO: 2, 3, 4 or 5 or a functional variant thereof.

在另一方面,提供了制备具有增加的产量、生物量、氮利用效率(NUE)、氮转运和/或氮含量的植物的方法,该方法包括在植物或植物细胞中引入并表达核酸构建体,所述核酸构建体包含与NRT2.3基因序列可操作地连接的NRT2.3启动子序列,其中NRT2.3启动子序列选自包含SEQ ID NO:2、3、4或5或其功能变体的组。On the other hand, a method for preparing a plant with increased yield, biomass, nitrogen utilization efficiency (NUE), nitrogen transport and/or nitrogen content is provided, the method comprising introducing and expressing a nucleic acid construct in a plant or plant cell, the nucleic acid construct comprising a NRT2.3 promoter sequence operably linked to a NRT2.3 gene sequence, wherein the NRT2.3 promoter sequence is selected from the group comprising SEQ ID NO: 2, 3, 4 or 5 or a functional variant thereof.

优选地,NRT2.3基因序列包含SEQ ID NO:8或其功能变体。Preferably, the NRT2.3 gene sequence comprises SEQ ID NO: 8 or a functional variant thereof.

在优选的实施方案中,植物是水稻。In a preferred embodiment, the plant is rice.

在本发明的另一方面,提供了通过上述任何方法获得或可获得的植物。在优选的实施方案中,植物是水稻。In another aspect of the present invention, there is provided a plant obtained or obtainable by any of the methods described above. In a preferred embodiment, the plant is rice.

在本发明的另一方面,提供了核酸构建体,所述核酸构建体包含与NRT2.3基因序列可操作地连接的NRT2.3启动子序列,其中NRT2.3启动子序列选自包含SEQ ID NO:2、3、4或5或其功能变体的组。在一个实施方案中,NRT2.3基因序列包含SEQ ID NO:8或其功能变体。In another aspect of the present invention, a nucleic acid construct is provided, comprising an NRT2.3 promoter sequence operably linked to an NRT2.3 gene sequence, wherein the NRT2.3 promoter sequence is selected from the group comprising SEQ ID NO: 2, 3, 4 or 5 or a functional variant thereof. In one embodiment, the NRT2.3 gene sequence comprises SEQ ID NO: 8 or a functional variant thereof.

在另一方面,提供了载体,所述载体包含上述核酸构建体。还提供了宿主细胞,所述宿主细胞包含载体或核酸构建体。最后,还提供了转基因植物,所述转基因植物表达载体或核酸构建体。优选地,植物是水稻。In another aspect, a vector is provided, the vector comprising the above nucleic acid construct. A host cell is also provided, the host cell comprising the vector or nucleic acid construct. Finally, a transgenic plant is also provided, the transgenic plant expressing the vector or nucleic acid construct. Preferably, the plant is rice.

在本发明的另一方面,提供了载体或核酸构建体在增加植物中的产量、生物量、氮利用效率(NUE)、氮转运和/或氮含量中的至少一种方面的应用。In another aspect of the present invention, there is provided use of a vector or a nucleic acid construct for increasing at least one of yield, biomass, nitrogen use efficiency (NUE), nitrogen transport and/or nitrogen content in a plant.

在本发明的又另一方面,提供了改变NRT2.3基因剪接的方法,该方法包括将至少一个突变引入编码NRT2.3启动子的核酸序列中。In yet another aspect of the present invention, a method for altering NRT2.3 gene splicing is provided, the method comprising introducing at least one mutation into a nucleic acid sequence encoding the NRT2.3 promoter.

在本发明的另一方面,提供了核酸构建体,其包含编码可以与至少一种NRT2.3启动子结合的至少一种DNA结合结构域的核酸序列。In another aspect of the present invention, a nucleic acid construct is provided, comprising a nucleic acid sequence encoding at least one DNA binding domain that can bind to at least one NRT2.3 promoter.

在一个实施方案中,核酸序列编码至少一种原间隔元件,其中原间隔元件的序列选自SEQ ID NO 16至23或与SEQ ID NO 16至23至少90%相同的序列。In one embodiment, the nucleic acid sequence encodes at least one protospacer element, wherein the sequence of the protospacer element is selected from SEQ ID NOs 16 to 23 or a sequence that is at least 90% identical to SEQ ID NOs 16 to 23.

在进一步的实施方案中,构建体进一步包含编码CRISPR RNA(crRNA)序列的核酸序列,其中所述crRNA序列包含原间隔元件序列和额外的核苷酸。In a further embodiment, the construct further comprises a nucleic acid sequence encoding a CRISPR RNA (crRNA) sequence, wherein the crRNA sequence comprises a protospacer element sequence and additional nucleotides.

优选地,构建体进一步包含编码反式激活RNA(tracrRNA)的核酸序列,其中优选地,tracrRNA在SEQ ID NO.24或其功能变体中定义。更优选地,所述构建体编码至少一种单指导RNA(sgRNA),其中所述sgRNA包含tracrRNA序列和crRNA序列。Preferably, the construct further comprises a nucleic acid sequence encoding a trans-activating RNA (tracrRNA), wherein preferably, the tracrRNA is defined in SEQ ID NO. 24 or a functional variant thereof. More preferably, the construct encodes at least one single guide RNA (sgRNA), wherein the sgRNA comprises a tracrRNA sequence and a crRNA sequence.

在优选的实施方案中,构建体与启动子可操作地连接。更优选地,启动子是组成型启动子。In a preferred embodiment, the construct is operably linked to a promoter. More preferably, the promoter is a constitutive promoter.

在一个实施方案中,核酸构建体进一步包含编码CRISPR酶的核酸序列。优选地,CRISPR酶是Cas蛋白或Cpf1蛋白。在一个实施方案中,Cas蛋白是Cas9或其功能变体。In one embodiment, the nucleic acid construct further comprises a nucleic acid sequence encoding a CRISPR enzyme. Preferably, the CRISPR enzyme is a Cas protein or a Cpf1 protein. In one embodiment, the Cas protein is Cas9 or a functional variant thereof.

在备选的实施方案中,核酸构建体编码TAL效应子。在该实施方案中,核酸构建体进一步包含编码内切核酸酶或其DNA切割域的序列。在一个实施方案中,核酸内切酶是Fokl。In an alternative embodiment, the nucleic acid construct encodes a TAL effector. In this embodiment, the nucleic acid construct further comprises a sequence encoding an endonuclease or a DNA cleavage domain thereof. In one embodiment, the endonuclease is Fok1.

在本发明的另一方面,提供了分离的植物细胞,其用至少一种如上所述的核酸构建体转染。在备选的方面,提供了分离的植物细胞,该细胞用包含至少一种如上所述的sgRNA的第一核酸构建体和第二核酸构建体转染,其中所述第二核酸构建体包含编码Cas蛋白,优选Cas9蛋白质或其功能变体的核酸序列。优选地,在第一核酸构建体之前、之后或同时转染第二核酸构建体。In another aspect of the present invention, an isolated plant cell is provided, which is transfected with at least one nucleic acid construct as described above. In an alternative aspect, an isolated plant cell is provided, which is transfected with a first nucleic acid construct comprising at least one sgRNA as described above and a second nucleic acid construct, wherein the second nucleic acid construct comprises a nucleic acid sequence encoding a Cas protein, preferably a Cas9 protein or a functional variant thereof. Preferably, the second nucleic acid construct is transfected before, after or simultaneously with the first nucleic acid construct.

在本发明的另一方面,提供了遗传修饰的植物,其中所述植物包含上述转染的细胞。在一个实施方案中,编码sgRNA的核酸和/或编码Cas蛋白的核酸以稳定形式整合。In another aspect of the present invention, a genetically modified plant is provided, wherein the plant comprises the above-mentioned transfected cell. In one embodiment, the nucleic acid encoding the sgRNA and/or the nucleic acid encoding the Cas protein is integrated in a stable form.

在本发明的另一方面,提供了增加植物的产量、生物量、氮利用效率(NUE)、氮转运和/或氮含量中的至少一种的方法,该方法包括在植物中引入并表达如上所述的核酸构建体,其中优选地,所述增加是相对于对照或野生型植物。还提供了通过上述方法获得或可获得的植物。In another aspect of the present invention, there is provided a method for increasing at least one of the yield, biomass, nitrogen utilization efficiency (NUE), nitrogen transport and/or nitrogen content of a plant, the method comprising introducing and expressing a nucleic acid construct as described above in a plant, wherein preferably, the increase is relative to a control or wild-type plant. Also provided is a plant obtained or obtainable by the above method.

在另一方面,提供了如上所述的核酸构建体在增加植物中的产量、生物量、氮利用效率(NUE)、氮转运和/或氮含量中的至少一种中的应用。In another aspect, there is provided use of a nucleic acid construct as described above for increasing at least one of yield, biomass, nitrogen use efficiency (NUE), nitrogen transport and/or nitrogen content in a plant.

在本发明的最后方面,提供了获得如上定义的遗传修饰的植物的方法,该方法包括:In a final aspect of the invention, there is provided a method for obtaining a genetically modified plant as defined above, the method comprising:

a.选择植物的一部分;a. Select a part of the plant;

b.用上述核酸构建体转染段落(a)的植物部分的至少一个细胞;b. transfecting at least one cell of the plant part of paragraph (a) with the above-mentioned nucleic acid construct;

c.再生源自经转染的细胞或多种细胞的至少一种植物;c. regenerating at least one plant derived from the transfected cell or cells;

选择根据段落(c)获得的显示NRT2.3b表达增加的一种或多种植物。One or more plants obtained according to paragraph (c) showing increased expression of NRT2.3b are selected.

在上述本发明的任何方面,所述增加是相对于对照或野生型植物。In any of the above aspects of the invention, the increase is relative to control or wild-type plants.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

在以下非限制性附图中进一步描述了本发明:The invention is further described in the following non-limiting drawings:

图1示出了田间成熟期-83bp突变系的生物量、NUE和氮含量。(a)田间试验中OsNRT2.3突变的-83bp突变系的表征。野生型,中华11(WT),T8、T11、T12和T20的突变系。(条=30cm);(b)-83bp突变系的核苷酸序列;(c)田间种植的突变系和WT植物的每株植物的籽粒产量和干重。干重平均值代表地上生物量,不包括籽粒产量;(d)突变系的NUE;(e)OsNRT2.3TILLING系中茎干和根部的总N浓度和(f)OsNRT2.3 TILLING系中茎干和根部的总N含量。误差线:SE(n=5)。突变系和WT之间的显著差异用不同的字母表示。(P<0.05,学生t检验)。Figure 1 shows the biomass, NUE and nitrogen content of -83bp mutant lines at maturity in the field. (a) Characterization of -83bp mutant lines of OsNRT2.3 mutation in field trials. Wild type, Zhonghua 11 (WT), mutant lines of T8, T11, T12 and T20. (Bar = 30 cm); (b) Nucleotide sequence of -83bp mutant lines; (c) Grain yield and dry weight per plant of mutant lines and WT plants grown in the field. The dry weight mean represents the aboveground biomass, excluding grain yield; (d) NUE of mutant lines; (e) Total N concentration in stems and roots in OsNRT2.3 TILLING lines and (f) Total N content in stems and roots in OsNRT2.3 TILLING lines. Error bars: SE (n = 5). Significant differences between mutant lines and WT are indicated by different letters. (P < 0.05, Student's t-test).

图2示出了水培中-83bp突变系的表征和鉴定。(a)WT和-83bp突变系的表型。(条=10厘米);(b)-83bp突变系的干重;(c)茎干和根部的总N浓度;(d)茎干和根部的总氮含量。误差线:SE(n=6)。野生型中华11(WT)和突变系的幼苗在含有1.25mm NH4NO3的IRRI的溶液中生长2周。然后提取RNA分析OsNRT2.3a/b表达;(e)OsNRT2.3b与OsNRT2.3a表达比值的qRT-PCR分析。误差线:SE(n=3)。不同的字母表示转基因系和WT之间的显著差异(P<0.05,学生t检验)。Figure 2 shows the characterization and identification of the -83bp mutant line in hydroponics. (a) Phenotypes of WT and -83bp mutant lines. (Bar = 10 cm); (b) Dry weight of -83bp mutant line; (c) Total N concentration in stem and root; (d) Total nitrogen content in stem and root. Error bars: SE (n = 6). Seedlings of wild-type Zhonghua 11 (WT) and mutant lines were grown in a solution of IRRI containing 1.25 mm NH4NO3 for 2 weeks. RNA was then extracted to analyze OsNRT2.3a/b expression; (e) qRT-PCR analysis of the expression ratio of OsNRT2.3b to OsNRT2.3a. Error bars: SE (n = 3). Different letters indicate significant differences between transgenic lines and WT (P < 0.05, Student's t-test).

图3示出了OsNRT2.3启动子突变对OsNRT2.3a/b表达的影响;(a,c)OsNRT2.3启动子和改变OsNRT2.3a和OsNRT2.3b表达的不同突变位点的示意图。P为OsNRT2.3的WT启动子,P1为OsNRT2.3启动子中的-665bp突变,P2为OsNRT2.3启动子中的-44bp突变,mP为OsNRT2.3启动子中的-83bp突变;(b)OsNRT2.3b在不同启动子系中的表达促进了OsNRT2.3b;(d)OsNRT2.3b和OsNRT2.3a在mp::OsNRT2.3系中的表达;(e)mp::OsNRT2.3a系中OsNRT2.3b与OsNRT2.3a的比值。Figure 3 shows the effect of OsNRT2.3 promoter mutation on OsNRT2.3a/b expression; (a, c) Schematic diagram of OsNRT2.3 promoter and different mutation sites that change the expression of OsNRT2.3a and OsNRT2.3b. P is the WT promoter of OsNRT2.3, P1 is the -665bp mutation in the OsNRT2.3 promoter, P2 is the -44bp mutation in the OsNRT2.3 promoter, and mP is the -83bp mutation in the OsNRT2.3 promoter; (b) The expression of OsNRT2.3b in different promoter lines promotes OsNRT2.3b; (d) The expression of OsNRT2.3b and OsNRT2.3a in the mp::OsNRT2.3 line; (e) The ratio of OsNRT2.3b to OsNRT2.3a in the mp::OsNRT2.3a line.

图4示出了-83bp突变改变了回交系中OsNRT2.3的翻译模式;(a,b)田间试验中OsNRT2.3突变的B1F2代系的表征。两个独立系T11和T12的B1F2证实了-83bp突变的超表型。(条=30cm)AA为对照,-83bp无突变;aa为纯合的-83bp突变;Aa为杂合的-83bp突变;(c)叶和根中OsNRT2.3b和HSP表达的蛋白质印迹分析。B1F3 T11和B1F3 T12是OsNRT2.3突变回交系的B1F3代。WT和T11和T12的突变回交纯合系在1.25mM NH4NO3中生长3周并且氮饥饿1周。然后在5分钟内测量2.5mM 15NO3–、1.25mMNH415NO3和1.25mM 15NH4NO3的15N流入率;(d)茎干15N流入率;(e)根部15N流入率;(f)茎干与根部的15N比值。误差线:SE(n=5)。不同字母表示转基因系和WT之间的显著差异。(P<0.05,学生t检验)。Figure 4 shows that the -83bp mutation alters the translation pattern of OsNRT2.3 in backcross lines; (a, b) Characterization of the B1F2 generation of OsNRT2.3 mutant lines in field trials. B1F2 of two independent lines T11 and T12 confirmed the hyperphenotype of the -83bp mutation. (Bar = 30 cm) AA is the control, -83bp without mutation; aa is the homozygous -83bp mutation; Aa is the heterozygous -83bp mutation; (c) Western blot analysis of OsNRT2.3b and HSP expression in leaves and roots. B1F3 T11 and B1F3 T12 are the B1F3 generation of OsNRT2.3 mutant backcross lines. WT and mutant backcross homozygous lines of T11 and T12 were grown in 1.25mM NH4NO3 for 3 weeks and nitrogen starved for 1 week. Then the 15N influx rates of 2.5mM 15NO3–, 1.25mM NH415NO3 and 1.25mM 15NH4NO3 were measured within 5 minutes; (d) 15N influx rate in the stem; (e) 15N influx rate in the root; (f) 15N ratio in the stem and root. Error bars: SE (n=5). Different letters indicate significant differences between transgenic lines and WT. (P<0.05, Student's t-test).

图5示出了不同长度启动子的-83bp突变对水稻OsNRT2.3转录的影响;(a)不同长度的OsNRT2.3启动子片段和-83bp突变片段的示意图,它们驱动OsNRT2.3的437bp ORF和ZIIIB报告子基因的表达。141bp和697bp是原始的OsNRT2.3启动子;141M和697M携带-83bp突变;(b-d)对照系(无突变)和突变系的转基因水稻幼苗在含有1.25mm NH4NO3IRRI的溶液中生长2周。然后提取RNA以分析OsNRT2.3a/b的表达。(b)示出了OsNRT2.3a在转基因系中的表达;(c)示出了OsNRT2.3b在转基因系中的表达;(d)示出了转基因系中的OsNRT2.3b/OsNRT2.3a的表达比值。误差线:SE(n=3)。不同的字母表示转基因系和WT之间的显著差异。(P<0.05,学生t检验)。Figure 5 shows the effect of -83bp mutation of promoters of different lengths on transcription of rice OsNRT2.3; (a) Schematic diagram of OsNRT2.3 promoter fragments of different lengths and -83bp mutant fragments, which drive the expression of 437bp ORF and ZIIIB reporter gene of OsNRT2.3. 141bp and 697bp are the original OsNRT2.3 promoters; 141M and 697M carry -83bp mutation; (b-d) Transgenic rice seedlings of control lines (no mutation) and mutant lines were grown in a solution containing 1.25mm NH4NO3IRRI for 2 weeks. RNA was then extracted to analyze the expression of OsNRT2.3a/b. (b) shows the expression of OsNRT2.3a in transgenic lines; (c) shows the expression of OsNRT2.3b in transgenic lines; (d) shows the expression ratio of OsNRT2.3b/OsNRT2.3a in transgenic lines. Error bars: SE (n=3). Different letters indicate significant differences between transgenic lines and WT (P<0.05, Student's t-test).

图6示出了OsTBP2.1与OsNRT2.3启动子片段结合并激活OsNRT2.3表达。(a)OsTBP2.1与OsNRT2.3b 5'UTR的TATA-盒结合。酵母细胞与pTATA-盒::AbAi和OsTBP2/2.1/2.2::pGADT7共转化。细胞在培养基上生长以筛选相互作用(SD、-Ura、-Leu)和(800nM)。AbA用于抑制背景生长。(b)水稻原生质体瞬时测定的构建体。OsNRT2.3启动子或-83bp突变启动子用于驱动报告子的表达。pNRT2.3::Luc,pmNRT2.3::Luc。(c)OsTBP2.1激活OsNRT2.3启动子。OsTBP2.1的表达由Ubi启动子驱动。报告子和效应子共同转化到水稻原生质体中。(d)稳定的水稻遗传载体构建框架。报告蛋白-eGFP和mCherry构建在一个载体中,141bp和697bp启动子促进eGFP和mCherry的表达。(e)eGFP的水平。(f)mCherry的水平。误差线:SE(n=3)。(P<0.05,学生t检验)。Figure 6 shows that OsTBP2.1 binds to the OsNRT2.3 promoter fragment and activates OsNRT2.3 expression. (a) OsTBP2.1 binds to the TATA-box of the OsNRT2.3b 5'UTR. Yeast cells were co-transformed with pTATA-box::AbAi and OsTBP2/2.1/2.2::pGADT7. Cells were grown on medium to screen for interactions (SD, -Ura, -Leu) and (800nM). AbA was used to inhibit background growth. (b) Constructs for transient assays in rice protoplasts. The OsNRT2.3 promoter or the -83bp mutant promoter was used to drive expression of the reporter. pNRT2.3::Luc, pmNRT2.3::Luc. (c) OsTBP2.1 activates the OsNRT2.3 promoter. Expression of OsTBP2.1 is driven by the Ubi promoter. The reporter and effector were co-transformed into rice protoplasts. (d) Stable rice genetic vector construction framework. The reporter proteins-eGFP and mCherry were constructed in one vector, and the 141bp and 697bp promoters promoted the expression of eGFP and mCherry. (e) The level of eGFP. (f) The level of mCherry. Error bars: SE (n=3). (P<0.05, Student's t test).

图7示出了OsTBP2.1和OsNRT2.3a/b在OsTBP2.1过表达和T-DNA突变系中的表达。(a)田间试验中OsTBP2.1过表达的表征。野生型,Wuyunjing27(WT-W27)。(b)OsTBP2.1 T-DNA突变系在田间试验中的表征。野生型,Huangyang(WT-HY)。(条=20cm)。(c)OsTBP2.1在OEOsTBP2.1和OsTBP2.1系中的表达。(d)OsTBP2.1过表达和T-DNA突变系中OsNRT2.3b与OsNRT2.3a的比值。Figure 7 shows the expression of OsTBP2.1 and OsNRT2.3a/b in OsTBP2.1 overexpression and T-DNA mutant lines. (a) Characterization of OsTBP2.1 overexpression in field trials. Wild type, Wuyunjing27 (WT-W27). (b) Characterization of OsTBP2.1 T-DNA mutant lines in field trials. Wild type, Huangyang (WT-HY). (Bar = 20 cm). (c) Expression of OsTBP2.1 in OEOsTBP2.1 and OsTBP2.1 lines. (d) Ratio of OsNRT2.3b to OsNRT2.3a in OsTBP2.1 overexpression and T-DNA mutant lines.

图8示出了TATA-盒突变时OsNRT2.3转录模型的示意图。数据显示,当突变时,OsTBP2.1会增强OsNRT2.3b的表达,从而改变OsNRT2.3b与OsNRT2.3a的比值,并导致更高水平的OsNRT2.3b翻译。Figure 8 shows a schematic diagram of the transcription model of OsNRT2.3 upon TATA-box mutation. The data show that when mutated, OsTBP2.1 enhances the expression of OsNRT2.3b, thereby altering the ratio of OsNRT2.3b to OsNRT2.3a and leading to higher levels of OsNRT2.3b translation.

图9示出了田间TILLING系的特征。Figure 9 shows the characteristics of the TILLING lines in the field.

图10示出了OsNRT2.3a和OsNRT2.3b在-83bp突变系中的表达。FIG. 10 shows the expression of OsNRT2.3a and OsNRT2.3b in the -83bp mutant line.

图11示出了-83bp突变回交系的鉴定。FIG. 11 shows the identification of -83 bp mutant backcross lines.

图12示出了-83bp突变回交系在成熟阶段的产量、干重和氮利用效率。FIG. 12 shows the yield, dry weight and nitrogen use efficiency of the -83 bp mutant backcross lines at maturity.

图13示出了不同OsNRT2.3启动子长度对水稻中OsNRT2.3a/b表达的影响。FIG. 13 shows the effects of different OsNRT2.3 promoter lengths on the expression of OsNRT2.3a/b in rice.

图14示出了OsNRT2.3a和OsNRT2.3b在OEOsTBP2.1和OsTBP2.1系中的表达。FIG. 14 shows the expression of OsNRT2.3a and OsNRT2.3b in OEOsTBP2.1 and OsTBP2.1 lines.

图15示出了15NO3-15NH4+在5分钟内流入OsNRT2.3突变系。WT和OsNRT2.3突变幼苗在1.25mM NH4NO3中生长3周且氮饥饿1周。然后在5分钟内测量2.5mM 15NO3、1.25mMNH4 15NO3和1.25mM NH4 15NO315N流入率。(a)根部15N流入率。(b)茎干15N流入率。误差线:SE(n=5)。不同字母表示转基因系和WT之间的显著差异(P<0.05,单向方差分析)。Figure 15 shows the influx of 15 NO3 - and 15 NH4 + into the OsNRT2.3 mutant line within 5 minutes. WT and OsNRT2.3 mutant seedlings were grown in 1.25 mM NH 4 NO 3 for 3 weeks and nitrogen starved for 1 week. Then the 15 N influx rates of 2.5 mM 15 NO3 - , 1.25 mM NH 4 15 NO 3 and 1.25 mM NH 4 15 NO 3 were measured within 5 minutes. (a) Root 15 N influx rate. (b) Stem 15 N influx rate. Error bars: SE (n = 5). Different letters indicate significant differences between transgenic lines and WT (P < 0.05, one-way ANOVA).

图16示出了15NO3-15NH4+在5分钟时间内流入OsNRT2.3突变回交系。WT和T11和T12的突变回交纯合系在1.25mM NH4NO3中生长3周且氮饥饿1周。然后在5分钟内测量2.5mM15NO3、1.25mM NH4 15NO3和1.25mM NH4 15NO315N流入率。(a)根部15N流入率。(b)茎干15N流入率。误差线:SE(n=5)。不同字母表示转基因品系和WT之间存在显著差异(P<0.05,单向方差分析)。Figure 16 shows the influx of 15 NO3 - and 15 NH4 + into OsNRT2.3 mutant backcross lines over a 5-minute period. WT and mutant backcross homozygous lines of T11 and T12 were grown in 1.25 mM NH 4 NO 3 for 3 weeks and nitrogen starved for 1 week. The 15 N influx rates of 2.5 mM 15 NO3 - , 1.25 mM NH 4 15 NO 3 , and 1.25 mM NH 4 15 NO 3 were then measured over a 5-minute period. (a) Root 15 N influx rate. (b) Stem 15 N influx rate. Error bars: SE (n=5). Different letters indicate significant differences between transgenic lines and WT (P<0.05, one-way ANOVA).

图17示出了成熟期-83bp突变回交系中的氮含量。突变回交系和对照叶、叶鞘、茎和穗的氮含量。Figure 17 shows nitrogen content in -83bp mutant backcross lines at maturity. Nitrogen content of leaves, sheaths, stems and ears of mutant backcross lines and controls.

发明详述DETAILED DESCRIPTION OF THE INVENTION

水稻转运蛋白OsNRT2.3有两种剪接形式——OsNRT2.3a和OsNRT2.3b。一些硝酸盐转运蛋白需要两个基因才能发挥作用;第二个较小组件(OsNAR21)是转运蛋白正确靶向质膜所需的。两种拼接形式之一OsNRT2.3a需要该第二组件来实现功能,而另一种形式OsNRT2.3b则不需要。我们之前已经证明,在水稻中过表达OsNRT2.3b可以改善生长和NUE。The rice transporter OsNRT2.3 has two splice forms, OsNRT2.3a and OsNRT2.3b. Some nitrate transporters require two genes to function; the second, smaller component (OsNAR21) is required for the transporter to be properly targeted to the plasma membrane. One of the two splice forms, OsNRT2.3a, requires this second component for function, while the other form, OsNRT2.3b, does not. We have previously shown that overexpressing OsNRT2.3b in rice improves growth and NUE.

我们现在意外地证明了NRT2.3基因5'上游的核酸序列突变,即NRT2.3基因的ATG起始密码子的上游,影响该基因的剪接,导致OsNRT2.3b与OsNRT2.3a的表达比值增加。此外,通过靶向基因组中诱导的局部损伤,我们获得了许多在OsNRT2.3基因的-83bp位置(相对于NRT2.3基因的ATG起始密码子)携带突变的系。与野生型相比,该位置上游序列的突变改变了OsNRT2.3基因的转录,并增加了OsNRT2.3b与OsNRT2.3a的比值。此外,与田间对照植物相比,回交突变系使总生物量增加了约28%,NUE增加了约75%。在田间回交突变系的每穗重量也增加了约60%。同时,与对照相比,回交突变系进一步提高了田间的氮吸收。We have now unexpectedly demonstrated that mutations in the nucleic acid sequence 5' upstream of the NRT2.3 gene, i.e., upstream of the ATG start codon of the NRT2.3 gene, affect the splicing of the gene, resulting in an increased expression ratio of OsNRT2.3b to OsNRT2.3a. In addition, by targeting local lesions induced in the genome, we obtained many lines carrying mutations at the -83bp position of the OsNRT2.3 gene (relative to the ATG start codon of the NRT2.3 gene). Mutations in the sequence upstream of this position altered the transcription of the OsNRT2.3 gene and increased the ratio of OsNRT2.3b to OsNRT2.3a compared to the wild type. In addition, the backcross mutant lines increased the total biomass by about 28% and the NUE by about 75% compared to the field control plants. The weight per ear of the backcross mutant lines in the field also increased by about 60%. At the same time, the backcross mutant lines further improved the nitrogen absorption in the field compared to the control.

因此,我们得出结论,OsNRT2.3基因上游序列在-83处的突变是控制OsNRT2.3基因剪接的关键,导致OsNRT2.3b的相对表达增加,对水稻生长、产量和NUE产生积极影响。Therefore, we concluded that the mutation in the upstream sequence of the OsNRT2.3 gene at position -83 is key to controlling the splicing of the OsNRT2.3 gene, resulting in an increase in the relative expression of OsNRT2.3b and a positive effect on rice growth, yield and NUE.

现在将进一步描述本发明。在以下段落中,更详细地定义了本发明的不同方面。除非明确相反指出,否则如此定义的每个方面都可以与任何其他方面或多个方面组合。特别地,被指示为优选或有利的任何特征可以与被指示为优选或有利的任何其他特征组合。The present invention will now be further described. In the following paragraphs, different aspects of the present invention are defined in more detail. Unless clearly indicated to the contrary, each aspect so defined can be combined with any other aspect or aspects. In particular, any feature indicated as being preferred or advantageous can be combined with any other feature indicated as being preferred or advantageous.

除非另有说明,否则本发明的实践将采用植物学、微生物学、组织培养、分子生物学、化学、生物化学和重组DNA技术、生物信息学的常规技术,这些技术在本领域的技术范围内。这些技术在文献中有充分的解释。Unless otherwise indicated, the practice of the present invention will employ conventional techniques of botany, microbiology, tissue culture, molecular biology, chemistry, biochemistry and recombinant DNA technology, bioinformatics, which are within the skill of the art and are fully explained in the literature.

如本文所用,词语“核酸”、“核酸序列”、“核苷酸”、“核酸分子”或“启动子序列”旨在包括DNA分子(例如,cDNA或基因组DNA)、RNA分子(例如,mRNA)、天然存在的、突变的、合成的DNA或RNA分子,以及使用核苷酸类似物产生的DNA或RNA的类似物。它可以是单链或双链的。此类核酸或多核苷酸包括但不限于结构基因的编码序列、反义序列和不编码mRNA或蛋白质产物的非编码调控序列。这些术语还涵盖基因。术语“基因”或“基因序列”广泛用于指与生物学功能相关的DNA核酸。因此,基因可包括基因组序列中的内含子和外显子,或者可以仅包含cDNA编码序列,和/或可包括与调控序列组合的cDNA。As used herein, the words "nucleic acid", "nucleic acid sequence", "nucleotide", "nucleic acid molecule" or "promoter sequence" are intended to include DNA molecules (e.g., cDNA or genomic DNA), RNA molecules (e.g., mRNA), naturally occurring, mutated, synthetic DNA or RNA molecules, and analogs of DNA or RNA produced using nucleotide analogs. It can be single-stranded or double-stranded. Such nucleic acids or polynucleotides include, but are not limited to, coding sequences of structural genes, antisense sequences, and non-coding regulatory sequences that do not encode mRNA or protein products. These terms also encompass genes. The terms "gene" or "gene sequence" are widely used to refer to DNA nucleic acids associated with biological functions. Therefore, a gene may include introns and exons in a genomic sequence, or may only include a cDNA coding sequence, and/or may include a cDNA combined with a regulatory sequence.

本发明的方面涉及重组DNA技术并且排除仅基于通过传统育种方法产生植物和通过传统育种方法获得植物的实施例。Aspects of the present invention relate to recombinant DNA techniques and exclude embodiments based solely on the production of plants by traditional breeding methods and plants obtained by traditional breeding methods.

提高产量、生物量、氮利用效率(NUE)、氮运输和/或氮含量的方法Methods for increasing yield, biomass, nitrogen use efficiency (NUE), nitrogen transport and/or nitrogen content

在本发明的第一方面,提供了增加植物的产量、生物量、氮利用效率(NUE)、氮转运和/或氮含量的方法,该方法包括将至少一个突变引入NRT2.3基因的核酸序列上游。In a first aspect of the present invention, a method for increasing plant yield, biomass, nitrogen utilization efficiency (NUE), nitrogen transport and/or nitrogen content is provided, the method comprising introducing at least one mutation into the nucleic acid sequence upstream of the NRT2.3 gene.

在一个实施方案中,该方法包括在NRT2.3基因的ATG起始密码子上游(例如在5'方向)的224个核苷酸中的至少一个核苷酸中引入突变。优选地,NRT2.3基因在SEQ ID NO:8或其变体中定义。In one embodiment, the method comprises introducing a mutation in at least one nucleotide of the 224 nucleotides upstream (eg in the 5' direction) of the ATG start codon of the NRT2.3 gene.Preferably, the NRT2.3 gene is defined in SEQ ID NO: 8 or a variant thereof.

如本文所用,根据本发明的各个方面使用的术语“增加”、“改进”或“增强”是可互换的。在一个实施方案中,与对照植物相比,产量、生物量、氮利用效率(NUE)、氮转运和/或氮含量可增加至少5%-50%或更多,例如增加至多或至少5%、10%、15%、20%、25%、30%、35%、40%、45%或50%。As used herein, the terms "increase", "improve" or "enhance" used in accordance with various aspects of the present invention are interchangeable. In one embodiment, yield, biomass, nitrogen use efficiency (NUE), nitrogen transport and/or nitrogen content may be increased by at least 5%-50% or more, such as up to or at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45% or 50% compared to control plants.

术语“产量”通常是指具有经济价值的可测量产品,通常与特定作物、区域和一段时间相关。单个植物部分根据它们的数量、大小和/或重量直接影响产量。实际产量是对于作物和年份的每平方米的产量,它是通过将总产量(包括收获和评估产量)除以种植平方米来确定的。The term "yield" generally refers to a measurable product of economic value, usually associated with a specific crop, region and period of time. Individual plant parts directly contribute to yield by their number, size and/or weight. Actual yield is the yield per square meter for a crop and year, and is determined by dividing the total yield (including harvested and assessed yield) by the cultivated square meters.

如本文所定义的术语“增加的产量”可以被认为包括以下任何一项或至少一项,并且可以通过评估以下一项或多项来测量:(a)植物的一个或多个部分,地上(可收获部分)的增加的生物量(重量),或增加的根生物量、增加的根体积、增加的根长度、增加的根直径或增加的根长度或任何其他可收获部分的增加生物量。增加的生物量可以表示为g/植物或kg/公顷(b)增加的每株植物的种子产量,这可以包括每株植物或个体基础的种子生物量(重量)增加中的一种或多种,(c)增加的种子灌浆率,(d)增加的饱满种子的数量,(e)增加的收获指数,其可以表示为可收获部分(例如种子)的产量与总生物量的比值,(f)增加的生存力/发芽效率,(g)增加的种子或豆荚或豆类或谷物的数量或大小或重量,(h)增加的种子体积(这可以是组成(即脂质(本文也称为油))、蛋白质和碳水化合物总含量和组成)变化的结果,(i)增加的(个体或平均)种子面积,(j)增加的(个体或平均)种子长度,(k)增加的(个体或平均)种子周长,(l)增加的生长或增加的分枝,例如具有更多分枝的花序,(m)增加的鲜重或谷物填充,(n)增加的穗重,(o)增加的千粒重(TKW),这可能是从饱满的种子数及其总重量得出的,并且可能是种子大小和/或种子重量增加的结果,(p)减少的每株植物的不育分蘖数和(q)更坚固或更强壮的秆或茎。所有参数都相对于野生型或对照植物。The term "increased yield" as defined herein may be considered to include any one or at least one of the following and may be measured by assessing one or more of the following: (a) increased biomass (weight) of one or more parts of the plant, above ground (harvestable parts), or increased root biomass, increased root volume, increased root length, increased root diameter or increased root length or increased biomass of any other harvestable part. The increased biomass may be expressed as g/plant or kg/hectare (b) increased seed yield per plant, which may include one or more of an increase in seed biomass (weight) on a per plant or individual basis, (c) increased seed filling rate, (d) increased number of filled seeds, (e) increased harvest index, which may be expressed as a ratio of yield of harvestable parts (e.g. seeds) to total biomass, (f) increased viability/germination efficiency, (g) increased number or size or weight of seeds or pods or legumes or grains, (h) increased seed volume (which may be composition (i.e. lipids (also referred to herein as oil)), protein The results of changes in the total content and composition of carbohydrates, (i) increased (individual or average) seed area, (j) increased (individual or average) seed length, (k) increased (individual or average) seed circumference, (l) increased growth or increased branching, such as inflorescences with more branches, (m) increased fresh weight or grain filling, (n) increased ear weight, (o) increased thousand-kernel weight (TKW), which may be derived from the number of filled seeds and their total weight and may be the result of increased seed size and/or seed weight, (p) reduced number of sterile tillers per plant and (q) sturdier or stronger culms or stems. All parameters are relative to wild-type or control plants.

在一个实施方案中,产量的增加包括植物重量的增加,优选干重(g/植株)。在另一个备选或额外的实施方案中,产量的增加包括每穗重量的增加。在一个实施方案中,与对照植物相比,每穗重量增加至少或高达40%,更优选50%,甚至更优选60%。In one embodiment, the increase in yield comprises an increase in plant weight, preferably dry weight (g/plant). In another alternative or additional embodiment, the increase in yield comprises an increase in weight per ear. In one embodiment, the weight per ear increases by at least or up to 40%, more preferably 50%, even more preferably 60%, compared to control plants.

在一个实例中,与对照或野生型植物相比,产量增加至少或高达2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%或20%、25%、30%、35%、40%、45%或50%。或者,与对照植物相比,产量可备选地增加20-70%,更优选25-75%。In one example, the yield increase is at least or up to 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19% or 20%, 25%, 30%, 35%, 40%, 45% or 50% compared to a control or wild-type plant. Alternatively, the yield may alternatively increase by 20-70%, more preferably 25-75%, compared to a control plant.

术语“氮利用效率”或NUE可以定义为作物产量(例如籽粒产量)。或者,NUE可以定义为农业NUE,即意指籽粒产量/N。植物的整体N利用效率包括吸收和利用效率,并且可以计算为UpE。在一个实施方案中,与对照植物相比,NUE增加了5%-80%或更多,例如与对照植物相比,增加了至少5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、60%、65%、70%、75%、80%、85%、90%或95%。在优选的实施方案中,与对照或野生型植物相比,NUE增加至少60%,更优选70%,甚至更优选75%。The term "nitrogen use efficiency" or NUE can be defined as crop yield (e.g., grain yield). Alternatively, NUE can be defined as agricultural NUE, meaning grain yield/N. The overall N use efficiency of a plant includes uptake and utilization efficiency and can be calculated as UpE. In one embodiment, NUE is increased by 5%-80% or more compared to control plants, such as by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95% compared to control plants. In a preferred embodiment, NUE is increased by at least 60%, more preferably 70%, even more preferably 75% compared to a control or wild-type plant.

如本文所用,术语“氮转运”涵盖氮获取或氮流入或吸收。在一个实施方案中,氮吸收可以指铵、硝酸盐和/或硝酸铵的吸收。在一个实施方案中,植物的茎干和/或根部中的氮流入增加。这样的增加与对照或野生型植物相比,为至少5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、60%、65%、70%。As used herein, the term "nitrogen transport" encompasses nitrogen acquisition or nitrogen influx or absorption. In one embodiment, nitrogen absorption can refer to the absorption of ammonium, nitrate and/or ammonium nitrate. In one embodiment, nitrogen influx in the stem and/or roots of a plant is increased. Such an increase is at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 65%, 70% compared to a control or wild-type plant.

在一个实施方案中,植物的茎干和/或根中的氮含量增加。在进一步的实施方案中,在叶、叶鞘、茎和穗中的至少一种中的氮含量增加。在进一步的实施方案中,植物中的总氮含量没有增加。In one embodiment, the nitrogen content in the stem and/or root of the plant is increased. In a further embodiment, the nitrogen content in at least one of the leaves, leaf sheaths, stems and spikes is increased. In a further embodiment, the total nitrogen content in the plant is not increased.

“至少一个突变”是指当NRT2.3启动子基因以多于一个拷贝或同源物(具有相同或略有不同的序列)存在时,在至少一种基因中存在至少一个突变。优选地,所有基因都突变。"At least one mutation" means that when the NRT2.3 promoter gene exists in more than one copy or homologues (having the same or slightly different sequences), at least one mutation is present in at least one gene. Preferably, all genes are mutated.

如图5a所示,NRT2.3a基因包含43bp 5'UTR(非翻译区),而NRT2.3b基因包含223bp5'UTR。As shown in FIG5 a , the NRT2.3a gene contains a 43 bp 5′UTR (untranslated region), while the NRT2.3b gene contains a 223 bp 5′UTR.

在一个实施方案中,该方法包括将至少一个突变引入到优选内源性的NRT2.3启动子中。如本文所用,“启动子”涵盖ATG上游1.5kbp的核酸序列(起始或起始密码子)。如本文所用,术语“启动子”包括NRT2.3a和NRT2.3b基因的5'UTR(非翻译区)。在一个实施方案中,突变在NRT2.3a启动子中。在备选实施方案中,突变位于NRT2.3b基因的5'UTR中。In one embodiment, the method includes introducing at least one mutation into a preferably endogenous NRT2.3 promoter. As used herein, "promoter" encompasses a nucleic acid sequence (start or start codon) of 1.5 kbp upstream of the ATG. As used herein, the term "promoter" includes the 5'UTR (untranslated region) of NRT2.3a and NRT2.3b genes. In one embodiment, the mutation is in the NRT2.3a promoter. In an alternative embodiment, the mutation is located in the 5'UTR of the NRT2.3b gene.

在另一个实施方案中,NRT2.3启动子包含TATA-盒。更优选地,NRT2.3启动子包含SEQ ID NO:1或其功能变体。在另一个实施方案中,NRT2.3启动子包含SEQ ID NO:9或其功能变体。In another embodiment, the NRT2.3 promoter comprises a TATA-box. More preferably, the NRT2.3 promoter comprises SEQ ID NO: 1 or a functional variant thereof. In another embodiment, the NRT2.3 promoter comprises SEQ ID NO: 9 or a functional variant thereof.

在进一步优选的实施方案中,该突变影响NRT2.3基因的剪接,特别是该突变增加了NRT2.3b与NRT2.3a的相对表达。与野生型植物相比,所述相对表达的增加是至少2倍,更优选至少4倍,更优选至少6倍,甚至更优选至少8倍。在备选实施方案中,与野生型植物中的表达水平相比,突变使NRT2.3b的表达增加至少5倍,更优选6倍,甚至更优选7倍。在进一步优选的实施方案中,突变在SEQ ID NO:1或其变体中。在一个实施方案中,NRT2.3b在植物的茎干中的表达增加和/或NRT2.3a在植物根部的表达减少。In a further preferred embodiment, the mutation affects the splicing of the NRT2.3 gene, in particular the mutation increases the relative expression of NRT2.3b to NRT2.3a. Compared to wild-type plants, the increase in relative expression is at least 2 times, more preferably at least 4 times, more preferably at least 6 times, even more preferably at least 8 times. In an alternative embodiment, the mutation increases the expression of NRT2.3b by at least 5 times, more preferably 6 times, even more preferably 7 times, compared to the expression level in wild-type plants. In a further preferred embodiment, the mutation is in SEQ ID NO:1 or a variant thereof. In one embodiment, the expression of NRT2.3b in the stem of a plant is increased and/or the expression of NRT2.3a in the root of a plant is reduced.

在进一步的实施方案中,突变在TATA-盒中,更优选在SEQ ID NO:9或其功能变体中。In a further embodiment, the mutation is in the TATA-box, more preferably in SEQ ID NO: 9 or a functional variant thereof.

在上述实施方案中,“内源性”核酸可以指植物基因组中的天然或天然序列。在一个实施方案中,NRT2.3启动子的序列包含如SEQ ID NO:1中定义的核酸序列或由其组成,其是NRT2.3b基因的5'UTR或其功能变体。In the above embodiments, "endogenous" nucleic acid may refer to a native or natural sequence in a plant genome. In one embodiment, the sequence of the NRT2.3 promoter comprises or consists of a nucleic acid sequence as defined in SEQ ID NO: 1, which is the 5'UTR of the NRT2.3b gene or a functional variant thereof.

如本文中参照SEQ ID NO:1至8中的任一个所使用的术语“核酸序列的功能变体”是指保留完整非变体序列的生物学功能的变体基因序列或该基因序列的一部分。在SEQ IDNO.1至4的上下文中,这可能意指该序列能够启动或以其他方式导致NRT2.3基因的转录。The term "functional variant of a nucleic acid sequence" as used herein with reference to any one of SEQ ID NO: 1 to 8 refers to a variant gene sequence or a portion of the gene sequence that retains the biological function of the complete non-variant sequence. In the context of SEQ ID NO. 1 to 4, this may mean that the sequence is capable of initiating or otherwise causing transcription of the NRT2.3 gene.

功能变体(或“变体”-此类术语可互换使用)还包括目标基因的变体,其具有不影响功能的序列改变,例如在非保守残基中。还包括与本文所示的野生型序列相比基本上相同的变体,即仅具有一些序列变异,例如在非保守残基中,并且具有生物活性。所提出的每个修饰都在本领域的常规技术范围内,编码产物的生物活性保留的确定也是如此。Functional variants (or "variants" - such terms are used interchangeably) also include variants of the target gene that have sequence changes that do not affect function, such as in non-conservative residues. Also included are variants that are substantially identical to the wild-type sequence shown herein, i.e., have only some sequence variations, such as in non-conservative residues, and have biological activity. Each modification proposed is within the routine technical scope of the art, as is the determination of retention of biological activity of the encoded product.

如在本文描述的本发明的任何方面中使用的,“变体”或“功能变体”与非变异核酸或氨基酸序列具有至少25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%、50%、51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或至少99%整体序列同一性。As used in any aspect of the invention described herein, a "variant" or "functional variant" has at least 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57% or more of a similar nucleic acid or amino acid sequence to a non-variant nucleic acid or amino acid sequence. 94%, 95%, 96%, 97%, 98%, or at least 99% overall sequence identity.

如果两个序列中的核苷酸序列在如下所述的最大对应性比对时相同,则称两个核酸序列是“相同的”。在两个或更多个核酸的上下文中,术语“相同”或“同一性百分比”是指在使用以下序列比较算法之一或通过手动对齐和目视检查来测量,在比较窗口上比较和对齐最大对应性时,两个或更多个序列或子序列相同或具有特定百分比的相同核苷酸。当序列在保守取代方面不同时,可以向上调整序列同一性百分比以校正取代的保守性质。进行这种调整的手段是本领域技术人员公知的。对于序列比较,通常一个序列充当参考序列,与测试序列进行比较。当使用序列比较算法时,将测试和参考序列输入计算机,必要时指定子序列坐标,并指定序列算法程序参数。可以使用默认程序参数,或者可以指定替代参数。然后,序列比较算法基于程序参数计算测试序列相对于参考序列的序列同一性百分比。适用于确定序列同一性百分比和序列相似性的算法的非限制性实例是BLAST和BLAST 2.0算法。If the nucleotide sequences in the two sequences are identical when the maximum correspondence is compared as described below, the two nucleic acid sequences are said to be "identical". In the context of two or more nucleic acids, the term "identical" or "percent identity" refers to two or more sequences or subsequences that are identical or have a specific percentage of identical nucleotides when comparing and aligning the maximum correspondence on a comparison window using one of the following sequence comparison algorithms or measured by manual alignment and visual inspection. When the sequences are different in conservative substitutions, the percentage of sequence identity can be adjusted upward to correct the conservative nature of the substitution. The means for making such adjustments are well known to those skilled in the art. For sequence comparison, usually one sequence serves as a reference sequence and is compared with a test sequence. When a sequence comparison algorithm is used, the test and reference sequences are input into a computer, subsequence coordinates are specified if necessary, and sequence algorithm program parameters are specified. Default program parameters can be used, or alternative parameters can be specified. Then, the sequence comparison algorithm calculates the percentage of sequence identity of the test sequence relative to the reference sequence based on the program parameters. Non-limiting examples of algorithms suitable for determining percentage of sequence identity and sequence similarity are BLAST and BLAST 2.0 algorithms.

在进一步的实施方案中,本文所用的变体可包含编码本文定义的NRT2.3启动子的核酸序列,其能够在本文定义的严格条件下与SEQ ID NO:1定义的核酸序列杂交。In a further embodiment, the variant used herein may comprise a nucleic acid sequence encoding a NRT2.3 promoter as defined herein, which is capable of hybridizing to a nucleic acid sequence defined by SEQ ID NO: 1 under stringent conditions as defined herein.

“严格条件”或“严格杂交条件”是指探针与其靶序列杂交达到比与其他序列杂交可检测的更高的程度(例如,至少比背景高2倍)的条件。严格条件取决于序列,并且在不同情况下会有所不同。通过控制杂交和/或洗涤条件的严格性,可以鉴定与探针100%互补的靶序列(同源探测)。"Stringent conditions" or "stringent hybridization conditions" refer to conditions under which a probe hybridizes to its target sequence to a detectably higher degree than hybridization to other sequences (e.g., at least 2-fold above background). Stringent conditions are sequence dependent and will be different in different circumstances. By controlling the stringency of hybridization and/or washing conditions, a target sequence that is 100% complementary to the probe can be identified (homologous probing).

或者,可以调整严格条件以允许序列中的一些错配,从而检测到较低程度的相似性(异源探测)。通常,严格条件是在pH 7.0至8.3盐浓度小于约1.5M Na离子,通常约0.01至1.0M Na离子浓度(或其他盐)以及对于短探针(例如,10到50个核苷酸)温度至少约30℃的条件和对于长探针(例如,大于50个核苷酸)至少约60℃。杂交持续时间一般少于约24小时,通常约4至12小时。通过添加去稳定剂例如甲酰胺也可以达到严格的条件。Alternatively, stringent conditions can be adjusted to allow for some mismatches in the sequence, thereby detecting a lower degree of similarity (heterologous probing). Typically, stringent conditions are conditions at a salt concentration of less than about 1.5 M Na ions, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and a temperature of at least about 30° C. for short probes (e.g., 10 to 50 nucleotides) and at least about 60° C. for long probes (e.g., greater than 50 nucleotides). The duration of hybridization is generally less than about 24 hours, typically about 4 to 12 hours. Stringent conditions can also be achieved by adding destabilizing agents such as formamide.

在一个实施方案中,被引入其NRT2.3启动子的突变可以选自以下突变类型:In one embodiment, the mutation introduced into its NRT2.3 promoter can be selected from the following mutation types:

1.一个或多个核苷酸的“插入突变”;1. "Insertion mutation" of one or more nucleotides;

2.一个或多个核苷酸的“缺失突变”;2. "Deletion mutation" of one or more nucleotides;

3.“取代突变”,导致至少一个核苷酸被至少一个不同的核苷酸取代。3. "Substitution mutation", resulting in the replacement of at least one nucleotide by at least one different nucleotide.

4.“倒置”突变,即核酸序列的一百八十度旋转。4. "Inversion" mutation, which is a 180-degree rotation of the nucleic acid sequence.

在一个实施方案中,突变是NRT2.3启动子中至少一个核苷酸的缺失,其中优选地,NRT2.3启动子包含SEQ ID NO:1或其功能变体或由其组成。在优选的实施方案中,突变是SEQ ID NO:1的5'端缺失至少一个核苷酸。更优选地,突变是SEQ ID NO:1的5'端缺失至少前10、20、30、40、50、60、70、80、90、100、110或120个核苷酸。在更优选的实施方案中,突变是SEQ ID NO:1的5'端至少前50个,更优选前60个,以及甚至更优选前62个核苷酸缺失。在备选实施方案中,突变是SEQ ID NO:1的5'端的前90个,更优选前100个,以及甚至更优选前101个核苷酸的缺失。在备选实施方案中,突变是SEQ ID NO:1中SEQ ID NO:6或7的缺失。In one embodiment, the mutation is the deletion of at least one nucleotide in the NRT2.3 promoter, wherein preferably, the NRT2.3 promoter comprises SEQ ID NO:1 or its functional variant or consists of it. In a preferred embodiment, the mutation is the deletion of at least one nucleotide at the 5' end of SEQ ID NO:1. More preferably, the mutation is the deletion of at least the first 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110 or 120 nucleotides at the 5' end of SEQ ID NO:1. In a more preferred embodiment, the mutation is the deletion of at least the first 50, more preferably the first 60, and even more preferably the first 62 nucleotides at the 5' end of SEQ ID NO:1. In an alternative embodiment, the mutation is the deletion of the first 90, more preferably the first 100, and even more preferably the first 101 nucleotides at the 5' end of SEQ ID NO:1. In an alternative embodiment, the mutation is the deletion of SEQ ID NO:6 or 7 in SEQ ID NO:1.

在进一步的实施方案中,突变是在SEQ ID NO:1的位置160处(这在本文中也可以被称为相对于NRT2.3基因的ATG起始密码子在位置-83处的突变)、SEQ ID NO:1的位置201处(这在本文中也可称为位置-42)和/或SEQ ID NO:1的位置222处(同样,在本文中可称位置为-21)的至少一个核苷酸的取代。在位置-83(相对于ATG起始密码子),有两个假定的基序,命名为OSE2ROOTNODULE(-82bp到-86bp)(SEQ ID NO:10)和ASF1MOTIFCAMV(-76bp到-83bp)(SEQ ID NO:11)。我们认为OSE2ROOTNODULE基序可能控制分蘖过程,并且ASF1MOTIFCAMV基序是抑制子结合基序。可能是突变系中该基序的基因抑制子结合功能的丧失导致这些系中观察到的表达比值的变化。In a further embodiment, the mutation is a substitution of at least one nucleotide at position 160 of SEQ ID NO: 1 (which may also be referred to herein as a mutation at position -83 relative to the ATG start codon of the NRT2.3 gene), position 201 of SEQ ID NO: 1 (which may also be referred to herein as position -42), and/or position 222 of SEQ ID NO: 1 (again, may be referred to herein as position -21). At position -83 (relative to the ATG start codon), there are two putative motifs, designated OSE2ROOTNODULE (-82 bp to -86 bp) (SEQ ID NO: 10) and ASF1MOTIFCAMV (-76 bp to -83 bp) (SEQ ID NO: 11). We believe that the OSE2ROOTNODULE motif may control the tillering process and that the ASF1MOTIFCAMV motif is a repressor binding motif. It is possible that the loss of the gene repressor binding function of this motif in the mutant lines leads to the changes in the expression ratios observed in these lines.

在进一步优选的实施方案中,取代可以如下:In a further preferred embodiment, the substitution may be as follows:

(SEQ ID NO:1的)位置160:T到C;Position 160 (of SEQ ID NO: 1): T to C;

(SEQ ID NO:1的)位置201:A到C;Position 201 (of SEQ ID NO: 1): A to C;

(SEQ ID NO:1的)位置222:T到C。Position 222 (of SEQ ID NO: 1): T to C.

在最优选的实施方案中,突变是在SEQ ID NO:1的位置160上的T到C取代。In a most preferred embodiment, the mutation is a T to C substitution at position 160 of SEQ ID NO:1.

在优选的实施方案中,至少一个突变是NRT2.3启动子的TATA-盒中至少一个核苷酸的取代、缺失和/或插入。在一个实施方案中,TATA-盒在SEQ ID NO:9或其变体中定义。因此,在一个实施方案中,突变影响转录因子或组蛋白与NRT2.3启动子的结合,并因此影响NRT2.3基因的转录。在优选的实施方案中,突变改变了TATA-盒结合因子如TBP2.1的结合能力,这也影响了NRT2.3基因的表达。In a preferred embodiment, at least one mutation is a substitution, deletion and/or insertion of at least one nucleotide in the TATA-box of the NRT2.3 promoter. In one embodiment, the TATA-box is defined in SEQ ID NO:9 or a variant thereof. Thus, in one embodiment, the mutation affects the binding of a transcription factor or histone to the NRT2.3 promoter, and thus affects the transcription of the NRT2.3 gene. In a preferred embodiment, the mutation changes the binding ability of a TATA-box binding factor such as TBP2.1, which also affects the expression of the NRT2.3 gene.

在另一个实施方案中,突变是OSE2ROOTNODULE基序和/或ASF1MOTIFCAMV基序中至少一个核苷酸的取代、缺失和/或缺失。优选地,突变导致一种或两种基序的功能丧失或部分丧失。如上所述,我们认为OSE2ROOTNODULE基序可能参与分蘖的控制。我们还认为ASF1MOTIFCAMV基序是抑制子结合基序。在一个实施方案中,突变在ASF1MOTIFCAMV基序中并阻止或降低其抑制子结合的能力。更优选地,OSE2ROOTNODULE基序在SEQ ID NO:10或其变体中定义,ASF1MOTIFCAMV基序在SEQ ID NO:11或其变体中定义。本文定义了变体。In another embodiment, the mutation is a substitution, deletion and/or deletion of at least one nucleotide in the OSE2ROOTNODULE motif and/or the ASF1MOTIFCAMV motif. Preferably, the mutation results in a loss of function or partial loss of one or both motifs. As described above, we believe that the OSE2ROOTNODULE motif may be involved in the control of tillering. We also believe that the ASF1MOTIFCAMV motif is a repressor binding motif. In one embodiment, the mutation is in the ASF1MOTIFCAMV motif and prevents or reduces its ability to repressor bind. More preferably, the OSE2ROOTNODULE motif is defined in SEQ ID NO: 10 or a variant thereof and the ASF1MOTIFCAMV motif is defined in SEQ ID NO: 11 or a variant thereof. Variants are defined herein.

在优选的实施方案中,突变是TATA-盒中至少一个核苷酸的取代。甚至更优选地,突变是在SEQ ID NO:9的位置12处的取代。在一个实施方案中,取代是T到C的取代。In a preferred embodiment, the mutation is a substitution of at least one nucleotide in the TATA-box. Even more preferably, the mutation is a substitution at position 12 of SEQ ID NO: 9. In one embodiment, the substitution is a T to C substitution.

还包括其他主要变化,例如去除启动子或增强子功能区域的缺失,因为这些会影响NRT2基因的剪接。例如,突变可能导致TATA-盒的缺失。换言之,SEQ ID NO:9的缺失。Other major changes are also included, such as deletions that remove promoter or enhancer functional regions, as these can affect the splicing of the NRT2 gene. For example, a mutation may result in the deletion of the TATA-box. In other words, the deletion of SEQ ID NO:9.

在一个实施方案中,使用诱变或靶向基因组编辑引入突变。即,在一个实施方案中,本发明涉及方法和通过上述基因工程方法产生的植物,并且不涵盖天然存在的品种。In one embodiment, the mutations are introduced using mutagenesis or targeted genome editing. That is, in one embodiment, the present invention relates to methods and plants produced by the above-mentioned genetic engineering methods, and does not cover naturally occurring varieties.

靶向基因组修饰或靶向基因组编辑是一种基因组工程技术,它使用靶向DNA双链断裂(DSB)通过同源重组(HR)介导的重组事件来刺激基因组编辑。为了通过引入位点特异性DNA DSB实现有效的基因组编辑,可以使用四大类可定制的DNA结合蛋白:源自微生物移动遗传元件的大范围核酸酶、基于真核转录因子的ZF核酸酶、来自黄单胞菌属细菌的转录激活因子样效应子(TALE),以及来自II型细菌适应性免疫系统CRISPR(成簇的规则间隔短回文重复序列)的RNA指导的DNA核酸内切酶Cas9。大范围核酸酶、ZF和TALE蛋白都通过蛋白质-DNA相互作用识别特定的DNA序列。尽管大范围核酸酶整合了核酸酶和DNA结合结构域,但ZF和TALE蛋白由分别靶向DNA的3或1个核苷酸(nt)的单独模块组成。ZF和TALE可以以所需的组合组装并连接到FokI的核酸酶结构域,以将核酸水解活性导向特定的基因组位点。Targeted genome modification or targeted genome editing is a genome engineering technology that uses targeted DNA double-strand breaks (DSBs) to stimulate genome editing through homologous recombination (HR)-mediated recombination events. To achieve efficient genome editing by introducing site-specific DNA DSBs, four major classes of customizable DNA-binding proteins can be used: meganucleases derived from microbial mobile genetic elements, ZF nucleases based on eukaryotic transcription factors, transcription activator-like effectors (TALEs) from Xanthomonas bacteria, and RNA-guided DNA endonucleases Cas9 from the type II bacterial adaptive immune system CRISPR (clustered regularly interspaced short palindromic repeats). Meganucleases, ZFs, and TALE proteins all recognize specific DNA sequences through protein-DNA interactions. While meganucleases integrate nuclease and DNA binding domains, ZF and TALE proteins consist of separate modules that target 3 or 1 nucleotides (nt) of DNA, respectively. ZFs and TALEs can be assembled in desired combinations and attached to the nuclease domain of FokI to direct nucleic acid hydrolysis activity to specific genomic sites.

通过细菌III型分泌系统递送至宿主细胞后,TAL效应子进入细胞核,与宿主基因启动子中的效应子特异性序列结合并激活转录。它们的靶向特异性由串联的33-35个氨基酸重复序列的中心结构域决定。紧接着是20个氨基酸的单个截短重复。检查的大多数天然存在的TAL效应子具有12到27个完整重复。After delivery to host cells via the bacterial type III secretion system, TAL effectors enter the nucleus, bind to effector-specific sequences in the host gene promoter and activate transcription. Their targeting specificity is determined by a central domain of 33-35 amino acid repeats in tandem. This is followed by a single truncated repeat of 20 amino acids. Most naturally occurring TAL effectors examined have 12 to 27 complete repeats.

这些重复仅通过两个相邻的氨基酸,即它们的重复可变双残基(RVD)来区分。RVD决定TAL效应子将识别哪个单核苷酸:一个RVD对应一个核苷酸,四种最常见的RVD各自优先与四种碱基之一结合。天然发生的识别位点前面统一有TAL效应子活性所需的T。TAL效应子可以与FokI核酸酶的催化结构域融合以创建TAL效应子核酸酶(TALEN),从而在体内产生靶向DNA双链断裂(DSB)以进行基因组编辑。该技术在基因组编辑中的使用在本领域中有很好的描述,例如在US 8,440,431、US 8,440,432和US 8,450,471中。Cermak T等人描述了一组可与Golden Gate克隆方法一起使用以组装多个DNA片段的定制质粒。如其中所述,GoldenGate方法使用IIS型限制性内切核酸酶,其在其识别位点外切割以产生独特的4bp突出端。通过在同一反应混合物中消化和连接可加速克隆,因为正确的组装消除了酶识别位点。自定义TALEN或TAL效应子构建体的组装包括两个步骤:(i)将重复模块组装成1-10个重复的中间阵列和(ii)将中间阵列连接到骨架中以制备最终构建体。因此,使用本领域已知的技术可以设计靶向如本文所述的NRT2.3启动子序列的TAL效应子。These repeats are distinguished only by two adjacent amino acids, their repeat variable diresidues (RVDs). The RVD determines which single nucleotide the TAL effector will recognize: one RVD corresponds to one nucleotide, and the four most common RVDs each preferentially bind to one of the four bases. The naturally occurring recognition sites are uniformly preceded by a T required for TAL effector activity. TAL effectors can be fused to the catalytic domain of the FokI nuclease to create TAL effector nucleases (TALENs), thereby generating targeted DNA double-strand breaks (DSBs) in vivo for genome editing. The use of this technology in genome editing is well described in the art, for example in US 8,440,431, US 8,440,432, and US 8,450,471. Cermak T et al. describe a set of custom plasmids that can be used with the Golden Gate cloning method to assemble multiple DNA fragments. As described therein, the GoldenGate method uses a type IIS restriction endonuclease that cuts outside its recognition site to produce a unique 4bp overhang. Cloning can be accelerated by digestion and ligation in the same reaction mixture because correct assembly eliminates enzyme recognition sites. The assembly of a custom TALEN or TAL effector construct includes two steps: (i) assembling the repeat modules into an intermediate array of 1-10 repeats and (ii) ligating the intermediate array into a backbone to prepare the final construct. Thus, TAL effectors targeting the NRT2.3 promoter sequence as described herein can be designed using techniques known in the art.

可以根据本发明的各个方面使用的另一种基因组编辑方法是CRISPR。该技术在基因组编辑中的使用在本领域中也有很好的描述,例如在US8,697,359和本文引用的参考文献中。简而言之,CRISPR是一种微生物核酸酶系统,参与防御入侵的噬菌体和质粒。微生物宿主中的CRISPR基因座包含CRISPR相关(Cas)基因以及能够编程CRISPR介导的核酸裂解(sgRNA)特异性的非编码RNA元件的组合。已经在广泛的细菌宿主中鉴定了三种类型(I-III)的CRISPR系统。每个CRISPR基因座的一个关键特征是存在一系列重复序列(同向重复序列),其间由一小段非重复序列(间隔区)隔开。非编码CRISPR阵列在同向重复序列中被转录和切割成包含单个间隔区序列的短crRNA,这些序列将Cas核酸酶引导至靶标位点(原间隔区)。II型CRISPR是表征最充分的系统之一,它分四个连续步骤进行靶向DNA双链断裂。首先,从CRISPR基因座转录两个非编码RNA,pre-crRNA阵列和tracrRNA。其次,tracrRNA与pre-crRNA的重复区域杂交并介导pre-crRNA加工成包含单个间隔区序列的成熟crRNA。第三,成熟的crRNA:tracrRNA复合物通过在crRNA上的间隔区与靶标DNA上挨着原间隔区相邻基序(PAM)的原间隔区之间的沃森-克里克碱基配对将Cas9引导至靶标DNA,这是靶标识别的额外要求。最后,Cas9介导靶标DNA的切割,在原间隔区中产生双链断裂。Another genome editing method that can be used according to various aspects of the present invention is CRISPR. The use of this technology in genome editing is also well described in the art, such as in US8,697,359 and the references cited herein. In short, CRISPR is a microbial nuclease system that participates in the defense against invading phages and plasmids. The CRISPR locus in the microbial host contains a combination of CRISPR-related (Cas) genes and non-coding RNA elements that can program CRISPR-mediated nucleic acid cleavage (sgRNA) specificity. Three types (I-III) of CRISPR systems have been identified in a wide range of bacterial hosts. A key feature of each CRISPR locus is the presence of a series of repetitive sequences (direct repeats), separated by a short non-repetitive sequence (spacer). The non-coding CRISPR array is transcribed and cut into short crRNAs containing a single spacer sequence in the direct repeat sequence, which guide the Cas nuclease to the target site (protospacer). Type II CRISPR is one of the most fully characterized systems, which performs targeted DNA double-strand breaks in four consecutive steps. First, two non-coding RNAs, pre-crRNA array and tracrRNA, are transcribed from the CRISPR locus. Secondly, tracrRNA hybridizes with the repeat region of pre-crRNA and mediates the processing of pre-crRNA into mature crRNA containing a single spacer sequence. Third, the mature crRNA:tracrRNA complex guides Cas9 to the target DNA through Watson-Crick base pairing between the spacer on the crRNA and the original spacer adjacent to the original spacer motif (PAM) on the target DNA, which is an additional requirement for target identification. Finally, Cas9 mediates the cutting of the target DNA, producing double-strand breaks in the original spacer.

与传统的基因靶向和其他可编程核酸内切酶相比,CRISPR-Cas9系统的一个主要优点是易于多重化,只需使用多个sgRNA,每个sgRNA都靶向不同的基因,即可同时突变多个基因。此外,如果在基因组区域的侧翼使用了两个sgRNA,则可以缺失或倒置中间部分。A major advantage of the CRISPR-Cas9 system over traditional gene targeting and other programmable endonucleases is the ease of multiplexing, which allows multiple genes to be mutated simultaneously by using multiple sgRNAs, each targeting a different gene. In addition, if two sgRNAs are used to flank a genomic region, the middle portion can be deleted or inverted.

因此,Cas9是II型CRISPR-Cas系统的标志性蛋白质,并且是一种大型单体DNA核酸酶,由两个非编码RNA的复合物引导至与PAM(原间隔区相邻基序)序列基序相邻的DNA靶序列:CRISPR RNA(crRNA)和反式激活crRNA(tracrRNA)。Cas9蛋白包含两个与RuvC和HNH核酸酶同源的核酸酶结构域。HNH核酸酶结构域切割互补DNA链,而RuvC样结构域切割非互补链,因此,在靶标DNA中引入了钝切割。Cas9与sgRNA的异源表达可以将位点特异性双链断裂(DSB)引入来自各种生物体的活细胞的基因组DNA。对于真核生物中的应用,已经使用了密码子优化版本的Cas9,它最初来自细菌酿脓链球菌。Cas9 is thus the hallmark protein of the type II CRISPR-Cas system and is a large monomeric DNA nuclease that is guided to a DNA target sequence adjacent to a PAM (protospacer adjacent motif) sequence motif by a complex of two noncoding RNAs: CRISPR RNA (crRNA) and trans-activating crRNA (tracrRNA). The Cas9 protein contains two nuclease domains homologous to RuvC and HNH nucleases. The HNH nuclease domain cleaves the complementary DNA strand, while the RuvC-like domain cleaves the non-complementary strand, thus, introducing blunt cuts in the target DNA. Heterologous expression of Cas9 with sgRNA can introduce site-specific double-strand breaks (DSBs) into genomic DNA of living cells from various organisms. For applications in eukaryotes, a codon-optimized version of Cas9, originally from the bacterium Streptococcus pyogenes, has been used.

单指导RNA(sgRNA)是CRISPR/Cas系统的第二个组件,它与Cas9核酸酶形成复合物。sgRNA是通过将crRNA与tracrRNA融合而产生的合成RNA嵌合体。位于其5'端的sgRNA引导序列赋予DNA靶标特异性。因此,通过修改引导序列,可以创建具有不同靶标特异性的sgRNA。引导序列的标准长度为20bp。在植物中,sgRNA已经使用植物RNA聚合酶III启动子表达,例如U6和U3。因此,使用本领域已知的技术可以设计靶向如本文所述的NRT2.3启动子序列的sgRNA分子。Single guide RNA (sgRNA) is the second component of the CRISPR/Cas system, which forms a complex with the Cas9 nuclease. sgRNA is a synthetic RNA chimera produced by fusing crRNA with tracrRNA. The sgRNA guide sequence located at its 5' end confers DNA target specificity. Therefore, by modifying the guide sequence, sgRNAs with different target specificities can be created. The standard length of the guide sequence is 20bp. In plants, sgRNAs have been expressed using plant RNA polymerase III promoters, such as U6 and U3. Therefore, sgRNA molecules targeting the NRT2.3 promoter sequence as described herein can be designed using techniques known in the art.

用于本发明方法的Cas9表达质粒可以如本领域中所述构建。The Cas9 expression plasmid used in the methods of the present invention can be constructed as described in the art.

或者,可以使用更常规的诱变方法将至少一个突变引入到NRT2.3启动子序列中。这些方法包括物理诱变和化学诱变。技术人员将知晓可以使用其他方法来产生此类突变体,并且用于诱变和多核苷酸改变的方法是本领域众所周知的。参见,例如,Kunkel(1985)Proc.Natl.Acad.Sci.USA82:488-492;Kunkel等人,(1987)Methods in Enzymol.154:367-382;美国专利号4,873,192;Walker和Gaastra编辑(1983)Techniques in MolecularBiology(MacMillan Publishing Company,New York)和其中引用的参考文献。Alternatively, more conventional mutagenesis methods can be used to introduce at least one mutation into the NRT2.3 promoter sequence. These methods include physical mutagenesis and chemical mutagenesis. The skilled person will know that other methods can be used to produce such mutants, and methods for mutagenesis and polynucleotide changes are well known in the art. See, for example, Kunkel (1985) Proc. Natl. Acad. Sci. USA 82: 488-492; Kunkel et al., (1987) Methods in Enzymol. 154: 367-382; U.S. Patent No. 4,873,192; Walker and Gaastra, ed. (1983) Techniques in Molecular Biology (MacMillan Publishing Company, New York) and references cited therein.

在一个实施方案中,使用插入诱变,例如使用T-DNA诱变(其将来自根癌农杆菌T-质粒的T-DNA片段插入到DNA中,导致基因功能丧失或基因功能突变获得)、定点核酸酶(SDN)或转座子作为诱变剂。插入诱变是破坏基因功能的另一种方法,它基于将外源DNA插入目标基因中(参见Krysan等人,The Plant Cell,第11卷,2283-2290,1999年12月)。因此,在一个实施方案中,T-DNA用作插入诱变剂以破坏NRT2.3启动子的活性。在一个实例中,T-DNA可以插入到SEQ ID NO:1或其功能变体中。T-DNA不仅会破坏插入它的基因的表达,而且还可以作为随后识别突变的标记。由于插入元件的序列是已知的,因此可以使用各种克隆或基于PCR的策略恢复发生插入的基因。插入一段长度为5至25kb级别的T-DNA通常会破坏基因功能。如果产生了足够多的T-DNA转化系,则很有可能在任何目标基因中找到携带T-DNA插入的转基因植物。用T-DNA转化孢子是通过农杆菌介导的方法实现的,其中包括将植物细胞和组织暴露于农杆菌细胞悬浮液中。In one embodiment, insertion mutagenesis is used, for example, T-DNA mutagenesis (which inserts a T-DNA fragment from the T-plasmid of Agrobacterium tumefaciens into DNA, resulting in loss of gene function or acquisition of gene function mutation), site-directed nuclease (SDN) or transposon as a mutagen. Insertion mutagenesis is another method of destroying gene function, which is based on inserting exogenous DNA into the target gene (see Krysan et al., The Plant Cell, Vol. 11, 2283-2290, December 1999). Therefore, in one embodiment, T-DNA is used as an insertion mutagen to destroy the activity of the NRT2.3 promoter. In an example, T-DNA can be inserted into SEQ ID NO:1 or its functional variants. T-DNA not only destroys the expression of the gene inserted into it, but also can be used as a marker for subsequent identification of mutations. Since the sequence of the inserted element is known, various clones or PCR-based strategies can be used to restore the gene inserted. Inserting a length of 5 to 25kb level T-DNA usually destroys gene function. If enough T-DNA transformed lines are generated, there is a high probability of finding transgenic plants carrying T-DNA insertions in any gene of interest. Transformation of spores with T-DNA is achieved by the Agrobacterium-mediated method, which involves exposing plant cells and tissues to a suspension of Agrobacterium cells.

该方法的细节是技术人员众所周知的。简而言之,通过农杆菌对植物的转化导致被称为T-DNA的序列整合到核基因组中,该序列由细菌质粒携带。T-DNA转化的使用导致稳定的单次插入。对所得转化系的进一步突变分析很简单,每个单独的插入系都可以通过直接测序和分析插入侧翼的DNA来快速表征。将突变体中NRT2.3b的基因表达或NRT2.3a与NRT2.3b的相对表达与野生型植物中的表达进行比较。还进行了表型分析。The details of this method are well known to technicians. In short, the transformation of plants by Agrobacterium results in the integration of a sequence known as T-DNA into the nuclear genome, which is carried by a bacterial plasmid. The use of T-DNA transformation results in a stable single insertion. Further mutation analysis of the resulting transformed lines is simple, and each individual insertion line can be quickly characterized by direct sequencing and analysis of the DNA inserted flanking. The gene expression of NRT2.3b in the mutant or the relative expression of NRT2.3a and NRT2.3b is compared with that in wild-type plants. Phenotypic analysis was also performed.

在另一个实施方案中,诱变是物理诱变,例如应用紫外线辐射、X射线、伽马射线、快或热中子或质子。然后可以筛选靶标群体以鉴定在NRT2.3启动子中具有突变的突变体,优选在SEQ ID NO:1或其变体中的突变。In another embodiment, the mutagenesis is physical mutagenesis, such as the application of ultraviolet radiation, X-rays, gamma rays, fast or thermal neutrons or protons.The target population can then be screened to identify mutants having a mutation in the NRT2.3 promoter, preferably a mutation in SEQ ID NO: 1 or a variant thereof.

在本发明各个方面的另一个实施方案中,该方法包括用诱变剂诱变植物种群。诱变剂可以是快中子辐射或化学诱变剂,例如选自以下非限制性列表:甲磺酸乙酯(EMS)、甲磺酸甲酯(MMS)、N-乙基-N-亚硝基脲(ENU)、三乙基三聚氰胺(1'EM)、N-甲基-N-亚硝基脲(MNU)、丙卡巴肼、苯丁酸氮芥、环磷酰胺、硫酸二乙酯、丙烯酰胺单体、美法仑、氮芥、长春新碱、二甲基亚硝胺、N-甲基-N'-硝基-亚硝基胍(MNNG)、亚硝基胍、2-氨基嘌呤、7,12二甲基苯并(a)蒽(DMBA)、环氧乙烷、六甲基磷酰胺、双硫烷、二环氧烷烃(二环氧辛烷(DEO)、二环氧丁烷(BEB)等)、2-甲氧基-6-氯-9[3-(乙基-2-氯乙基)氨基丙氨基]吖啶二盐酸盐(ICR-170)或甲醛。再次,然后可以筛选靶标群体以鉴定NRT2.3启动子突变体。In another embodiment of the various aspects of the invention, the method comprises mutagenizing the plant population with a mutagen. The mutagen can be fast neutron radiation or a chemical mutagen, for example, selected from the following non-limiting list: ethyl methanesulfonate (EMS), methyl methanesulfonate (MMS), N-ethyl-N-nitrosourea (ENU), triethylmelamine (EM), N-methyl-N-nitrosourea (MNU), procarbazine, chlorambucil, cyclophosphamide, diethyl sulfate, acrylamide monomer, melphalan, nitrogen mustard, vincristine, dimethylnitrosamine, N-methyl-N'-nitro-nitrosoguanidine (MNNG), nitrosoguanidine, 2-aminopurine, 7,12 dimethylbenz (a) anthracene (DMBA), ethylene oxide, hexamethylphosphoramide, disulfane, diepoxyalkanes (diepoxyoctane (DEO), diepoxybutane (BEB), etc.), 2-methoxy-6-chloro-9 [3- (ethyl-2-chloroethyl) aminopropylamino] acridine dihydrochloride (ICR-170) or formaldehyde. Again, the target population can then be screened to identify NRT2.3 promoter mutants.

在另一个实施方案中,用于产生和分析突变的方法是靶向基因组中诱导的局部损伤(TILLING),在Henikoff等人,2004中综述。在该方法中,用化学诱变剂例如EMS诱变种子。由此产生的M1植物是自体受精的,M2代个体用于制备用于突变筛选的DNA样品。DNA样品汇集并排列在微量滴定板上,并进行基因特异性PCR。可以使用鉴定野生型和突变基因之间的异源双链体的任何方法来筛选PCR扩增产物的NRT2.3启动子突变。例如,但不限于,变性高压液相色谱(dHPLC)、恒定变性毛细管电泳(CDCE)、温度梯度毛细管电泳(TGCE),或通过使用化学切割的片段化。优选地,将PCR扩增产物与优先切割野生型和突变体序列之间的异源双链体中的错配的核酸内切酶一起孵育。使用自动测序凝胶装置对切割产物进行电泳,并在标准商业图像处理程序的帮助下分析凝胶图像。任何对NRT2.3启动子序列特异的引物均可用于扩增在合并的DNA样品中的NRT2.3启动子序列。优选地,引物被设计为扩增最有可能出现有用突变的NRT2.3启动子区域,特别是在高度保守和/或赋予活性的NRT2.3启动子区域,如别处所述。为了便于在凝胶上检测PCR产物,可以使用任何常规标记方法标记PCR引物。在备选实施方案中,用于产生和分析突变的方法是EcoTILLING。EcoTILLING是一种类似于TILLING的分子技术,不同之处在于它的目标是揭示给定种群的自然变异,而不是诱导突变。在Comai等人2004中描述了EcoTILLING方法的首次公开。In another embodiment, the method for generating and analyzing mutations is targeted local damage induced in the genome (TILLING), which is reviewed in Henikoff et al., 2004. In this method, seeds are induced with chemical mutagens such as EMS. The resulting M1 plants are self-fertilized, and the M2 generation individuals are used to prepare DNA samples for mutation screening. The DNA samples are collected and arranged on microtiter plates, and gene-specific PCR is performed. Any method for identifying heteroduplexes between wild-type and mutant genes can be used to screen NRT2.3 promoter mutations of PCR amplification products. For example, but not limited to, denaturing high pressure liquid chromatography (dHPLC), constant denaturing capillary electrophoresis (CDCE), temperature gradient capillary electrophoresis (TGCE), or by using chemical cutting fragmentation. Preferably, the PCR amplification product is incubated with a nuclease that preferentially cuts the mismatch in the heteroduplex between the wild-type and mutant sequences. The cleavage product is electrophoresed using an automatic sequencing gel device, and the gel image is analyzed with the help of a standard commercial image processing program. Any primer specific for the NRT2.3 promoter sequence can be used to amplify the NRT2.3 promoter sequence in the combined DNA sample. Preferably, the primers are designed to amplify the NRT2.3 promoter region where useful mutations are most likely to occur, particularly in the NRT2.3 promoter region that is highly conserved and/or confers activity, as described elsewhere. To facilitate detection of PCR products on gels, the PCR primers can be labeled using any conventional labeling method. In an alternative embodiment, the method for generating and analyzing mutations is EcoTILLING. EcoTILLING is a molecular technique similar to TILLING, except that its goal is to reveal the natural variation in a given population rather than inducing mutations. The first disclosure of the EcoTILLING method was described in Comai et al. 2004.

快速高通量筛选程序允许分析扩增产物以鉴定NRT2.3启动子中的突变,特别是与相应的未诱变的野生型植物相比的SEQ ID NO:1中的突变。一旦鉴定出突变,携带该突变的M2植物的种子就生长成成年M3植物并筛选与本文所述的NRT2.3启动子中的突变相关的表型特征。Rapid high throughput screening procedures allow analysis of amplification products to identify mutations in the NRT2.3 promoter, particularly mutations in SEQ ID NO: 1 compared to corresponding non-mutagenized wild type plants. Once a mutation is identified, seeds from M2 plants carrying the mutation are grown into adult M3 plants and screened for phenotypic characteristics associated with the mutations in the NRT2.3 promoter described herein.

在内源性NRT2.3启动子中,特别是在SEQ ID NO:1或9或其变体中携带突变的或可通过此类方法获得的植物也在本发明的范围内。Plants carrying mutations in the endogenous NRT2.3 promoter, in particular in SEQ ID NO: 1 or 9 or variants thereof or obtainable by such a method are also within the scope of the present invention.

因此,本发明的方面涉及靶向诱变方法,特别是基因组编辑,并且在优选实施方案中排除仅基于通过传统育种方法产生植物的实施方案。Thus, aspects of the present invention relate to targeted mutagenesis methods, in particular genome editing, and in preferred embodiments exclude embodiments based solely on the generation of plants by traditional breeding methods.

在本发明的另一方面,提供了改变NRT2.3基因剪接和/或增加NRT2.3b与NRT2.3a的相对表达和/或增加NRT2.3b的表达和/或降低NRT2.3a的表达的方法,该方法包括将至少一个突变引入编码NRT2.3启动子的核酸序列,如本文所述。In another aspect of the present invention, a method for altering NRT2.3 gene splicing and/or increasing the relative expression of NRT2.3b and NRT2.3a and/or increasing the expression of NRT2.3b and/or decreasing the expression of NRT2.3a is provided, the method comprising introducing at least one mutation into a nucleic acid sequence encoding the NRT2.3 promoter, as described herein.

在本发明的另一方面,提供了增加植物的产量、生物量、氮利用效率(NUE)、氮转运和/或氮含量的方法,该方法包括引入并表达核酸构建体,所述核酸构建体包含编码TATA结合蛋白(TBP),优选TBP2.1的核酸序列。在一个实施方案中,核酸序列编码如SEQ ID NO:32中定义的TBP2.1蛋白或其功能变体。在进一步的实施方案中,TBP2.1核酸包含SEQ ID NO:33或其功能变体或由其组成。在另一个实施方案中,核酸序列包含与编码TBP的核酸序列可操作地连接的调节序列。本发明还包括特征在于与野生型植物相比NRT2.3b表达水平增加的转基因植物,其中该植物表达上述核酸构建体。In another aspect of the present invention, a method for increasing the yield, biomass, nitrogen utilization efficiency (NUE), nitrogen transport and/or nitrogen content of a plant is provided, the method comprising introducing and expressing a nucleic acid construct comprising a nucleic acid sequence encoding a TATA binding protein (TBP), preferably TBP2.1. In one embodiment, the nucleic acid sequence encodes a TBP2.1 protein as defined in SEQ ID NO:32 or a functional variant thereof. In a further embodiment, the TBP2.1 nucleic acid comprises or consists of SEQ ID NO:33 or a functional variant thereof. In another embodiment, the nucleic acid sequence comprises a regulatory sequence operably linked to a nucleic acid sequence encoding TBP. The present invention also includes a transgenic plant characterized in that the expression level of NRT2.3b is increased compared to a wild-type plant, wherein the plant expresses the above-mentioned nucleic acid construct.

遗传改变或修饰的植物以及生产此类植物的方法Genetically altered or modified plants and methods for producing such plants

在本发明的另一方面,提供了遗传改变的植物、其部分或植物细胞,其特征在于与野生型或对照植物相比,该植物具有增加的NRT2.3b与NRT2.3a的相对表达。在备选的实施方案中,所述植物的特征在于与野生型或对照植物相比,NRT2.3b表达增加。或者,该植物的特征在于与野生型或对照植物相比,NRT2.3a表达降低。优选地,所述增加或减少可是比野生型或对照植物中的表达水平高1倍、2倍、3倍、倍、5倍、6倍、7倍、8倍或9倍。或者,所述增加或减少可以是与野生型或对照植物水平相比高达或高于10%、20%、30%、40%、50%、60%、70%、80%或90%。In another aspect of the present invention, a genetically altered plant, part thereof or plant cell is provided, characterized in that the plant has increased relative expression of NRT2.3b to NRT2.3a compared to a wild-type or control plant. In an alternative embodiment, the plant is characterized in that NRT2.3b expression increases compared to a wild-type or control plant. Alternatively, the plant is characterized in that NRT2.3a expression decreases compared to a wild-type or control plant. Preferably, the increase or decrease may be 1 times, 2 times, 3 times, times, 5 times, 6 times, 7 times, 8 times or 9 times higher than the expression level in the wild-type or control plant. Alternatively, the increase or decrease may be up to or higher than 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90% compared to the wild-type or control plant level.

在本发明的另一方面,提供了遗传改变的植物、其部分或植物细胞,其中所述植物在NRT2.3基因上游的核酸序列中包含至少一个如上所述的突变。优选地,突变在NRT2.3b基因的5'UTR中。或者,突变在NRT2.3a启动子中。In another aspect of the invention, a genetically altered plant, part thereof or plant cell is provided, wherein the plant comprises at least one mutation as described above in a nucleic acid sequence upstream of the NRT2.3 gene. Preferably, the mutation is in the 5'UTR of the NRT2.3b gene. Alternatively, the mutation is in the NRT2.3a promoter.

在一个实施方案中,遗传改变的植物、其部分或植物细胞植物的特征在于产量、生物量、氮利用效率(NUE)、氮转运和/或氮含量中的至少一种的增加,如上所述。In one embodiment, the genetically altered plant, part thereof or plant cell plant is characterized by an increase in at least one of yield, biomass, nitrogen use efficiency (NUE), nitrogen transport and/or nitrogen content, as described above.

可以通过任何上述方法在NRT2.3b 5'UTR或NRT2.3a启动子序列中引入突变,优选缺失、插入和/或取代来产生植物。优选地,将所述突变引入至少一种植物细胞和从至少一个突变的植物细胞再生的植物中。Plants may be produced by introducing mutations, preferably deletions, insertions and/or substitutions, in the NRT2.3b 5'UTR or NRT2.3a promoter sequence by any of the above methods. Preferably, the mutation is introduced into at least one plant cell and a plant regenerated from at least one mutated plant cell.

在本发明的另一方面,提供了用于产生如本文所述的遗传改变的植物的方法。在一个实施方案中,该方法包括使用本文所述的任何诱变技术将至少一个突变引入优选至少一个植物细胞的NRT2.3b 5'UTR或NRT2.3a启动子中。优选地,所述方法还包括从突变的植物细胞再生植物。In another aspect of the invention, a method for producing a genetically altered plant as described herein is provided. In one embodiment, the method comprises introducing at least one mutation into the NRT2.3b 5'UTR or NRT2.3a promoter of preferably at least one plant cell using any mutagenesis technique described herein. Preferably, the method further comprises regenerating a plant from the mutated plant cell.

该方法还可包括选择一种或多种突变植物,优选用于进一步繁殖。优选地,所述选择的植物在NRT2.3b 5'UTR或NRT2.3a启动子中包含至少一个突变。在一个实施方案中,如本文所述,所述植物的特征在于NRT2.3b与NRT2.3a的相对表达增加、NRT2.3b水平增加和/或NRT2.3a表达减少,如本文所述。NRT2.3b 5'UTR或NRT2.3a启动子的表达水平可以通过技术人员已知的任何标准技术来测量。The method may further comprise selecting one or more mutant plants, preferably for further propagation. Preferably, the selected plants comprise at least one mutation in the NRT2.3b 5'UTR or the NRT2.3a promoter. In one embodiment, as described herein, the plant is characterized by an increase in the relative expression of NRT2.3b to NRT2.3a, an increase in the level of NRT2.3b, and/or a decrease in the expression of NRT2.3a, as described herein. The expression level of the NRT2.3b 5'UTR or the NRT2.3a promoter can be measured by any standard technique known to the skilled person.

选择的植物可以通过多种方式繁殖,例如通过克隆繁殖或经典育种技术。例如,可以使第一代(或T1)转化植物自交并选择纯合的第二代(或T2)转化体,然后可以通过经典育种技术进一步繁殖T2植物。产生的转化生物可以采取多种形式。例如,它们可以是转化细胞和非转化细胞的嵌合体;克隆转化体(例如,所有细胞都转化为含有表达盒);转化和未转化的组织的移植物(例如,在植物中,将转化的砧木嫁接到未转化的幼枝上)。The selected plants can be propagated in a variety of ways, such as by clonal propagation or classical breeding techniques. For example, the first generation (or T1) transformed plants can be selfed and homozygous second generation (or T2) transformants can be selected, and then the T2 plants can be further propagated by classical breeding techniques. The transformed organisms produced can take a variety of forms. For example, they can be chimeras of transformed cells and non-transformed cells; clonal transformants (e.g., all cells are transformed to contain expression cassettes); grafts of transformed and untransformed tissues (e.g., in plants, transformed stock is grafted onto untransformed young branches).

在本发明的另一方面,提供了通过上述方法获得或可获得的植物。In another aspect of the present invention, there is provided a plant obtained or obtainable by the above method.

出于本发明的目的,“遗传改变的植物”或“突变植物”是与天然存在的野生型(WT)植物相比已经遗传改变的植物。在一个实施方案中,突变植物是使用诱变方法,例如本文所述的任何诱变方法,与天然存在的野生型(WT)植物相比已经发生改变的植物。在一个实施方案中,诱变方法是靶向基因组修饰或基因组编辑。在一个实施方案中,与野生型序列相比,植物基因组已使用诱变方法发生改变。此类植物具有如本文所述的改变的表型,例如增加的产量、生物量、NUE、氮转运和/或氮含量。因此,在这个实例中,增加的产量、生物量、NUE、氮转运和/或氮含量是由改变的植物基因组的存在赋予的,例如,突变的NRT2.3b 5'UTR或NRT2.3a启动子序列。在一个实施方案中,使用靶向基因组修饰特异性靶向内源启动子序列,并且突变基因或启动子序列的存在不是由植物中表达的转基因的存在赋予的。换句话说,遗传改变的植物可以被描述为不含转基因。For the purposes of the present invention, "genetically altered plants" or "mutant plants" are plants that have been genetically altered compared to naturally occurring wild-type (WT) plants. In one embodiment, mutant plants are plants that have been altered compared to naturally occurring wild-type (WT) plants using a mutagenesis method, such as any mutagenesis method described herein. In one embodiment, the mutagenesis method is targeted genome modification or genome editing. In one embodiment, the plant genome has been altered using a mutagenesis method compared to the wild-type sequence. Such plants have a phenotype of changes as described herein, such as increased yield, biomass, NUE, nitrogen transport and/or nitrogen content. Therefore, in this example, the increased yield, biomass, NUE, nitrogen transport and/or nitrogen content are conferred by the presence of the altered plant genome, for example, a mutated NRT2.3b 5'UTR or NRT2.3a promoter sequence. In one embodiment, an endogenous promoter sequence is specifically targeted using targeted genome modification, and the presence of a mutant gene or promoter sequence is not conferred by the presence of a transgene expressed in the plant. In other words, genetically altered plants can be described as being free of transgenes.

转基因植物Transgenic plants

如通篇所讨论的,本发明人已经令人惊讶地鉴定出突变NRT2.3启动子,特别是突变NRT2.3b基因(在SEQ ID NO:1中定义)的5'UTR会改变NRT2.3基因的剪接,导致NRT2.3b的表达或相对表达增加。As discussed throughout, the inventors have surprisingly identified that mutating the NRT2.3 promoter, and in particular mutating the 5'UTR of the NRT2.3b gene (defined in SEQ ID NO: 1), alters the splicing of the NRT2.3 gene, resulting in increased expression or relative expression of NRT2.3b.

因此,在野生型或对照植物中,与NRT2.3基因可操作地连接的突变启动子的过表达也将增加产量、生物量、氮利用效率(NUE)、氮转运和/或氮含量。Therefore, in wild-type or control plants, overexpression of a mutant promoter operably linked to a NRT2.3 gene will also increase yield, biomass, nitrogen use efficiency (NUE), nitrogen transport and/or nitrogen content.

因此,在本发明的另一方面,提供了核酸构建体,所述核酸构建体包含与NRT2.3基因序列可操作地连接的NRT2.3启动子序列,其中NRT2.3启动子序列选自包含SEQ ID NO:2、3、4或5或其功能变体的组。上面定义了功能变体。Therefore, in another aspect of the present invention, a nucleic acid construct is provided, comprising a NRT2.3 promoter sequence operably linked to a NRT2.3 gene sequence, wherein the NRT2.3 promoter sequence is selected from the group comprising SEQ ID NO: 2, 3, 4 or 5 or a functional variant thereof. Functional variants are defined above.

在一个实施方案中,NRT2.3基因序列包含SEQ ID NO:8或其功能变体。In one embodiment, the NRT2.3 gene sequence comprises SEQ ID NO: 8 or a functional variant thereof.

如本文所用,术语“可操作地连接”是指启动子序列和目标基因之间的功能性连接,使得启动子序列能够启动目标基因的转录。As used herein, the term "operably linked" refers to a functional connection between a promoter sequence and a target gene, such that the promoter sequence is able to initiate transcription of the target gene.

在本发明的另一方面,提供了包含上述核酸序列的载体。In another aspect of the present invention, a vector comprising the above nucleic acid sequence is provided.

在本发明的另一方面,提供了包含核酸构建体的宿主细胞。宿主细胞可以是细菌细胞,例如根癌农杆菌,或分离的植物细胞。本发明还涉及培养基或包含培养基和分离的宿主细胞的试剂盒,如下所述。In another aspect of the present invention, a host cell comprising a nucleic acid construct is provided. The host cell can be a bacterial cell, such as Agrobacterium tumefaciens, or an isolated plant cell. The present invention also relates to a culture medium or a kit comprising a culture medium and an isolated host cell, as described below.

在另一个实施方案中,提供了表达上述核酸构建体的转基因植物。在一个实施方案中,所述核酸构建体稳定地整合到植物基因组中。In another embodiment, a transgenic plant expressing the above nucleic acid construct is provided. In one embodiment, the nucleic acid construct is stably integrated into the plant genome.

通过称为转化的过程将核酸序列引入到所述植物中。The nucleic acid sequence is introduced into the plant by a process known as transformation.

植物转化现在是许多物种的常规技术。有利地,可以使用几种转化方法中的任一种将目标基因引入合适的祖先细胞。描述的用于从植物组织或植物细胞转化和再生植物的方法可用于瞬时或稳定转化。转化方法包括使用脂质体、电穿孔、增加游离DNA吸收的化学品、将DNA直接注射到植物中、粒子枪轰击、使用病毒或花粉进行转化以及微喷射。方法可以选自用于原生质体的钙/聚乙二醇方法、原生质体的电穿孔、显微注射到植物材料、DNA或RNA包被的粒子轰击、用(非整合)病毒感染等。转基因植物,包括转基因作物植物,优选通过根癌农杆菌介导的转化产生。Plant transformation is now a routine technique for many species. Advantageously, any of several transformation methods can be used to introduce the target gene into a suitable ancestral cell. The method described for transforming and regenerating plants from plant tissue or plant cells can be used for instantaneous or stable transformation. The transformation method includes using liposomes, electroporation, increasing chemicals absorbed by free DNA, injecting DNA directly into plants, particle gun bombardment, using viruses or pollen to transform and micro-injection. The method can be selected from the calcium/polyethylene glycol method for protoplasts, electroporation of protoplasts, microinjection to plant materials, DNA or RNA coated particle bombardment, infection with (non-integrated) viruses, etc. Transgenic plants, including transgenic crop plants, are preferably produced by transformation mediated by Agrobacterium tumefaciens.

为了选择转化植物,通常对转化中获得的植物材料进行选择性条件处理,以便将转化植物与未转化植物区分开。例如,可以种植以上述方式获得的种子,并在初始生长期后通过喷洒进行合适的选择。另一种可能性在于,如果合适的话,在灭菌后,使用合适的选择剂使种子在琼脂平板上生长,以便只有转化的种子才能长成植物。或者,筛选转化植物中是否存在选择标记,例如上述标记之一。在DNA转移和再生之后,还可以评估推定转化的植物,例如使用Southern分析,以确定是否存在目标基因、拷贝数和/或基因组组织。或者或另外,可使用Northern和/或Western分析监测新引入的DNA的表达水平,这两种技术为本领域普通技术人员所熟知。In order to select transformed plants, the plant material obtained in the conversion is usually subjected to selective condition treatment, so that transformed plants are distinguished from unconverted plants. For example, the seeds obtained in the above manner can be planted, and suitable selection is carried out by spraying after the initial growth period. Another possibility is that, if appropriate, after sterilization, a suitable selection agent is used to grow seeds on agar plates, so that only the seeds converted can grow into plants. Or, screening is performed to determine whether there is a selection marker, such as one of the above-mentioned markers, in the transformed plants. After DNA transfer and regeneration, the plant presumed to be converted can also be assessed, such as using Southern analysis, to determine whether there is a target gene, copy number and/or genomic organization. Or or in addition, Northern and/or Western analysis can be used to monitor the expression level of the newly introduced DNA, and these two technologies are well known to those of ordinary skill in the art.

产生的转化植物可以通过多种方式繁殖,例如通过克隆繁殖或经典育种技术。例如,可以使第一代(或T1)转化植物自交并选择纯合的第二代(或T2)转化体,然后可以通过经典育种技术进一步繁殖T2植物。产生的转化生物可以采取多种形式。例如,它们可以是转化细胞和非转化细胞的嵌合体;克隆转化体(例如,所有细胞都转化为含有表达盒);转化和未转化的组织的移植物(例如,在植物中,将转化的砧木嫁接到未转化的幼枝上)。The transformed plants produced can be propagated in a variety of ways, such as by clonal propagation or classical breeding techniques. For example, the first generation (or T1) transformed plants can be selfed and homozygous second generation (or T2) transformants can be selected, and then the T2 plants can be further propagated by classical breeding techniques. The transformed organisms produced can take a variety of forms. For example, they can be chimeras of transformed cells and non-transformed cells; clonal transformants (e.g., all cells are transformed to contain expression cassettes); grafts of transformed and untransformed tissues (e.g., in plants, transformed stock is grafted onto untransformed young branches).

除非另有说明,本文描述的本发明的各个方面清楚地扩展到通过本文描述的任何方法产生、获得或可获得的任何植物细胞或任何植物,以及所有植物部分及其繁殖体。本发明进一步扩展到包括通过任何上述方法产生的初级转化或转染细胞、组织、器官或完整植物的后代,唯一的要求是后代表现出如在根据本发明的方法中由亲本产生的那些相同的基因型和/或表型特征。Unless otherwise stated, the various aspects of the invention described herein clearly extend to any plant cell or any plant produced, obtained or obtainable by any method described herein, and all plant parts and propagules thereof. The invention further extends to include progeny of primary transformed or transfected cells, tissues, organs or whole plants produced by any of the above methods, the only requirement being that the progeny exhibit the same genotypic and/or phenotypic characteristics as those produced by the parent in the method according to the invention.

在另一方面,本发明涉及如本文所述的核酸构建体用于增加产量、生物量、氮利用效率(NUE)、氮转运和/或氮含量中的至少一种的应用。In another aspect, the present invention relates to the use of a nucleic acid construct as described herein for increasing at least one of yield, biomass, nitrogen use efficiency (NUE), nitrogen transport and/or nitrogen content.

在本发明的另一方面,提供了增加产量、生物量、氮利用效率(NUE)、氮转运和/或氮含量中的至少一种的方法,该方法包括在所述植物中引入并表达如本文所述的核酸构建体。In another aspect of the present invention, a method for increasing at least one of yield, biomass, nitrogen use efficiency (NUE), nitrogen transport and/or nitrogen content is provided, the method comprising introducing and expressing in the plant a nucleic acid construct as described herein.

在本发明的另一方面,提供了产生具有产量、生物量、氮利用效率(NUE)、氮转运和/或氮含量中的至少一种增加的植物的方法,该方法包括在所述植物中引入并表达如本文所述的核酸构建体。In another aspect of the present invention, a method for producing plants having at least one of increased yield, biomass, nitrogen utilization efficiency (NUE), nitrogen transport and/or nitrogen content is provided, the method comprising introducing and expressing a nucleic acid construct as described herein in the plant.

所述增加是相对于对照或野生型植物。The increase is relative to control or wild-type plants.

根据本发明的各个方面的植物优选地是水稻。The plant according to various aspects of the present invention is preferably rice.

如本文所用,术语“植物”涵盖完整植物、植物的祖先和后代以及植物部分,包括种子、茎干、茎、叶、根(包括块茎)、组织和器官,其中上述每一种包括至少一种如本文所述的NRT2.3启动子中的突变。术语“植物”还包括植物细胞、悬浮培养物、愈伤组织、胚、分生组织区、配子体、孢子体、花粉和小孢子,其中上述的每一种也包含如本文所述的NRT2.3启动子的至少一个突变。As used herein, the term "plant" encompasses whole plants, ancestors and descendants of plants, and plant parts, including seeds, stems, stems, leaves, roots (including tubers), tissues and organs, each of which includes at least one mutation in the NRT2.3 promoter as described herein. The term "plant" also includes plant cells, suspension cultures, callus, embryos, meristem regions, gametophytes, sporophytes, pollen and microspores, each of which also includes at least one mutation in the NRT2.3 promoter as described herein.

本发明还扩展到如本文所述的本发明植物的可收获部分,例如籽粒。本发明的方面还扩展到衍生自、优选直接衍生自此类植物的可收获部分的产物,即谷物,例如但不限于米糠、米糠油、米粉、稻壳、大米淀粉、壳灰、碎米和啤酒米。在本发明的另一方面,提供了源自如本文所述的植物或其部分的产物。The present invention also extends to harvestable parts of the plants of the present invention as described herein, such as grains. Aspects of the present invention also extend to products derived from, preferably directly derived from, harvestable parts of such plants, i.e., cereals, such as, but not limited to, rice bran, rice bran oil, rice flour, rice husks, rice starch, husk ash, broken rice, and brewer's rice. In another aspect of the present invention, products derived from plants as described herein or parts thereof are provided.

在本发明最优选的方面,提供了由如本文所述的遗传改变的植物产生的种子。In a most preferred aspect of the present invention, there is provided a seed produced by a genetically altered plant as described herein.

根据本发明的所有方面,本文所用的对照植物是未根据本发明的方法进行修饰的植物。因此,在一个实施方案中,对照植物在NRT2.3启动子中没有至少一个突变。在备选实施方案中,植物没有如上所述的遗传修饰。在一个实施方案中,对照植物是野生型植物。对照植物通常是相同的植物物种,优选具有与修饰植物相同的遗传背景。According to all aspects of the present invention, the control plant used herein is a plant that is not modified according to the method of the present invention. Therefore, in one embodiment, the control plant does not have at least one mutation in the NRT2.3 promoter. In an alternative embodiment, the plant does not have genetic modification as described above. In one embodiment, the control plant is a wild-type plant. The control plant is typically the same plant species, preferably has the same genetic background as the modified plant.

用于本文所述的靶向基因组修饰的方法的基因组编辑构建体Genome editing constructs for use in the methods of targeted genome modification described herein

“crRNA”或CRISPR RNA意指含有原间隔元件和与tracrRNA互补的额外核苷酸的RNA序列。"crRNA" or CRISPR RNA means an RNA sequence containing a protospacer element and additional nucleotides that are complementary to the tracrRNA.

“tracrRNA”(反式激活RNA)意指与crRNA杂交并结合CRISPR酶例如Cas9从而激活核酸酶复合物以在至少一个NRT2.3启动子核酸或启动子序列的基因组序列内的特定位点引入双链断裂的RNA序列。"tracrRNA" (trans-activating RNA) means an RNA sequence that hybridizes to crRNA and binds to a CRISPR enzyme, such as Cas9, thereby activating the nuclease complex to introduce a double-stranded break at a specific site within the genomic sequence of at least one NRT2.3 promoter nucleic acid or promoter sequence.

“原间隔元件”意指与基因组DNA靶序列互补的crRNA(或sgRNA)部分,通常长度约为20个核苷酸。这也可以称为间隔区或靶向序列。"Protospacer" means the portion of the crRNA (or sgRNA) that is complementary to the genomic DNA target sequence, typically about 20 nucleotides in length. This may also be referred to as a spacer or targeting sequence.

“sgRNA”(单指导RNA)是指tracrRNA和crRNA在单个RNA分子中的组合,优选还包括接头环(其将tracrRNA和crRNA连接成单个分子)。“sgRNA”也可以称为“gRNA”并且在本上下文中,这些术语是可互换的。sgRNA或gRNA为Cas核酸酶提供靶向特异性和支架/结合能力。gRNA可以指包含crRNA分子和tracrRNA分子的双RNA分子。"sgRNA" (single guide RNA) refers to a combination of tracrRNA and crRNA in a single RNA molecule, preferably also including a linker loop (which connects tracrRNA and crRNA into a single molecule). "sgRNA" may also be referred to as "gRNA" and in this context, these terms are interchangeable. sgRNA or gRNA provides targeting specificity and scaffold/binding ability for Cas nuclease. gRNA may refer to a dual RNA molecule comprising a crRNA molecule and a tracrRNA molecule.

“TAL效应子”(转录激活剂样(TAL)效应子)或TALE意指可以结合基因组DNA靶序列(NRT2.3启动子基因内的序列或启动子序列)并且可以融合到内切核酸酶如FokI的切割结构域,以产生TAL效应子核酸酶或TALENS或大范围核酸酶以产生megaTAL。TALE蛋白由负责DNA结合的中央结构域、核定位信号和激活靶基因转录的结构域组成。DNA结合结构域由单体组成,每个单体可以结合靶核苷酸序列中的一个核苷酸。单体是33-35个氨基酸的串联重复,其中位于位置12和13的两个氨基酸是高度可变的(重复可变双残基,RVD)。RVD负责识别单个特定核苷酸。HD靶向胞嘧啶;NI靶向腺嘌呤,NG靶向胸腺嘧啶,NN靶向鸟嘌呤(尽管NN也可以与腺嘌呤结合,但特异性较低)。"TAL effector" (transcription activator-like (TAL) effector) or TALE means a protein that can bind to a genomic DNA target sequence (a sequence within the NRT2.3 promoter gene or a promoter sequence) and can be fused to the cleavage domain of an endonuclease such as FokI to produce a TAL effector nuclease or TALENS or a large range of nucleases to produce a megaTAL. The TALE protein consists of a central domain responsible for DNA binding, a nuclear localization signal, and a domain that activates transcription of the target gene. The DNA binding domain consists of monomers, each of which can bind to one nucleotide in the target nucleotide sequence. The monomer is a tandem repeat of 33-35 amino acids, of which the two amino acids at positions 12 and 13 are highly variable (repeat variable diresidues, RVD). The RVD is responsible for recognizing a single specific nucleotide. HD targets cytosine; NI targets adenine, NG targets thymine, and NN targets guanine (although NN can also bind to adenine, the specificity is lower).

在本发明的另一方面,提供了核酸构建体,其中所述核酸构建体编码至少一种DNA结合域,其中所述DNA结合域可以结合NRT2.3启动子基因中的序列,其中所述序列选自SEQID NO 12至15或其变体,如本文所定义。在一个实施方案中,所述构建体进一步包含编码(SSN)序列特异性核酸酶例如FokI或Cas蛋白的核酸。In another aspect of the present invention, a nucleic acid construct is provided, wherein the nucleic acid construct encodes at least one DNA binding domain, wherein the DNA binding domain can bind to a sequence in the NRT2.3 promoter gene, wherein the sequence is selected from SEQ ID NO 12 to 15 or a variant thereof, as defined herein. In one embodiment, the construct further comprises a nucleic acid encoding a (SSN) sequence-specific nuclease such as a FokI or Cas protein.

在一个实施方案中,核酸构建体编码至少一种原间隔元件,其中原间隔元件的序列选自SEQ ID NO 16至23或其变体。In one embodiment, the nucleic acid construct encodes at least one protospacer element, wherein the sequence of the protospacer element is selected from SEQ ID NOs 16 to 23 or variants thereof.

在进一步的实施方案中,核酸构建体包含crRNA编码序列。如上文所定义,crRNA序列可包含如上文所定义的原间隔元件且优选地包含与tracrRNA互补的额外的核苷酸。技术人员将知晓额外的核苷酸的合适序列,因为这些由Cas蛋白的选择定义。In a further embodiment, the nucleic acid construct comprises a crRNA coding sequence. As defined above, the crRNA sequence may comprise a protospacer element as defined above and preferably comprises additional nucleotides complementary to the tracrRNA. The technician will know the appropriate sequence of additional nucleotides, as these are defined by the selection of the Cas protein.

在另一个实施方案中,核酸构建体进一步包含tracrRNA序列。同样,适当的tracrRNA序列是技术人员已知的,因为该序列是由Cas蛋白的选择定义的。尽管如此,在一个实施方案中,所述序列包含如SEQ ID NO:24中定义的序列或其变体或由其组成。In another embodiment, the nucleic acid construct further comprises a tracrRNA sequence. Likewise, suitable tracrRNA sequences are known to the skilled person because the sequence is defined by the selection of the Cas protein. Nevertheless, in one embodiment, the sequence comprises or consists of a sequence as defined in SEQ ID NO:24 or a variant thereof.

在进一步的实施方案中,核酸构建体包含至少一种编码sgRNA(或gRNA)的核酸序列。再次,如已经讨论的,sgRNA通常包含crRNA序列、tracrRNA序列并且优选地包含用于接头环的序列。在优选的实施方案中,核酸构建体包含至少一种编码如本文定义的sgRNA序列的核酸序列。In a further embodiment, the nucleic acid construct comprises at least one nucleic acid sequence encoding an sgRNA (or gRNA). Again, as already discussed, the sgRNA typically comprises a crRNA sequence, a tracrRNA sequence and preferably comprises a sequence for a linker loop. In a preferred embodiment, the nucleic acid construct comprises at least one nucleic acid sequence encoding an sgRNA sequence as defined herein.

在进一步的实施方案中,核酸构建体还可包含至少一种编码内切核糖核酸酶切割位点的核酸序列。优选地,内切核糖核酸酶是Csy4(也称为Cas6f)。当核酸构建体包含多个sgRNA核酸序列时,构建体可以包含相同数量的内切核糖核酸酶切割位点。在另一个实施方案中,切割位点是sgRNA核酸序列的5'。因此,每个sgRNA核酸序列的侧翼是核糖核酸内切酶切割位点。In a further embodiment, the nucleic acid construct may further include at least one nucleic acid sequence encoding an endoribonuclease cleavage site. Preferably, the endoribonuclease is Csy4 (also referred to as Cas6f). When the nucleic acid construct comprises multiple sgRNA nucleic acid sequences, the construct may comprise the same number of endoribonuclease cleavage sites. In another embodiment, the cleavage site is 5' of the sgRNA nucleic acid sequence. Therefore, the flank of each sgRNA nucleic acid sequence is an endoribonuclease cleavage site.

术语“变体”是指其中核苷酸与上述序列之一基本相同的核苷酸序列。变体可以通过修饰例如插入、取代或缺失一个或多个核苷酸来实现。在优选的实施方案中,变体与上述序列中的任一个具有至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%的同一性。在一个实施方案中,序列同一性是至少90%。在另一个实施方案中,序列同一性是100%。序列同一性可以通过本领域任何一种已知的序列比对程序来确定。The term "variant" refers to a nucleotide sequence in which nucleotides are substantially identical to one of the above-mentioned sequences. Variant can be achieved by modification such as insertion, substitution or deletion of one or more nucleotides. In a preferred embodiment, the variant has at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% identity with any one of the above-mentioned sequences. In one embodiment, the sequence identity is at least 90%. In another embodiment, the sequence identity is 100%. The sequence identity can be determined by any sequence alignment program known in the art.

本发明还涉及核酸构建体,所述核酸构建体包含与合适的植物启动子可操作地连接的核酸序列。合适的植物启动子可以是组成型或强启动子,或者可以是组织特异性启动子。在一个实施方案中,合适的植物启动子选自,但不限于,夜香树属黄卷叶病毒(CmYLCV)启动子或柳枝稷泛素1启动子(PvUbi1)U6 RNA聚合酶III(TaU6)CaMV35S、U6或玉米泛素(例如Ubi1)启动子。或者,可以通过基因表达调控序列使表达专门针对水稻种子的特定组织。在一个实施方案中,启动子选自双子叶植物中的U3启动子(SEQ ID NO:25)、U6a启动子(SEQID NO:26)、U6b启动子(SEQ ID NO:27)、U3b启动子(SEQ ID NO:28)和双子叶植物中的U6-1启动子(SEQ ID NO:29)。The present invention also relates to nucleic acid constructs, the nucleic acid constructs comprising a nucleic acid sequence operably connected to a suitable plant promoter. Suitable plant promoters can be constitutive or strong promoters, or can be tissue-specific promoters. In one embodiment, suitable plant promoters are selected from, but not limited to, tuberose yellow leaf curl virus (CmYLCV) promoter or switchgrass ubiquitin 1 promoter (PvUbil) U6 RNA polymerase III (TaU6) CaMV35S, U6 or corn ubiquitin (e.g. Ubil) promoter. Alternatively, expression can be specifically directed to a specific tissue of rice seeds by a gene expression regulatory sequence. In one embodiment, promoters are selected from U3 promoters (SEQ ID NO:25), U6a promoters (SEQ ID NO:26), U6b promoters (SEQ ID NO:27), U3b promoters (SEQ ID NO:28) and U6-1 promoters (SEQ ID NO:29) in dicotyledons.

本发明的核酸构建体还可进一步包含编码CRISPR酶的核酸序列。“CRISPR酶”意指可以与CRISPR系统结合的RNA指导的DNA核酸内切酶。具体而言,这种酶与tracrRNA序列结合。在一个实施方案中,CRIPSR酶是Cas蛋白(“CRISPR相关蛋白),优选Cas 9或Cpf1,更优选Cas9。在具体实施方案中,Cas9是密码子优化的Cas9,并且更优选地,具有在SEQ ID NO:30中描述的序列或其功能变体或同源物。在另一个实施方案中,CRISPR酶是来自2类候选x蛋白家族的蛋白,例如C2c1、C2C2和/或C2c3。在一个实施方案中,Cas蛋白来自酿脓链球菌(Streptococcus pyogenes)。在备选实施方案中,Cas蛋白可以来自金黄色葡萄球菌(Staphylococcus aureus)、脑膜炎奈瑟菌(Neisseria meningitides)、嗜热链球菌(Streptococcus thermophiles)或齿状密螺旋体(Treponema denticola)中的任一种。The nucleic acid construct of the present invention may further comprise a nucleic acid sequence encoding a CRISPR enzyme. "CRISPR enzyme" means an RNA-guided DNA endonuclease that can be combined with a CRISPR system. Specifically, this enzyme is combined with a tracrRNA sequence. In one embodiment, the CRISPR enzyme is a Cas protein ("CRISPR associated protein"), preferably Cas 9 or Cpf1, more preferably Cas9. In a specific embodiment, Cas9 is a codon-optimized Cas9, and more preferably, has a sequence described in SEQ ID NO: 30 or a functional variant or homolog thereof. In another embodiment, the CRISPR enzyme is a protein from the class 2 candidate x protein family, such as C2c1, C2C2 and/or C2c3. In one embodiment, the Cas protein is from Streptococcus pyogenes. In alternative embodiments, the Cas protein may be from any of Staphylococcus aureus, Neisseria meningitides, Streptococcus thermophiles, or Treponema denticola.

如本文所用的关于Cas9的术语“功能变体”是指变体Cas9基因序列或基因序列的一部分,其保留了完整的非变体序列的生物学功能,例如充当DNA核酸内切酶,或识别和/或与DNA结合。功能变体还包括目标基因的变体,其具有不影响功能的序列改变,例如非保守残基。还包括与本文所示的野生型序列相比基本上相同的变体,即仅具有一些序列变异,例如在非保守残基中,并且具有生物活性。在一个实施方案中,SEQ ID NO.30的功能变体与由SEQ ID NO:30表示的氨基酸具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%或99%的总体序列同一性。在进一步的实施方案中,Cas9蛋白已被修饰以提高活性。The term "functional variant" as used herein with respect to Cas9 refers to a variant Cas9 gene sequence or a portion of a gene sequence that retains the biological function of the intact non-variant sequence, such as acting as a DNA endonuclease, or recognizing and/or binding to DNA. Functional variants also include variants of the target gene that have sequence changes that do not affect function, such as non-conservative residues. Also included are variants that are substantially the same as the wild-type sequence shown herein, i.e., have only some sequence variations, such as in non-conservative residues, and have biological activity. In one embodiment, the functional variant of SEQ ID NO.30 has at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% overall sequence identity with the amino acid represented by SEQ ID NO:30. In a further embodiment, the Cas9 protein has been modified to increase activity.

合适的同源物或直向同源物可以通过序列比较和保守结构域的鉴定来鉴定。同系物或直向同源物的功能可以如本文所述鉴定并且技术人员因此能够确认在植物中表达时的功能。Suitable homologues or orthologues can be identified by sequence comparison and identification of conserved domains.The function of the homologues or orthologues can be identified as described herein and the skilled person is thus able to confirm the function when expressed in plants.

在进一步的实施方案中,Cas9蛋白已被修饰以提高活性。例如,在一个实施方案中,Cas9蛋白可包含D10A氨基酸取代,该切口酶仅切割与gRNA互补并被gRNA识别的DNA链。在备选实施方案中,Cas9蛋白可备选地或额外地包含H840A氨基酸取代,该切口酶仅切割不与sRNA相互作用的DNA链。在该实施方案中,Cas9可以与一对(即两个)sgRNA分子(或表达这种对的构建体)一起使用,因此可以切割相反DNA链上的靶标区域,有可能将特异性提高100-1500倍。在进一步的实施方案中,cas9蛋白可以包含D1135E取代。Cas 9蛋白也可以是VQR变体。或者,Cas蛋白可以在HNH和RuvC样这两个核酸酶结构域中包含突变,因此是无催化活性的。这种无催化活性的Cas蛋白可用于阻止转录延伸过程,而不是切割靶标链,当与sgRNA分子共表达时,会导致未完全翻译的蛋白质功能丧失。无催化活性的蛋白的一个实例是由RuvC和/或HNH核酸酶结构域中的点突变引起的死亡Cas9(dCas9)(Komor等人,2016和Nishida等人,2016)。In a further embodiment, the Cas9 protein has been modified to increase activity. For example, in one embodiment, the Cas9 protein may include a D10A amino acid substitution, and the nickase only cuts the DNA chain that is complementary to the gRNA and recognized by the gRNA. In an alternative embodiment, the Cas9 protein may alternatively or additionally include an H840A amino acid substitution, and the nickase only cuts the DNA chain that does not interact with the sRNA. In this embodiment, Cas9 can be used with a pair (i.e., two) of sgRNA molecules (or a construct expressing such a pair), so that the target region on the opposite DNA chain can be cut, and it is possible to increase the specificity by 100-1500 times. In a further embodiment, the cas9 protein may include a D1135E substitution. The Cas 9 protein may also be a VQR variant. Alternatively, the Cas protein may include mutations in the two nuclease domains of HNH and RuvC, and is therefore catalytically inactive. This catalytically inactive Cas protein can be used to prevent the transcription extension process, rather than cutting the target chain, and when co-expressed with the sgRNA molecule, it will result in the loss of protein function that is not fully translated. An example of a catalytically inactive protein is dead Cas9 (dCas9) caused by point mutations in the RuvC and/or HNH nuclease domains (Komor et al., 2016 and Nishida et al., 2016).

在进一步的实施方案中,Cas蛋白,例如Cas9,可以进一步与抑制效应子融合,例如组蛋白修饰/DNA甲基化酶或胞苷脱氨酶(Komor等人,2016)以实现定点诱变。在后者中,胞苷脱氨酶不诱导双链DNA断裂,而是介导胞苷向尿苷的转化,从而实现C到T(或G到A)的取代。In further embodiments, Cas proteins, such as Cas9, can be further fused to inhibitory effectors, such as histone modification/DNA methylases or cytidine deaminases (Komor et al., 2016) to achieve site-directed mutagenesis. In the latter, cytidine deaminases do not induce double-stranded DNA breaks, but mediate the conversion of cytidine to uridine, thereby achieving C to T (or G to A) substitutions.

在进一步的实施方案中,核酸构建体包含内切核糖核酸酶。优选地,内切核糖核酸酶是Csy4(也称为Cas6f),更优选地是水稻密码子优化的csy4。在一个实施方案中,当核酸构建体包含cas蛋白时,核酸构建体可以包含用于表达内切核糖核酸酶的序列,例如Csy4,表达为5'端P2A融合(用作自切割肽)到cas蛋白,如Cas9。In a further embodiment, the nucleic acid construct comprises an endoribonuclease. Preferably, the endoribonuclease is Csy4 (also referred to as Cas6f), more preferably rice codon-optimized csy4. In one embodiment, when the nucleic acid construct comprises a cas protein, the nucleic acid construct may comprise a sequence for expressing an endoribonuclease, such as Csy4, expressed as a 5' end P2A fusion (used as a self-cleaving peptide) to a cas protein, such as Cas9.

在一个实施方案中,cas蛋白、内切核糖核酸酶和/或内切核糖核酸酶-cas融合序列可以与合适的植物启动子可操作地连接。上面已经描述了合适的植物启动子,但在一个实施方案中,可以是玉米泛素1启动子。In one embodiment, the cas protein, endoribonuclease and/or endoribonuclease-cas fusion sequence can be operably linked to a suitable plant promoter. Suitable plant promoters have been described above, but in one embodiment, it can be the maize ubiquitin 1 promoter.

用于生产CRISPR核酸和载体系统的合适方法是已知的,例如发表在MolecularPlant(Ma等人,2015,Molecular Plant,DOI:10.1016/j.molp.2015.04.007),其通过引用纳入本文。Suitable methods for producing CRISPR nucleic acids and vector systems are known, for example, as published in Molecular Plant (Ma et al., 2015, Molecular Plant, DOI: 10.1016/j.molp.2015.04.007), which is incorporated herein by reference.

在本发明的备选方面,核酸构建体包含至少一种编码TAL效应子的核酸序列,其中所述效应子靶向选自SEQ ID NO 12至15的NRT2.3启动子序列。给定靶标序列,设计TAL效应子的方法将是技术人员熟知的。Sanjana等人和Cermak T等人给出了合适方法的实例,两者均通过引用并入本文。优选地,所述核酸构建体包含两个编码TAL效应子的核酸序列,以产生TALEN对。在进一步的实施方案中,核酸构建体进一步包含序列特异性核酸酶(SSN)。优选地,这种SSN是内切核酸酶,例如FokI。在进一步的实施方案中,TALEN通过金门(GoldenGate)克隆方法在单个质粒或核酸构建体中组装。In an alternative aspect of the invention, the nucleic acid construct comprises at least one nucleic acid sequence encoding a TAL effector, wherein the effector targets an NRT2.3 promoter sequence selected from SEQ ID NOs 12 to 15. Given a target sequence, methods for designing TAL effectors will be well known to the skilled person. Examples of suitable methods are given by Sanjana et al. and Cermak T et al., both of which are incorporated herein by reference. Preferably, the nucleic acid construct comprises two nucleic acid sequences encoding TAL effectors to produce a TALEN pair. In a further embodiment, the nucleic acid construct further comprises a sequence-specific nuclease (SSN). Preferably, this SSN is an endonuclease, such as FokI. In a further embodiment, TALEN is assembled in a single plasmid or nucleic acid construct by the GoldenGate cloning method.

在本发明的另一方面,提供了sgRNA分子,其中sgRNA分子包含crRNA序列和tracrRNA序列,并且其中crRNA序列可以结合选自SEQ ID NO 12至15的至少一种序列或其变体。“变体”如本文所定义。在一个实施方案中,sgRNA分子可包含至少一种化学修饰,例如增强其稳定性和/或与靶序列或crRNA序列与tracrRNA序列的结合亲和力。此类修饰对于本领域技术人员是众所周知的,并且包括例如但不限于在Rahdar等人,2015中描述的修饰,其通过引用并入本文。在此实例中,crRNA可包含硫代磷酸酯骨架修饰,例如2'-氟(2'-F)、2'-O-甲基(2'-O-Me)和S-约束的乙基(cET)取代。In another aspect of the invention, an sgRNA molecule is provided, wherein the sgRNA molecule comprises a crRNA sequence and a tracrRNA sequence, and wherein the crRNA sequence can bind to at least one sequence selected from SEQ ID NOs 12 to 15 or a variant thereof. "Variant" is as defined herein. In one embodiment, the sgRNA molecule may comprise at least one chemical modification, such as to enhance its stability and/or binding affinity to the target sequence or the crRNA sequence and the tracrRNA sequence. Such modifications are well known to those skilled in the art and include, for example, but not limited to, modifications described in Rahdar et al., 2015, which are incorporated herein by reference. In this example, the crRNA may comprise a phosphorothioate backbone modification, such as 2'-fluoro (2'-F), 2'-O-methyl (2'-O-Me), and S-constrained ethyl (cET) substitutions.

在本发明的另一方面,提供了编码原间隔元件(如SEQ ID NO 16至23中任一个所定义)的分离的核酸序列。In another aspect of the present invention, there is provided an isolated nucleic acid sequence encoding a protospacer element (as defined in any one of SEQ ID NOs 16 to 23).

在本发明的另一方面,提供了用至少一种本文所述的核酸构建体转染的植物或其部分或至少一种分离的植物细胞。Cas9和sgRNA可以组合或在单独的表达载体(或核酸构建体,此类术语可互换使用)中。换言之,在一个实施方案中,分离的植物细胞用包含如上文详细描述的sgRNA和Cas9的单一核酸构建体转染。在备选的实施方案中,分离的植物细胞用两种核酸构建体转染,第一种核酸构建体包含至少一种如上定义的sgRNA,而第二种核酸构建体包含Cas9或其功能变体或同源物。第二核酸构建体可在第一核酸构建体下方、之后或同时转染。包含cas蛋白的单独的第二构建体的优点是编码至少一种sgRNA的核酸构建体可以与任何类型的cas蛋白配对,如本文所述,因此不限于单个cas功能(如当cas和sgRNA都编码在同一核酸构建体上时就是这种情况)。In another aspect of the present invention, a plant or part thereof or at least one plant cell isolated by transfection with at least one nucleic acid construct as described herein is provided. Cas9 and sgRNA can be combined or in a separate expression vector (or nucleic acid construct, such terms are interchangeable). In other words, in one embodiment, the plant cell isolated is transfected with a single nucleic acid construct comprising sgRNA and Cas9 as described in detail above. In an alternative embodiment, the plant cell isolated is transfected with two nucleic acid constructs, the first nucleic acid construct comprising at least one sgRNA as defined above, and the second nucleic acid construct comprising Cas9 or its functional variant or homologue. The second nucleic acid construct can be transfected below, after or simultaneously with the first nucleic acid construct. The advantage of the separate second construct comprising cas protein is that the nucleic acid construct encoding at least one sgRNA can be paired with any type of cas protein, as described herein, and is therefore not limited to a single cas function (such as when cas and sgRNA are encoded on the same nucleic acid construct, this is the case).

在一个实施方案中,在用包含至少一种sgRNA核酸的核酸构建体进行第二次转染之前,首先转染包含cas蛋白的核酸构建体并稳定整合到基因组中。在备选的实施方案中,植物或其部分或至少一种分离的植物细胞用编码cas蛋白的mRNA转染并用至少一种如本文定义的核酸构建体共转染。In one embodiment, a nucleic acid construct comprising a cas protein is first transfected and stably integrated into the genome before a second transfection with a nucleic acid construct comprising at least one sgRNA nucleic acid is performed. In an alternative embodiment, the plant or part thereof or at least one isolated plant cell is transfected with an mRNA encoding a cas protein and co-transfected with at least one nucleic acid construct as defined herein.

可以如本领域所述构建用于本发明的Cas9表达载体。在一个实例中,表达载体包含如SEQ ID NO:30中定义的核酸序列或其功能变体或同源物,其中所述核酸序列与合适的启动子可操作地连接。合适的启动子的实例包括肌动蛋白、CaMV35S、U6、U3或玉米泛素(例如Ubi1)启动子。The Cas9 expression vector for the present invention can be constructed as described in the art. In one example, the expression vector comprises a nucleic acid sequence as defined in SEQ ID NO: 30 or a functional variant or homolog thereof, wherein the nucleic acid sequence is operably linked to a suitable promoter. Examples of suitable promoters include actin, CaMV35S, U6, U3, or maize ubiquitin (e.g., Ubil) promoters.

本发明的范围还包括上述核酸构建体(CRISPR构建体)或sgRNA分子在任何上述方法中的应用。例如,提供了上述CRISPR构建体或sgRNA分子在调节本文所述的NRT2.3启动子活性和/或NRT2.3基因剪接中的应用。The scope of the present invention also includes the use of the above-mentioned nucleic acid construct (CRISPR construct) or sgRNA molecule in any of the above-mentioned methods. For example, the use of the above-mentioned CRISPR construct or sgRNA molecule in regulating the NRT2.3 promoter activity and/or NRT2.3 gene splicing described herein is provided.

因此,在本发明的进一步方面,提供了调节NRT2.3启动子活性和/或NRT2.3基因剪接和/或增加NRT2.3b表达的方法,该方法包括引入并表达如上所述的CRISPR构建体或将也如上所述的sgRNA分子引入植物中。换言之,还提供了调节NRT2.3启动子活性和/或NRT2.3基因剪接和/或增加NRT2.3b表达的方法,如本文所述,其中该方法包括使用CRISPR/Cas9,特别是本文所述的CRISPR构建体将至少一个突变引入内源性NRT2.3启动子。Therefore, in a further aspect of the present invention, a method for regulating NRT2.3 promoter activity and/or NRT2.3 gene splicing and/or increasing NRT2.3b expression is provided, the method comprising introducing and expressing a CRISPR construct as described above or introducing an sgRNA molecule as described above into a plant. In other words, a method for regulating NRT2.3 promoter activity and/or NRT2.3 gene splicing and/or increasing NRT2.3b expression is also provided, as described herein, wherein the method comprises introducing at least one mutation into an endogenous NRT2.3 promoter using CRISPR/Cas9, in particular a CRISPR construct as described herein.

在本发明的备选方面,提供了用至少一种如本文所述的sgRNA分子转染的分离的植物细胞。In an alternative aspect of the invention, there is provided an isolated plant cell transfected with at least one sgRNA molecule as described herein.

在本发明的进一步方面,提供了包含本文所述的转染细胞的遗传修饰或编辑的植物。在一个实施方案中,一个或多个核酸构建体可以以稳定的形式整合。在备选实施方案中,一个或多个核酸构建体没有被整合(即被瞬时表达)。因此,在优选的实施方案中,遗传修饰的植物不含任何sgRNA和/或Cas蛋白核酸。换言之,该植物不含转基因。In a further aspect of the present invention, there is provided a plant comprising a genetic modification or editing of a transfected cell as described herein. In one embodiment, one or more nucleic acid constructs can be integrated in a stable form. In an alternative embodiment, one or more nucleic acid constructs are not integrated (i.e., transiently expressed). Therefore, in a preferred embodiment, the genetically modified plant does not contain any sgRNA and/or Cas protein nucleic acid. In other words, the plant does not contain a transgenic.

本文所指的术语“引入”、“转染”或“转化”包括将外源多核苷酸转移到宿主细胞中,而不管用于转移的方法如何。能够随后通过器官发生或胚胎发生进行克隆繁殖的植物组织可以用本发明的遗传构建体转化,并从中再生出完整的植物。选择的特定组织将根据可用于并最适合被转化的特定物种的克隆繁殖系统而变化。示例性组织靶标包括叶盘、花粉、胚、子叶、下胚轴、雌配子体、愈伤组织、现有分生组织(例如,顶端分生组织、腋芽和根分生组织)和诱导的分生组织(例如,子叶分生组织和下胚轴分生组织)。然后可以使用所得转化植物细胞以本领域技术人员已知的方式再生转化植物。将外源基因转移到植物基因组中称为转化。植物转化现在是许多物种的常规技术。技术人员已知的几种转化方法中的任一种可用于将目标核酸构建体或sgRNA分子引入合适的祖先细胞中。描述的用于从植物组织或植物细胞转化和再生植物的方法可用于瞬时或稳定转化。The terms "introduction", "transfection" or "transformation" as referred to herein include the transfer of exogenous polynucleotides into a host cell, regardless of the method used for transfer. Plant tissues that can subsequently be cloned by organogenesis or embryogenesis can be transformed with the genetic construct of the present invention, and a complete plant is regenerated therefrom. The specific tissue selected will vary depending on the clonal propagation system that is available for and most suitable for the specific species to be transformed. Exemplary tissue targets include leaf disks, pollen, embryos, cotyledons, hypocotyls, female gametophytes, callus, existing meristems (e.g., apical meristems, axillary buds, and root meristems) and induced meristems (e.g., cotyledon meristems and hypocotyl meristems). The resulting transformed plant cells can then be used to regenerate transformed plants in a manner known to those skilled in the art. The transfer of exogenous genes into a plant genome is called transformation. Plant transformation is now a routine technique for many species. Any of several transformation methods known to technicians can be used to introduce a target nucleic acid construct or sgRNA molecule into a suitable ancestral cell. The described methods for transforming and regenerating plants from plant tissues or plant cells can be used for transient or stable transformation.

转化方法包括使用脂质体、电穿孔、增加游离DNA吸收的化学物质、将DNA直接注射到植物中(显微注射)、基因枪(或如实施例中所述的生物射弹粒子递送系统(生物学))、脂质转染、使用病毒或花粉和显微投射的转化。方法可以选自用于原生质体的钙/聚乙二醇方法、超声介导的基因转染、光学或激光转染、使用碳化硅纤维的转染、原生质体的电穿孔、显微注射到植物材料、DNA或RNA包被的粒子轰击、用病毒等感染(非整合)。转基因植物也可以通过根癌农杆菌(Agrobacterium tumefaciens)介导的转化产生,包括但不限于使用如Clough&Bent(1998)中描述的花浸/土壤杆菌真空渗透方法并通过引用并入本文。Transformation methods include the use of liposomes, electroporation, chemicals that increase free DNA uptake, direct injection of DNA into the plant (microinjection), gene guns (or biolistic particle delivery systems (biology) as described in the Examples), lipofection, transformation using viruses or pollen and microprojection. The method may be selected from the calcium/polyethylene glycol method for protoplasts, ultrasound-mediated gene transfection, optical or laser transfection, transfection using silicon carbide fibers, electroporation of protoplasts, microinjection into plant material, bombardment with DNA or RNA-coated particles, infection with viruses, etc. (non-integrating). Transgenic plants can also be produced by Agrobacterium tumefaciens-mediated transformation, including but not limited to the use of the floral dip/Agrobacterium vacuum infiltration method as described in Clough & Bent (1998) and incorporated herein by reference.

因此,在一个实施方案中,可以使用任何上述方法将至少一种如本文所述的核酸构建体或sgRNA分子引入至少一种植物细胞。在备选的实施方案中,本文所述的任何核酸构建体可以首先转录以形成预组装的Cas9-sgRNA核糖核蛋白,然后使用任何上述方法例如脂质转染、电穿孔或显微注射递送至至少一种植物细胞。Thus, in one embodiment, at least one nucleic acid construct or sgRNA molecule as described herein can be introduced into at least one plant cell using any of the above methods. In alternative embodiments, any nucleic acid construct described herein can be first transcribed to form a preassembled Cas9-sgRNA ribonucleoprotein and then delivered to at least one plant cell using any of the above methods, such as lipofection, electroporation, or microinjection.

任选地,为了选择转化植物,通常对转化中获得的植物材料进行选择性条件处理,以便可以将转化植物与未转化植物区分开。例如,可以种植以上述方式获得的种子,并在初始生长期后通过喷洒进行合适的选择。另一种可能性是,如果合适的话,在灭菌后,在使用合适的选择剂的琼脂平板上种植种子,这样只有转化的种子才能长成植物。如实施例中所述,合适的标记物可以是bar-草丁膦或PPT。或者,针对选择标记物例如但不限于GFP、GUS(β-葡萄糖醛酸酶)的存在筛选转化植物。技术人员很容易知道其他实例。或者,不进行选择,种植并生长以上述方式获得的种子,并使用本领域的标准技术在适当的时间测量NRT2.3b表达或蛋白质水平。这种避免引入转基因的备选方案更适合生产不含转基因的植物。Optionally, in order to select transformed plants, the plant material obtained in the transformation is usually subjected to selective condition treatment so that transformed plants can be distinguished from untransformed plants. For example, seeds obtained in the above manner can be planted, and suitable selection is carried out by spraying after the initial growth period. Another possibility is, if appropriate, after sterilization, seeds are planted on an agar plate using a suitable selection agent, so that only the transformed seeds can grow into plants. As described in the examples, suitable markers can be bar-phosphine or PPT. Alternatively, the presence of selective markers such as but not limited to GFP, GUS (β-glucuronidase) is screened for transformed plants. Technicians are easily aware of other examples. Alternatively, no selection is performed, the seeds obtained in the above manner are planted and grown, and NRT2.3b expression or protein levels are measured at the appropriate time using standard techniques in the art. This alternative scheme to avoid the introduction of transgenics is more suitable for producing plants that do not contain transgenics.

在DNA转移和再生之后,还可以评估推定转化的植物,例如使用PCR检测目标基因的存在、拷贝数和/或基因组组织。或者或另外,可以使用Southern、Northern和/或Western分析监测新引入的DNA的整合和表达水平,这两种技术都是本领域普通技术人员众所周知的。After DNA transfer and regeneration, the putative transformed plants can also be evaluated, for example, using PCR to detect the presence of the target gene, copy number and/or genomic organization. Alternatively or additionally, Southern, Northern and/or Western analysis can be used to monitor the integration and expression level of the newly introduced DNA, both of which techniques are well known to those of ordinary skill in the art.

产生的转化植物可以通过多种方式繁殖,例如通过克隆繁殖或经典育种技术。例如,可以使第一代(或T1)转化植物自交并选择纯合的第二代(或T2)转化体,然后可以通过经典育种技术进一步繁殖T2植物。The transformed plants produced can be propagated in a variety of ways, such as by clonal propagation or classical breeding techniques. For example, the first generation (or T1) transformed plants can be selfed and homozygous second generation (or T2) transformants can be selected, and then the T2 plants can be further propagated by classical breeding techniques.

技术人员熟知使用上述CRISPR构建体的具体方案。作为一个实例,在Ma&Liu(“单子叶植物和双子叶植物中基于CRISPR/Casp的多重基因组编辑”)中描述了合适的方案,通过引用并入本文。The skilled person is familiar with the specific protocols for using the above CRISPR constructs. As an example, suitable protocols are described in Ma & Liu ("Multiplex genome editing based on CRISPR/Casp in monocots and dicots"), which is incorporated herein by reference.

在本发明的进一步相关方面,还提供了获得如本文所述的遗传修饰的植物的方法,该方法包括In a further related aspect of the present invention, there is also provided a method for obtaining a genetically modified plant as described herein, the method comprising

a.选择植物的一部分;a. Select a part of the plant;

b.使用上述转染或转化技术,用至少一种如本文所述的核酸构建体或至少一种如本文所述的sgRNA分子转染段落(a)的植物部分的至少一个细胞;b. transfecting at least one cell of the plant part of paragraph (a) with at least one nucleic acid construct as described herein or at least one sgRNA molecule as described herein using the above-mentioned transfection or transformation techniques;

c.再生至少一种源自转染的细胞的植物;c. regenerating at least one plant derived from the transfected cell;

d.选择一种或多种根据段落(c)获得的植物,其显示增加的NRT2.3b的表达或增加的NRT2.3b的相对表达(相对于NRT2.3a)。d. selecting one or more plants obtained according to paragraph (c) which show increased expression of NRT2.3b or increased relative expression of NRT2.3b (relative to NRT2.3a).

在进一步的实施方案中,该方法还包括筛选遗传修饰的植物的NRT2.3启动子序列中SSN(优选CRISPR)诱导的突变的步骤。在一个实施方案中,该方法包括从转化植物获得DNA样品并进行DNA扩增以检测至少一种NRT2.3启动子序列中的突变。In a further embodiment, the method further comprises the step of screening the genetically modified plant's NRT2.3 promoter sequence for SSN (preferably CRISPR) induced mutations. In one embodiment, the method comprises obtaining a DNA sample from a transformed plant and performing DNA amplification to detect mutations in at least one NRT2.3 promoter sequence.

在进一步的实施方案中,该方法包括产生稳定的T2植物,优选对于突变(即至少一种NRT2.3启动子序列中的突变)纯合。In a further embodiment, the method comprises generating stable T2 plants, preferably homozygous for the mutation (ie, a mutation in at least one NRT2.3 promoter sequence).

在至少一种NRT2.3启动子序列中具有突变的植物也可以与在至少一种NRT2.3启动子序列中也包含至少一个突变的另一种植物杂交以获得在NRT2.3启动子序列中具有额外突变的植物。这些组合对于技术人员是显而易见的。因此,当与如上所述转化的单个T1植物中的部分同源突变数相比时,该方法可用于产生在所有部分同源物或数量增加的部分同源物上具有突变的T2植物。Plants with mutations in at least one NRT2.3 promoter sequence can also be crossed with another plant that also contains at least one mutation in at least one NRT2.3 promoter sequence to obtain plants with additional mutations in the NRT2.3 promoter sequence. These combinations are obvious to the skilled person. Thus, this method can be used to generate T2 plants with mutations in all homologs or an increased number of homologs when compared to the number of homologous mutations in a single T1 plant transformed as described above.

通过上述方法获得或可获得的植物也在本发明的范围内。Plants obtained or obtainable by the above-described methods are also within the scope of the present invention.

本发明的遗传改变的植物也可以通过杂交来转移本发明的任何序列而获得,例如使用本文所述的遗传改变的植物的花粉为野生型或对照植物授粉,或用在至少一种NRT2.3启动子序列中不包含突变的其他花粉对本文所述植物的雌蕊授粉。获得本发明植物的方法不仅限于本段中描述的那些;例如,可以如上所述进行生殖细胞的遗传转化,但之后不必再生植物。The genetically modified plants of the present invention can also be obtained by crossing to transfer any sequence of the present invention, for example, using pollen of the genetically modified plants described herein to pollinate wild-type or control plants, or using other pollen that does not contain a mutation in at least one NRT2.3 promoter sequence to pollinate the pistil of the plants described herein. The methods for obtaining the plants of the present invention are not limited to those described in this paragraph; for example, the genetic transformation of reproductive cells can be performed as described above, but there is no need to regenerate plants afterwards.

筛选植物天然增加的籽粒产量表型的方法Methods for screening plants for naturally increased grain yield phenotypes

在本发明的进一步的方面,提供了用于筛选植物群体和鉴定和/或选择携带或表达NRT2.3启动子中的至少一个突变,优选NRT2.3b 5'UTR或NRT2.3a启动子的至少一个突变。,更优选SEQ ID NO:1或9或其变体中的至少一个突变的植物的方法。或者,提供了用于筛选植物群体并鉴定和/或选择具有增加的产量、生物量、氮利用效率(NUE)、氮转运和/或氮含量的植物的方法。在任一方面,该方法包括在植物或植物种质中检测NRT2.3启动子中的至少一种多态性并且优选SEQ ID NO:1或9或其变体中的至少一个突变。优选地,所述筛选包括确定至少一种多态性的存在,其中所述多态性是至少一种插入和/或至少一种缺失和/或取代。In a further aspect of the invention, a method is provided for screening a plant population and identifying and/or selecting plants carrying or expressing at least one mutation in the NRT2.3 promoter, preferably at least one mutation in the NRT2.3b 5'UTR or the NRT2.3a promoter. , More preferably at least one mutation in SEQ ID NO:1 or 9 or a variant thereof. Alternatively, a method is provided for screening a plant population and identifying and/or selecting plants with increased yield, biomass, nitrogen utilization efficiency (NUE), nitrogen transport and/or nitrogen content. In either aspect, the method comprises detecting at least one polymorphism in the NRT2.3 promoter and preferably at least one mutation in SEQ ID NO:1 or 9 or a variant thereof in a plant or plant germplasm. Preferably, the screening comprises determining the presence of at least one polymorphism, wherein the polymorphism is at least one insertion and/or at least one deletion and/or substitution.

在一个实施方案中,多态性是NRT2.3启动子中至少一种核苷酸的缺失,其中优选地NRT2.3启动子包含SEQ ID NO:1或由其组成。在优选实施方案中,多态性是SEQ ID NO:1的5'端的至少一个核苷酸的缺失。更优选地,多态性是SEQ ID NO:1的5'端的至少前10、20、30、40、50、60、70、80、90、100、110或120个核苷酸的缺失。在更优选的实施方案中,多态性是SEQ ID NO:1的5'端至少前50个,更优选前60个,甚至更优选前62个核苷酸的缺失。在一个替代实施方案中,多态性是SEQ ID NO:1的5'端的前90个、更优选前100个、甚至更优选前101个核苷酸的缺失。在备选实施方案中,多态性是从SEQ ID NO:1中缺失SEQ ID NO:6或7。In one embodiment, the polymorphism is the deletion of at least one nucleotide in the NRT2.3 promoter, wherein preferably the NRT2.3 promoter comprises SEQ ID NO:1 or consists of it. In a preferred embodiment, the polymorphism is the deletion of at least one nucleotide at the 5' end of SEQ ID NO:1. More preferably, the polymorphism is the deletion of at least the first 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110 or 120 nucleotides at the 5' end of SEQ ID NO:1. In a more preferred embodiment, the polymorphism is the deletion of at least the first 50, more preferably the first 60, and even more preferably the first 62 nucleotides at the 5' end of SEQ ID NO:1. In an alternative embodiment, the polymorphism is the deletion of the first 90, more preferably the first 100, and even more preferably the first 101 nucleotides at the 5' end of SEQ ID NO:1. In an alternative embodiment, the polymorphism is the deletion of SEQ ID NO:6 or 7 from SEQ ID NO:1.

在备选实施方案中,多态性是至少一个核苷酸的取代。在优选的实施方案中,多态性是在SEQ ID NO:1的位置160(这在本文中也可以被称为关于NRT2.3基因的ATG起始密码子的位置-83处的多态性)、SEQ ID NO:1的位置201(在本文中也可称为位置-42)和SEQ IDNO:1的位置222(在本文中也可称为位置-21)的至少一个核苷酸的取代。在优选的实施方案中,多态性是在SEQ ID NO:1的位置160的取代。在进一步优选的实施方案中,取代可以如下:In alternative embodiments, the polymorphism is a replacement of at least one nucleotide. In a preferred embodiment, the polymorphism is a replacement of at least one nucleotide at position 160 of SEQ ID NO:1 (this may also be referred to herein as a polymorphism at position-83 of the ATG start codon about the NRT2.3 gene), position 201 of SEQ ID NO:1 (may also be referred to herein as position-42) and position 222 of SEQ ID NO:1 (may also be referred to herein as position-21). In a preferred embodiment, the polymorphism is a replacement at position 160 of SEQ ID NO:1. In a further preferred embodiment, the replacement may be as follows:

(SEQ ID NO:1的)位置160:T至C;Position 160 (of SEQ ID NO: 1): T to C;

(SEQ ID NO:1的)位置201:A至C;Position 201 (of SEQ ID NO: 1): A to C;

(SEQ ID NO:1的)位置222:C至T。Position 222 (of SEQ ID NO: 1): C to T.

在优选的实施方案中,至少一种多态性是NRT2.3启动子的TATA-盒中至少一个核苷酸的取代、缺失和/或插入。在一个实施方案中,TATA-盒在SEQ ID NO:9或其变体中定义。因此,在一个实施方案中,多态性影响转录因子或组蛋白与NRT2.3启动子的结合,并因此影响NRT2.3基因的转录。在另一个优选的实施方案中,至少一种多态性影响TATA结合蛋白例如TBP2.1的结合能力(从而增加NRT2.3b的表达水平)。In a preferred embodiment, at least one polymorphism is a substitution, deletion and/or insertion of at least one nucleotide in the TATA-box of the NRT2.3 promoter. In one embodiment, the TATA-box is defined in SEQ ID NO:9 or a variant thereof. Thus, in one embodiment, the polymorphism affects the binding of a transcription factor or histone to the NRT2.3 promoter, and thus affects the transcription of the NRT2.3 gene. In another preferred embodiment, at least one polymorphism affects the binding ability of a TATA binding protein such as TBP2.1 (thereby increasing the expression level of NRT2.3b).

在优选的实施方案中,多态性是TATA-盒中至少一个核苷酸的取代。甚至更优选地,多态性是在SEQ ID NO:9的位置12处的取代。在一个实施方案中,取代是T到C的取代。In a preferred embodiment, the polymorphism is a substitution of at least one nucleotide in the TATA-box. Even more preferably, the polymorphism is a substitution at position 12 of SEQ ID NO: 9. In one embodiment, the substitution is a T to C substitution.

用于评估多态性存在的合适的测试是技术人员众所周知的,并且包括但不限于同工酶电泳、限制性片段长度多态性(RFLP)、随机扩增多态性DNA(RAPD)、任意引发的聚合酶链反应(AP-PCR)、DNA扩增指纹图谱(DAF)、序列特征扩增区域(SCAR)、扩增片段长度多态性(AFLP)、简单序列重复(SSR-也称为微卫星)和单核苷酸多态性(SNP)。在一个实施方案中,使用竞争性等位基因特异性PCR(KASP)基因分型。Suitable tests for assessing the presence of polymorphisms are well known to the skilled person and include, but are not limited to, isozyme electrophoresis, restriction fragment length polymorphism (RFLP), random amplified polymorphic DNA (RAPD), arbitrarily initiated polymerase chain reaction (AP-PCR), DNA amplification fingerprinting (DAF), sequence signature amplification region (SCAR), amplified fragment length polymorphism (AFLP), simple sequence repeats (SSR-also known as microsatellites) and single nucleotide polymorphisms (SNPs). In one embodiment, competitive allele-specific PCR (KASP) genotyping is used.

在一个实施方案中,该方法包括In one embodiment, the method comprises

a)从植物中获取核酸样品,和a) obtaining a nucleic acid sample from the plant, and

b)使用一对或多对引物对NRT2.3启动子序列进行核酸扩增。b) using one or more pairs of primers to perform nucleic acid amplification on the NRT2.3 promoter sequence.

在进一步的实施方案中,该方法还可包括将包含NRT2.3启动子序列多态性的染色体区域渐渗第二植物或植物种质中以产生渐渗的植物或植物种质。优选地,所述第二植物将表现出产量、生物量、氮利用效率(NUE)、氮转运和/或氮含量的增加。In a further embodiment, the method may also include introgressing a chromosomal region comprising a NRT2.3 promoter sequence polymorphism into a second plant or plant germplasm to produce an introgressed plant or plant germplasm. Preferably, the second plant will show an increase in yield, biomass, nitrogen use efficiency (NUE), nitrogen transport and/or nitrogen content.

虽然上述公开内容提供了包含在本发明范围内的主题的一般描述,包括制备和使用本发明的方法及其最佳模式,但提供以下实施例以进一步使本领域的技术人员能够实践本发明并提供其完整书面描述。然而,本领域技术人员将理解这些实施例的细节不应被理解为对本发明的限制,本发明的范围应从附加到本公开内容的权利要求及其等同物理解。鉴于本公开,本发明的各种进一步的方面和实施方案对于本领域技术人员将是显而易见的。Although the above disclosure provides a general description of the subject matter included within the scope of the present invention, including methods of making and using the present invention and the best mode thereof, the following examples are provided to further enable one skilled in the art to practice the present invention and to provide a complete written description thereof. However, those skilled in the art will appreciate that the details of these examples should not be construed as limitations on the present invention, and the scope of the present invention should be understood from the claims appended to the present disclosure and their equivalents. Various further aspects and embodiments of the present invention will be apparent to those skilled in the art in light of this disclosure.

此处使用的“和/或”将被视为两个特定特征或组件中的每一个的具体公开,其中包含或不包含另一个。例如,“A和/或B”将被视为(i)A、(ii)B和(iii)A和B中每一个的具体公开,就好像每一个在本文中单独列出一样。As used herein, "and/or" will be considered as a specific disclosure of each of two specific features or components, with or without the other. For example, "A and/or B" will be considered as a specific disclosure of each of (i) A, (ii) B, and (iii) A and B, as if each were listed separately herein.

除非上下文另有说明,否则上述特征的描述和定义不限于本发明的任何特定方面或实施方案,并且同样适用于所描述的所有方面和实施方案。Unless the context dictates otherwise, the descriptions and definitions of the features described above are not limited to any particular aspect or embodiment of the invention, and apply equally to all aspects and embodiments described.

上述申请,以及其中或在其审查期间引用的所有文件和序列登录号(“申请引用的文件”)和申请引用的文件中引用或参考的所有文件,以及本文引用或参考的所有文件(“本文引用的文件”)以及本文引用的文件中引用或参考的所有文件,连同本文提及的任何产品或本文引用的任何文件的任何制造商的说明书、说明、产品规格和产品表,均通过引用并入本文,并且可在本发明的实践中使用。更具体地,所有参考文献以相同的程度通过引用并入,就好像每个单独的文档被具体地和单独地指示为通过引用并入一样。The above-mentioned application, and all documents and serial accession numbers cited therein or during the prosecution thereof ("application-cited documents") and all documents cited or referenced in documents cited in the application, and all documents cited or referenced herein ("herein-cited documents") and all documents cited or referenced in documents cited herein, together with any manufacturer's instructions, descriptions, product specifications, and product sheets for any product mentioned herein or any document cited herein, are incorporated herein by reference and may be used in the practice of the present invention. More specifically, all references are incorporated by reference to the same extent as if each individual document was specifically and individually indicated to be incorporated by reference.

现在在以下非限制性实施例中描述本发明。The invention will now be described in the following non-limiting examples.

实施例Example

材料和方法Materials and methods

植物材料和生长条件Plant material and growth conditions

OsNRT2.3TIILLING系、回交系和转基因系(在本研究中)用30%(v/v)NaClO表面灭菌30分钟,然后用水彻底冲洗。幼苗在人工气候室中生长,光照16小时(30℃),黑暗8小时(26℃)。用于田间试验的植物在江苏南京的南京农业大学种植。试验田土壤的化学性质如Chen等人所描述。(陈等人,2016)OsNRT2.3TIILLING lines, backcross lines, and transgenic lines (in this study) were surface sterilized with 30% (v/v) NaClO for 30 min and then rinsed thoroughly with water. Seedlings were grown in an artificial climate chamber with 16 h of light (30°C) and 8 h of darkness (26°C). Plants for field trials were grown at Nanjing Agricultural University, Nanjing, Jiangsu. The chemical properties of the experimental field soil were described by Chen et al. (Chen et al., 2016)

OsNRT2.3 TILLING系的鉴定Identification of OsNRT2.3 TILLING lines

当幼苗在IRRI中生长3周时,收集DNA样品并保存在-80℃。DNA样品采用CTAB法提取。我们使用两对引物pOsNRT2.3-F/R和OsNRT2.3-F/R,对OsNRT2.3的启动子和基因进行扩增;每个DNA样品重复4次。产品序列由公司名称确定。使用DNAMAN将扩增的TILLING系的序列与Zhonghuo11(WT)的序列进行比对。When the seedlings were grown in IRRI for 3 weeks, DNA samples were collected and stored at -80°C. DNA samples were extracted using the CTAB method. We used two pairs of primers, pOsNRT2.3-F/R and OsNRT2.3-F/R, to amplify the promoter and gene of OsNRT2.3; each DNA sample was repeated 4 times. Product sequences are provided by company name The sequences of the amplified TILLING lines were aligned with the sequence of Zhonghuo11 (WT) using DNAMAN.

转基因植物的产生Generation of transgenic plants

为了研究OsNRT2.3不同长度的启动子片段对OsNRT2.3a和OsNRT2.3b表达的影响,我们扩增了不同长度的水稻OsNRT2.3启动子,如697bp和141bp。为了证实-83bp突变影响OsNRT2.3a和OsNRT2.3b的表达,我们在141bp和697bp启动子中都制备了-83bp突变体。不同的启动子长度用于驱动OsNRT2.3的437bp开放阅读框(ORF)。为了更好地区分OsNRT2.3a和OsNRT2.3b,将437bp的ORF与ZIIIB的序列(cct gca ggt cgc cac att agc aat gcc acatta gca atg ccg act cta gag gat ccc)(SEQ ID NO:31)相连。To investigate the effects of promoter fragments of different lengths of OsNRT2.3 on the expression of OsNRT2.3a and OsNRT2.3b, we amplified rice OsNRT2.3 promoters of different lengths, such as 697 bp and 141 bp. To confirm that the -83 bp mutation affected the expression of OsNRT2.3a and OsNRT2.3b, we prepared -83 bp mutants in both the 141 bp and 697 bp promoters. Different promoter lengths were used to drive the 437 bp open reading frame (ORF) of OsNRT2.3. To better distinguish OsNRT2.3a from OsNRT2.3b, the 437 bp ORF was linked to the sequence of ZIIIB (cct gca ggt cgc cac att agc aat gcc acatta gca atg ccg act cta gag gat ccc) (SEQ ID NO:31).

为了证明-83bp突变对OsNRT2.3a和OsNRT2.3b转录和翻译的影响,我们将OsNRT2.3a和OsNRT2.3b合并到一个载体中。在一个载体中,OsNRT2.3启动子的141bp片段用于驱动OsNRT2.3a和eGFP的表达,以及驱动OsNRT2.3b和mCherry报告子基因的表达。我们然后在141bp启动子片段中进行-83bp突变。在另一个载体中,我们使用具有-83bp突变的697bp启动子片段来驱动OsNRT2.3a和eGFP以及OsNRT2.3b和mCherry的表达,就像141启动子载体一样。通过电穿孔将表达载体转移到农杆菌(EHA105)中并转化到水稻中(Toki,1997;Toki等人,2006)。To demonstrate the effect of the -83bp mutation on transcription and translation of OsNRT2.3a and OsNRT2.3b, we combined OsNRT2.3a and OsNRT2.3b into one vector. In one vector, a 141bp fragment of the OsNRT2.3 promoter was used to drive the expression of OsNRT2.3a and eGFP, as well as to drive the expression of OsNRT2.3b and mCherry reporter genes. We then made the -83bp mutation in the 141bp promoter fragment. In another vector, we used a 697bp promoter fragment with the -83bp mutation to drive the expression of OsNRT2.3a and eGFP, as well as OsNRT2.3b and mCherry, just like the 141 promoter vector. The expression vectors were transferred into Agrobacterium (EHA105) and transformed into rice by electroporation (Toki, 1997; Toki et al., 2006).

为了探索基因OsTBP2.1与OsNRT2.3的功能,我们构建了OsTBP2.1过表达载体(pUbi::OsTBP2.1),并获得了T-DNA突变系。To explore the functions of genes OsTBP2.1 and OsNRT2.3, we constructed an OsTBP2.1 overexpression vector (pUbi::OsTBP2.1) and obtained a T-DNA mutant line.

酵母单杂交试验Yeast one-hybrid assay

根据“Matchmaker Gold Yeast One-Hybrid Library Screening System UserManual”(Clontech)的制造商方案进行酵母单杂交试验。简而言之,将pTATA-盒-pAbAi载体转移到酵母菌株中并在缺乏尿嘧啶(Ura)的培养基上生长。我们使用不同浓度的Aureobasidin A(AbA)在缺乏Ura的培养基上测试诱饵菌株。然后将pGADT7-TBP2、pGADT7-TBP2.1和pGADT7-TBP2.2的载体转移到带有pTATA-盒-pAbAi的菌株中。然后将菌株在含有800ng ml-1AbAr的缺乏亮氨酸的培养基上生长。Yeast one-hybrid assays were performed according to the manufacturer's protocol of "Matchmaker Gold Yeast One-Hybrid Library Screening System User Manual" (Clontech). Briefly, the pTATA-box-pAbAi vector was transferred into a yeast strain and grown on a medium lacking uracil (Ura). We tested the bait strain using different concentrations of Aureobasidin A (AbA) on a medium lacking Ura. The vectors of pGADT7-TBP2, pGADT7-TBP2.1, and pGADT7-TBP2.2 were then transferred into a strain with pTATA-box-pAbAi. The strain was then grown on a medium lacking leucine containing 800 ng ml -1 AbA r .

定量实时PCRQuantitative real-time PCR

使用Trizol试剂分别从幼苗的根部和茎干中提取总RNA。使用逆转录试剂盒将总RNA逆转录为cDNA,合成的cDNA用作实时PCR反应的模板。对于实时PCR反应,模板在AppliedBiosystems(ABI)Plus实时PCR系统上用AceQ qPCR SYBR Green Master Mix试剂盒反应3次。Total RNA was extracted from the root and stem of the seedlings using Trizol reagent. Total RNA was reverse transcribed into cDNA using a reverse transcription kit, and the synthesized cDNA was used as a template for real-time PCR reaction. For real-time PCR reaction, the template was reacted 3 times using AceQ qPCR SYBR Green Master Mix kit on Applied Biosystems (ABI) Plus real-time PCR system.

蛋白质印迹Western blotting

Yan等人(2011)描述了特异性OsNRT2.3b抗体。从-83bp突变回交系中提取总蛋白质用于SDS-PAGE。然后将蛋白质转移到PVDF膜上,并与OsHSP(1:5000)和OsNRT2.3b(1:2000)在4℃孵育过夜。然后将PVDF膜与二抗(1:20000;Pierce)一起孵育。结合的抗体通过化学发光检测(Yan等人,2011;Tang等人,2012)。Specific OsNRT2.3b antibodies were described by Yan et al. (2011). Total proteins were extracted from the -83bp mutant backcross line for SDS-PAGE. The proteins were then transferred to a PVDF membrane and incubated with OsHSP (1:5000) and OsNRT2.3b (1:2000) at 4°C overnight. The PVDF membrane was then incubated with secondary antibodies (1:20000; Pierce). Bound antibodies were detected by chemiluminescence (Yan et al., 2011; Tang et al., 2012).

使用15N测定氮吸收Determination of nitrogen absorption using 15N

WT、T11/WT(aa)和T12/WT(aa)系在IRRI营养液中生长3周,然后在N饥饿下生长3天。最初将植物移至0.1mM CaSO4中1分钟,然后将它们分别移至含有2.5mM 15NO3-和1.25mMNH415NO3的营养液中5分钟,然后再次移至0.1mM CaSO4中1分钟。将所有植株置于105℃下30分钟灭活酶。根部和茎干分开。然后将它们在70℃的烘箱中干燥7天,并将干燥的样品研磨。使用同位素比质谱仪系统(Thermo Fisher Scientific)分析每个样品约1mg的粉末。根据根部和茎干的15N浓度计算15NO3-的流入量。WT, T11/WT(aa) and T12/WT(aa) lines were grown in IRRI nutrient solution for 3 weeks and then grown under N starvation for 3 days. Plants were initially moved to 0.1 mM CaSO 4 for 1 minute, then they were moved to nutrient solution containing 2.5 mM 15NO 3 - and 1.25 mM NH 4 15NO 3 for 5 minutes, respectively, and then moved to 0.1 mM CaSO 4 again for 1 minute. All plants were placed at 105°C for 30 minutes to inactivate the enzyme. The roots and stems were separated. They were then dried in an oven at 70°C for 7 days, and the dried samples were ground. About 1 mg of powder from each sample was analyzed using an isotope ratio mass spectrometer system (Thermo Fisher Scientific). The influx of 15NO 3 - was calculated based on the 15N concentrations of the roots and stems.

硝酸盐含量分析Nitrate content analysis

将株系置于105℃下30分钟以灭活酶。样品在75℃烘箱中干燥3天,干重记录为生物量值。将样品研磨成粉末形式。采用H2SO4-H2O2完成样品的消化。如Leleu,2004所述,在连续流动自动分析仪(型号Auto analyzer3,Bran&Luebbe,德国)上测定总氮含量。The strains were placed at 105°C for 30 minutes to inactivate the enzymes. The samples were dried in an oven at 75°C for 3 days and the dry weight was recorded as the biomass value. The samples were ground into powder form. The digestion of the samples was done using H 2 SO 4 -H 2 O 2. The total nitrogen content was determined on a continuous flow autoanalyzer (model Auto analyzer 3, Bran & Luebbe, Germany) as described by Leleu, 2004.

启动子活性分析Promoter activity analysis

1.5-kb启动子和OsNRT2.3的1.5-kb启动子片段上的-83bp突变是从水稻中扩增的,并插入到荧光素酶报告子中。将质粒与pUbi::OsTBP2.1一起转移到水稻原生质体中,并在24小时收获。通过使用试剂盒双荧光素酶报告子检测系统(Promega)分析原生质体,以计算萤火虫荧光素酶(LUC)和海肾(Renilla)(REN)荧光素酶的比值。The -83 bp mutation on the 1.5-kb promoter and the 1.5-kb promoter fragment of OsNRT2.3 was amplified from rice and inserted into a luciferase reporter. The plasmid was transferred into rice protoplasts together with pUbi::OsTBP2.1 and harvested at 24 hours. Protoplasts were analyzed by using a kit dual luciferase reporter assay system (Promega) to calculate the ratio of firefly luciferase (LUC) and Renilla (REN) luciferase.

RNA-序列分析RNA-seq analysis

从野生型(WT-27、WT-HY)、OsTBP2.1过表达系(OE)和OsTBP2.1T-DNA突变系(Mu)的茎干和根部中提取总RNA,具有三个生物学重复。由Genepioneer公司测试样品。Total RNA was extracted from the shoots and roots of wild type (WT-27, WT-HY), OsTBP2.1 overexpression line (OE) and OsTBP2.1 T-DNA mutant line (Mu) with three biological replicates. The samples were tested by Genepioneer.

结果result

翻译起始密码子OsNRT2.3上游的-83bp区域对水稻发育至关重要The -83 bp region upstream of the translation start codon OsNRT2.3 is essential for rice development

突变系T8、T11、T12和T20是使用TILLING(靶向基因组中诱导的局部病变)获得的(Tsai等人,2011)。(图9,图1a)。我们从这些株系中提取DNA来确定突变的位置。结果表明,T8、T11和T12均在-83bp处携带突变,位于翻译起始密码子OsNRT2.3的上游。(图1b)。然而,T20株系在基因OsNRT2.3的翻译起始密码子上游没有携带突变。(图1b)。在田间,与WT和T20相比,籽粒产量、干重和NUE均增加。(图1c,d)。虽然叶、叶鞘、茎和穗之间的总N浓度没有差异,但与WT和T20系相比,茎和穗的总氮含量增加(图1e,f)。因此,OsNRT2.3ATG上游位点的突变提高了氮的转运效率,从而促进了水稻的生长。Mutant lines T8, T11, T12, and T20 were obtained using TILLING (Targeted Local Lesions Induced in Genomes) (Tsai et al., 2011). (Fig. 9, Fig. 1a). We extracted DNA from these lines to determine the location of the mutation. The results showed that T8, T11, and T12 all carried mutations at -83 bp, upstream of the translation start codon OsNRT2.3. (Fig. 1b). However, the T20 line did not carry a mutation upstream of the translation start codon of the gene OsNRT2.3. (Fig. 1b). In the field, grain yield, dry weight, and NUE were increased compared with WT and T20. (Fig. 1c, d). Although there was no difference in total N concentration between leaves, sheaths, stems, and panicles, the total N content of stems and panicles increased compared with WT and T20 lines (Fig. 1e, f). Therefore, the mutation of the site upstream of OsNRT2.3 ATG improves the nitrogen transport efficiency, thereby promoting rice growth.

我们然后在IRRI营养液中培养4个株系和WT。数据显示,与野生型相比,T8、T11和T12株系表现出显著的生长和生物量,但T20株系无差异(图2a,b)。-83bp突变系和T20株系中茎干和根部的总氮浓度与WT没有差异(图2c),但与WT和T20株系相比,-83bp突变系中茎干和根部的总氮含量增加(图2d)。OsNRT2.3a和OsNRT2.3b的表达数据显示,与WT和T20相比,在T8、T11和T12株系中OsNRT2.3a下调,但OsNRT2.3b上调(图10a,b)。因此,OsNRT2.3的ATG上游-83bp处的突变体增加了OsNRT2.3b与OsNRT2.3a的比值(图2e)。We then cultured the four strains and WT in IRRI nutrient solution. The data showed that the T8, T11, and T12 strains showed significant growth and biomass compared to the wild type, but there was no difference in the T20 strain (Figure 2a, b). The total nitrogen concentration in the stem and root of the -83bp mutant and T20 strains was not different from that of the WT (Figure 2c), but the total nitrogen content in the stem and root of the -83bp mutant was increased compared to the WT and T20 strains (Figure 2d). The expression data of OsNRT2.3a and OsNRT2.3b showed that OsNRT2.3a was downregulated in the T8, T11, and T12 strains compared to the WT and T20, but OsNRT2.3b was upregulated (Figure 10a, b). Therefore, the mutant at -83bp upstream of the ATG of OsNRT2.3 increased the ratio of OsNRT2.3b to OsNRT2.3a (Figure 2e).

此外,如图15所示,对于所研究的所有三种类型的15N源,与W相比,T8、T11和T12株系中根部(图15a)和茎干(图15b)中积累的15N含量显著更高。与根部或茎干中的WT相比,T20株系没有显示任何显著差异(图15a,b)。Furthermore, as shown in Figure 15 , for all three types of 15 N sources studied, significantly higher 15 N contents were accumulated in the roots ( Figure 15 a) and stems ( Figure 15 b) in the T8, T11, and T12 lines compared to W. The T20 line did not show any significant differences compared to WT in either the roots or stems ( Figures 15 a, b).

图17还显示了在成熟阶段-83bp突变回交系中的氮含量。将突变回交系和对照在T8、T8/WT(aa)(失去-83bp突变)系的叶、叶鞘、茎和穗中的氮含量与WT进行比较。与WT相比,WT和T8/WT(aa)在植物的所有部分之间没有显著差异。Figure 17 also shows the nitrogen content in the -83bp mutant backcross lines at the mature stage. The nitrogen content in leaves, leaf sheaths, stems and ears of the mutant backcross lines and controls in T8, T8/WT (aa) (loss of -83bp mutation) lines was compared with WT. There were no significant differences between WT and T8/WT (aa) in all parts of the plant compared to WT.

OsNRT2.3的ATG上游的-83bp区域可以增加OsNRT2.3b与OsNRT2.3a的比值The -83 bp region upstream of the ATG of OsNRT2.3 can increase the ratio of OsNRT2.3b to OsNRT2.3a

结果表明,与无突变或其他位点突变相比,OsNRT2.3启动子中的-83bp位点突变显著促进了OsNRT2.3b表达(图3a,b)。当我们使用具有-83bp位点突变的OsNRT2.3启动子驱动OsNRT2.3a表达时,与非突变系相比,OsNRT2.3a的表达被下调,然而,OsNRT2.3b的表达被显著上调(图3c,d)。OsNRT2.3ATG上游的-83bp突变也可以增加OsNRT2.3b与OsNRT2.3a的比值(图3e)。因此,我们得出结论,OsNRT2.3ATG上游的-83bp区域对于将OsNRT2.3翻译为OsNRT2.3a和OsNRT2.3b至关重要,因此对水稻发育很重要。The results showed that the -83bp site mutation in the OsNRT2.3 promoter significantly promoted the expression of OsNRT2.3b compared with no mutation or mutations at other sites (Fig. 3a, b). When we used the OsNRT2.3 promoter with the -83bp site mutation to drive the expression of OsNRT2.3a, the expression of OsNRT2.3a was downregulated compared with the non-mutant line, however, the expression of OsNRT2.3b was significantly upregulated (Fig. 3c, d). The -83bp mutation upstream of the OsNRT2.3 ATG could also increase the ratio of OsNRT2.3b to OsNRT2.3a (Fig. 3e). Therefore, we concluded that the -83bp region upstream of the OsNRT2.3 ATG is essential for the translation of OsNRT2.3 into OsNRT2.3a and OsNRT2.3b and is therefore important for rice development.

-83bp突变增加了OsNRT2.3b蛋白水平和氮转运效率The -83bp mutation increases OsNRT2.3b protein level and nitrogen transport efficiency

为了进一步验证OsNRT2.3上游的-83bp突变位点可以影响OsNRT2.3的转录,我们将T11和T12系与WT杂交。我们获得了T11和T12回交的纯合(aa)、杂合(Aa)和非突变(AA)系(图4a,b和图11)。序列结果显示OsNRT2.3基因ATG上游-83bp处仅有1个突变(图12a,b)。与WT相比,OsNRT2.3a在T11/WT(aa)和T12/WT(aa)系中的表达下调,然而,OsNRT2.3b上调。(图12c)。与成熟阶段的非突变(AA)系相比,纯合(aa)系T11/WT(aa)和T12/WT(aa)的产量、干重和氮利用效率显著增加。(图13)To further verify that the -83bp mutation site upstream of OsNRT2.3 can affect the transcription of OsNRT2.3, we crossed T11 and T12 lines with WT. We obtained homozygous (aa), heterozygous (Aa), and non-mutant (AA) lines of T11 and T12 backcrosses (Figures 4a, b and 11). Sequence results showed that there was only one mutation at -83bp upstream of the ATG of the OsNRT2.3 gene (Figures 12a, b). Compared with WT, the expression of OsNRT2.3a was downregulated in T11/WT (aa) and T12/WT (aa) lines, however, OsNRT2.3b was upregulated. (Figure 12c). Compared with the non-mutant (AA) line at the maturity stage, the yield, dry weight, and nitrogen use efficiency of the homozygous (aa) lines T11/WT (aa) and T12/WT (aa) were significantly increased. (Figure 13)

我们接下来通过Western印迹分析了T11/WT(aa)和T12/WT(aa)叶和根中OsNRT2.3b蛋白水平,发现与WT相比,T11/WT(aa)和T12/WT(aa)叶中OsNRT2.3b蛋白水平升高,但不在根部。(图4c)。先前的研究结果表明OsNRT2.3a主要负责硝酸盐从根部到茎干的长距离运输,而OsNRT2.3b主要负责茎干。(Tang等人,2012;Yan等人,2011)敲除OsNRT2.3a会增加根部硝酸盐的积累,而过表达OsNRT2.3b会增加硝酸盐的吸收和运输。(Tang等人,2012;Fan等人,2016)。为了确定OsNRT2.3翻译起始密码子上游的-83bp位点突变体对不同形式的氮应用的影响,在pH5.5测量了5分钟内-83bp突变对15NO3-和NH415NO3吸收的影响(图4d,e)。与WT相比,回交系在5分钟处理实验中显示出更多的15N吸收到茎干中(图4d)。然而,根中15N的吸收仅在施用15NO3-而非NH415NO3的根中显著增加(图4e)。与野生型相比,用15NO3-和NH415NO3处理也显著增加了回交系中茎干15N的浓度(图4f)。总之,我们得出结论,OsNRT2.3b的5'UTR中的-83bp突变提高了N吸收效率和运输效率。We next analyzed the OsNRT2.3b protein levels in leaves and roots of T11/WT(aa) and T12/WT(aa) by Western blotting and found that the OsNRT2.3b protein levels were increased in leaves of T11/WT(aa) and T12/WT(aa) compared with WT, but not in roots. (Fig. 4c). Previous results showed that OsNRT2.3a is mainly responsible for the long-distance transport of nitrate from roots to stems, while OsNRT2.3b is mainly responsible for stems. (Tang et al., 2012; Yan et al., 2011) Knockout of OsNRT2.3a increased nitrate accumulation in roots, while overexpression of OsNRT2.3b increased nitrate absorption and transport. (Tang et al., 2012; Fan et al., 2016). To determine the effect of the -83 bp site mutant upstream of the OsNRT2.3 translation start codon on different forms of nitrogen application, the effect of the -83 bp mutation on 15NO 3 - and NH 4 15NO 3 uptake within 5 min was measured at pH 5.5 (Figure 4d, e). Compared with WT, the backcross lines showed more 15N uptake into the stem in the 5 min treatment experiment (Figure 4d). However, the uptake of 15N in the roots was significantly increased only in the roots applied with 15NO 3 - but not NH 4 15NO 3 (Figure 4e). Treatment with 15NO 3 - and NH 4 15NO 3 also significantly increased the concentration of stem 15 N in the backcross lines compared with the wild type (Figure 4f). In summary, we conclude that the -83 bp mutation in the 5'UTR of OsNRT2.3b improves N uptake efficiency and transport efficiency.

此外,图16显示了OsNRT2.3突变回交系中15NO3-和15NH4+在5分钟时间内的流入量。WT以及T11和T12的突变回交纯合系在1.25mM NH4NO3中生长3周,氮饥饿1周。然后在5分钟内测量2.5mM 15NO3-、1.25mM NH4 15NO3和1.25mM 15NH4NO315N流入率。(a)根15N流入率。(b)茎干15N流入率。误差线:SE(n=5)不同字母表示转基因系和WT之间的显著差异(P<0.05,单向方差分析)。In addition, Figure 16 shows the influx of 15 NO 3 - and 15 NH 4 + in the OsNRT2.3 mutant backcross lines within 5 minutes. WT and T11 and T12 mutant backcross homozygous lines were grown in 1.25 mM NH 4 NO 3 for 3 weeks and nitrogen starved for 1 week. Then, the 15 N influx rates of 2.5 mM 15 NO 3 -, 1.25 mM NH 4 15 NO 3 and 1.25 mM 15 NH 4 NO 3 were measured within 5 minutes. (a) Root 15 N influx rate. (b) Shoot 15 N influx rate. Error bars: SE (n=5) Different letters indicate significant differences between transgenic lines and WT (P<0.05, one-way ANOVA).

OsNRT2.3不同启动子长度改变OsNRT2.3a和OsNRT2.3b的转录Different promoter lengths of OsNRT2.3 alter the transcription of OsNRT2.3a and OsNRT2.3b

我们设计了表达载体来研究OsNRT2.3不同启动子长度对OsNRT2.3a和OsNRT2.3b转录的影响(图14a)并获得转基因幼苗。OsNRT2.3a的表达被更长的启动子长度上调。当使用141bp和180bp启动子驱动OsNRT2.3a的437bp ORF的表达时,其在幼苗中的表达下调。然而,较长的启动子序列——243bp、697bp和1505bp启动子增加了OsNRT2.3a的表达(图14b)。相反,在OsNRT2.3b的情况下,与其他系相比,只有较短的启动子——141bp和180bp,显著增加了OsNRT2.3b的表达(图14c)。与其他系相比,OsNRT2.3b与OsNRT2.3a的比值在141bp和180bp启动子中也有所增加(图14d)。总之,OsNRT2.3b与OsNRT2.3a的表达比值与启动子长度强相关。We designed expression vectors to study the effects of different promoter lengths of OsNRT2.3 on the transcription of OsNRT2.3a and OsNRT2.3b (Figure 14a) and obtained transgenic seedlings. The expression of OsNRT2.3a was upregulated by longer promoter lengths. When the 141bp and 180bp promoters were used to drive the expression of the 437bp ORF of OsNRT2.3a, its expression in seedlings was downregulated. However, longer promoter sequences - 243bp, 697bp and 1505bp promoters increased the expression of OsNRT2.3a (Figure 14b). In contrast, in the case of OsNRT2.3b, only the shorter promoters - 141bp and 180bp, significantly increased the expression of OsNRT2.3b compared to other lines (Figure 14c). Compared with other lines, the ratio of OsNRT2.3b to OsNRT2.3a was also increased in the 141 bp and 180 bp promoters (Figure 14d). In conclusion, the expression ratio of OsNRT2.3b to OsNRT2.3a was strongly correlated with the promoter length.

为了证实-83bp位点突变影响OsNRT2.3a和OsNRT2.3b在不同启动子长度的表达,我们在141bp和697bp启动子上进行了-83bp位点突变。我们然后设计了载体,使用非突变或-83bp位点突变启动子来驱动OsNRT2.3a的437bp ORF和报告子基因ZIIIB的表达(图5a)。实时PCR的统计表明,与OsNRT2.3a的表达由等效的非突变启动子驱动的表达水平相比,当表达由突变启动子(141bp或697bp启动子)驱动时,OsNRT2.3a的表达下调(图5b)。然而,当突变发生在短启动子(141bp启动子)上时,与未突变的141bp启动子的表达水平相比,OsNRT2.3b的表达降低。相反,当突变发生在长启动子(697bp)上时,与等效(697bp)非突变启动子上的表达水平相比,OsNRT2.3b的表达上调(图5c)。总体而言,数据表明,无论突变是在短启动子还是长启动子上,它都可以促进OsNRT2.3b的转录而不是OsNRT2.3a(图5d)。总之,-83bp变可以通过不同长度的启动子改变OsNRT2.3的转录调控。To confirm that the -83bp site mutation affects the expression of OsNRT2.3a and OsNRT2.3b at different promoter lengths, we performed -83bp site mutation on 141bp and 697bp promoters. We then designed vectors to drive the expression of the 437bp ORF of OsNRT2.3a and the reporter gene ZIIIB using either the non-mutated or -83bp site mutant promoter (Figure 5a). Real-time PCR statistics showed that the expression of OsNRT2.3a was downregulated when the expression was driven by the mutant promoter (141bp or 697bp promoter) compared to the expression level of OsNRT2.3a driven by the equivalent non-mutated promoter (Figure 5b). However, when the mutation occurred on the short promoter (141bp promoter), the expression of OsNRT2.3b was reduced compared to the expression level of the unmutated 141bp promoter. In contrast, when the mutation occurred on the long promoter (697 bp), the expression of OsNRT2.3b was upregulated compared with the expression level on the equivalent (697 bp) non-mutated promoter (Fig. 5c). Overall, the data suggest that regardless of whether the mutation is on the short or long promoter, it can promote the transcription of OsNRT2.3b but not OsNRT2.3a (Fig. 5d). In conclusion, the -83 bp mutation can alter the transcriptional regulation of OsNRT2.3 through promoters of different lengths.

OsTBP2.1与OsNRT2.3的顺式元件TATA-盒结合OsTBP2.1 binds to the cis-element TATA-box of OsNRT2.3

使用Softberry的网站(http://linux1.softberry.com/berry.phtml),我们分析了OsNRT2.3的ATG之前的序列,并鉴定-83bp突变序列在TATA-盒基序内。因此我们在NCBI网站(https://www.ncbi.nlm.nih.gov)上搜索了三种TATA-盒结合蛋白:OsTBP2、OsTBP2.1和OsTBP2.2。为了鉴定与OsNRT2.3上游83bp的TATA-盒相互作用的蛋白质,我们进行了酵母单杂交试验。结果表明,结合蛋白OsTBP2.1可以与TATA盒-pAbAi报告子基因在含有800ng ml-1金担子素A(AbAr)的SD/-Leu培养基上生长。其他效应子未能生长。(图6a)Using Softberry's website ( http://linux1.softberry.com/berry.phtml ), we analyzed the sequence before the ATG of OsNRT2.3 and identified that the -83bp mutant sequence was within the TATA-box motif. We therefore searched the NCBI website (https://www.ncbi.nlm.nih.gov) for three TATA-box binding proteins: OsTBP2, OsTBP2.1, and OsTBP2.2. To identify proteins that interact with the TATA-box 83bp upstream of OsNRT2.3, we performed a yeast one-hybrid assay. The results showed that the binding protein OsTBP2.1 could interact with the TATA box-pAbAi reporter gene grown on SD/-Leu medium containing 800ng ml -1 aurobasidin A (AbA r ). Other effectors failed to grow. (Figure 6a)

我们使用双荧光素酶测定来研究TATA-盒结合蛋白OsTBP2.1是否影响-83bp突变系中OsNRT2.3启动子的转录活性。构建了如图6b所示的报告子和效应子载体,并将这些载体共转化到水稻原生质体中。如图6c所示,当pmNRT2.3::Luc和pUbi::TBP2.1共同转化到水稻原生质体中时,观察了到最大的激活。值得注意的是,与pmNRT2.3::Luc和pUbi::TBP2.1系相比,Pnrt2.3::Luc和pUbi::TBP2.1系中的荧光素酶表达水平较低(图6c)。在单个转化系pNRT2.3::Luc和pmNRT2.3::Luc中观察到了最低水平的荧光素酶表达(图6c)。我们接下来构建了图6d所示的表达载体并获得了转基因幼苗。与不同启动子长度的无突变株系相比,OsNRT2.3a和OsNRT2.3b的蛋白质含量增加(图6e,f)。综上所述,这些结果表明转录因子OsTBP2.1可以增加OsNRT2.3向OsNRT2.3b的转录。We used a dual luciferase assay to investigate whether the TATA-box binding protein OsTBP2.1 affects the transcriptional activity of the OsNRT2.3 promoter in the -83bp mutant line. The reporter and effector vectors shown in Figure 6b were constructed and co-transformed into rice protoplasts. As shown in Figure 6c, the greatest activation was observed when pmNRT2.3::Luc and pUbi::TBP2.1 were co-transformed into rice protoplasts. It is noteworthy that the luciferase expression levels in the Pnrt2.3::Luc and pUbi::TBP2.1 lines were lower than those in the pmNRT2.3::Luc and pUbi::TBP2.1 lines (Figure 6c). The lowest levels of luciferase expression were observed in the single transformed lines pNRT2.3::Luc and pmNRT2.3::Luc (Figure 6c). We next constructed the expression vectors shown in Figure 6d and obtained transgenic seedlings. Compared with the null mutant lines with different promoter lengths, the protein levels of OsNRT2.3a and OsNRT2.3b were increased (Fig. 6e, f). Taken together, these results suggest that the transcription factor OsTBP2.1 can increase the transcription of OsNRT2.3 to OsNRT2.3b.

OsTBP2.1增加OsNRT2.3b与OsNRT2.3a的比值并影响水稻生长OsTBP2.1 increases the ratio of OsNRT2.3b to OsNRT2.3a and affects rice growth

为了研究OsTBP2.1对OsNRT2.3的调控,我们获得了过表达和T-DNA突变系。(图7a,b)。如图7c所示,与WT-W27相比,过表达系的粒重和干生物量增加,而T-DNA突变系的粒重和生物量减少。这与,OE198和OE200过表达系中OsTBP2.1和OsNRT2.3b表达相比于WT(WT-W27)的增加以及T-DNA突变系(1A-19324)中OsTBP2.1和OsNRT2.3b表达相比于WT Huangyant(WT-HY)的降低相关(图7d)。OsTBP2.1的过表达也增加了OsNRT2.3b与OsNRT2.3a的比值(在T-DNA突变系中观察到相反的效果(图7e))。To investigate the regulation of OsTBP2.1 on OsNRT2.3, we obtained overexpression and T-DNA mutant lines. (Fig. 7a, b). As shown in Fig. 7c, the grain weight and dry biomass of the overexpression lines increased compared with WT-W27, while the grain weight and biomass of the T-DNA mutant lines decreased. This was associated with the increase in OsTBP2.1 and OsNRT2.3b expression in the OE198 and OE200 overexpression lines compared with WT (WT-W27) and the decrease in OsTBP2.1 and OsNRT2.3b expression in the T-DNA mutant line (1A-19324) compared with WT Huangyant (WT-HY) (Fig. 7d). Overexpression of OsTBP2.1 also increased the ratio of OsNRT2.3b to OsNRT2.3a (the opposite effect was observed in the T-DNA mutant line (Fig. 7e)).

讨论discuss

在生长和发育过程中,植物对各种环境和发育信号的反应需要功能基因的精确表达。在这些过程中,一些转录因子发挥着重要作用。例如,NLP转录因子在高等植物硝酸盐的调控中起着重要作用。(Konishi等人,2019)。我们的研究表明,TATA-盒结合因子OsTBP2.1调节多种途径,包括硝酸盐途径。我们的实验表明,OsTBP2.1与OsNRT2.3启动子的共转染可以增加蛋白质水平。(图6b,c)在OsTBP2.1过表达系中,OsNRT2.3b与OsNRT2.3a的比值增加,但在ostbp2.1T-DNA系中,该比例降低。(图7d)。综上所述,OsTBP2.1可以增强OsNRT2.3b的表达,降低OsNRT2.3a的表达以影响水稻发育。当TATA盒突变为TACA时,OsTBP2.1的结合能力增加,导致OsNRT2.3b的表达水平更高。During growth and development, the response of plants to various environmental and developmental signals requires the precise expression of functional genes. In these processes, some transcription factors play important roles. For example, NLP transcription factors play an important role in the regulation of nitrate in higher plants. (Konishi et al., 2019). Our study showed that the TATA-box binding factor OsTBP2.1 regulates multiple pathways, including the nitrate pathway. Our experiments showed that co-transfection of OsTBP2.1 with the OsNRT2.3 promoter could increase protein levels. (Figure 6b, c) In the OsTBP2.1 overexpression line, the ratio of OsNRT2.3b to OsNRT2.3a increased, but in the ostbp2.1T-DNA line, the ratio decreased. (Figure 7d). In summary, OsTBP2.1 can enhance the expression of OsNRT2.3b and reduce the expression of OsNRT2.3a to affect rice development. When the TATA box was mutated to TACA, the binding ability of OsTBP2.1 was increased, resulting in higher expression levels of OsNRT2.3b.

关键顺式作用元件在每个基因的转录调控中发挥重要作用。在OsNRT2.3b的5'UTR处但位于OsNRT2.3a 5'UTR的上游的TATA-盒,通过结合OsTBP2.1控制OsNRT2.3的转录。但当TATA-盒发生突变时,OsTBP2.1结合TATA盒的能力发生改变,导致OsNRT2.3b与OsNRT2.3a的比值增加。(图9)。如此我们得出结论,OsNRT2.3向OsNRT2.3a和OsNRT2.3b的转录主要受OsNRT2.3启动子上的TATA-盒的调控,因此TATA-盒在OsNRT2.3到OsNRT2.3a和OsNRT2.3b的剪接中起着重要的调控作用。Key cis-acting elements play an important role in the transcriptional regulation of each gene. The TATA-box located in the 5'UTR of OsNRT2.3b but upstream of the 5'UTR of OsNRT2.3a controls the transcription of OsNRT2.3 by binding to OsTBP2.1. However, when the TATA-box is mutated, the ability of OsTBP2.1 to bind to the TATA-box is altered, resulting in an increase in the ratio of OsNRT2.3b to OsNRT2.3a. (Figure 9). Thus, we conclude that the transcription of OsNRT2.3 to OsNRT2.3a and OsNRT2.3b is mainly regulated by the TATA-box on the OsNRT2.3 promoter, and therefore the TATA-box plays an important regulatory role in the splicing of OsNRT2.3 to OsNRT2.3a and OsNRT2.3b.

5'UTR在RNA翻译、RNA稳定性和RNA转录中发挥调节作用。在5'UTR处的内含子的数量和长度会影响基因的表达(Chung等人,2006)以及在启动子和在含有第一个内含子的5'UTR上的关键顺式作用元件。(Hernandez-Garcia和Finer,2014;Gallegos和Rose,2015)。在我们的研究中,OsNRT2.3b的5'UTR中的TATA-盒突变体增加了OsNRT2.3b与OsNRT2.3a的比值,导致产量和生长提高。The 5'UTR plays a regulatory role in RNA translation, RNA stability and RNA transcription. The number and length of introns at the 5'UTR affect gene expression (Chung et al., 2006) as well as key cis-acting elements at the promoter and at the 5'UTR containing the first intron (Hernandez-Garcia and Finer, 2014; Gallegos and Rose, 2015). In our study, the TATA-box mutant in the 5'UTR of OsNRT2.3b increased the ratio of OsNRT2.3b to OsNRT2.3a, resulting in improved yield and growth.

参考文献references

Araki R,Hasegawa H.Expression of rice(Oryza sativa L.)genes involvedin high-affinity nitrate transport during the period of nitrateinduction.Breed.Sci.2006;56:295–302Araki R, Hasegawa H. Expression of rice(Oryza sativa L.) genes involved in high-affinity nitrate transport during the period of nitrateinduction. Breed. Sci. 2006; 56:295–302

Cermak,T et al.Efficient design and assembly of custom TALEN andother TAL effector-based constructs for DNA targeting.Nucleic acid Res.39(2011).Cermak,T et al.Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting.Nucleic acid Res.39(2011).

Chen J,Zhang Y,Tan Y,Zhang M,Zhu L,Xu G,Fan X.2016.Agronomicnitrogen-use efficiency of rice can be increased by driving OsNRT2.1expression with the OsNAR2.1 promoter.Plant Biotechnology Journal 14:1705–1715.Chen J, Zhang Y, Tan Y, Zhang M, Zhu L, Xu G, Fan X. 2016. Agronomicnitrogen-use efficiency of rice can be increased by driving OsNRT2.1expression with the OsNAR2.1 promoter. Plant Biotechnology Journal 14:1705 –1715.

Chung B Y,Simons C,Firth A E,et al.Effect of 5’UTR introns on geneexpression inArabidopsis thaliana[J].Bmc Genomics,2006,7(1):120-0.Chung B Y, Simons C, Firth A E, et al. Effect of 5’UTR introns on gene expression in Arabidopsis thaliana[J]. Bmc Genomics, 2006, 7(1):120-0.

Clough SJ,Bent AF.1998.Floral dip:a simplified method forAgrobacterium-mediated transformation of Arabidopsis thaliana.Plant J.16(6):735-43.Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16(6):735-43.

Comai L,Young K,Till BJ,Reynolds SH,Greene EA,Codoma CA,Enns LC,Johnson JE,Burtner C,Odden AR,Heinkoff.2004.Efficient discovery of DNApolymorphisms in natural populations by Ecotilling.Plant J.37(5):778-86.Comai L,Young K,Till BJ,Reynolds SH,Greene EA,Codoma CA,Enns LC,Johnson JE,Burtner C,Odden AR,Heinkoff.2004.Efficient discovery of DNApolymorphisms in natural populations by Ecotilling.Plant J.37(5 ):778-86.

Crawford NM,Glass ADM.1998.Molecular and physiological aspects ofnitrate uptake in plants.Trends Plant Sci 3:389–395.Crawford NM, Glass ADM. 1998. Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci 3:389–395.

Fan X,Feng H,Tan Y,Xu Y,Miao Q,Xu G.2016.A putative 6-transmembranenitrate transporter OsNRT1.1b plays a key role in rice under lownitrogen.Journal of Integrative Plant Biology 58:590–599.Fan X,Feng H,Tan Y,Xu Y,Miao Q,Xu G.2016.A putative 6-transmembranenitrate transporter OsNRT1.1b plays a key role in rice under lownitrogen.Journal of Integrative Plant Biology 58:590–599.

Fan X,Tang Z,Tan Y,Zhang Y,Luo B,Yang M,Lian X,Shen Q,Miller AJ,XuG.2016.Overexpression of a pH-sensitive nitrate transporter in rice increasescrop yields.Proceedings of the National Academy of Sciences:201525184.Fan Sciences:201525184.

Fan X,Xie D,Chen J,Lu H,Xu Y,Ma C,Xu G.2014.Over-expression of OsPTR6in rice increased plant growth at different nitrogen supplies but decreasednitrogen use efficiency at high ammonium supply.Plant Science 227:1–11.Fan –11.

FAO.2015.FAO Statistical Pocketbook 2015.FAO.2015.FAO Statistical Pocketbook 2015.

Feng H,Fan X,Yan M,Liu X,Miller AJ,Xu G.2011.Multiple roles ofnitrate transport accessory protein NAR2 in plants.Plant Signaling&Behavior6:1286–1289.Feng H, Fan X, Yan M, Liu

Feng,Q.,Zhang,Y.,Hao,P.,Wang,S.,Fu,G.,Huang,Y.,Li,Y.etal.2002.Sequence and analysis of rice chromosome 4.Nature 420:316–320.Feng,Q.,Zhang,Y.,Hao,P.,Wang,S.,Fu,G.,Huang,Y.,Li,Y.etal.2002.Sequence and analysis of rice chromosome 4.Nature 420:316 –320.

Forde BG.2000.Nitrate transporters in plants:structure,function andregulation.Biochim Biophys Acta 1465:219–235.Forde BG. 2000. Nitrate transporters in plants: structure, function and regulation. Biochim Biophys Acta 1465:219–235.

Gallegos JE,Rose AB.2015.The enduring mystery of intron-mediatedenhancement.Plant Science 237:8–15.Gallegos JE, Rose AB. 2015. The enduring mystery of intron-mediatedenhancement. Plant Science 237:8–15.

Henikoff S,Till BJ,Comai L.2004.TILLING.Traditional mutagenesis meetsfunctional genomics.Plant Physiol.135(2):630-6.Henikoff S, Till BJ, Comai L. 2004. TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol. 135(2):630-6.

Hernandez-Garcia CM,Finer JJ.2014.Identification and validation ofpromoters and cis-acting regulatory elements.Plant Science 217–218:109–119.Hernandez-Garcia CM, Finer JJ. 2014. Identification and validation of promoters and cis-acting regulatory elements. Plant Science 217–218:109–119.

Jingguang C,Yong Z,Yawen T.2016.The Effects of OsNRT2.1 Over-expression on Plant Growth and Nitrogen use Efficiency in Rice Nipponbare(Oryza sativa L.ssp.japonica).14.Jingguang C,Yong Z,Yawen T.2016.The Effects of OsNRT2.1 Over-expression on Plant Growth and Nitrogen use Efficiency in Rice Nipponbare(Oryza sativa L.ssp.japonica).14.

Kirk GJ,Kronzucker HJ.2005.The potential for nitrification andnitrate uptake in the rhizosphere of wetland plants:a modelling study.Annalsof Botany 96:639–646.Kirk GJ, Kronzucker HJ. 2005. The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: a modeling study. Annalsof Botany 96:639–646.

Komor,A.C.;Kim,Y.B.;Packer,M.S.;Zuris,J.A.;Liu,D.R.2-16.Programmableediting of a target base in genomic DNA without double-stranded DNAcleavage.Nature,533,420–424Komor,A.C.;Kim,Y.B.;Packer,M.S.;Zuris,J.A.;Liu,D.R.2-16.Programmable editing of a target base in genomic DNA without double-stranded DNAcleavage.Nature,533,420–424

Konishi M,Yanagisawa S.2019.The role of protein-protein interactionsmediated by the PB1 domain of NLP transcription factors in nitrate-induciblegene expression.BMC Plant Biology 19(1):90.Konishi M, Yanagisawa S. 2019. The role of protein-protein interactions mediated by the PB1 domain of NLP transcription factors in nitrate-induciblegene expression. BMC Plant Biology 19(1):90.

Kronzucker,H.J.,Siddiqi,M.Y.,Glass,A.D.,&Kirk,G.J.(1999).Nitrate-ammonium synergism in rice.A subcellular flux analysis.Plant physiology,119(3),1041–1046.Kronzucker,H.J.,Siddiqi,M.Y.,Glass,A.D.,&Kirk,G.J.(1999).Nitrate-ammonium synergism in rice.A subcellular flux analysis.Plant physiology,119(3),1041–1046.

Krysan PJ,Young JC,Sussman MR.1999.T-DNA as an insertional mutagen inArabidopsis.Plant Cell.11(12):2283-90.Krysan PJ,Young JC,Sussman MR.1999.T-DNA as an insertional mutagen in Arabidopsis.Plant Cell.11(12):2283-90.

Kunkel TA.1985.Rapid and efficient dite-specifc mutagenesis withoutphenotypic selection.PNAS.82(2):488-92.Kunkel TA.1985.Rapid and efficient dite-specifc mutagenesis without phenotypic selection.PNAS.82(2):488-92.

Kunkel TA,Roberts JD,Zakour RA.1987.Rapid and efficient dite-specifcmutagenesis without phenotypic selection.Methods Enzmol.154.367-82.Kunkel TA,Roberts JD,Zakour RA.1987.Rapid and efficient dite-specifcmutagenesis without phenotypic selection.Methods Enzmol.154.367-82.

Leleu O,Vuylsteker C.2004.Unusual regulatory nitrate reductaseactivity in otyledons of Brassica napus seedlings:enhancement of nitratereductase activity by ammonium supply.J Exp Bot 55:815–823Leleu O, Vuylsteker C. 2004. Unusual regulatory nitrate reductaseactivity in otyledons of Brassica napus seedlings:enhancement of nitratereductase activity by ammonium supply. J Exp Bot 55:815–823

Ma X,Zhang Q,Zhu Q,Liu W,Chen Y,Qiu R,Wang B,Yang Z,Li H,Lin Y,Xie Y,Shen R,Chen S,Wang Z,Chen Y,Guo J,Chen L,Zhao X,Dong Z,Liu Y.2015.A RobustCRISPR/Cas9 System for Convenient,High-Efficiency Multiplex Genome Editing inMonocot and Dicot Plants.8(8):1274-84.Ma X,Zhang Q,Zhu Q,Liu W,Chen Y,Qiu R,Wang B,Yang Z,Li H,Lin Y,Xie Y,Shen R,Chen S,Wang Z,Chen Y,Guo J,Chen L ,Zhao

Miller AJ,Fan X,Orsel M,Smith SJ,Wells DM.2007.Nitrate transport andsignalling.J Exp Bot 58:2297–2306.Miller AJ, Fan

Nishida K,et al.2016.Targeted nucleotide editing using hybridprokaryotic and vertebrate adaptive immune systems.Science 353,aaf8729Nishida K,et al.2016.Targeted nucleotide editing using hybridprokaryotic and vertebrate adaptive immune systems.Science 353,aaf8729

Orsel M,Krapp A,Daniel-Vedele F.2002.Analysis of the NRT2 nitratetransporter family in Arabidopsis Structure and gene expression.PlantPhysiology 129:886-896.Orsel M,Krapp A,Daniel-Vedele F.2002.Analysis of the NRT2 nitratetransporter family in Arabidopsis Structure and gene expression.PlantPhysiology 129:886-896.

Orsel M.,Krapp A.,Daniel-Vedele F.2002.Analysis of the NRT2 nitratetransporter family in Arabidopsis.Structure and gene expression.Plant Physiol129:886–896Orsel M.,Krapp A.,Daniel-Vedele F.2002.Analysis of the NRT2 nitratetransporter family in Arabidopsis.Structure and gene expression.Plant Physiol129:886–896

Okamoto M,Vidmar J J,Glass A D M.2003.Regulation of NRT1 and NRT2gene families of Arabidopsis thaliana:responses to nitrate provision.PlantCell Physiology 44:304-317.Okamoto M, Vidmar J J, Glass A D M. 2003. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision. PlantCell Physiology 44:304-317.

Peng X,Wang H,Jang J,Xiao T,He H,Jiang D,Tang X.2016.OsWRKY80-OsWRKY4Module as a Positive Regulatory Circuit in Rice Resistance AgainstRhizoctonia solani.Rice.Peng X, Wang H, Jang J, Xiao T, He H, Jiang D, Tang X. 2016. OsWRKY80-OsWRKY4Module as a Positive Regulatory Circuit in Rice Resistance Against Rhizoctonia solani.

Radhar M,McMahon MA,Prakash TP,Swayze EE,Bennett F,ClevelandDW.2015.Synthetic CRISPR RNA-Cas9-guided genome editing in humancells.PNAS.112(51)E7110-E7117.Radhar M,McMahon MA,Prakash TP,Swayze EE,Bennett F,ClevelandDW.2015.Synthetic CRISPR RNA-Cas9-guided genome editing in human cells.PNAS.112(51)E7110-E7117.

Sanjana NE,et al.A transcription activator-like effector toolbox forgenome engineering.Nat Protoc.2012;7(1):171–192Sanjana NE, et al. A transcription activator-like effector toolbox forgenome engineering. Nat Protoc. 2012;7(1):171–192

Sasaki,T.,Matsumoto,T.,Yamamoto,K.et al.2002.The genome sequence andstructure of rice chromosome 1.Nature 420:312–316.Sasaki, T., Matsumoto, T., Yamamoto, K. et al. 2002. The genome sequence and structure of rice chromosome 1. Nature 420:312–316.

Sasakawa,H.and Yamamoto,Y.1978.Comparison of the uptake of nitrateand ammonium by rice seedlings.Plant Physiology 62:665–669.Sasakawa,H.and Yamamoto,Y.1978.Comparison of the uptake of nitrateand ammonium by rice seedlings.Plant Physiology 62:665–669.

Schortemeyer M,Feil B.,Stamp P.1993.Root morphology and nitrogenuptake of maize simultaneously supplied with ammonium and nitrate in a split-root system.Ann Bot 72:107–115Schortemeyer M, Feil B., Stamp P. 1993. Root morphology and nitrogenuptake of maize simultaneously supplied with ammonium and nitrate in a split-root system. Ann Bot 72:107–115

Tang Z,Fan XR,Li Q,Feng HM,Miller AJ,Shen QR,Xu GH.2012.Knockdown ofa Rice Stelar Nitrate Transporter Alters Long-Daistance Translocation But NotRoot Influx.Plant Physiology 160:2052–2063.Tang Z, Fan

Tegeder M,Rentsch D.2010.Uptake and partitioning of amino acids andpeptides.Molecular Plant 3:997–1011.Tegeder M, Rentsch D. 2010. Uptake and partitioning of amino acids and peptides. Molecular Plant 3:997–1011.

Toki S.1997.Rapid and efficient Agrobacterium-mediated transformationin rice.Plant Molecular Biology Reporter 15:16–21.Toki S.1997. Rapid and efficient Agrobacterium-mediated transformation in rice. Plant Molecular Biology Reporter 15:16–21.

Toki S,Hara N,Ono K,Onodera H,Tagiri A,Oka S,Tanaka H.2006.Earlyinfection of scutellum tissue with Agrobacterium allows high-speedtransformation of rice.Plant Journal 47:969–976.Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H. 2006. Earlyinfection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. Plant Journal 47:969–976.

Tsai H,Howell T,Nitcher R,Missirian V,Watson B,Ngo KJ,Lieberman M,Fass J,Uauy C,Tran RK,et al.2011.Discovery of rare mutations in populations:tilling by sequencing.Plant Physiology 56(3):1257-1268.Tsai H,Howell T,Nitcher R,Missirian V,Watson B,Ngo KJ,Lieberman M,Fass J,Uauy C,Tran RK,et al.2011.Discovery of rare mutations in populations:tilling by sequencing.Plant Physiology 56( 3):1257-1268.

Upadhyaya NM,Surin B,Ramm K,Gaudron J,Schunmann PHD,Taylor W,Waterhouse PM,Wang MB.2000.Agrobacterium-mediated transformation ofAustralian rice cultivars Jarrah and Amaroo using modified promoters andselectable markers.Aust J Plant Physiol 27:201–210.Upadhyaya NM, Surin B, Ramm K, Gaudron J, Schunmann PHD, Taylor W, Waterhouse PM, Wang MB. 2000. Agrobacterium-mediated transformation of Australian rice cultivars Jarrah and Amaroo using modified promoters and selectable markers. Aust J Plant Physiol 27:201– 210.

Xu G,Fan X,Miller AJ 2012.Plant nitrogen assimilation and useefficiency.Annu Rev Plant Biol 63:153–182.Xu G,Fan X,Miller AJ 2012.Plant nitrogen assimilation and useefficiency.Annu Rev Plant Biol 63:153–182.

Yan M,Fan X,Feng H,Miller AJ,Shen Q,Xu G.2011.Rice OsNAR2.1 interactswith OsNRT2.1,OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptakeover high and low concentration ranges.Plant Cell and Environment 34:1360-1372.Yan M, Fan Environment 34:1360-1372.

序列表Sequence Listing

SEQ ID NO:1 NRT2.3(部分)启动子SEQ ID NO: 1 NRT2.3 (partial) promoter

1 GACGCGAGCG CGGAGACGGC AGCGCCGGCC TCCCACCGGT CGCGTAAGAT CACGCCCGAA1 GACGCGAGCG CGGAGACGGC AGCGCCGGCC TCCCACCGGT CGCGTAAGAT CACGCCCGAA

61 ATCTTTATTC ATTTTCTCTC CACCGGTTGC CCTCTCGCCG CACCCAACCA TCGCGCCACG61 ATCTTTATTC ATTTTCTCTC CACCGGTTGC CCTCTCGCCG CACCCAACCA TCGCGCCACG

121 CCGCGCCGCG CTGCCGGAGC CGCGCTTTCC GCTATGCTAT AAGAGCTGAC GCGCAGGGCA121 CCGCGCCGCG CTGCCGGAGC CGCGCTTTCC GCTATGCTAT AAGAGCTGAC GCGCAGGGCA

181 CAGCGGATGT ACGTACACAC AGTCACTAGC TAAGCTGCTA GCCTTGCTAC CACGTGTTGG181 CAGCGGATGT ACGTACACAC AGTCACTAGC TAAGCTGCTA GCCTTGCTAC CACGTGTTGG

241 AG241 AG

SEQ ID NO:2在ATG的上游-81处具有多态性(下划线)的NRT2.3启动子SEQ ID NO: 2 NRT2.3 promoter with polymorphism (underlined) at -81 upstream of ATG

1 GACGCGAGCG CGGAGACGGC AGCGCCGGCC TCCCACCGGT CGCGTAAGAT CACGCCCGAA1 GACGCGAGCG CGGAGACGGC AGCGCCGGCC TCCCACCGGT CGCGTAAGAT CACGCCCGAA

61 ATCTTTATTC ATTTTCTCTC CACCGGTTGC CCTCTCGCCG CACCCAACCA TCGCGCCACG61 ATCTTTATTC ATTTTCTCTC CACCGGTTGC CCTCTCGCCG CACCCAACCA TCGCGCCACG

121 CCGCGCCGCG CTGCCGGAGC CGCGCTTTCC GCTATGCTAC AAGAGCTGAC GCGCAGGGCA121 CCGCGCCGCG CTGCCGGAGC CGCGCTTTCC GCTATGCTA C AAGAGCTGAC GCGCAGGGCA

181 CAGCGGATGT ACGTACACAC AGTCACTAGC TAAGCTGCTA GCCTTGCTAC CACGTGTTGG181 CAGCGGATGT ACGTACACAC AGTCACTAGC TAAGCTGCTA GCCTTGCTAC CACGTGTTGG

241 AG241 AG

SEQ ID NO:3在ATG的上游-81,-42和-21处具有多态性的NRT2.3启动子SEQ ID NO:3 NRT2.3 promoter with polymorphisms at -81, -42 and -21 upstream of ATG

1 GACGCGAGCG CGGAGACGGC AGCGCCGGCC TCCCACCGGT CGCGTAAGAT CACGCCCGAA1 GACGCGAGCG CGGAGACGGC AGCGCCGGCC TCCCACCGGT CGCGTAAGAT CACGCCCGAA

61 ATCTTTATTC ATTTTCTCTC CACCGGTTGC CCTCTCGCCG CACCCAACCA TCGCGCCACG61 ATCTTTATTC ATTTTCTCTC CACCGGTTGC CCTCTCGCCG CACCCAACCA TCGCGCCACG

121 CCGCGCCGCG CTGCCGGAGC CGCGCTTTCC GCTATGCTAC AAGAGCTGAC GCGCAGGGCA121 CCGCGCCGCG CTGCCGGAGC CGCGCTTTCC GCTATGCTA C AAGAGCTGAC GCGCAGGGCA

181 CAGCGGATGT ACGTACACAC CGTCACTAGC TAAGCTGCTA GTCTTGCTAC CACGTGTTGG181 CAGCGGATGT ACGTACACAC C GTCACTAGC TAAGCTGCTA G T CTTGCTAC CACGTGTTGG

241 AG241 AG

SEQ ID NO:4 NRT 2.3启动子的180个C端残基SEQ ID NO:4 180 C-terminal residues of NRT 2.3 promoter

CTTTATTC ATTTTCTCTC CACCGGTTGC CCTCTCGCCG CACCCAACCA TCGCGCCACGCTTTATTC ATTTTCTCTC CACCGGTTGC CCTCTCGCCG CACCCAACCA TCGCGCCACG

CCGCGCCGCG CTGCCGGAGC CGCGCTTTCC GCTATGCTAC AAGAGCTGAC GCGCAGGGCACCGCGCCGCG CTGCCGGAGC CGCGCTTTCC GCTATGCTA C AAGAGCTGAC GCGCAGGGCA

CAGCGGATGT ACGTACACAC CGTCACTAGC TAAGCTGCTA GTCTTGCTAC CACGTGTTGGCAGCGGATGT ACGTACACAC C GTCACTAGC TAAGCTGCTA G T CTTGCTAC CACGTGTTGG

AGAG

SEQ ID NO:5NRT 2.3启动子的141个C端残基SEQ ID NO: 5 141 C-terminal residues of NRT 2.3 promoter

ACCCAACCA TCGCGCCACG CCGCGCCGCG CTGCCGGAGC CGCGCTTTCC GCTATGCTACAAGAGCTGAC GCGCAGGGCA CAGCGGATGT ACGTACACAC CGTCACTAGC TAAGCTGCTA GTCTTGCTACCACGTGTTGG AGACCCAACCA TCGCGCCACG CCGCGCCGCG CTGCCGGAGC CGCGCTTTCC GCTATGCTA C AAGAGCTGAC GCGCAGGGCA CAGCGGATGT ACGTACACAC C GTCACTAGC TAAGCTGCTA G T CTTGCTACCACGTGTTGG AG

SEQ ID NO:6 NRT2.3启动子的62个5’核苷酸的缺失SEQ ID NO:6 Deletion of 62 5' nucleotides of NRT2.3 promoter

GACGCGAGCG CGGAGACGGC AGCGCCGGCC TCCCACCGGT CGCGTAAGAT CACGCCCGAA ATGACGCGAGCG CGGAGACGGC AGCGCCGGCC TCCCACCGGT CGCGTAAGAT CACGCCCGAA AT

SEQ ID NO:7 NRT2.3启动子的101个5’核苷酸的缺失SEQ ID NO:7 Deletion of 101 5' nucleotides of NRT2.3 promoter

GACGCGAGCG CGGAGACGGC AGCGCCGGCC TCCCACCGGT CGCGTAAGATCACGCCCGAAATCTTTATTC ATTTTCTCTC CACCGGTTGC CCTCTCGCCG CGACGCGAGCG CGGAGACGGC AGCGCCGGCC TCCCACCGGT CGCGTAAGATCACGCCCGAAATCTTTATC ATTTTCTCTC CACCGGTTGC CCTCTCGCCG C

SEQ ID NO:8 NRT 2.3基因组序列SEQ ID NO:8 NRT 2.3 genome sequence

GAGCGCCGGCCTCCCACCGGTCGCGTAAGATCACGCCCGAAATCTTTATTCATTTTCTCTCCACCGGTTGCCCTCTCGCCGCACCCAACCATCGCGCCACGCCGCGCCGCGCTGCCGGAGCCGCGCTTTCCGCTATGCTATAAGAGCTGACGCGCAGGGCACAGCGGATGTACGTACACACAGTCACTAGCTAAGCTGCTAGCCTTGCTACCACGTGTTGGAGATGGAGGCTAAGCCGGTGGCGATGGAGGTGGAGGGGGTCGAGGCGGCGGGGGGCAAGCCGCGGTTCAGGATGCCGGTGGACTCCGACCTCAAGGCGACGGAGTTCTGGCTCTTCTCCTTCGCGAGGCCACACATGGCCTCCTTCCACATGGCGTGGTTCTCCTTCTTCTGCTGCTTCGTGTCCACGTTCGCCGCGCCGCCGCTGCTGCCGCTCATCCGCGACACCCTCGGGCTCACGGCCACGGACATCGGCAACGCCGGGATCGCGTCCGTGTCGGGCGCCGTGTTCGCGCGTCTGGCCATGGGCACGGCGTGCGACCTGGTCGGGCCCAGGCTGGCCTCCGCGTCTCTGATCCTCCTCACCACACCGGCGGTGTACTGCTCCTCCATCATCCAGTCCCCGTCGGGGTACCTCCTCGTGCGCTTCTTCACGGGCATCTCGCTGGCGTCGTTCGTGTCGGCGCAGTTCTGGATGAGCTCCATGTTCTCGGCCCCCAAAGTGGGGCTGGCCAACGGCGTGGCCGGCGGCTGGGGCAACCTCGGCGGCGGCGCCGTCCAGCTGCTCATGCCGCTCGTGTACGAGGCCATCCACAAGATCGGTAGCACGCCGTTCACGGCGTGGCGCATCGCCTTCTTCATCCCGGGCCTGATGCAGACGTTCTCGGCCATCGCCGTGCTGGCGTTCGGGCAGGACATGCCCGGCGGCAACTACGGGAAGCTCCACAAGACTGGCGACATGCACAAGGACAGCTTCGGCAACGTGCTGCGCCACGCCCTCACCAACTACCGCGGCTGGATCCTGGCGCTCACCTACGGCTACAGCTTCGGCGTCGAGCTCACCATCGACAACGTCGTGCACCAGTACTTCTACGACCGCTTCGACGTCAACCTCCAGACCGCCGGGCTCATCGCCGCCAGCTTCGGGATGGCCAACATCATCTCCCGCCCCGGCGGCGGGCTACTCTCCGACTGGCTCTCCAGCCGGTACGGCATGCGCGGCAGGCTGTGGGGGCTGTGGACTGTGCAGACCATCGGCGGCGTCCTCTGCGTGGTGCTCGGAATCGTCGACTTCTCCTTCGCCGCGTCCGTCGCCGTGATGGTGCTCTTCTCCTTCTTCGTCCAGGCCGCGTGCGGGCTCACCTTCGGCATCGTGCCGTTCGTGTCGCGGAGGTCGCTGGGGCTCATCTCCGGGATGACCGGCGGCGGGGGCAACGTGGGCGCCGTGCTGACGCAGTACATCTTCTTCCACGGCACAAAGTACAAGACGGAGACCGGGATCAAGTACATGGGGCTCATGATCATCGCGTGCACGCTGCCCGTCATGCTCATCTACTTCCCGCAGTGGGGCGGCATGCTCGTAGGCCCGAGGAAGGGGGCCACGGCGGAGGAGTACTACAGCCGGGAGTGGTCGGATCACGAGCGCGAGAAGGGTTTCAACGCGGCCAGCGTGCGGTTCGCGGAGAACAGCGTGCGCGAGGGCGGGAGGTCGTCGGCGAATGGCGGACAGCCCAGGCACACCGTCCCCGTCGACGCGTCGCCGGCCGGGGTGTGAAGAATGCCACGGACAATAAGGTCGCGGTTGTAGTACAACTGTACAAATTGATGGTACGTGTCGTTTGACCGCGCGCGCGCACAGTGTGGGTCGTGGCCTCGTGGGCTTAGTGGAGTACAGTGAGGGGTGTACGTGTGTCGTGGCGCGCGCGGTCACCTCGGTGGCCTTGGGATTGGGGGGGCACTATACGCTAGTACTCCAGATATATACGGGTTTGATTTACTTCTGTGGATCGGCGCTTGTTGGTGGTTTGCTCCCTGTGGTTTTTGTGATGGTAATCATACTCATACTCAAACAGTCGAGCGCCGGCCTCCCACCGGTCCGGCGTAAGATCACGCCCGAAATCTTTATTCATTTTCTCCCACCGGTTGCCCTCTCGCCGCACCCAACCATCGCGCCACGCCGCGCCGCGCTGCCGGAGCCGCGCTTTCCGCTATGCTATAAGAGCTGACGCGCAGGGCACAGCGGATGTACGTACACACAGTCACTAGCTAAGCTGCTAGCCTTGCTACCACGTGTTGGAGATGGAGGCTAAGCCGGTGGCGATGGA GGTGGAGGGG GTCGAGGCGGCGGGGGGCAAGCCCGGTTCAGGATGCCGGTGGACTCCGACCTCAAGGCGACGGAGTTCTGGCTCTTCTCCTTCGCGAGGCCACACATGGCCTCCTTCCACATGGCGTGGTTCTCCTTCTTCTGCTGCTTCGTGTCCACGTTCGCCGCGCCGCCGCTGCTGCCGCTCATCCGCGACACCCTCGGGCTCACGGCCACGGACATCGGCAACGCCGGGATCGCGTCCCGTGTCGGGCGCCGTGTT CGCGCGTC TGGCCATGGGCACGGCGTGCGACCTGGTCGGGCCCAGGCTGGCCTCCGCGTCTCTGATCCTCCTCACCACACCGGCGGTGTACTGCTCCTCCATCATCCAGTCCCCGTCGGGGTACCTCCTCGTGCGCTTCTTCACGGGCATCTCGCTGGCGTCGTTCGTGTCGGCGCAGTTCTGGATGAGCTCCATGTTCTCGGCCCCCAAAGTGGGGCTGGCCAACGGCGTGGCCGGCGGCTGGGGCAACCTCGGCGGCGGCG CCGT CCAGCTGCTCATGCCGCTCGTGTACGAGGCCATCCACAAGATCGGTAGCACGCCGTTCACGGCGTGGCGCATCGCCTTCTTCATCCCGGGCCTGATGCAGACGTTCTCGGCCATCGCCGTGCTGGCGTTCGGGCAGGACATGCCCGGCGGCAACTACGGGAAGCTCCACAAGACTGGCGACATGCACAAGGACAGCTTCGGCAACGTGCTGCGCCACGCCCTCACCAACTACCGCGGCTGGATCCTGGCGCTCACCTACG GCTACAGCTTCGGCGTCGAGCTCACCATCGACAACGTCGTGCACCAGTACTTCTACGACCGCTTCGACGTCAACCTCCAGACCGCCGGGCTCATCGCCGCCAGCTTCGGGATGGCCAACATCATCTCCCGCCCCGGCGGCGGGCTACTCTCCGACTGGCTCTCCAGCCGGTACGGCATGCGCGGCAGGCTGTGGGGGCTGTGGACTGTGCAGACCATCGGCGGCGTCCTCTGCGTGGTGCTCGGAATCGTCGACT TCTC CTTCGCCGCGTCCGTCCTTCTTCGTCCAGGCCGCGTGCGGGCTCACCTTCGGCATCGTGCCGTTCGTGTCGCGGAGGTCCGCTGGGGCTCATCTCCGGGATGACCGGCGGCGGGGCAACGTGGGCGCCGTGCTGACGCAGTACATCTTCTTCCACGGCACAAAGTACAAGACGGAGACCGGGATCAAGTACATGGGGCTCATGATCATCGCGTGCACGCTGCCCGTCATG CTCATCTAC TTCCCGCAGTGGGGCGGCATGCTCGTAGGCCCGAGGAAGGGGGCCACGGCGGAGGAGTACTACAGCCGGGAGTGGTCGGATCACGAGCGCGAGAAGGGTTTTCAACGCGGCCAGCGTGCGGTTCGCGGAGAACAGCGTGCGCGAGGGCGGGAGGTCGTCGGCGAATGGCGGACAGCCCAGGCACACCGTCCCCGTCGACGCGTCGCCGGCCGGGGTGTGAAGAATGCCACGGACAATAAGGTCGCGGTTGTA GTACAACT GTACAAATTGATGGTACGTGTCGTTTGACCGCGCGCGCGCACAGTGTGGGTCGTGGCCTCGTGGGCTTAGTGGAGTACAGTGAGGGGTGTACGTGTGTCGTGGCGCGCGGTCACCTCGGTGGCCTTGGGATTGGGGGGGCACTATACGCTAGTACTCCAGATATATACGGGTTTGATTTACTTCTGTGGATCGGCGCTTGTTGGTGGTTTGCTCCCTGTGGTTTTTGTGATGGTAATCATACTACTCAAACA GTC

SEQ ID NO:9:NRT2.3 TATA盒SEQ ID NO:9: NRT2.3 TATA box

CC GCTATGCTAT AAGAGCTGACCC GCTATGCTAT AAGAGCTGAC

SEQ ID NO:10;OSE2ROOTNODULE(-82bp至-86bp)SEQ ID NO: 10; OSE2ROOTNODULE (-82 bp to -86 bp)

CTACCTAC

SEQ ID NO:11;ASF1MOTIFCAMV(-76bp至-83bp)SEQ ID NO: 11; ASF1MOTIFCAMV (-76 bp to -83 bp)

CGCGCAGGCGCGCAGG

SEQ ID NO:12 CRISPR靶序列SEQ ID NO:12 CRISPR target sequence

SEQ ID NO:13 CRISPR靶序列SEQ ID NO:13 CRISPR target sequence

SEQ ID NO:14 CRISPR靶序列SEQ ID NO:14 CRISPR target sequence

SEQ ID NO:15 CRISPR靶序列SEQ ID NO:15 CRISPR target sequence

SEQ ID NO:16原间隔区序列SEQ ID NO: 16 Protospacer sequence

GCTATAAGAGCTGACGCGCAGCTATAAGAGCTGACGCGCA

SEQ ID NO:17原间隔区序列SEQ ID NO: 17 Protospacer sequence

GAGCCGCGCTTTCCGCTATGGAGCCGCGCTTTCCGCTATG

SEQ ID NO:18原间隔区序列SEQ ID NO: 18 Protospacer sequence

GTTGCCCTCTCGCCGCACCCGTTGCCCTCTCGCCGCACCC

SEQ ID NO:19原间隔区序列SEQ ID NO: 19 Protospacer sequence

CGACGCGAGCGCGGAGACGGCGACGCGAGCGCGGAGACGG

SEQ ID NO:20原间隔区序列SEQ ID NO:20 Protospacer sequence

5’GGCAGCTATAAGAGCTGACGCGCA 3’5' GGCA GCTATAAGAGCTGACGCGCA 3'

5’AAACTGCGCGTCAGCTCTTATAGC 3’(SEQ ID NO:34)5' AAAC TGCGCGTCAGCTCTTATAGC 3' (SEQ ID NO:34)

SEQ ID NO:21原间隔区序列SEQ ID NO:21 Protospacer sequence

5’GGCACATAGCGGAAAGCGCGGCTC 3’5' GGCA CATAGCGGAAAGCGCGGCTC 3'

5’AAACGAGCCGCGCTTTCCGCTATG 3’(SEQ ID NO:35) 5'AAACGAGCCGCGCTTTCCGCTATG 3'(SEQ ID NO:35)

SEQ ID NO:22原间隔区序列SEQ ID NO:22 Protospacer sequence

5’GGCAGGGTGCGGCGAGAGGGCAAC3’5' GGCA GGGTGCGGCGAGAGGGCAAC3'

5’AAACGTTGCCCTCTCGCCGCACCC 3’(SEQ ID NO:36) 5'AAACGTTGCCCTCTCGCCGCACCC 3'(SEQ ID NO:36)

SEQ ID NO:23原间隔区序列SEQ ID NO:23 Protospacer sequence

5’GGCACCGTCTCCGCGCTCGCGTCG 3’5' GGCA CCGTCTCCGCGCTCGCGTCG 3'

5’AAACCGACGCGAGCGCGGAGACGG 3’(SEQ ID NO:37) 5'AAACCGACGCGAGCGCGGAGACGG 3'(SEQ ID NO:37)

SEQ ID NO:24;tracrRNA核酸序列SEQ ID NO: 24; tracrRNA nucleic acid sequence

ATGCTACTACTAAAAAAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGACTAGCCTTATTTTAACTTGCTATGCTTTTCAGCATAGCTCTAAAACATGCTACTACTAAAAAAAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGACTAGCCTTATTTTAACTTGCTATGCTTTTCAGCATAGCTCTAAAAC

SEQ ID NO:25 U3启动子序列:SEQ ID NO:25 U3 promoter sequence:

AAAGGAAGGAATCTTTAAACATACGAACAGATCACTTAAAGTTCTTCTGAAGCAACTTAAAGTTATCAGGCATGCATGGATCTTGGAGGAATCAGATGTGCAGTCAGGGACCATAGCACAAGACAGGCGTCTTCTACTGGTGCTACCAGCAAATGCTGGAAGCCGGGAACACTGGGTACGTTGGAAACCACGTGTGATGTGAAGGAGTAAGATAAACTGTAGGAGAAAAGCATTTCGTAGTGGGCCATGAAGCCTTTCAGGACATGTATTGCAGTATGGGCCGGCCCATTACGCAATTGGACGACAACAAAGACTAGTATTAGTACCACCTCGGCTATCCACATAGATCAAAGCTGGTTTAAAAGAGTTGTGCAGATGATCCGTGGCAAAAGGAAGGAATCTTTAAACATACGAACAGATCACTTAAAGTTCTTCTGAAGCAACTTAAAGTTATCAGGCATGCATGGATCTTGGAGGAATCAGATGTGCAGTCAGGGACCATAGCACAAGACAGGCGTCTTCTACTGGTGCTACCAGCAAATGCTGGAAGCCGGGAACACTGGGTACGTTGGAAACCACGTGTGATGTGAAGGAGTAAGATAAACTGTAGGAGAAAAGCATTTCGTAGTGGGCCATGAAGCCTTTCAG GACATGTATTGCAGTATGGGCCGGCCCATTACGCAATTGGACGACAACAAAGACTAGTATTAGTACCACCTCGGCTATCCACATAGATCAAAGCTGGTTTAAAAGAGTTGTGCAGATGATCCGTGGCA

SEQ ID NO:26 U6a启动子序列:SEQ ID NO:26 U6a promoter sequence:

TTTTTTCCTGTAGTTTTCCCACAACCATTTTTTACCATCCGAATGATAGGATAGGAAAAATATCCAAGTGAACAGTATTCCTATAAAATTCCCGTAAAAAGCCTGCAATCCGAATGAGCCCTGAAGTCTGAACTAGCCGGTCACCTGTACAGGCTATCGAGATGCCATACAAGAGACGGTAGTAGGAACTAGGAAGACGATGGTTGATTCGTCAGGCGAAATCGTCGTCCTGCAGTCGCATCTATGGGCCTGGACGGAATAGGGGAAAAAGTTGGCCGGATAGGAGGGAAAGGCCCAGGTGCTTACGTGCGAGGTAGGCCTGGGCTCTCAGCACTTCGATTCGTTGGCACCGGGGTAGGATGCAATAGAGAGCAACGTTTAGTACCACCTCGCTTAGCTAGAGCAAACTGGACTGCCTTATATGCGCGGGTGCTGGCTTGGCTGCCGTTTTTTCCTGTAGTTTTCCCACAACCATTTTTTACCATCCGAATGATAGGATAGGAAAAATATCCAAGTGAACAGTATTCCTATAAAATTCCCGTAAAAAGCCTGCAATCCGAATGAGCCCTGAAGTCTGAACTAGCCGGTCACCTGTACAGGCTATCGAGATGCCATACAAGAGACGGTAGTAGGAACTAGGAAGACGATGGTTGATTCGTCAGGGCGAAATCGTCGTCCTGCAGTCGCATCTATGGGCCTGGACGGAATAGGG GAAAAAGTTGGCCGGATAGGAGGGAAAGGCCCAGGTGCTTACGTGCGAGGTAGGCCTGGGCTCTCAGCACTTCGATTCGTTGGCACCGGGGTAGGATGCAATAGAGAGCAACGTTTAGTACCACCTCGCTTAGCTAGAGCAAACTGGACTGCCTTATATGCGCGGGTGCTGGCTTGGCTGCCG

SEQ ID NO:27 U6b启动子序列:SEQ ID NO:27 U6b promoter sequence:

TGCAAGAACGAACTAAGCCGGACAAAAAAAAAAGGAGCACATATACAAACCGGTTTTATTCATGAATGGTCACGATGGATGATGGGGCTCAGACTTGAGCTACGAGGCCGCAGGCGAGAGAAGCCTAGTGTGCTCTCTGCTTGTTTGGGCCGTAACGGAGGATACGGCCGACGAGCGTGTACTACCGCGCGGGATGCCGCTGGGCGCTGCGGGGGCCGTTGGATGGGGATCGGTGGGTCGCGGGAGCGTTGAGGGGAGACAGGTTTAGTACCACCTCGCCTACCGAACAATGAAGAACCCACCTTATAACCCCGCGCGCTGCCGCTTGTGTTGTGCAAGAACGAACTAAGCCGGACAAAAAAAAAAGGAGCACATATACAAACCGGTTTTATTCATGAATGGTCACGATGGATGATGGGGCTCAGACTTGAGCTACGAGGCCGCAGGCGAGAAGCCTAGTGTGCTCTCTGCTTGTTTGGGCCGTAACGGAGGATACGGCCGACGAGCGTGTACTACCGCGCGGGATGCCGCTGGGCGCTGCGGGGGCCGTTGGATGGGGATCGGTGGGTCGCGGGAGCGTTGAGGGG AGACAGGTTTAGTACCACCTCGCCTACCGAACAATGAAGAACCCACCTTATAACCCCGCGCGCTGCCGCTTGTGTTG

SEQ ID NO:28在双子叶植物中的U3bSEQ ID NO:28 U3b in dicotyledons

TTTACTTTAAATTTTTTCTTATGCAGCCTGTGATGGATAACTGAATCAAACAAATGGCGTCTGGGTTTAAGAAGATCTGTTTTGGCTATGTTGGACGAAACAAGTGAACTTTTAGGATCAACTTCAGTTTATATATGGAGCTTATATCGAGCAATAAGATAAGTGGGCTTTTTATGTAATTTAATGGGCTATCGTCCATAGATTCACTAATACCCATGCCCAGTACCCATGTATGCGTTTCATATAAGCTCCTAATTTCTCCCACATCGCTCAAATCTAAACAAATCTTGTTGTATATATAACACTGAGGGAGCAACATTGGTCATTTACTTTAAATTTTTTCTTATGCAGCCTGTGATGGATAACTGAATCAAACAAATGGCGTCTGGGTTTAAGAAGATCTGTTTTGGCTATGTTGGACGAAACAAGTGAACTTTTAGGATCAACTTCAGTTTTATATATGGAGCTTATATCGAGCAATAAGATAAGTGGGCTTTTTATGTAATTTAATGGGCTATCGTCCATAGATTCACTAATACCCATGCCCAGTACCCATGTATGCGTTTCATATAAGCTCCTAATTTCTC CCACATCGCTCAAATCTAAACAAATCTTGTTGTATATATAACACTGAGGGAGCAACATTGGTCA

SEQ ID NO:29在双子叶植物中的U6-1SEQ ID NO:29 U6-1 in dicotyledons

AGAAATCTCAAAATTCCGGCAGAACAATTTTGAATCTCGATCCGTAGAAACGAGACGGTCATTGTTTTAGTTCCACCACGATTATATTTGAAATTTACGTGAGTGTGAGTGAGACTTGCATAAGAAAATAAAATCTTTAGTTGGGAAAAAATTCAATAATATAAATGGGCTTGAGAAGGAAGCGAGGGATAGGCCTTTTTCTAAAATAGGCCCATTTAAGCTATTAACAATCTTCAAAAGTACCACAGCGCTTAGGTAAAGAAAGCAGCTGAGTTTATATATGGTTAGAGACGAAGTAGTGATTGAGAAATCTCAAAATTCCGGCAGAACAATTTTGAATCTCGATCCGTAGAAACGAGACGGTCATTGTTTTAGTTCCACCACGATTATATTTGAAATTTACGTGAGTGTGAGTGAGACTTGCATAAGAAAATAAAATCTTTAGTTGGGAAAAAATTCAATAATATAAATGGGCTTGAGAAGGAAGCGAGGGATAGGCCTTTTTTCTAAAATAGGCCCATTTAAGCTATTAACAATCTTCAAAAGTACCACAGCGCTTAGGTAAAGAAAGCAGCT GAGTTTATATATGGTTAGAGACGAAGTAGTGATTG

SEQ ID NO:30 Cas9SEQ ID NO:30 Cas9

ATGGCCCCAAAGAAGAAGCGCAAGGTCGACAAGAAGTACTCCATCGGCCTCGACATCGGCACCAATTCTGTTGGCTGGGCCGTGATCACCGACGAGTACAAGGTGCCGTCCAAGAAGTTCAAGGTCCTCGGCAACACCGACCGCCACTCCATCAAGAAGAATCTCATCGGCGCCCTGCTGTTCGACTCTGGCGAGACAGCCGAGGCTACAAGGCTCAAGAGGACCGCTAGACGCAGGTACACCAGGCGCAAGAACCGCATCTGCTACCTCCAAGAGATCTTCTCCAACGAGATGGCCAAGGTGGACGACAGCTTCTTCCACAGGCTCGAGGAGAGCTTCCTCGTCGAGGAGGACAAGAAGCACGAGCGCCATCCGATCTTCGGCAACATCGTGGATGAGGTGGCCTACCACGAGAAGTACCCGACCATCTACCACCTCCGCAAGAAGCTCGTCGACTCCACCGATAAGGCCGACCTCAGGCTCATCTACCTCGCCCTCGCCCACATGATCAAGTTCAGGGGCCACTTCCTCATCGAGGGCGACCTCAACCCGGACAACTCCGATGTGGACAAGCTGTTCATCCAGCTCGTGCAGACCTACAACCAGCTGTTCGAGGAGAACCCGATCAACGCCTCTGGCGTTGACGCCAAGGCTATTCTCTCTGCCAGGCTCTCTAAGTCCCGCAGGCTCGAGAATCTGATCGCCCAACTTCCGGGCGAGAAGAAGAATGGCCTCTTCGGCAACCTGATCGCCCTCTCTCTTGGCCTCACCCCGAACTTCAAGTCCAACTTCGACCTCGCCGAGGACGCCAAGCTCCAGCTTTCCAAGGACACCTACGACGACGACCTCGACAATCTCCTCGCCCAGATTGGCGATCAGTACGCCGATCTGTTCCTCGCCGCCAAGAATCTCTCCGACGCCATCCTCCTCAGCGACATCCTCAGGGTGAACACCGAGATCACCAAGGCCCCACTCTCCGCCTCCATGATCAAGAGGTACGACGAGCACCACCAGGACCTCACACTCCTCAAGGCCCTCGTGAGACAGCAGCTCCCAGAGAAGTACAAGGAGATCTTCTTCGACCAGTCCAAGAACGGCTACGCCGGCTACATCGATGGCGGCGCTTCTCAAGAGGAGTTCTACAAGTTCATCAAGCCGATCCTCGAGAAGATGGACGGCACCGAGGAGCTGCTCGTGAAGCTCAATAGAGAGGACCTCCTCCGCAAGCAGCGCACCTTCGATAATGGCTCCATCCCGCACCAGATCCACCTCGGCGAGCTTCATGCTATCCTCCGCAGGCAAGAGGACTTCTACCCGTTCCTCAAGGACAACCGCGAGAAGATTGAGAAGATCCTCACCTTCCGCATCCCGTACTACGTGGGCCCGCTCGCCAGGGGCAACTCCAGGTTCGCCTGGATGACCAGAAAGTCCGAGGAGACAATCACCCCCTGGAACTTCGAGGAGGTGGTGGATAAGGGCGCCTCTGCCCAGTCTTTCATCGAGCGCATGACCAACTTCGACAAGAACCTCCCGAACGAGAAGGTGCTCCCGAAGCACTCACTCCTCTACGAGTACTTCACCGTGTACAACGAGCTGACCAAGGTGAAGTACGTGACCGAGGGGATGAGGAAGCCAGCTTTCCTTAGCGGCGAGCAAAAGAAGGCCATCGTCGACCTGCTGTTCAAGACCAACCGCAAGGTGACCGTGAAGCAGCTCAAGGAGGACTACTTCAAGAAAATCGAGTGCTTCGACTCCGTCGAGATCTCCGGCGTCGAGGATAGGTTCAATGCCTCCCTCGGGACCTACCACGACCTCCTCAAGATTATCAAGGACAAGGACTTCCTCGACAACGAGGAGAACGAGGACATCCTCGAGGACATCGTGCTCACCCTCACCCTCTTCGAGGACCGCGAGATGATCGAGGAGCGCCTCAAGACATACGCCCACCTCTTCGACGACAAGGTGATGAAGCAGCTGAAGCGCAGGCGCTATACCGGCTGGGGCAGGCTCTCTAGGAAGCTCATCAACGGCATCCGCGACAAGCAGTCCGGCAAGACGATCCTCGACTTCCTCAAGTCCGACGGCTTCGCCAACCGCAACTTCATGCAGCTCATCCACGACGACTCCCTCACCTTCAAGGAGGACATCCAAAAGGCCCAGGTGTCCGGCCAAGGCGATTCCCTCCATGAGCATATCGCCAATCTCGCCGGCTCCCCGGCTATCAAGAAGGGCATTCTCCAGACCGTGAAGGTGGTGGACGAGCTGGTGAAGGTGATGGGCAGGCACAAGCCAGAGAACATCGTGATCGAGATGGCCCGCGAGAACCAGACCACACAGAAGGGCCAAAAGAACTCCCGCGAGCGCATGAAGAGGATCGAGGAGGGCATTAAGGAGCTGGGCTCCCAGATCCTCAAGGAGCACCCAGTCGAGAACACCCAGCTCCAGAACGAGAAGCTCTACCTCTACTACCTCCAGAACGGCCGCGACATGTACGTGGACCAAGAGCTGGACATCAACCGCCTCTCCGACTACGACGTGGACCATATTGTGCCGCAGTCCTTCCTGAAGGACGACTCCATCGACAACAAGGTGCTCACCCGCTCCGACAAGAACAGGGGCAAGTCCGATAACGTGCCGTCCGAAGAGGTCGTCAAGAAGATGAAGAACTACTGGCGCCAGCTCCTCAACGCCAAGCTCATCACCCAGAGGAAGTTCGACAACCTCACCAAGGCCGAGAGAGGCGGCCTTTCCGAGCTTGATAAGGCCGGCTTCATCAAGCGCCAGCTCGTCGAGACACGCCAGATCACAAAGCACGTGGCCCAGATCCTCGACTCCCGCATGAACACCAAGTACGACGAGAACGACAAGCTCATCCGCGAGGTGAAGGTCATCACCCTCAAGTCCAAGCTCGTGTCCGACTTCCGCAAGGACTTCCAGTTCTACAAGGTGCGCGAGATCAACAACTACCACCACGCCCACGACGCCTACCTCAATGCCGTGGTGGGCACAGCCCTCATCAAGAAGTACCCAAAGCTCGAGTCCGAGTTCGTGTACGGCGACTACAAGGTGTACGACGTGCGCAAGATGATCGCCAAGTCCGAGCAAGAGATCGGCAAGGCGACCGCCAAGTACTTCTTCTACTCCAACATCATGAATTTCTTCAAGACCGAGATCACGCTCGCCAACGGCGAGATTAGGAAGAGGCCGCTCATCGAGACAAACGGCGAGACAGGCGAGATCGTGTGGGACAAGGGCAGGGATTTCGCCACAGTGCGCAAGGTGCTCTCCATGCCGCAAGTGAACATCGTGAAGAAGACCGAGGTTCAGACCGGCGGCTTCTCCAAGGAGTCCATCCTCCCAAAGCGCAACTCCGACAAGCTGATCGCCCGCAAGAAGGACTGGGACCCGAAGAAGTATGGCGGCTTCGATTCTCCGACCGTGGCCTACTCTGTGCTCGTGGTTGCCAAGGTCGAGAAGGGCAAGAGCAAGAAGCTCAAGTCCGTCAAGGAGCTGCTGGGCATCACGATCATGGAGCGCAGCAGCTTCGAGAAGAACCCAATCGACTTCCTCGAGGCCAAGGGCTACAAGGAGGTGAAGAAGGACCTCATCATCAAGCTCCCGAAGTACAGCCTCTTCGAGCTTGAGAACGGCCGCAAGAGAATGCTCGCCTCTGCTGGCGAGCTTCAGAAGGGCAACGAGCTTGCTCTCCCGTCCAAGTACGTGAACTTCCTCTACCTCGCCTCCCACTACGAGAAGCTCAAGGGCTCCCCAGAGGACAACGAGCAAAAGCAGCTGTTCGTCGAGCAGCACAAGCACTACCTCGACGAGATCATCGAGCAGATCTCCGAGTTCTCCAAGCGCGTGATCCTCGCCGATGCCAACCTCGATAAGGTGCTCAGCGCCTACAACAAGCACCGCGATAAGCCAATTCGCGAGCAGGCCGAGAACATCATCCACCTCTTCACCCTCACCAACCTCGGCGCTCCAGCCGCCTTCAAGTACTTCGACACCACCATCGACCGCAAGCGCTACACCTCTACCAAGGAGGTTCTCGACGCCACCCTCATCCACCAGTCTATCACAGGCCTCTACGAGACACGCATCGACCTCTCACAACTCGGCGGCGATTGAATGGCCCCAAAGAAGAAGCGCAAGGTCGACAAGAAGTACTCCATCGGCCTCGACATCGGCACCAATTCTGTTGGCTGGGCCGTGATCACCGACGAGTACAAGGTGCCGTCCAAGAAGTTCAAGGTCCTCGGCAACACCGACCGCCACTCCATCAAGAAGAATCTCATCGGCGCCCTGCTGTTCGACTCTGGCGAGACAGCCGAGGCTACAAGGCTCAAGAGGACCGCTAGACGCAGGTACACCAGGCCGCAAGAACCGC ATCTGCTACCTCCAAGAGATCTCTCCAACGAGATGGCCAAGGTGGACGACAGCTTTCTTCCACAGGCTCGAGGAGAGCTTCCTCGTCGAGGAGGACAAGAAGCACGAGCGCCATCCGATCTTCGGCAACATCGTGGATGAGGTGGCCTACCACGAGAAGTACCCGACCATCTACCACCTCCGCAAGAAGCTCGTCGACTCCACCGATAAGGCCGACCTCAGGCTCATCTACCTCGCCCTCGCCCACATGATCAAGTTC AGGGGCCACTTCCTCATCGAGGGCGACCTCAACCCGGACAACTCCGATGTGGACAAGCTGTTCATCCAGCTCGGTGCAGACCTACAACCAGCTGTTCGAGGAGAACCCGATCAACGCCTCTGGCGTTGACGCCAAGGCTATTCTCTCTGCCAGGCTCTTCAAGTCCCGCAGGCTCGAGAATCTGATCGCCCAACTTCCGGGCGAGAAGAAGAATGGCCTCTTCGGCAACCTGATCGCCCTCTCTCTTGGCCTCACCCCG AACTTCAAGTCCAACTTCGACCTCGCCGAGGACGCCAAGCTCCAGCTTTCCAAGGACACCTACGACGACGACCTCGACAATCTCCTCGCCCAGATTGGCGATCAGTACGCCGATCTGTTCCTCGCCGCCAAGAATCTCTCCGACGCCATCCTCCTCAGCGACATCCTCAGGGTGAACACCGAGATCACCAAGGCCCCACTCTCCGCCTCCATGATCAAGAGGTACGACGAGCACCACCAGGACCTCACACTCCTCAAG GCCCTCGTGAGACAGCAGCTCCCAGAGAAGTACAAGGAGATCTTCTTCGACCAGTCCAAGAACGGCTACGCCGGCTACATCGATGGCGGCGCTTCTCAAGAGGAGTTCTACAAGTTCATCAAGCCGATCCTCGAGAAGATGGACGGCACCGAGGAGCTGCTCGTGAAGCTCAATAGAGAGGACCTCCTCCGCAAGCAGCGCACCTTCGATAATGGCTCCATCCCGCACCAGATCCACCTCGGCGAGCTTCATGCTATC CTCCCGCAGGCAAGAGGACTTCTACCCGTTCCTCAAGGACAACCGCGAGAAGATTGAGAAGATCCTCACCTTCCGCATCCCGTACTACGTGGGCCCGCTCGCCAGGGGCAACTCCAGGTTCGCCTGGATGACCAGAAAGTCCGAGGAGACAATCACCCCCTGGAACTTCGAGGAGGTGGTGGATAAGGGCGCCTCTGCCCAGTCTTTCATCGAGCGCATGACCAACTTCGACAAGAACCTCCCGAACGAGAAGGTGCTC CCGAAGCACTCACTCCTCTACGAGTACTTCACCGTGTACAACGAGCTGACCAAGGTGAAGTACGTGACCGAGGGGATGAGGAAGCCAGCTTTCCTTAGCGGCGAGCAAAAGAAGGCCATCGTCGACCTGCTGTTCAAGACCAACCGCAAGGTGACCGTGAAGCAGCTCAAGGAGGACTACTTCAAGAAAATCGAGTGCTTCGACTCCGTCGAGATCTCCGGCGTCGAGGATAGGTTCAATGCCTCCCTCGGGACCTA C CACGACCTCCTCAAGATTATCAAGGACAAGGACTTCCTCGACAACGAGGAGAACGAGGACATCCTCGAGGACATCGTGCTCACCCTCACCCTCTTCGAGGACCGCGAGATGATCGAGGAGCGCCTCAAGACATACGCCCACCTCTTCGACGACAAGGTGATGAAGCAGCTGAAGCGCAGGCGCTATACCGGCTGGGGCAGGCTTCTAGGAAGCTCATCAACGGCATCCGCGACAAGCAGTCCGGCAAGACGATCCTCG ACTTCCTCAAGTCCGACGGCTTCGCCAACCGCAACTTCATGCAGCTCATCCACGACGACTCCCTCACCTTCAAGGAGGACATCCAAAAGGCCCAGGTGTCCGGCCAAGGCGATTCCCTCCATGAGCATATCGCCAATCTCGCCGGCTCCCCGGCTATCAAGAAGGGCATTCCAGACCGTGAAGGTGGTGGACGAGCTGGTGAAGGTGATGGGCAGGCACAAGCCAGAGAACATCGTGATCGAGATGGCCCGCGAGA ACCAGACCACACAGAAGGGCCAAAAGAACTCCCGCGAGCGCATGAAGAGGATCGAGGAGGGCATTAAGGAGCTGGGCTCCCAGATCCTCAAGGAGCACCCAGTCGAGAACACCCAGCTCCAGAACGAGAAGCTCTACCTCTACTACCTCCAGAACGGCCGCGACATGTACGTGGACCAAGAGCTGGACATCAACCGCCTCTCCGACTACGACGTGGACCATATTGTGCCGCAGTCCTTCCTGAAGGACGACTCCATCG ACAACAAGGTGCTCACCCGCTCCGACAAGAACAGGGGCAAGTCCGATAACGTGCCGTCCGAAGAGGTCGTCAAGAAGATGAAGAACTACTGGCGCCAGCTCCTCAACGCCAAGCTCATCACCCAGAGGAAGTTCGACAACCTCACCAAGGCCGAGAGAGGCGGCCTTTCCGAGCTTGATAAGGCCGGCTTCATCAAGCGCCAGCTCGTCGAGACACGCCAGATCACAAAGCACGTGGCCCAGATCCTCGACTCCCGCA TGAACACCAAGTACGACGAGAACGACAAGCTCATCCGCGAGGTGAAGGTCATCACCCTCAAGTCCAAGCTCGTGTCCGACTTCCGCAAGGACTTCCAGTTCTACAAGGTGCGCGAGATCAACAACTACCACCACGCCCACGACGCCTACCTCAATGCCGTGGTGGGCACAGCCCTCATCAAGAAGTACCCAAAGCTCGAGTCCGAGTTCGTGTACGGCGACTACAAGGTGTACGACGTGCGCAAGATGATCGCCAAGTC CGAGCAAGAGATCGGCAAGGCGACCGCCAAGTACTTCTTCTACTCCAACATCATGAATTTCTTCAAGACCGAGATCACGCTCGCCAACGGCGAGATTAGGAAGAGGCCGCTCATCGAGACAAACGGCGACAGGCGAGATCGTGTGGGACAAGGGCAGGGATTTCGCCACAGTGCGCAAGGTGCTCTCCATGCCGCAAGTGAACATCGTGAAGAAGACCGAGGTTCAGACCGGCGGCTTCTCCAAGGAGTCCATCCT CCCAAAGCGCAACTCCGACAAGCTGATCGCCCGCAAGAAGGACTGGGACCCGAAGAAGTATGGCGGCTTCGATTCTCCGACCGTGGCCTACTCTGTGCTCGTGGTTGCCAAGGTCGAGAAGGGCAAGAGCAAGAAGCTCAAGTCCGTCAAGGAGCTGCTGGGCATCACGATCATGGAGCGCAGCAGCTTCGAGAAGAACCCAATCGACTTCCTCGAGGCCAAGGGCTACAAGGAGGTGAAGAAGGACCTCATCATCAA GCTCCCGAAGTACAGCCTCTTCGAGCTTGAGAACGGCCGCAAGAGAATGCTCGCCTCTGCTGGCGAGCTTCAGAAGGGCAACGAGCTTGCTCTCCCGTCCAAGTACGTGAACTTCCTCTACCTCGCCTCCCACTACGAGAAGCTCAAGGGCTCCCCAGAGGACAACGAGCAAAAGCAGCTGTTCGTCGAGCAGCACAAGCACTACCTCGACGAGATCATCGAGCAGATCTCCGAGTTCTCCAAGCGCGTGATCCTCGC CGATGCCAACCTCGATAAGGTGCTCAGCGCCTACAACAAGCACCGCGATAAGCCAATTCGCGAGCAGGCCGAGAACATCATCCACCTCTTCACCCTCACCAACCTCGGCGCTCCAGCCGCCTTCAAGTACTTCGACACCACCATCGACCGCAAGCGCTACACCTCTACCAAGGAGGTTCTCGACGCCACCCTCATCCACCAGTCTATCACAGGCCTCTACGAGACACGCATCGACCTCTCACAACTCGGCGGCGATTGA

SEQ ID NO:32:OsTBP2.1氨基酸SEQ ID NO:32: OsTBP2.1 amino acid

MAAAEAAAEAAAALEGSEPVDLVKHPSGIIPTLQNIVSTVNLDCKLDLKAIALQARNAEYNPKRFAAVIMRIREPKTTALIFASGKMVCTGAKSEQQSKLAARKYARIIQKLGFAAKFKDFKIQNIVGSCDVKFPIRLEGLAYSHGAFSSYEPELFPGLIYRMKQPKIVLLIFVSGKIVLTGAKVRDETYTAFENIYPVLTEFRKVQQMAAAEAAAEAAAALEGSEPVDLVKHPSGIIPTLQNIVSTVNLDCKLDLKAIALQARNAEYNPKRFAAVIMRIREPKTTALIFASGKMVCTGAKSEQQSKLAARKYARIIQKLGFAAKFKDFKIQNIVGSCDVKFPIRLEGLAYSHGAFSSYEPELFPGLIYRMKQPKIVLLIFVSGKIVLTGAKVRDETYTAFENIYPVLTEFRKVQQ

SEQ ID NO:33:OsTBP2.1核酸(CDS)SEQ ID NO:33: OsTBP2.1 nucleic acid (CDS)

GATTTCCGATCGCTATATAAAAGACCTAGGATTTCGAAATTTTTCCCTCCCCCTCCCCCTTCGCGCGCGCGCTCTCTTCCCGCCCTTTTTTTTTCCTTCTTCTTCACCGGTGGGATTGATTCGTGGGGTGCGGATCTGGTTTTTGGGGGTGTGTATGGCGGCGGCGGAGGCGGCGGCGGAGGCGGCGGCGGCGCTGGAGGGGAGCGAGCCCGTGGACCTGGTCAAGCACCCCTCCGGCATCATCCCCACGCTCCAGTAAGTCCCCCCCGCCCCCGCCCGGATCTGTATGTGCGGGTTCATCGAGCTGGTTGAGTTTGAGGTGGAGCGGTTAACTCGTCGCGCGCTGTTGATTTGGTTTTGTTTTGGGGGCCGGGGATATTATTTGTTGTTGCAAATGATGTGATTGGTGGTAGGTTTAGCTTGGGGGGTTACTACATGTTTGAGGTTCTGATTTGCTTGATTGATGAAAAAGGGGGGCGATCTGAGATCCGCGAGTCCGGTACGAGAAGAAATAGAGGCAGCCGATGTGCTTGTGCTGTGACGGATCCATTGTCCGGTCTTCATAACAACTCTTTTTAGCTGGACAGATGTTTGTTTTCTCATGAATGAATTCATATGGTTGGAGTCTTGGAGAATCAGCTTGTCAGCTGTTCTTTTTTTTAAAAAAAAATTAAGGTTTATAAATAAATAAATAATCAATCAATCAATCATGCATCTAAATTGTAGGATTTAATTCTTTCCCCTCATCACGTATTTCAACCTTAGAGGGAGGTATTGTGTCTGTGGAGAGTTTATGGTGCTCATGTGATACATACAGTTGACAATGGGTCAATGCATGTTTTTAGACAGCATCAAGCTCTGAACAAGTGAACCACATATTTAGGCTTGATCCATGTATAACCCCACTAAGTTTTATACTTGTTTGTACGGGCCAATATGCCCAAACCTGGCTGTTTATTAGCATGCTGTACTTGCTGGTGTGCATCGAAACGTTTTTGGGGTTTGCCTACATTGCTACCAGGCATGTATATTTTGCATGCTGGTGTGCATTGCAGAAAAAGTCGAGCATGCTTATATTGCTGCTTGTCATAGTGTACCTGCTTCCATGTGTTCTCACAAGTGCGCATGCCTGTTTTGCTGCCTTTCTGGGTTGTTTATGTTTCAGCGTTGGGATCATAGCTGGTAGACTGCATGTGTTCCACTCTGTTTTGGCTTATCATGCTTCCTTTGGATACTCTCACCAAGGAAATTGAAGTCCTCATTATGTGTTCTCATCTATTTTGATGGCAGAAACATCGTGTCGACGGTCAATTTGGATTGCAAATTAGACCTCAAAGCTATAGCTTTGCAAGCACGCAATGCAGAATATAATCCAAAGGTATTATGATGGCTTTGGTGTGTTCTTGTGTCTTTGATTTTGCTCGAAAGGATATCTTCTTTGCATGTGAAAATTTTACCTATTTTAATCCTGCTAGCATGTAATATGTAGACAAGTCCATACAATCCTATGGTCTGTTCCTAGGATGATACTTCCTTTGTGTATAACGCAAGTGTGAGTGCAATTTTAGAGGTCGGTATGGATAAATGCATAGCTGGCAGTCCAGTTTTATATTGTAAATCTCAGTTAAGAGAGTGAATACATTCATCACGCTCAGCTTGTCCCATGGATAAGCAAATTGCTTTACAATTAAGATTCTAAAATTGCTCTATTTAGTGCTTATGCACTTTCTAATCTGTGCTGCACGTATCAGATACAGCATGATGTATTGGGGGATTTTGTAATTATATGTAATATCATAATCTAAATCTAGGCTATTATGTTTATTTTAATAATGGATACATTTTGAAAGAAACAGAGATAACTGCACACTGAGGTTATAGCATCTCTATCTACTCCATCCGTTCCAAAATATAAGCACTGTAATATATGTTTTAGTTTGCTAACTCCTCTTTTCACAAACAGCGTTTTGCTGCAGTTATCATGAGAATAAGAGAACCGAAAACTACAGCTCTGATATTTGCATCGGGTAAAATGGTATGGTTCAACCTCTTTGTATAGCTAAGACTGCAAATATTCTGTTTGTTCATCTTCTTATTGACTTGTGAATTGCTTTATCACCTGTCTTTGTTGCTCTTGTAGCTATTATAACGCATATTGATTGATGAACTCTTTTTGCTGATGTGTAACTGCTTTCTATTAGCCTACTATCTTTTTAGTTTTTCTTTGTTTTTTTAACAGCTATCACATCCATACCTGATCCATGCAGCCTGTAGTTCAATGCTGAATCTGTAAATTTAAGTTTGCTCTGATTTTCTGACATGTTTGCTGTTGCATTGCTGTTACATAATAACAGATAAGTAGTGCTCTTTCTGTAAATGTATAGTTTGTCCTTGTTAACTTTTTTATTGTCTTAAAGCATAATCAGAATTGACAATAAATTGAACCTGTCATATTTATTTGTTGATGGATAATCAGCAATGACACATCACATGGACTTCATGTCGCGTCAATATCTTAATTTTAAAAGGCTTGTTTATGAAAATTCACTTGATTTTCCTTTTGGATCAATGTCTTGATCCGAATAAGCTTGTTGAAGGATAATTGGTGGTCAGCATTTTTGGGATAAAATCTTCATTAAAAGTTGCTTTGCTGGTTCTCATCAGGAGGGATAATATCTGTGTTACAGACTTAAAGTAATACATTTTTCTGATAATAAATTCACATTTTAAGCATGAGAACGAAGGAGTTCACAGCCTAGGCTTACTAGTACGCTGTATGGGGCCTGACTATTAGGCAGTGGACTTAAGAAGGGGTTGTCTTGGGTTTGATGCACCGATTTGCTGCGTCTTTGCTTCTTTTTTATAAAAATCAAATTTGCTTGTTAACCAAAATTTCTCTGTGGGCACCATGACCTGCTAGCATTTGTGGTGGAATTAAAAGCATGTTTATAAATCTTTTGTTGTCCTTTACCAGGTATGTACTGGGGCAAAGAGCGAACAACAATCAAAGCTTGCAGCAAGAAAGGTATGGGGAGTATTTATTTTATTTCATTTTATTTTGCTACGTGAAGTCTAACACTTTTTTATTGCCAGTATGCTCGTATTATCCAAAAGCTTGGCTTTGCTGCTAAGTTTAAGGTAACTATTTCAGGCTTGATTAATTTTCATCTGTGCAAATGCCTACCATTTTCATTCTGTAAGATTGTACCTAAATGTTTAACTCATTTGCACTATACCAGGACTTCAAGATTCAGAACATTGTTGGTTCTTGTGATGTTAAATTTCCAATCAGGCTGGAGGGACTTGCATATTCTCATGGTGCTTTCTCAAGTGTAAGTTGAATCCTTGCATGTTTTTTTAGGATATTTCTTTCACATATGTTATGCTATTCTCATGTCTTGTGCCTTTTGTCTTCCAGTATGAGCCTGAACTCTTTCCTGGTCTGATATATCGGATGAAGCAACCGAAGATTGTTCTTCTGATTTTTGTTTCAGGCAAGATTGTTTTGACCGGAGCAAAGGTAAGCAGCCTTTCCTTTTGTATACCCTTGATTGTCTATTCCTTTTTGTATGTCTGAATGTACTTGTCTTTATAGGTGAGGGATGAGACGTATACCGCCTTTGAGAACATATACCCTGTGCTAACAGAGTTCAGAAAAGTCCAGCAATGGTACGTCTTTATTTTGTTGTTTAGGTATGCAGTGTGTGGTAGAAACATCGGAAGTTCGAAGTAAGAATTATACAGTGGATAATTGCACTTGTGTCTTTTGTTATACGTGGGAGTGAACTTTGAGCACACTCCTTACTAAATTGCAATATGTTGAATTTTTTAATATTACAAGCACCTATAAATCTGAACTTTCCAATTTGAATCCAGATGGTCAGCAGAAACTGAAGGAATAAATCATCTCAAGAAAGATTTTAATTTCCACACTACCTTGATCTTAGATAGGATTTGGATACTTGTTTCAGATATGATTCATCACTACCATGTGATGGACTGTTGGCTGCCCTTGCCTACTTACTGTGCTTGACTGCAGTTTACTTCCAATTTAGGAGAACACAATTTTAAATAATAATAATAATGATGGCTCCTTGCACCTTCAAATTTGCAGATAACCTATGGAGGTCACAACTACAACGCTTCCTTGAGGATTTTGCTGCCTTGTAACTGCTAATTTTAATCTGTACATATATGTAGTCTGGAGGGGCGTACAGCATCTTGTAATTTATGTGAGCCCCTGGATGAATGAGCACTGTAGACTTGTAGCTGGGTGAGTATGTTGTTAGTAGTCTCTTGTGGCATGGAGTTCAGTCCAACCGATCTGATGGAGTTTTCGTACGTTTGTAGCCCTTGCCGATCTTTTTCCCTTTTCTTCCCAATAGACATGTTGCTAAACTTTTACTAACTTGTTAACAGACAGACAGAATGATAACATGGACTGTGGATGCTTAGCGTTTGTGGCCGGATTTCCGATCGCTATAAAAGACCTAGGATTTCGAAATTTTTCCCTCCCCTCCCCCTTCGCGCGCGCGCTCTCTCTTCCCGCCCTTTTTTTTTCCTTCTTCTTCACCGGTGGGATTGATTCGTGGGGTGCGGATCTGGTTTTTGGGGGTGTATGGCGGCGGCGGAGGCGGCGGCGGAGGCGGCGGCGGCGCTGGAGGGGAGCGAGCCCGTGGACCTGGTCAAGCACCCTCCGGCATCATCCCCACGCTCCAGTA AGTCCCCCCCGCCCCCGCCCG GATCTGTATGTGCGGGTTCATCGAGCTGGTTGAGTTTGAGGTGGAGCGGTTAACTCGTCGCGCGCTGTTTGATTTGGTTTGTTTTGGGGGCCGGGGATATTATTTGTTGTTGCAAATGATGTGATTGGTGGTAGGTTTAGCTTGGGGGGTTACTACATGTTTGAGGTTCTGATTTGCTTGATTGATGAAAAAGGGGGGCGATCTGAGATCCGCGAGTCCGGTACGAGAAGAAATAGAGGCAGCCGATGTG CTTGTGCTGTGACGGATCCATTGTCCGGT CTTCATAACAACTCTTTTTAGCTGGACAGATGTTTGTTTTCTCATGAATGAATTCATATGGTTGGAGTCTTGGAGAATCAGCTTGTCAGCTGTTCTTTTTTTTAAAAAAAAATTAAAGGTTTATAAATAAATAAATAATCAATCAATCAATCATGCATCTAAATTGTAGGATTTAATTCTTTCCCCTCATCACGTATTTCAACCTTAGAGGGAGGTATTGTGTCTGTGGAGAGTTTATGGTGCTCATGTGATACATACAGTTG ACAATGGGTCAATGCAT GTTTTTAGACAGCATCAAGCTCTGAACAAGTGAACCACATATTTAGGCTTGATCCATGTATAACCCCACTAAGTTTTATACTTGTTTGTACGGGGCCAATATGCCCAAACCTGGCTGTTTATTAGCATGCTGTACTTGCTGGTGTGCATCGAAACGTTTTTTGGGGTTTGCCTACATTGCTACCAGGCATGTATATTTTGCATGCTGGTGTGCATTGCAGAAAAAGTCGAGCATGCTTATATTGCTGCTTGTCATAGTGTACCTGCT TCCATGTGTTCTCCA CAAGTGCGCATGCCTGTTTTGCTGCCTTTCTGGGTTGTTTATGTTTCAGCGTTGGGATCATAGCTGGTAGACTGCATGTGTTCCACTCTGTTTTGGCTTATCATGCTTCCTTTGGATACTCTCACCAAGGAAATTGAAGTCCTCATTATGTGTTCTCATCTATTTTGATGGCAGAAACATCGTGTCGACGGTCAATTTGGATTGCAAATTAGACCTCAAAGCTATAGCTTTGCAAGCACGCAATGCAGAATAATCCAAA GGTATTATGATGGCTTTG GTGTGTTCTTGTGTCTTTGATTTTGCTCGAAAGGATATCTTCTTTGCATGTGAAAATTTTACCTATTTTAATCCTGCTAGCATGTAATATGTAGACAAGTCCATACAATCCTATGGTCTGTTCCTAGGATGATACTTCCTTTGTGTATAACGCAAGTGTGAGTGCAATTTTAGAGGTCGGTATGGATAAATGCATAGCTGGCAGTCCAGTTTTATATTGTAAATCTCAGTTAAGAGAGTGAATACATTCATCACGCT CAGCTTGTCCCATGGATAAGCA AATTGCTTTACAATTAAGATTCTAAAATTGCTCTATTTAGTGCTTATGCACTTTCTAATCTGTGCTGCACGTATCAGATACAGCATGATGTATTGGGGGATTTTGTAATTATATGTAATATCATAATCTAAATCTAGGCTATTATGTTTATTTTAATAATGGATACATTTTGAAAGAAACAGAGATAACTGCACACTGAGGTTATAGCATCTCTATCTACTCCATCCGTTCCAAAATATAAGCACTGTAATATATGTTTTTA GTTTGCTAACTCCTCTTT TCACAAACAGCGTTTTGCTGCAGTTATCATGAGAATAAGAGAACCGAAAACTACAGCTCTGATATTTGCATCGGGTAAAATGGTATGGTTCAACCTCTTTGTATAGCTAAGACTGCAAATATTCTGTTTGTTCATCTTCTTATTGACTTGTGAATTGCTTTATCACCTGTCTTTGTTGCTCTTGTAGCTATTATAACGCATATTGATTGATGAACTCTTTTTGCTGATGTGTAACTGCTTTCTATTAGCCTACTATCTTT TTAGTTTTTCTTTGTTTTTT TAACAGCTATCACATCCATACCTGATCCATGCAGCCTGTAGTTCAATGCTGAATCTGTAAATTTAAGTTTGCTCTGATTTTCTGACATGTTTGCTGTTGCATTGCTGTTACATAACAGATAAGTAGTGCTCTTTCTGTAAATGTATAGTTTGTCCTTGTTAACTTTTTTATTGTCTTAAAGCATAATCAGAATTGACAATAAATTGAACCTGTCATATTTATTTGTTGATGGATAATCAGCAATGACACATCACATGGACT TCATGTCGCGTCAAT ATCTTAATTTTAAAAGGCTTGTTTATGAAAATTCACTTGATTTTCCTTTTGGATCAATGTCTTGATCCGAATAAGCTTGTTGAAGGATAATTGGTGGTCAGCATTTTTGGGATAAAATCTTCATTAAAAGTTGCTTTGCTGGTTCTCATCAGGAGGGATAATATCTGTGTTACAGACTTAAAGTAATACATTTTTCTGATAATAAATTCACATTTTAAGCATGAGAACGAAGGAGTTCACAGCCTAGGCTTACTAGTACGCTGTAT GGGGCCTGACTAT TAGGCAGTGGACTTAAGAAGGGGTTGTCTTGGGTTTGATGCACCGATTTGCTGCGTCTTTGCTTCTTTTTTATAAAAATCAAATTTGCTTTGTTAACCAAAATTTCTCTGTGGGCACCATGACCTGCTAGCATTTGTGGTGGAATTAAAAGCATGTTTATAAATCTTTTGTTGTCCTTTACCAGGTATGTACTGGGGCAAAGAGCGAACAACAATCAAAGCTTGCAGCAAGAAAGGTATGGGGAGTATTTATTTTATTTCATTTT ATTTTGCTACGTGAA GTCTAACACTTTTTTATTGCCAGTATGCTCGTATTATCCAAAAGCTTGGCTTTGCTGCTAAGTTTAAGGTAACTATTTCAGGCTTGATTAATTTTCATCTGTGCAAATGCCTAACCATTTTCATTCTGTAAGATTGTACCTAAATGTTTAACTCATTTGCACTATACCAGGACTTCAAGATTCAGAACATTGTTGGTTCTTGTGATGTTAAATTTCCAATCAGGCTGGAGGGACTTGCATATTCTCATGGTGCTTTCTCAAGTGT AAGTTGAATCCTTGCA TGTTTTTTTAGGATATTTCTTTCACATATGTTATGCTATTCTCATGTCTTGTGCCTTTTGTCTTCCAGTATGAGCCTGAACTCTTTCCTGGTCTGATATATCGGATGAAGCAACCGAAGATTGTTCTTCTGATTTTTGTTTCAGGCAAGATTGTTTTGACCGGAGCAAAGGTAAGCAGCCTTTCCTTTTGTATACCCTTGATTGTCTATTCCTTTTTGTATGTCTGAATGTACTTGTCTTTAGGTGAGGG ATGAGACGTATACCGCCTTTGAGAACA TATACCCTGTGCTAACAGAGTTCAGAAAAGTCCAGCAATGGTACGTCTTTATTTTGTTGTTTAGGTATGCAGTGTGTGGTAGAAACATCGGAAGTTCGAAGTAAGAATTATACAGTGGATAATTGCACTTGTGTCTTTTGTTATACGTGGGAGTGAACTTTGAGCACACTCCTTACTAAATTGCAATATGTTGAATTTTTTAATATTACAAGCACCTATAAATCTGAACTTTCCAATTTGAATCCAGATGGTCAGCAGAA ACTGAAGGAATAAATCATC TCAAGAAAGATTTTAATTTCCACACTACCTTGATCTTAGATAGGATTTGGATACTTGTTTCAGATATGATTCATCACTACCATGTGATGGACTGTTGGCTGCCCTTGCCTACTTACTGTGCTTGACTGCAGTTTTACTTCCAATTTAGGAGAACACAATTTTAAATAATAATAATAATGATGGCTCCTTGCACCTTCAAATTTGCAGATAACCTATGGAGGTCACAACTACAACGCTTCCTTGAGGATTTTGCTGCCTTGTAACTGCTA ATTTAATCTG TACATATATGTAGTCTGGAGGGGCGTACAGCATCTTGTAATTTATGTGAGCCCCTGGATGAATGAGCACTGTAGACTTGTAGCTGGGTGAGTATGTTGTTAGTAGTCTCTTGTGGCATGGAGTTCAGTCCAACCGATCTGATGGAGTTTTCGTACGTTTGTAGCCCTTGCCGATCTTTTTCCCTTTCTTCCCAATAGACATGTTGCTAAACTTTACTAACTTGTTAACAGACAGACAGAATGATAACATGGACT GTGGATGCTTAGCGTTTGTGGCCG

Claims (22)

1. A method of increasing at least one of yield, biomass, nitrogen Use Efficiency (NUE), nitrogen transport, and/or nitrogen content in a plant, said method comprising introducing at least one mutation into a nucleic acid sequence encoding an NRT2.3 promoter, wherein said NRT2.3 promoter comprises SEQ ID No.1, and wherein said mutation is selected from the group consisting of
At least one mutation of at least one nucleotide in the TATA box of the nrt2.3 promoter, wherein said at least one mutation is a substitution of T to C at position 160 of SEQ ID No. 1; and/or
Deletion of SEQ ID No. 6 or 7 in SEQ ID No. 1.
2. The method of claim 1, wherein the method further introduces a mutation from a to C at position 201 and a mutation from C to T at position 222.
3. The method of claim 1 or2, wherein the plant is rice.
4. The method of claim 1 or 2, wherein the mutation is introduced using mutagenesis.
5. The method of claim 4, wherein the mutation is introduced using TILLING or T-DNA insertion.
6. The method of claim 4, wherein the mutation is introduced using targeted genomic modification.
7. The method of claim 1, wherein the increase is relative to a control or wild-type plant.
8. The method of claim 1, wherein the NRT2.3 promoter is 141bp, 180bp, or 697bp in length.
9. The method of claim 1, wherein the method further comprises regenerating a plant and screening the plant for an increase in at least one of yield, biomass, nitrogen Use Efficiency (NUE), nitrogen transport, and/or nitrogen content.
10. A method of identifying and/or selecting a plant having or to have increased yield, biomass, nitrogen Use Efficiency (NUE), nitrogen transport and/or nitrogen content as compared to a control or wild type plant, the method comprising detecting in the plant or plant germplasm at least one polymorphism in the NRT2.3 promoter gene sequence and screening for said plant or progeny thereof, wherein said NRT2.3 promoter comprises SEQ ID No. 1, and wherein said polymorphism is selected from at least one mutation of at least one nucleotide in the TATA box of the NRT2.3 promoter, wherein said at least one mutation is a T to C substitution at position 160 of SEQ ID No. 1; and/or the deletion of SEQ ID NO 6 or 7 in SEQ ID NO 1.
11. The method of claim 10, wherein the method further comprises introgressing a chromosomal region comprising at least one polymorphism in the NRT2.3 promoter into a second plant or plant germplasm to produce an introgressed plant or plant germplasm.
12. A method of increasing at least one of yield, biomass, nitrogen Use Efficiency (NUE), nitrogen transport, and/or nitrogen content in a plant, the method comprising introducing and expressing in the plant a nucleic acid construct comprising an NRT2.3 promoter sequence operably linked to an NRT2.3 gene sequence, wherein the NRT2.3 promoter sequence is selected from the group comprising SEQ ID NOs 2,4, or 5.
13. A method of making a plant with increased yield, biomass, nitrogen Use Efficiency (NUE), nitrogen transport and/or nitrogen content, the method comprising introducing and expressing in a plant or plant cell a nucleic acid construct comprising an NRT2.3 promoter sequence operably linked to an NRT2.3 gene sequence, wherein said NRT2.3 promoter sequence is selected from the group comprising SEQ ID NOs 2,4 or 5.
14. The method of claim 12 or 13, wherein the NRT2.3 gene sequence comprises SEQ ID No. 8.
15. The method of claim 10, 11, 12 or 13, wherein the plant is rice.
16. A nucleic acid construct comprising an NRT2.3 promoter sequence operably linked to an NRT2.3 gene sequence, wherein said NRT2.3 promoter sequence is selected from the group comprising SEQ ID NOs 2,4 or 5.
17. The nucleic acid construct of claim 16, wherein the NRT2.3 gene sequence comprises SEQ ID No. 8.
18. A vector comprising the nucleic acid construct of claim 17.
19. A host cell comprising the vector of claim 18 or the nucleic acid construct of claim 16.
20. Use of the vector of claim 18 or the nucleic acid construct of claim 16 for increasing at least one of yield, biomass, nitrogen Use Efficiency (NUE), nitrogen transport and/or nitrogen content in a plant.
21. A method of altering splicing of an NRT2.3 gene, said method comprising introducing at least one mutation into a nucleic acid sequence encoding an NRT2.3 promoter, wherein said NRT2.3 promoter comprises SEQ ID No. 1, and wherein said mutation is selected from at least one mutation of at least one nucleotide in the TATA box of the NRT2.3 promoter, wherein said at least one mutation is a substitution of T to C at position 160 of SEQ ID No. 1; and/or the deletion of SEQ ID NO 6 or 7 in SEQ ID NO 1.
22. A method of obtaining a genetically modified plant, the method comprising:
a. selecting a portion of a plant;
b. Transfecting at least one cell of the plant part of paragraph (a) with a nucleic acid construct comprising an NRT2.3 promoter sequence operably linked to an NRT2.3 gene sequence, wherein said NRT2.3 promoter sequence is selected from the group comprising SEQ ID NOs 2,4 or 5;
c. Regenerating at least one plant derived from the transfected cells;
Selecting one or more plants obtained according to paragraph (c) that show increased expression of nrt2.3b and/or increased ratio of osnrt2.3b to osnrt2.3 a.
CN202080037035.6A 2019-05-23 2020-05-21 Method for improving rice grain yield Active CN113924367B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CNPCT/CN2019/088133 2019-05-23
CN2019088133 2019-05-23
PCT/EP2020/064218 WO2020234426A1 (en) 2019-05-23 2020-05-21 Methods for improving rice grain yield

Publications (2)

Publication Number Publication Date
CN113924367A CN113924367A (en) 2022-01-11
CN113924367B true CN113924367B (en) 2024-07-23

Family

ID=70802867

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080037035.6A Active CN113924367B (en) 2019-05-23 2020-05-21 Method for improving rice grain yield

Country Status (3)

Country Link
CN (1) CN113924367B (en)
PH (1) PH12021553009A1 (en)
WO (1) WO2020234426A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110872590B (en) * 2019-11-14 2022-03-29 南京农业大学 Application of transcription factor OsTBP2.1
CN116391529B (en) * 2023-04-24 2024-01-19 中国科学院南京土壤研究所 Method for promoting rice root system development
CN118127210B (en) * 2024-03-14 2025-03-25 江苏省农业科学院 A KASP molecular marker method for identifying superior alleles of rice nitrogen efficient gene NRT2.3

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4873192A (en) 1987-02-17 1989-10-10 The United States Of America As Represented By The Department Of Health And Human Services Process for site specific mutagenesis without phenotypic selection
CN101395275A (en) * 2005-08-15 2009-03-25 纳幕尔杜邦公司 nitrate transport component
CN101392257B (en) * 2008-11-10 2013-03-13 南京农业大学 Genetic engineering application of nitrate transport protein genom OsNRT2.3 in Rice
WO2011072246A2 (en) 2009-12-10 2011-06-16 Regents Of The University Of Minnesota Tal effector-mediated dna modification
US8697359B1 (en) 2012-12-12 2014-04-15 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products
WO2014121436A1 (en) * 2013-02-05 2014-08-14 Plant Bioscience Limited Transgenic plants

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
P.CRAMERET AL."Functional association between promoter structure and transcript alternative splicing".PROCEEDINGS OF THE NATIONAL ACADEMY OFSCIENCES.1997,第94卷(第21期),11456-11460. *
XIAORONG FAN ET AL."Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields".PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES.2016,第113卷(第26期),7118-7123. *

Also Published As

Publication number Publication date
CN113924367A (en) 2022-01-11
WO2020234426A1 (en) 2020-11-26
PH12021553009A1 (en) 2022-11-07

Similar Documents

Publication Publication Date Title
US11702667B2 (en) Methods and compositions for multiplex RNA guided genome editing and other RNA technologies
WO2019207274A1 (en) Gene replacement in plants
EP3091076A1 (en) Polynucleotide responsible of haploid induction in maize plants and related processes
US20200354735A1 (en) Plants with increased seed size
CN111818794A (en) Ways to increase nutrient utilization efficiency
CN113924367B (en) Method for improving rice grain yield
WO2019038417A1 (en) Methods for increasing grain yield
US20200255846A1 (en) Methods for increasing grain yield
WO2019080727A1 (en) Lodging resistance in plants
CN111032684A (en) Ways to increase grain productivity
CN108368515A (en) Drought tolerant corn
CN107022563A (en) Genetically modified plants
US20230323384A1 (en) Plants having a modified lazy protein
CA3131193A1 (en) Methods and compositions for generating dominant short stature alleles using genome editing
AU2010317658A1 (en) Transgenic plant male sterility
US20230392160A1 (en) Compositions and methods for increasing genome editing efficiency
WO2023227912A1 (en) Glucan binding protein for improving nitrogen fixation in plants
CN118510388A (en) Improved screening methods for genome editing events

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant