CN113921680B - bulk transfer method - Google Patents
bulk transfer method Download PDFInfo
- Publication number
- CN113921680B CN113921680B CN202111160521.XA CN202111160521A CN113921680B CN 113921680 B CN113921680 B CN 113921680B CN 202111160521 A CN202111160521 A CN 202111160521A CN 113921680 B CN113921680 B CN 113921680B
- Authority
- CN
- China
- Prior art keywords
- substrate
- polymer film
- film layer
- layer
- azide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- 239000000758 substrate Substances 0.000 claims abstract description 117
- 229920006254 polymer film Polymers 0.000 claims abstract description 100
- 150000001540 azides Chemical class 0.000 claims abstract description 81
- 229920000642 polymer Polymers 0.000 claims abstract description 32
- 230000004888 barrier function Effects 0.000 claims description 36
- 238000005516 engineering process Methods 0.000 claims description 7
- 238000007641 inkjet printing Methods 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 5
- -1 calixarene compound Chemical class 0.000 claims description 4
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 claims description 4
- 229920005989 resin Polymers 0.000 claims description 4
- 239000011347 resin Substances 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims description 3
- 239000005011 phenolic resin Substances 0.000 claims description 3
- 229920001568 phenolic resin Polymers 0.000 claims description 3
- 229920002120 photoresistant polymer Polymers 0.000 claims description 3
- 229920000767 polyaniline Polymers 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims 1
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 7
- 239000001257 hydrogen Substances 0.000 abstract description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 abstract description 6
- 229920000867 polyelectrolyte Polymers 0.000 abstract description 6
- IVRMZWNICZWHMI-UHFFFAOYSA-N azide group Chemical group [N-]=[N+]=[N-] IVRMZWNICZWHMI-UHFFFAOYSA-N 0.000 abstract description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 2
- 150000001450 anions Chemical class 0.000 abstract 1
- 150000001768 cations Chemical class 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 14
- 235000012431 wafers Nutrition 0.000 description 11
- 239000010408 film Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000001338 self-assembly Methods 0.000 description 5
- 229920001448 anionic polyelectrolyte Polymers 0.000 description 4
- 125000002091 cationic group Chemical group 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- VFHDWGAEEDVVPD-UHFFFAOYSA-N chembl507897 Chemical compound C1=CC(O)=CC=C1C(C1=CC=C(N1)C(C=1C=CC(O)=CC=1)=C1C=CC(=N1)C(C=1C=CC(O)=CC=1)=C1C=CC(N1)=C1C=2C=CC(O)=CC=2)=C2N=C1C=C2 VFHDWGAEEDVVPD-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- VTJUKNSKBAOEHE-UHFFFAOYSA-N calixarene Chemical class COC(=O)COC1=C(CC=2C(=C(CC=3C(=C(C4)C=C(C=3)C(C)(C)C)OCC(=O)OC)C=C(C=2)C(C)(C)C)OCC(=O)OC)C=C(C(C)(C)C)C=C1CC1=C(OCC(=O)OC)C4=CC(C(C)(C)C)=C1 VTJUKNSKBAOEHE-UHFFFAOYSA-N 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004093 laser heating Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/84—Coatings, e.g. passivation layers or antireflective coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6835—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/034—Manufacture or treatment of coatings
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electroluminescent Light Sources (AREA)
- Led Devices (AREA)
- Led Device Packages (AREA)
Abstract
Description
技术领域technical field
本发明涉及显示技术领域,特别涉及一种巨量转移方法。The invention relates to the field of display technology, in particular to a mass transfer method.
背景技术Background technique
Micro LED(微发光二极管)的巨量转移,要求把微米级大小的Micro-LED芯片从施主晶圆上精准抓取,扩大阵列距离,妥善安放固定到目标衬底(如显示器背板)上。以现有的主流LED固晶速度,往往需要花费数十天时间对一块电视屏幕进行贴装,远远不能满足产业化的要求。The mass transfer of Micro LEDs (micro light-emitting diodes) requires precise grasping of micron-sized Micro-LED chips from the donor wafer, expanding the array distance, and properly placing and fixing them on the target substrate (such as the display backplane). With the existing mainstream LED die-bonding speed, it often takes dozens of days to mount a TV screen, which is far from meeting the requirements of industrialization.
针对从施主晶圆上精确剥离,扩大晶片阵列距离并转移晶片这一工艺过程,目前主流方案包括:For the process of precisely peeling off from the donor wafer, expanding the distance of the wafer array and transferring the wafer, the current mainstream solutions include:
1、激光剥离和激光加热释放技术。适应目标衬底对于Micro-LED芯片放置距离的要求,激光对Micro-LED芯片转移基板上相隔开一定距离晶片进行选择性的照射,使晶片剥离/释放,落到目标衬底上,实现扩大晶片阵列距离的目标。该方案不需移动Micro-LED芯片转移基板即可实现多片Micro-LED芯片的距离扩大和转移放置。但是,该方案实施的前提是目标衬底上相邻两片晶片放置的距离必须为Micro-LED芯片转移基板上两片晶片距离的整数倍,否则无法同时对齐多片Micro-LED芯片;1. Laser peeling and laser heating release technology. To meet the requirements of the target substrate for the placement distance of the Micro-LED chip, the laser selectively irradiates the micro-LED chip transfer substrate with a certain distance from the wafer, so that the wafer is peeled off/released and falls on the target substrate to achieve expansion. Chip array distance to target. This solution can realize the distance expansion and transfer placement of multiple Micro-LED chips without moving the Micro-LED chip transfer substrate. However, the premise of this solution is that the distance between two adjacent wafers on the target substrate must be an integer multiple of the distance between the two wafers on the Micro-LED chip transfer substrate, otherwise multiple Micro-LED chips cannot be aligned at the same time;
2、拉伸弹性薄膜扩大晶片阵列距离。先将Micro-LED芯片转移到弹性薄膜上,通过拉伸弹性薄膜,使弹性薄膜均匀拉伸,同时其上的晶片间的距离也得到均匀拉伸,再转移到目标衬底上。该方案可以同时实现大量晶片的扩晶和转移放置,但是,该方案对弹性薄膜的均匀一致性要求较高,否则扩晶后晶片的距离无法适应目标衬底的要求。2. Stretch the elastic film to expand the distance of the chip array. First transfer the Micro-LED chip to the elastic film, stretch the elastic film to make the elastic film stretch evenly, and at the same time, the distance between the wafers on it is also stretched uniformly, and then transfer to the target substrate. This solution can realize the crystal expansion and transfer placement of a large number of wafers at the same time. However, this solution has high requirements on the uniformity of the elastic film, otherwise the distance between the wafers after crystal expansion cannot meet the requirements of the target substrate.
发明内容Contents of the invention
本发明目的在于,提供一种巨量转移方法,以解决现有巨量转移方法受限于衬底上Micro-LED芯片之间间距的问题。The purpose of the present invention is to provide a mass transfer method to solve the problem that the existing mass transfer method is limited by the distance between Micro-LED chips on the substrate.
具体地,本发明采用的技术方案为:Specifically, the technical solution adopted in the present invention is:
一种巨量转移方法,包括:A mass transfer method comprising:
提供衬底;provide the substrate;
在所述衬底表面形成多个LED芯片;forming a plurality of LED chips on the surface of the substrate;
在所述LED芯片表面形成酚羟基聚合物膜层;Forming a phenolic hydroxyl polymer film layer on the surface of the LED chip;
将多个所述LED芯片从衬底上分离;separating a plurality of said LED chips from the substrate;
提供基板;Provide the substrate;
在所述基板表面形成阻挡层;forming a barrier layer on the surface of the substrate;
在所述阻挡层表面形成多个暴露所述基板至少部分表面的通孔;forming a plurality of through holes exposing at least part of the surface of the substrate on the surface of the barrier layer;
在至少部分所述通孔内形成叠氮聚合物膜层;forming an azide polymer film layer within at least part of the through hole;
将所述LED芯片转移至所述基板;transferring the LED chips to the substrate;
所述LED芯片通过所述酚羟基聚合物膜层与所述叠氮聚合物膜层组装;The LED chip is assembled with the azide polymer film layer through the phenolic hydroxyl polymer film layer;
紫外光照使所述酚羟基聚合物膜层与所述叠氮聚合物膜层形成共价联结。The ultraviolet light makes the phenolic hydroxyl polymer film layer and the azide polymer film layer form a covalent bond.
为实现上述目的,本发明还提供另一种巨量转移方法,包括:In order to achieve the above object, the present invention also provides another mass transfer method, including:
提供衬底;provide the substrate;
在所述衬底表面形成多个LED芯片;forming a plurality of LED chips on the surface of the substrate;
在所述LED芯片表面形成酚羟基聚合物膜层;Forming a phenolic hydroxyl polymer film layer on the surface of the LED chip;
将多个所述LED芯片从衬底上分离;separating a plurality of said LED chips from the substrate;
提供基板;Provide the substrate;
在所述基板表面形成叠氮聚合物膜层;forming an azide polymer film layer on the surface of the substrate;
在所述叠氮聚合物膜层表面形成阻挡层;forming a barrier layer on the surface of the azide polymer film layer;
在所述阻挡层表面形成至少一个暴露所述叠氮聚合物膜层至少部分表面的通孔;forming at least one through hole exposing at least part of the surface of the azide polymer film layer on the surface of the barrier layer;
将所述LED芯片转移至所述基板;transferring the LED chips to the substrate;
所述LED芯片通过所述酚羟基聚合物膜层与暴露于所述通孔的所述叠氮聚合物膜层组装;The LED chip is assembled through the phenolic hydroxyl polymer film layer and the azide polymer film layer exposed to the through hole;
紫外光照使所述酚羟基聚合物膜层与所述叠氮聚合物膜层形成共价联结。The ultraviolet light makes the phenolic hydroxyl polymer film layer and the azide polymer film layer form a covalent bond.
可选的,所述紫外光照使所述酚羟基聚合物膜层与所述叠氮聚合物膜层形成共价联结的步骤还包括采用剥离液剥离所述阻挡层。Optionally, the step of forming a covalent bond between the phenolic hydroxyl polymer film layer and the azide polymer film layer by ultraviolet light further includes peeling off the barrier layer with a stripping solution.
可选的,形成所述酚羟基聚合物膜层的酚羟基聚合物包括但不限于聚苯胺、酚醛树脂、杯芳烃类化合物和4-羟苯基卟啉。Optionally, the phenolic hydroxyl polymer forming the phenolic hydroxyl polymer film layer includes but not limited to polyaniline, phenolic resin, calixarene compounds and 4-hydroxyphenylporphyrin.
可选的,形成所述叠氮聚合物膜层的叠氮聚合物包括但不限于重氮树脂及其衍生物。Optionally, the azide polymer forming the azide polymer film layer includes but not limited to diazo resin and its derivatives.
可选的,所述将所述LED芯片转移至所述基板的步骤中,还包括将所述基板和所述LED芯片放置于水或极性溶液中搅拌混合。Optionally, the step of transferring the LED chip to the substrate further includes placing the substrate and the LED chip in water or a polar solution to stir and mix.
可选的,所述将多个所述LED芯片从衬底上分离的步骤包括:通过激光剥离技术将多个所述LED芯片从衬底上分离。Optionally, the step of separating the plurality of LED chips from the substrate includes: separating the plurality of LED chips from the substrate by laser lift-off technology.
可选的,通过喷墨打印在所述基板表面形成所述叠氮聚合物膜层,所述通孔的排布方式与所述基板上的像素单元排布方式相对应,露出所述叠氮聚合物膜层的所述通孔所对应的像素单元的像素颜色与所述LED芯片颜色相对应,在所述衬底表面形成的多个所述LED芯片的颜色相同。Optionally, the azide polymer film layer is formed on the surface of the substrate by inkjet printing, the arrangement of the through holes corresponds to the arrangement of the pixel units on the substrate, exposing the azide The pixel color of the pixel unit corresponding to the through hole of the polymer film layer corresponds to the color of the LED chip, and the colors of the plurality of LED chips formed on the surface of the substrate are the same.
可选的,所述阻挡层为光阻层,所述在所述阻挡层表面形成所述通孔的步骤包括:对所述阻挡层进行曝光、显影及烘烤以形成所述通孔。Optionally, the barrier layer is a photoresist layer, and the step of forming the through hole on the surface of the barrier layer includes: exposing, developing and baking the barrier layer to form the through hole.
可选的,所述在所述衬底表面形成多个LED芯片的步骤还包括在所述衬底表面依次外延生长形成缓冲层、非故意掺杂层和LED外延结构,所述LED外延结构包括依次外延生长形成于所述非故意掺杂层表面的N型导电层、发光层、P型导电层、透明导电层和接触层,所述接触层包括形成于所述透明导电层的P极金属层和形成于所述发光层表面的接触电极。Optionally, the step of forming a plurality of LED chips on the surface of the substrate further includes sequentially growing epitaxially on the surface of the substrate to form a buffer layer, an unintentionally doped layer, and an LED epitaxial structure, and the LED epitaxial structure includes The N-type conductive layer, the light-emitting layer, the P-type conductive layer, the transparent conductive layer and the contact layer formed on the surface of the unintentionally doped layer are epitaxially grown in sequence, and the contact layer includes the P-electrode metal formed on the transparent conductive layer layer and a contact electrode formed on the surface of the light emitting layer.
本发明的有益效果在于,本发明所提供的巨量转移方法,不受衬底上LED芯片之间的间距限制,利用酚羟基聚合物中羟基的强给氢能力(阴离子聚电解质)与叠氮聚合物中叠氮基团的给电子能力(阳离子聚电解质),使得酚羟基聚合物与叠氮聚合物相互吸引,从而使得具有酚羟基聚合物膜层的LED芯片靶向自组装于叠氮聚合物膜层表面,酚羟基聚合物膜层与叠氮聚合物膜层形成基于氢键的组装膜层,然后通过紫外光照使酚羟基聚合物与叠氮聚合物发生叠氮化反应形成共价键,形成共价联结,从而使得LED芯片可快速准确地转移到基板相应的像素上,提升转移效率和转移精度。The beneficial effect of the present invention is that the mass transfer method provided by the present invention is not limited by the spacing between LED chips on the substrate, and utilizes the strong hydrogen-donating ability (anionic polyelectrolyte) and azide of the hydroxyl group in the phenolic hydroxyl polymer The electron-donating ability of the azide group in the polymer (cationic polyelectrolyte) makes the phenolic hydroxyl polymer and the azide polymer attract each other, so that the LED chip with the phenolic hydroxyl polymer film layer is targeted for self-assembly in the azide polymerization On the surface of the film layer, the phenolic hydroxyl polymer film layer and the azide polymer film layer form an assembled film layer based on hydrogen bonds, and then the phenolic hydroxyl polymer and the azide polymer undergo an azidation reaction to form a covalent bond by ultraviolet light. , forming a covalent bond, so that the LED chip can be quickly and accurately transferred to the corresponding pixel on the substrate, and the transfer efficiency and transfer accuracy are improved.
附图说明Description of drawings
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。The technical solutions and other beneficial effects of the present invention will be apparent through the detailed description of specific embodiments of the present invention in conjunction with the accompanying drawings.
图1是本发明一示例性实施例所提供的巨量转移方法的流程示意图;FIG. 1 is a schematic flowchart of a mass transfer method provided by an exemplary embodiment of the present invention;
图2a是本发明一示例性实施例所提供的巨量转移方法中衬底与LED芯片的结构示意图;Fig. 2a is a schematic structural view of a substrate and an LED chip in a mass transfer method provided by an exemplary embodiment of the present invention;
图2b是本发明一示例性实施例所提供的巨量转移方法中衬底与单个LED芯片的结构示意图;Fig. 2b is a schematic structural diagram of a substrate and a single LED chip in a mass transfer method provided by an exemplary embodiment of the present invention;
图2c是本发明一示例性实施例所提供的巨量转移方法中在多个LED芯片表面形成酚羟基聚合物膜层的结构示意图;Fig. 2c is a schematic structural view of forming a phenolic hydroxyl polymer film layer on the surface of multiple LED chips in the mass transfer method provided by an exemplary embodiment of the present invention;
图2d是本发明一示例性实施例所提供的巨量转移方法中在从衬底表面剥离多个LED芯片的结构示意图;Fig. 2d is a schematic structural view of peeling off a plurality of LED chips from the substrate surface in the mass transfer method provided by an exemplary embodiment of the present invention;
图2e是本发明一示例性实施例所提供的巨量转移方法中在基板表面形成阻挡层的结构示意图;Fig. 2e is a schematic structural view of forming a barrier layer on the substrate surface in the mass transfer method provided by an exemplary embodiment of the present invention;
图2f是本发明一示例性实施例所提供的巨量转移方法中在阻挡层表面形成通孔的结构示意图;Fig. 2f is a schematic structural view of forming via holes on the surface of the barrier layer in the mass transfer method provided by an exemplary embodiment of the present invention;
图2g是本发明一示例性实施例所提供的巨量转移方法中在通孔内形成叠氮聚合物膜层的结构示意图;Fig. 2g is a schematic structural view of forming an azide polymer film layer in a through hole in the mass transfer method provided by an exemplary embodiment of the present invention;
图2h是本发明一示例性实施例所提供的巨量转移方法中向基板转移单色LED芯片的结构示意图;Fig. 2h is a schematic structural diagram of transferring monochromatic LED chips to a substrate in a mass transfer method provided by an exemplary embodiment of the present invention;
图2i是本发明一示例性实施例所提供的巨量转移方法中紫外光照的结构示意图;Fig. 2i is a schematic diagram of the structure of ultraviolet light in the mass transfer method provided by an exemplary embodiment of the present invention;
图3是本发明一示例性实施例所提供的巨量转移方法中LED芯片与基板的组合结构示意图;3 is a schematic diagram of the combined structure of LED chips and substrates in the mass transfer method provided by an exemplary embodiment of the present invention;
图4是本发明另一示例性实施例所提供的巨量转移方法Fig. 4 is a mass transfer method provided by another exemplary embodiment of the present invention
图5a是本发明另一示例性实施例所提供的巨量转移方法中在基板表面形成叠氮聚合物膜层的结构示意图;Fig. 5a is a schematic structural view of forming an azide polymer film layer on the surface of a substrate in the mass transfer method provided by another exemplary embodiment of the present invention;
图5b是本发明另一示例性实施例所提供的巨量转移方法中在叠氮聚合物膜层表面形成阻挡层的结构示意图;Fig. 5b is a schematic structural view of forming a barrier layer on the surface of an azide polymer film layer in the mass transfer method provided by another exemplary embodiment of the present invention;
图5c是本发明另一示例性实施例所提供的巨量转移方法中在阻挡层表面形成通孔的结构示意图;Fig. 5c is a schematic structural diagram of forming via holes on the surface of the barrier layer in the mass transfer method provided by another exemplary embodiment of the present invention;
图5d是本发明另一示例性实施例所提供的巨量转移方法中向基板转移单色LED芯片的结构示意图;Fig. 5d is a structural schematic diagram of transferring a single-color LED chip to a substrate in a mass transfer method provided by another exemplary embodiment of the present invention;
图5e是本发明另一示例性实施例所提供的巨量转移方法中紫外光照的结构示意图;Fig. 5e is a schematic structural diagram of ultraviolet light irradiation in the mass transfer method provided by another exemplary embodiment of the present invention;
图6是本发明另一示例性实施例所提供的巨量转移方法中剥离阻挡层后基板与LED芯片的结构示意图;6 is a schematic structural view of the substrate and the LED chip after peeling off the barrier layer in the mass transfer method provided by another exemplary embodiment of the present invention;
图中部件编号如下:The part numbers in the figure are as follows:
100、衬底;100, substrate;
200、LED芯片,201、缓冲层,202、非故意掺杂层,203、LED外延结构,204、N型导电层,205、发光层,206、P型导电层,207、透明导电层,208、接触层,2081、P极金属层,2082、接触电极,210、酚羟基聚合物膜层;200. LED chip, 201. Buffer layer, 202. Unintentionally doped layer, 203. LED epitaxial structure, 204. N-type conductive layer, 205. Light emitting layer, 206. P-type conductive layer, 207. Transparent conductive layer, 208 , contact layer, 2081, P pole metal layer, 2082, contact electrode, 210, phenolic hydroxyl polymer film layer;
300、300’、基板,310、310’、阻挡层,320、320’通孔,330、330’叠氮聚合物膜层;300, 300', substrate, 310, 310', barrier layer, 320, 320' through hole, 330, 330' azide polymer film layer;
400、极性溶液。400. Polar solution.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the drawings in the embodiments of the present invention. Apparently, the described embodiments are only some of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without making creative efforts belong to the protection scope of the present invention.
所述巨量转移方法不受衬底上LED芯片之间的间距限制,利用酚羟基聚合物中羟基的强给氢能力(阴离子聚电解质)与叠氮聚合物中叠氮基团的给电子能力(阳离子聚电解质),使得酚羟基聚合物与叠氮聚合物相互吸引,从而使得具有酚羟基聚合物膜层的LED芯片靶向自组装于叠氮聚合物膜层表面,酚羟基聚合物膜层与叠氮聚合物膜层形成基于氢键的组装膜层,然后通过紫外光照使酚羟基聚合物与叠氮聚合物发生叠氮化反应形成共价键,形成共价联结,从而使得LED芯片可快速准确地转移到基板相应的像素上,提升转移效率和转移精度。作为典型应用,本发明所述巨量转移方法可应用于显示面板的制作,所制得的显示面板可被应用于移动终端上,所述移动终端包括终端主体和显示面板,所述移动终端可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有现实功能的产品或部件。The mass transfer method is not limited by the spacing between LED chips on the substrate, and utilizes the strong hydrogen-donating ability of the hydroxyl group in the phenolic hydroxyl polymer (anionic polyelectrolyte) and the electron-donating ability of the azide group in the azide polymer (cationic polyelectrolyte), so that the phenolic hydroxyl polymer and the azide polymer attract each other, so that the LED chip with the phenolic hydroxyl polymer film layer is self-assembled on the surface of the azide polymer film layer, and the phenolic hydroxyl polymer film layer Form an assembled film layer based on hydrogen bonds with the azide polymer film layer, and then use ultraviolet light to make the phenolic hydroxyl polymer and the azide polymer undergo an azidation reaction to form a covalent bond and form a covalent connection, so that the LED chip can be used Fast and accurate transfer to the corresponding pixels on the substrate, improving transfer efficiency and transfer accuracy. As a typical application, the mass transfer method of the present invention can be applied to the manufacture of a display panel, and the prepared display panel can be applied to a mobile terminal, the mobile terminal includes a terminal body and a display panel, and the mobile terminal can For: mobile phones, tablet computers, televisions, monitors, laptops, digital photo frames, navigators and any other products or components with realistic functions.
参照图1、图2a~图2i,在本发明的一个实施例中,巨量转移方法包括如下步骤:Referring to Fig. 1 and Fig. 2a-Fig. 2i, in one embodiment of the present invention, the mass transfer method includes the following steps:
S1、提供衬底100;S1, providing a substrate 100;
S2、在所述衬底100表面形成多个LED芯片200;S2, forming a plurality of LED chips 200 on the surface of the substrate 100;
S3、在所述LED芯片200表面形成酚羟基聚合物膜层210;S3, forming a phenolic hydroxyl polymer film layer 210 on the surface of the LED chip 200;
S4、将多个所述LED芯片200从衬底100上分离;S4, separating a plurality of the LED chips 200 from the substrate 100;
S5、提供基板300;S5, providing the substrate 300;
S6、在所述基板300表面形成阻挡层310;S6, forming a barrier layer 310 on the surface of the substrate 300;
S7、在所述阻挡层310表面形成多个暴露所述基板300至少部分表面的通孔320;S7, forming a plurality of through holes 320 exposing at least part of the surface of the substrate 300 on the surface of the barrier layer 310;
S8、在至少部分所述通孔320内形成叠氮聚合物膜层330;S8, forming an azide polymer film layer 330 in at least part of the through hole 320;
S9、将所述LED芯片200转移至所述基板300;S9, transferring the LED chip 200 to the substrate 300;
S10、所述LED芯片200通过所述酚羟基聚合物膜层210与所述叠氮聚合物膜层330组装;S10, the LED chip 200 is assembled with the azide polymer film layer 330 through the phenolic hydroxyl polymer film layer 210;
S11、紫外光照使所述酚羟基聚合物膜210层与所述叠氮聚合物膜层330形成共价联结。S11. UV light makes the phenolic hydroxyl polymer film 210 and the azide polymer film 330 form a covalent bond.
本实施例中,参照图2b,步骤S2在所述衬底100表面形成多个LED芯片200的步骤还包括在所述衬底100表面依次外延生长形成缓冲层201、非故意掺杂层202和LED外延结构203,所述LED外延结构包括依次外延生长形成于所述非故意掺杂层202表面的N型导电层204、发光层205、P型导电层206、透明导电层207和接触层208,所述接触层208包括形成于所述透明导电层207的P极金属层2081和形成于所述发光层205表面的接触电极2082。非故意掺杂层202的材料例如为GaN,N型导电层204的材料例如为N-GaN,P型导电层206的材料例如为P-GaN。外延生长的方法例如包括金属化学气相沉积、激光辅助分子束外延、激光溅射,或氢化物气相外延等工艺。In this embodiment, referring to FIG. 2b, the step S2 of forming a plurality of LED chips 200 on the surface of the substrate 100 further includes forming a buffer layer 201, an unintentionally doped layer 202 and The LED epitaxial structure 203, the LED epitaxial structure includes an N-type conductive layer 204, a light-emitting layer 205, a P-type conductive layer 206, a transparent conductive layer 207 and a contact layer 208 formed on the surface of the unintentionally doped layer 202 by epitaxial growth in sequence The contact layer 208 includes a P-electrode metal layer 2081 formed on the transparent conductive layer 207 and a contact electrode 2082 formed on the surface of the light emitting layer 205 . The material of the unintentionally doped layer 202 is, for example, GaN, the material of the N-type conductive layer 204 is, for example, N-GaN, and the material of the P-type conductive layer 206 is, for example, P-GaN. Epitaxial growth methods include, for example, metal chemical vapor deposition, laser-assisted molecular beam epitaxy, laser sputtering, or hydride vapor phase epitaxy.
步骤S3采用涂层发在LED芯片200表面形成酚羟基聚合物膜层210,从而实现LED芯片表面的酚羟基功能化。其中,步骤S3中的多个LED芯片200的颜色相同,为红色(R)、绿色(G)或蓝色(B),在本实施例中,LED芯片为Micro-LED芯片,颜色为红色(R),衬底100为蓝宝石衬底。Step S3 forms a phenolic hydroxyl polymer film layer 210 on the surface of the LED chip 200 by coating, thereby realizing the functionalization of the phenolic hydroxyl group on the surface of the LED chip. Wherein, the colors of the plurality of LED chips 200 in step S3 are the same, which are red (R), green (G) or blue (B). In this embodiment, the LED chips are Micro-LED chips, and the color is red ( R), the substrate 100 is a sapphire substrate.
步骤S4采用激光剥离(Laser Lift-off,LLO)技术将多个LED芯片200从衬底100上剥离。Step S4 uses laser lift-off (Laser Lift-off, LLO) technology to lift off a plurality of LED chips 200 from the substrate 100 .
步骤S6中,利用涂布机(Coater)在基板300表面涂布一层阻挡层310,在本实施例中,阻挡层310为光阻层,步骤S7中,通过曝光、显影以及烘烤,在阻挡层310表面形成多个间隔排布的挡墙311,相邻两挡墙311之间即形成所述通孔320。In step S6, a barrier layer 310 is coated on the surface of the substrate 300 by using a coater. In this embodiment, the barrier layer 310 is a photoresist layer. In step S7, through exposure, development and baking, the A plurality of barrier walls 311 arranged at intervals are formed on the surface of the barrier layer 310 , and the through hole 320 is formed between two adjacent barrier walls 311 .
在步骤S8中,通过喷墨打印(IJP)技术在通孔320内喷涂叠氮聚合物形成叠氮聚合物膜层330。In step S8, an azide polymer film layer 330 is formed by spraying an azide polymer in the through hole 320 by inkjet printing (IJP) technology.
在步骤S9和S10中,将带有挡墙311和叠氮聚合物膜层330的基板300与多个涂布有酚羟基聚合物膜层210的LED芯片200放入水或极性溶液400中混合、搅拌,涂布有酚羟基聚合物膜层210的LED芯片与喷涂于通孔320内的叠氮聚合物膜层330在水或极性溶液中进行靶向自组装,实现LED芯片向基板300表面像素单元内的转移。其中,极性溶液400为电解质溶液。In steps S9 and S10, put the substrate 300 with the retaining wall 311 and the azide polymer film layer 330 and a plurality of LED chips 200 coated with the phenolic hydroxyl polymer film layer 210 into water or a polar solution 400 Mixing and stirring, the LED chip coated with the phenolic hydroxyl polymer film layer 210 and the azide polymer film layer 330 sprayed in the through hole 320 perform targeted self-assembly in water or a polar solution to realize the LED chip to the substrate Transfer within 300 surface pixel units. Wherein, the polar solution 400 is an electrolyte solution.
其中,酚羟基聚合物膜层210与叠氮聚合物膜层330之间的靶向自组装原理如下:Wherein, the targeted self-assembly principle between the phenolic hydroxyl polymer film layer 210 and the azide polymer film layer 330 is as follows:
酚羟基聚合物中的羟基具有强给氢能力(属于阴离子聚电解质),叠氮聚合物中的叠氮基团具有给电子能力(属于阳离子聚电解质),阴离子聚电解质与阳离子聚电解质相互吸引(即叠氮聚合物膜层330对酚羟基聚合物膜层210存在吸引而形成靶向引导),酚羟基聚合物膜层210的羟基与叠氮聚合物膜层330的叠氮基团结合形成氢键,氢键属于分子间弱相互作用,酚羟基聚合物膜层210与叠氮聚合物膜层330因形成氢键产生的弱分子力相互结合,实现LED芯片200在基板300上的自组装。The hydroxyl group in the phenolic hydroxyl polymer has a strong hydrogen-donating ability (belonging to anionic polyelectrolyte), the azide group in the azide polymer has an electron-donating ability (belonging to a cationic polyelectrolyte), and the anionic polyelectrolyte and cationic polyelectrolyte attract each other ( That is, the azide polymer film layer 330 attracts the phenolic hydroxyl polymer film layer 210 to form a targeted guide), and the hydroxyl group of the phenolic hydroxyl polymer film layer 210 combines with the azide group of the azide polymer film layer 330 to form hydrogen The hydrogen bond belongs to the weak interaction between molecules. The weak molecular force generated by the formation of hydrogen bonds between the phenolic hydroxyl polymer film layer 210 and the azide polymer film layer 330 combines with each other to realize the self-assembly of the LED chip 200 on the substrate 300 .
步骤S11中,紫外光照的作用在于使得酚羟基聚合物膜层210与叠氮聚合物膜层330发生叠氮反应形成N-N共价键,实现共价联结,进而保证LED芯片200与基板300组装的稳定性。In step S11, the function of the ultraviolet light is to cause an azide reaction between the phenolic hydroxyl polymer film layer 210 and the azide polymer film layer 330 to form an N-N covalent bond to achieve covalent bonding, thereby ensuring the assembly of the LED chip 200 and the substrate 300 stability.
在本实施例中,可将多个颜色相同的LED芯片200转移至基板300的对应像素位置上,本实施例以红色(R)LED芯片200为例,即,基板300上设置有呈阵列排布的多个像素单元(图中未示出),通孔320的排布方式与像素单元的排布方式相对应,一个通孔320对应一个像素单元,步骤S7中,在阻挡层310表面形成的通孔320所对应的像素单元的像素颜色相同,例如均为红色(R)、均为绿色(G)或均为蓝色(B),本实施例以像素颜色均为红色(R)为例,即,开设的多个通孔320只是暴露与红色像素相对应的基板300表面,而未暴露与蓝色像素和绿色像素相对应的基板300表面,然后通过喷墨打印(IJP)技术在通孔320内喷涂叠氮聚合物形成叠氮聚合物膜层330,从而可实现一次将单色LED芯片200转移至基板300表面对应像素单元的目的,此时,由于像素颜色为绿色的像素单元所对应的通孔320以及像素颜色为蓝色的像素单元所对应的通孔320内未为形成叠氮聚合物膜层330。In this embodiment, a plurality of LED chips 200 of the same color can be transferred to the corresponding pixel positions of the substrate 300. In this embodiment, the red (R) LED chip 200 is taken as an example, that is, the substrate 300 is provided with LED chips arranged in an array. a plurality of pixel units (not shown in the figure), the arrangement of the through holes 320 corresponds to the arrangement of the pixel units, and one through hole 320 corresponds to one pixel unit. In step S7, a The pixel colors of the pixel units corresponding to the through holes 320 are the same, for example, they are all red (R), all green (G) or all blue (B). In this embodiment, the pixel colors are all red (R) as For example, that is, the opened multiple through holes 320 only expose the surface of the substrate 300 corresponding to the red pixels, but do not expose the surfaces of the substrate 300 corresponding to the blue pixels and green pixels, and then inkjet printing (IJP) technology is used to print The azide polymer is sprayed in the through hole 320 to form the azide polymer film layer 330, so that the purpose of transferring the single-color LED chip 200 to the corresponding pixel unit on the surface of the substrate 300 can be realized at one time. At this time, since the pixel color is green pixel unit The azide polymer film layer 330 is not formed in the corresponding through hole 320 and the through hole 320 corresponding to the pixel unit whose pixel color is blue.
然后重复步骤S7~步骤S11并参照图3,在所述与像素颜色为绿色的像素单元所对应的通孔320内喷墨打印叠氮聚合物膜层330,将绿色(G)LED芯片200转移至对应通孔320内,完成绿色(G)LED芯片200向基板300的转移,而由于像素颜色为红色的像素单元所对应的通孔320内已完成红色(R)LED芯片200的转移,像素颜色为蓝色的像素单元所对应的通孔320内未形成叠氮聚合物膜层330,蓝色(B)LED芯片200无法向基板300转移;再重复步骤S7~步骤S11,在所述与像素颜色为蓝色的像素单元所对应的通孔320内喷墨打印叠氮聚合物膜层330,将蓝色(B)LED芯片200转移至对应通孔320内,完成蓝色(B)LED芯片200向基板300的转移。Then repeat steps S7 to S11 and refer to FIG. 3 , inkjet print the azide polymer film layer 330 in the through hole 320 corresponding to the pixel unit whose pixel color is green, and transfer the green (G) LED chip 200 to the corresponding through hole 320, the transfer of the green (G) LED chip 200 to the substrate 300 is completed, and since the transfer of the red (R) LED chip 200 has been completed in the through hole 320 corresponding to the pixel unit whose pixel color is red, the pixel The azide polymer film layer 330 is not formed in the through hole 320 corresponding to the pixel unit whose color is blue, and the blue (B) LED chip 200 cannot be transferred to the substrate 300; Inkjet print the azide polymer film layer 330 in the through hole 320 corresponding to the pixel unit whose pixel color is blue, and transfer the blue (B) LED chip 200 into the corresponding through hole 320 to complete the blue (B) LED Transfer of chip 200 to substrate 300 .
步骤S2中,可在衬底100表面形成多个颜色相同的LED芯片200,例如红色(R)LED芯片200,然后继续步骤S3~S11。而后重复步骤S1~S11,完成绿色(G)LED芯片200向基板300的转移以及完成蓝色(B)LED芯片200向基板300的转移,保证单色LED芯片200转移至基板300表面对应颜色的像素单元内。In step S2, a plurality of LED chips 200 of the same color, such as red (R) LED chips 200, may be formed on the surface of the substrate 100, and then proceed to steps S3-S11. Then repeat steps S1 to S11 to complete the transfer of the green (G) LED chip 200 to the substrate 300 and the transfer of the blue (B) LED chip 200 to the substrate 300 to ensure that the single-color LED chip 200 is transferred to the corresponding color on the surface of the substrate 300 in pixel units.
在本发明的一个优选方式中,参照图4、图2a~2d以及图5a~5e,所述巨量转移方法,包括如下步骤:In a preferred mode of the present invention, referring to Figure 4, Figures 2a-2d and Figures 5a-5e, the mass transfer method includes the following steps:
Sa、提供衬底100;Sa, providing the substrate 100;
Sb、在所述衬底100表面形成多个LED芯片200;Sb, forming a plurality of LED chips 200 on the surface of the substrate 100;
Sc、在所述LED芯片200表面形成酚羟基聚合物膜层210;Sc, forming a phenolic hydroxyl polymer film layer 210 on the surface of the LED chip 200;
Sd、将多个所述LED芯片200从衬底100上分离;Sd, separating a plurality of said LED chips 200 from the substrate 100;
Se、提供基板300’;Se, providing a substrate 300';
Sf、在所述基板300’表面形成叠氮聚合物膜层330’;Sf, forming an azide polymer film layer 330' on the surface of the substrate 300';
Sg、在所述叠氮聚合物膜层330’表面形成阻挡层310’;Sg, forming a barrier layer 310' on the surface of the azide polymer film layer 330';
Sh、在所述阻挡层310’表面形成至少一个暴露所述叠氮聚合物膜层330’至少部分表面的通孔320’;Sh, forming at least one through hole 320' exposing at least part of the surface of the azide polymer film layer 330' on the surface of the barrier layer 310';
Si、将所述LED芯片200转移至所述基板300’;Si, transferring the LED chip 200 to the substrate 300';
Sj、所述LED芯片200通过所述酚羟基聚合物膜层210与暴露于所述通孔320’的所述叠氮聚合物膜层330’组装;Sj, the LED chip 200 is assembled through the phenolic hydroxyl polymer film layer 210 and the azide polymer film layer 330' exposed to the through hole 320';
Sk、紫外光照使所述酚羟基聚合物膜层210与所述叠氮聚合物膜层330’形成共价联结。Sk, ultraviolet light makes the phenolic hydroxyl polymer film layer 210 and the azide polymer film layer 330' form a covalent bond.
在本优选方式中,在基板300’表面形成一层叠氮聚合物膜层330’,然后在叠氮聚合物膜层330’上形成一层阻挡层310’,通过曝光、显影以及烘烤,在阻挡层310’表面形成多个间隔排布的挡墙311’,相邻两挡墙311’之间即形成所述通孔320’,通孔320’与基板300’表面像素单元相对应,多个通孔320’对应的像素单元内的像素颜色相同,例如均为红色,将多个LED芯片200转移至基板300’,LED芯片200通过酚羟基聚合物膜层210与通孔320’暴露出的叠氮聚合物膜层330’靶向自组装,通过紫外光照使得酚羟基聚合物与叠氮聚合物发生叠氮反应形成共价联结,完成红色(R)LED芯片200向基板300’表面对应像素单元的转移。In this preferred mode, an azide polymer film layer 330' is formed on the surface of the substrate 300', and then a barrier layer 310' is formed on the azide polymer film layer 330'. After exposure, development and baking, the A plurality of barrier walls 311' arranged at intervals are formed on the surface of the barrier layer 310', and the through holes 320' are formed between two adjacent barrier walls 311', and the through holes 320' correspond to the pixel units on the surface of the substrate 300'. The pixels in the pixel units corresponding to the through holes 320' have the same color, for example, they are all red. A plurality of LED chips 200 are transferred to the substrate 300', and the LED chips 200 are exposed through the phenolic hydroxyl polymer film layer 210 and the through holes 320'. The azide polymer film layer 330' is targeted for self-assembly, and the azide reaction between the phenolic hydroxyl polymer and the azide polymer is formed by ultraviolet light to form a covalent bond, and the red (R) LED chip 200 is mapped to the surface of the substrate 300'. Pixel unit transfer.
然后重复步骤Se~步骤Sk并参照图6,在所述阻挡层310’表面形成与像素颜色为绿色的像素单元相对应的通孔320’以暴露相应叠氮聚合物膜层330’,将绿色(G)LED芯片200转移至对应通孔320’内,完成绿色(G)LED芯片200向基板300’的转移;再重复步骤Se~步骤Sk,在所述阻挡层310’表面形成与像素颜色为蓝色的像素单元相对应的通孔320’,将蓝色(B)LED芯片200转移至对应通孔320’内,完成蓝色(B)LED芯片200向基板300’的转移。Then repeat steps Se~step Sk and referring to FIG. 6, form a through hole 320' corresponding to a pixel unit whose pixel color is green on the surface of the barrier layer 310' to expose the corresponding azide polymer film layer 330', and turn green (G) The LED chip 200 is transferred to the corresponding through hole 320' to complete the transfer of the green (G) LED chip 200 to the substrate 300'; and then repeat steps Se to Sk to form a color matching pixel color on the surface of the barrier layer 310'. The blue (B) LED chip 200 is transferred into the corresponding through hole 320 ′ corresponding to the blue pixel unit to complete the transfer of the blue (B) LED chip 200 to the substrate 300 ′.
其中,步骤Sb中,在衬底100表面形成多个颜色相同的LED芯片200,例如红色(R)LED芯片200,然后继续步骤S3~S11。而后重复步骤S1~S11,完成绿色(G)LED芯片200向基板300’的转移以及完成蓝色(B)LED芯片200向基板300’的转移,从而保证单色LED芯片200转移至基板300’表面对应颜色的像素单元内。Wherein, in step Sb, a plurality of LED chips 200 of the same color, such as red (R) LED chips 200, are formed on the surface of the substrate 100, and then steps S3-S11 are continued. Then repeat steps S1 to S11 to complete the transfer of the green (G) LED chip 200 to the substrate 300' and the transfer of the blue (B) LED chip 200 to the substrate 300', thereby ensuring that the single-color LED chip 200 is transferred to the substrate 300' The surface corresponds to the color within the pixel unit.
在本实施例中,形成酚羟基聚合物膜层210的酚羟基聚合物包括但不限于聚苯胺、酚醛树脂、杯芳烃类化合物和4-羟苯基卟啉,在本实施例中,酚羟基聚合物具体选用聚[苯乙烯-co-N-(4-羟基苯基)马来酰亚胺](P(S-co-HPMI))或聚(对乙烯基苯酚)(PVPh)。形成叠氮聚合物膜层330、330’的叠氮聚合物包括但不限于重氮树脂及其衍生物,在本实施例中,叠氮聚合物具体选用重氮树脂。叠氮聚合物膜层330、330’可通过烘烤在基板300、300’表面形成超薄膜。紫外光照所用紫外光波长≤400nm,光照时长15min。In this embodiment, the phenolic hydroxyl polymer forming the phenolic hydroxyl polymer film layer 210 includes but not limited to polyaniline, phenolic resin, calixarene compound and 4-hydroxyphenyl porphyrin, in this embodiment, the phenolic hydroxyl The polymer is specifically selected from poly[styrene-co-N-(4-hydroxyphenyl)maleimide] (P(S-co-HPMI)) or poly(p-vinylphenol) (PVPh). The azide polymer forming the azide polymer film layer 330, 330' includes but is not limited to diazo resin and its derivatives. In this embodiment, the azide polymer is specifically selected from diazo resin. The azide polymer film layer 330, 330' can be baked to form an ultra-thin film on the surface of the substrate 300, 300'. The wavelength of ultraviolet light used for ultraviolet light is ≤400nm, and the illumination time is 15min.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications should also be considered Be the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111160521.XA CN113921680B (en) | 2021-09-30 | 2021-09-30 | bulk transfer method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111160521.XA CN113921680B (en) | 2021-09-30 | 2021-09-30 | bulk transfer method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113921680A CN113921680A (en) | 2022-01-11 |
CN113921680B true CN113921680B (en) | 2023-09-01 |
Family
ID=79237593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111160521.XA Active CN113921680B (en) | 2021-09-30 | 2021-09-30 | bulk transfer method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113921680B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060007776A (en) * | 2004-07-22 | 2006-01-26 | 삼성전자주식회사 | Mask pattern for semiconductor device manufacturing, its formation method, and manufacturing method of semiconductor device having fine pattern |
JP2006103178A (en) * | 2004-10-06 | 2006-04-20 | Hitachi Chem Co Ltd | Pattern forming method and manufacturing apparatus of electrolyte film for pattern formation used in the method |
CN108461439A (en) * | 2018-04-20 | 2018-08-28 | 同辉电子科技股份有限公司 | A kind of preparation of Micro-LED chips and transfer method |
CN110993636A (en) * | 2019-10-21 | 2020-04-10 | 佛山市国星半导体技术有限公司 | Method and system for transferring micro LED chips in large quantity |
CN112435946A (en) * | 2020-11-16 | 2021-03-02 | 申广 | LED chip mass transfer method, transfer device and display screen manufacturing method |
CA3172763A1 (en) * | 2020-02-19 | 2021-08-26 | Polymer Forge, Inc. | Microarrays |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6878470B2 (en) * | 2002-02-08 | 2005-04-12 | Fuji Photo Film Co., Ltd. | Visible image receiving material, conductive pattern material and organic electroluminescence element, using member having surface hydrophilicity |
US8309954B2 (en) * | 2009-05-12 | 2012-11-13 | Toppan Printing Co., Ltd. | Insulating thin film, formation solution for insulating thin film, field-effect transistor, method for manufacturing the same and image display unit |
-
2021
- 2021-09-30 CN CN202111160521.XA patent/CN113921680B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060007776A (en) * | 2004-07-22 | 2006-01-26 | 삼성전자주식회사 | Mask pattern for semiconductor device manufacturing, its formation method, and manufacturing method of semiconductor device having fine pattern |
JP2006103178A (en) * | 2004-10-06 | 2006-04-20 | Hitachi Chem Co Ltd | Pattern forming method and manufacturing apparatus of electrolyte film for pattern formation used in the method |
CN108461439A (en) * | 2018-04-20 | 2018-08-28 | 同辉电子科技股份有限公司 | A kind of preparation of Micro-LED chips and transfer method |
CN110993636A (en) * | 2019-10-21 | 2020-04-10 | 佛山市国星半导体技术有限公司 | Method and system for transferring micro LED chips in large quantity |
CA3172763A1 (en) * | 2020-02-19 | 2021-08-26 | Polymer Forge, Inc. | Microarrays |
CN112435946A (en) * | 2020-11-16 | 2021-03-02 | 申广 | LED chip mass transfer method, transfer device and display screen manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
CN113921680A (en) | 2022-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109994579B (en) | Preparation method of micro LED display panel and micro LED display panel | |
TWI682436B (en) | Massive transferring method of micro leds and light-emitting panel module using the method | |
CN106097904B (en) | Manufacturing method of LED display device | |
US20210343572A1 (en) | Method for Transferring Massive Light Emitting Diodes and Display Back Plate Assembly | |
US8900892B2 (en) | Printing phosphor on LED wafer using dry film lithography | |
WO2022088093A1 (en) | Light emitting diode substrate and manufacturing method therefor, and display apparatus | |
CN108323215B (en) | Micro light emitting diode transfer method, manufacturing method and display device | |
CN110379839A (en) | The production method and display device of a kind of display base plate, display base plate | |
WO2012148234A2 (en) | Full-color led display apparatus and method for manufacturing same | |
CN110610931A (en) | Multi-color Micro LED Partition and Batch Preparation Method | |
TWI712165B (en) | Micro light emitting diode array and manufacturing method thereof | |
Meitl et al. | 19‐4: Invited Paper: Emissive Displays with Transfer‐Printed Microscale Inorganic LEDs | |
CN106935151A (en) | Microscale-nanoscale semiconductor LED display screen of wafer scale and preparation method thereof | |
CN114843317B (en) | An inorganic-organic LED hybrid color display device and its preparation method | |
CN110689814B (en) | Multicolor micro LED array and manufacturing method thereof | |
CN112952014A (en) | Light emitting diode and preparation method thereof, and display panel and preparation method thereof | |
CN113921680B (en) | bulk transfer method | |
WO2020199527A1 (en) | Display panel preparation method, display panel and display apparatus | |
CN107369647A (en) | A kind of LED array substrate and preparation method thereof, display device | |
CN108281518A (en) | A kind of flexible LED device and preparation method thereof | |
CN111613699B (en) | Micro light-emitting diode and manufacturing method thereof | |
CN117613042A (en) | An LED chip fan-out wafer-level packaging structure and packaging method | |
CN115621377A (en) | Micro-LED chip transfer method, display module and display device | |
CN116017999A (en) | A kind of manufacturing method of quantum dot light conversion film | |
US10211377B2 (en) | Method for manufacturing light-emitting diode package |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |