CN113863278B - Microwave sintering automation equipment suitable for moon surface hardening - Google Patents
Microwave sintering automation equipment suitable for moon surface hardening Download PDFInfo
- Publication number
- CN113863278B CN113863278B CN202111268700.5A CN202111268700A CN113863278B CN 113863278 B CN113863278 B CN 113863278B CN 202111268700 A CN202111268700 A CN 202111268700A CN 113863278 B CN113863278 B CN 113863278B
- Authority
- CN
- China
- Prior art keywords
- microwave sintering
- microwave
- lunar
- lunar soil
- cloth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D3/00—Improving or preserving soil or rock, e.g. preserving permafrost soil
- E02D3/11—Improving or preserving soil or rock, e.g. preserving permafrost soil by thermal, electrical or electro-chemical means
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/80—Apparatus for specific applications
Landscapes
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Soil Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Agronomy & Crop Science (AREA)
- Mining & Mineral Resources (AREA)
- Paleontology (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Constitution Of High-Frequency Heating (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
技术领域technical field
本发明涉及微波烧结月壤及月面硬化技术领域,尤其是涉及一种适用于月面硬化的微波烧结自动化设备。The invention relates to the technical field of microwave sintering lunar soil and lunar surface hardening, in particular to a microwave sintering automation equipment suitable for lunar surface hardening.
背景技术Background technique
自2020年嫦娥五号从月球带回真实月壤起,我国嫦娥探月工程发展计划已经完成了“绕、落、回”三个阶段,后续还有“勘、研、建”等计划。在未来月球基地建造等长期任务中,宇航员生命活动安全需要必要的基础设施,但就目前国际上航天器的发射能力而言,从地面携带大量材料用于月面基地等建设耗时耗力,而使用月壤等原位资源及材料必然可以大幅减少来自地球的发射质量和体积。Since Chang'e-5 brought back the real lunar soil from the moon in 2020, my country's Chang'e lunar exploration project development plan has completed the three stages of "circling, falling, and returning", and there will be plans for "survey, research, and construction" in the future. In long-term missions such as the construction of future lunar bases, the safety of astronauts' life activities requires necessary infrastructure. However, in terms of the current international launch capabilities of spacecraft, it is time-consuming and labor-intensive to carry a large amount of materials from the ground for the construction of lunar bases. , and the use of in-situ resources and materials such as lunar soil will inevitably greatly reduce the mass and volume of launches from the earth.
随着月球基础设施研究的发展,对月面地基和场地的平整可靠提出了更高的要求,而月壤材料微波烧结成型为解决这一问题提供了思路,并且能实现极高的原位资源利用率。微波烧结是利用微波电磁场中材料的介质损耗使材料整体加热至烧结温度而实现烧结和致密化,是一种不直接依靠热源热量传导、辐射途径来加热物质的非传统加热方式。与地面制造相比,月壤原位微波烧结成型技术面临更加苛刻的月面极端环境、更加独特的月壤材料特征和更加保守的成型工艺方法,导致研究人员不仅需要揭示和探索烧结熔融机理、热力学相变机制和烧结过程出现的孔隙等结构缺陷,还需要面对和解决最优月壤材料、合适微波频率、理想烧结温度、适宜升温方式、合理成型尺寸、实用原理样机研制等技术问题。With the development of lunar infrastructure research, higher requirements are put forward for the smoothness and reliability of the lunar surface foundation and site, and the microwave sintering of lunar soil materials provides an idea to solve this problem, and can achieve extremely high in-situ resources utilization rate. Microwave sintering is to use the dielectric loss of the material in the microwave electromagnetic field to heat the material to the sintering temperature to achieve sintering and densification. It is a non-traditional heating method that does not directly rely on the heat conduction and radiation of the heat source to heat the material. Compared with ground manufacturing, the in-situ microwave sintering molding technology of lunar soil is faced with a more harsh extreme environment of the lunar surface, more unique characteristics of lunar soil materials and more conservative molding process methods, leading researchers not only to reveal and explore the sintering and melting mechanism, The thermodynamic phase transition mechanism and structural defects such as pores in the sintering process still need to face and solve technical problems such as optimal lunar soil materials, suitable microwave frequency, ideal sintering temperature, suitable heating method, reasonable molding size, and development of practical principle prototypes.
月壤原位微波烧结作为航天制造的未来模式和发展趋势,因其技术门槛很高,相关的科学问题亟待解决,同时也缺少对应的设备和工艺。As the future model and development trend of aerospace manufacturing, in-situ microwave sintering of lunar soil has high technical thresholds, related scientific problems need to be solved urgently, and corresponding equipment and processes are lacking.
发明内容Contents of the invention
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明的一个目的在于提出一种适用于月面硬化的微波烧结自动化设备,能利用月面原位资源对月壤或月壤混合物烧结硬化,成型好,效率高,能大幅地降低地外建设的运输成本。The present invention aims to solve at least one of the technical problems existing in the prior art. Therefore, an object of the present invention is to propose a microwave sintering automation equipment suitable for lunar surface hardening, which can utilize lunar surface in-situ resources to sinter and harden lunar soil or lunar soil mixture, with good molding and high efficiency, and can greatly reduce the Transportation costs for off-site construction.
根据本发明实施例的适用于月面硬化的微波烧结自动化设备,包括:The microwave sintering automation equipment suitable for lunar surface hardening according to the embodiment of the present invention includes:
微波烧结装置,所述微波烧结装置用于对月壤或月壤混合物进行微波烧结,实现月面的场地硬化;A microwave sintering device, the microwave sintering device is used for microwave sintering the lunar soil or the lunar soil mixture to realize the field hardening of the lunar surface;
机械臂装置,所述机械臂装置用于控制所述微波烧结装置的任意空间移动;A mechanical arm device, the mechanical arm device is used to control any spatial movement of the microwave sintering device;
总控制器,所述总控制器用于用户和所述适用于月面硬化的微波烧结自动化设备之间的信息交互,以控制所述机械臂装置运行移动和所述微波烧结装置的运行,实现月面无人建造。The general controller is used for information interaction between the user and the microwave sintering automation equipment suitable for lunar surface hardening, so as to control the movement of the mechanical arm device and the operation of the microwave sintering device to realize monthly There is no one to build.
根据本发明实施例的适用于月面硬化的微波烧结自动化设备,具有如下的优点:第一、可对纯月壤或月壤混合物实现烧结硬化,符合月面原位资源利用的宗旨,极大地降低了地外建设的运输成本;第二、烧结硬化的纯月壤或月壤混合物结构致密,避免了孔隙缺陷,力学性能优异,满足月面科研站所需的材料强度,且月壤或月壤混合物烧结自动化程度高,可实现月面固化的无人建造科研站;第三、微波烧结月壤或月壤混合物技术成型快,效率高,硬化成型好。第四、可适应性广,环境适应性强。The microwave sintering automation equipment suitable for lunar surface hardening according to the embodiment of the present invention has the following advantages: First, it can realize sintering and hardening of pure lunar soil or lunar soil mixture, which is in line with the purpose of in-situ resource utilization of the lunar surface, greatly improving The transportation cost of extraterrestrial construction is reduced; second, the sintered and hardened pure lunar soil or lunar soil mixture has a dense structure, avoids pore defects, and has excellent mechanical properties, which can meet the material strength required by lunar scientific research stations, and the lunar soil or lunar soil mixture The sintering of soil mixture has a high degree of automation, which can realize the unmanned construction of scientific research stations for lunar surface solidification; third, microwave sintering of lunar soil or lunar soil mixture technology is fast in forming, high in efficiency, and well hardened and formed. Fourth, wide adaptability and strong environmental adaptability.
在一些实时例中,所述微波烧结装置包括炉体、微波发生器和布料压实一体组件;所述微波发生器安装在所述炉体内,用于产生和发射微波,以烧结月壤或月壤混合物;所述布料压实一体组件安装在所述炉体内,用于对月面进行布料和压实。In some real-time examples, the microwave sintering device includes a furnace body, a microwave generator and a cloth compacting integrated assembly; the microwave generator is installed in the furnace body for generating and emitting microwaves to sinter lunar soil or soil mixture; the cloth compacting integrated assembly is installed in the furnace body for cloth and compaction of the lunar surface.
在一些实时例中,所述微波发生器包括微波管电源和微波管,所述微波管电源能够将交流电转换成直流电,所述微波管能够将直流电转换成微波。In some real-time examples, the microwave generator includes a microwave tube power supply capable of converting alternating current into direct current, and a microwave tube capable of converting direct current into microwaves.
在一些实时例中,所述的布料压实一体组件包括布料压实一体板、传动螺杆、压力传感器和布料压实控制器;In some real-time examples, the cloth compacting integrated assembly includes a cloth compacting integrated plate, a transmission screw, a pressure sensor and a cloth compacting controller;
所述布料压实一体板位于所述炉体下端处,用于从内部料仓内对待烧结区域月壤进行布料,以及用于压实待烧结区域的月壤或月壤混合物;The distribution and compaction integrated plate is located at the lower end of the furnace body, and is used for distributing the lunar soil in the area to be sintered from the internal silo, and for compacting the lunar soil or the lunar soil mixture in the area to be sintered;
所述传动螺杆用于带动布料压实一体板上下移动,给布料压实一体板提供压力,将月面月壤或月壤混合物压实;The transmission screw is used to drive the cloth compacting integrated board to move up and down, provide pressure to the cloth compacting integrated board, and compact the lunar soil or the lunar soil mixture;
所述压力传感器用于测定布料压实一体板的压力,并将压力信号转为电信号传给所述布料压实控制器;The pressure sensor is used to measure the pressure of the cloth compaction integrated board, and convert the pressure signal into an electrical signal and send it to the cloth compaction controller;
所述布料压实控制器用于接受压力信号,并控制所述传动螺杆带动所述布料压实一体板上下移动以压实待烧结区域的月壤或月壤混合物,实现自动化运行。The cloth compacting controller is used to receive the pressure signal, and control the transmission screw to drive the cloth compacting integrated plate to move up and down to compact the lunar soil or lunar soil mixture in the area to be sintered to realize automatic operation.
在一些实时例中,所述微波烧结装置还包括保温层,所述保温层覆盖于所述炉体的内侧,所述微波发生器安装在所述保温层的内侧。In some real-time examples, the microwave sintering device further includes an insulation layer, the insulation layer covers the inner side of the furnace body, and the microwave generator is installed on the inner side of the insulation layer.
在一些实时例中,所述微波烧结装置还包括测温仪,用于实时监测所述保温层的内侧空间的温度。In some real-time examples, the microwave sintering device further includes a thermometer for real-time monitoring the temperature of the inner space of the thermal insulation layer.
在一些实时例中,所述微波烧结装置还包括导热组件,所述导热组件用于回收微波烧结多余热量。In some real-time examples, the microwave sintering device further includes a heat conduction component, and the heat conduction component is used for recovering excess heat of microwave sintering.
在一些实时例中,所述导热组件包括导热管和导热介质,所述导热管布置在所述炉体和所述保温层之间,所述导热介质在所述导热管内循环流道,将微波烧结的多余热量导出所述炉体外,实现能量的回收。In some real-time examples, the heat-conducting component includes a heat-conducting pipe and a heat-conducting medium, the heat-conducting pipe is arranged between the furnace body and the insulation layer, the heat-conducting medium circulates in the heat-conducting pipe, and the microwave The excess heat of sintering is exported out of the furnace body to realize energy recovery.
在一些实时例中,所述机械臂装置包括机械臂和机械臂底座;所述机械臂的一端与所述微波烧结装置的顶部相连;所述机械臂底座与所述机械臂的另一端相连,所述机械臂底座的底部设有滚轮。In some real-time examples, the robotic arm device includes a robotic arm and a robotic arm base; one end of the robotic arm is connected to the top of the microwave sintering device; the robotic arm base is connected to the other end of the robotic arm, The bottom of the base of the mechanical arm is provided with rollers.
在一些实时例中,所述总控制器设置在所述机械臂底座中,用于接受用户遥控预设指令或用户遥控实时指令并反馈实时信息,控制微波烧结的自动化流程。In some real-time examples, the general controller is set in the base of the robot arm, and is used to accept user remote control preset commands or user remote control real-time commands and feed back real-time information to control the automatic process of microwave sintering.
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention.
附图说明Description of drawings
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and comprehensible from the description of the embodiments in conjunction with the following drawings, wherein:
图1为本发明实施例的适用于月面硬化的微波烧结自动化设备的整体示意图。Fig. 1 is an overall schematic diagram of microwave sintering automation equipment suitable for lunar surface hardening according to an embodiment of the present invention.
图2为图1中的微波烧结装置的组成示意图。FIG. 2 is a schematic diagram of the composition of the microwave sintering device in FIG. 1 .
附图标记:Reference signs:
适用于月面硬化的微波烧结自动化设备1000Microwave sintering automation equipment for
微波烧结装置1
炉体101微波发生器102布料压实一体组件103
布料压实一体板1031传动螺杆1032布料压实控制器1033Cloth compaction integrated
保温层104测温仪105导热组件106
机械臂装置2机械臂201机械臂底座202滚轮203Robotic arm device 2
总控制器3Master Controller 3
具体实施方式Detailed ways
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are shown in the drawings, wherein the same or similar reference numerals designate the same or similar elements or elements having the same or similar functions throughout. The embodiments described below by referring to the figures are exemplary only for explaining the present invention and should not be construed as limiting the present invention.
下面结合图1和图2来描述根据本发明实施例的适用于月面硬化的微波烧结自动化设备1000。A microwave sintering
如图1所示,根据本发明实施例的适用于月面硬化的微波烧结自动化设备1000,包括微波烧结装置1、机械臂装置2和总控制器3。其中,微波烧结装置1用于对月壤或月壤混合物进行微波烧结,实现月面的场地硬化;机械臂装置2用于控制微波烧结装置1的任意空间移动,实现烧结设备的自动化运行;总控制器3用于用户和适用于月面硬化的微波烧结自动化设备1000之间的信息交互,以控制机械臂装置2运行移动和微波烧结装置1的运行,实现月面无人建造。As shown in FIG. 1 , a microwave sintering
具体地,微波烧结装置1用于对月壤或月壤混合物进行微波烧结,实现月面的场地硬化。可以理解的是,微波烧结装置1的作用是产生并发射微波,使得待烧结区域的月壤或月壤混合物吸收微波,通过微波对该月面待烧结区域的月壤或月壤混合物进行烧结,使得烧结后的区域结构致密,实现月面的场地硬化,有利于月球基地建造。这里月壤是指未布料的纯月壤,月壤混合物是指在纯月壤中进行布料而形成的混合物,如在纯月壤中加入胶粘粘剂(包括但不限于硫磺等材料)而形成的混合物,这样使月壤在胶粘剂下烧结后更加致密。Specifically, the
机械臂装置2用于控制微波烧结装置1的任意空间移动,实现烧结设备的自动化运行;也就是说,机械臂装置2可以有6个自由度,即沿x轴平移,沿y轴平移,沿z轴平移,绕x轴转动,绕y轴转动,绕z轴转动,满足实现空间内微波烧结月壤的自动化进行的要求。例如,如图1所示,机械臂装置2中,机械臂201用于控制微波烧结装置1的空间移动,同时,机械臂底座202上的滚轮203能够使设备整体在平面内平移。The mechanical arm device 2 is used to control the arbitrary spatial movement of the
总控制器3用于用户和适用于月面硬化的微波烧结自动化设备1000之间的信息交互,以控制机械臂装置2运行移动和微波烧结装置1的运行,实现月面无人建造。可以理解的是,总控制器3能够根据设定的烧结条件和烧结流程,在待烧结区域微波烧结到一定温度后,根据提前设定好的路线使设备自动前进运转,并对烧结过程实施监控,真正实现月面固化的无人建造。对于突发情况,控制器能够接受讯号停止烧结,向用户发出警报或反馈。The master controller 3 is used for information interaction between the user and the microwave sintering
根据本发明实施例的适用于月面硬化的微波烧结自动化设备1000,具有如下的优点:第一、可对纯月壤或月壤混合物实现烧结硬化,符合月面原位资源利用的宗旨,极大地降低了地外建设的运输成本;第二、烧结硬化的纯月壤或月壤混合物结构致密,避免了孔隙缺陷,力学性能优异,满足月面科研站所需的材料强度,且月壤或月壤混合物烧结自动化程度高,可实现月面固化的无人建造科研站;第三、微波烧结月壤或月壤混合物技术成型快,效率高,硬化成型好。第四、可适应性广,环境适应性强。The microwave sintering
如图2所示,在一些实施例中,微波烧结装置1包括炉体101、微波发生器102和布料压实一体组件103;微波发生器102安装在炉体101内,用于产生和发射微波,以烧结月壤或月壤混合物;布料压实一体组件103安装在炉体101内,用于对月面进行布料和压实。可以理解的是,炉体101的作用是保护微波烧结装置1,同时对微波产生反射或屏蔽作用,使得微波尽量射到待烧结区域的月壤或月壤混合物处,减少微波能量的损失;微波发生器102的作用是产生和发射微波,使月壤吸收微波从而烧结固化;布料压实一体组件103安装在炉体101内,便于对月面进行布料和压实,使烧结的月面更加密实。这里,布料压实一体组件103在实际的使用过程中,可以进行布料和压实月壤混合物,再利用微波烧结,烧结的月面结构更加致密。也可以不进行布料但压实纯月壤,再利用微波烧结。As shown in Figure 2, in some embodiments, the
在一些实施例中,微波发生器102包括微波管电源和微波管,微波管电源能够将交流电转换成直流电,根据实际情况需要为微波管工作创造条件;微波管能够将直流电转换成微波,利用微波能量烧结月壤或月壤混合物。In some embodiments, the
如图2所示,在一些实施例中,的布料压实一体组件103包括布料压实一体板1031、布料口10311传动螺杆1032、压力传感器(图中未示出)和布料压实控制器1033。As shown in Fig. 2, in some embodiments, the cloth compacting
具体地,布料压实一体板1031位于炉体101下端处,布料压实一体板上设有进行布料的布料口10311,布料压实一体板用于从内部料仓内对待烧结区域月壤进行布料,以及用于压实待烧结区域的月壤或月壤混合物;也就是说,布料压实一体板1031可以从内部料仓内对待烧结区域月壤进行布料,使月壤在胶粘剂(包括但不限于硫磺等材料)下烧结后更加致密。在实际的使用过程中,布料压实一体板1031可以对纯月壤进行布料也可以不进行布料;同时,布料压实一体板1031还具备压实功能,能够对待烧结区域的月壤或月壤混合物提供所设定的压力,增加月壤的致密性,减小月壤的孔隙率。需要说明的是,布料压实一体板1031要求微波能透过,其材质可以是陶瓷、玻璃等。Specifically, the cloth compacting
传动螺杆1032用于带动布料压实一体板1031上下移动,给布料压实一体板1031提供压力,将月面月壤或月壤混合物压实。The
压力传感器用于测定布料压实一体板1031的压力,并将压力信号转为电信号传给布料压实控制器1033;布料压实控制器1033用于接受压力信号,并控制传动螺杆1032带动布料压实一体板上下移动以压实待烧结区域的月壤或月壤混合物,实现自动化运行。The pressure sensor is used to measure the pressure of the cloth compacting
如图2所示,在一些实施例中,微波烧结装置1还包括保温层104,保温层104覆盖于炉体101的内侧,微波发生器102安装在保温层104的内侧。可以理解的是,保温层104的设置是用于微波烧结装置1内部的保温,防止热量散失。保温层104的材质可以是网格布、玻璃纤维棉以及酚醛泡沫材料等。As shown in FIG. 2 , in some embodiments, the
如图2所示,在一些实施例中,微波烧结装置1还包括测温仪105,用于实时监测保温层104的内侧空间的温度。测温仪105可以是红外线测温仪或热电偶电阻测温仪等。As shown in FIG. 2 , in some embodiments, the
如图2所示,在一些实施例中,微波烧结装置1还包括导热组件106,导热组件106用于回收微波烧结多余热量,避免热量浪费,提供能量的利用率。As shown in FIG. 2 , in some embodiments, the
在一些实施例中,导热组件106包括导热管和导热介质,导热管布置在炉体101和保温层104之间,导热介质在导热管内循环流道,将微波烧结的多余热量导出炉体101外,实现能量的回收。导热介质可以是导热油、水、熔盐等。In some embodiments, the
如图2所示,在一些实施例中,机械臂装置2包括机械臂201和机械臂底座202。其中,机械臂201的一端与微波烧结装置1的顶部相连,用于对微波烧结装置1的空间移动;具体地,机械臂201的一端可以通过机械臂201连接装置与微波烧结装置1的顶部连接,机械臂201连接装置包含但不限于使用磁力连接装置、机械连接装置等。机械臂底座202与机械臂201的另一端相连,机械臂底座202的底部设有滚轮203;也就是说,机械臂底座202用于支撑机械臂201及与机械臂201相连的微波烧结装置1,机械臂底座202的底部上设有滚轮203,可以方便适用于月面硬化的微波烧结自动化设备1000整体在月面上的移动。As shown in FIG. 2 , in some embodiments, the robotic arm device 2 includes a
在一些实施例中,总控制器3设置在机械臂底座202中,用于接受用户遥控预设指令或用户遥控实时指令并反馈实时信息给用户,实现用户和适用于月面硬化的微波烧结自动化设备1000的信息交互,控制微波烧结的自动化流程,实现月面固化的无人建造。In some embodiments, the general controller 3 is set in the
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, references to the terms "one embodiment," "some embodiments," "exemplary embodiments," "example," "specific examples," or "some examples" are intended to mean that the implementation A specific feature, structure, or characteristic described by an embodiment or example is included in at least one embodiment or example of the present invention. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the described specific features, structures, or characteristics may be combined in any suitable manner in any one or more embodiments or examples.
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。Although the embodiments of the present invention have been shown and described, those skilled in the art can understand that various changes, modifications, substitutions and modifications can be made to these embodiments without departing from the principle and spirit of the present invention. The scope of the invention is defined by the claims and their equivalents.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111268700.5A CN113863278B (en) | 2021-10-29 | 2021-10-29 | Microwave sintering automation equipment suitable for moon surface hardening |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111268700.5A CN113863278B (en) | 2021-10-29 | 2021-10-29 | Microwave sintering automation equipment suitable for moon surface hardening |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113863278A CN113863278A (en) | 2021-12-31 |
CN113863278B true CN113863278B (en) | 2022-11-18 |
Family
ID=78985953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111268700.5A Active CN113863278B (en) | 2021-10-29 | 2021-10-29 | Microwave sintering automation equipment suitable for moon surface hardening |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113863278B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114486988B (en) * | 2022-01-27 | 2024-03-29 | 东北大学 | A microwave moving sintering lunar soil test device and test method in a vacuum environment |
CN115182329B (en) * | 2022-07-18 | 2023-12-05 | 东北大学 | A microwave sintered pile composite lunar base for lunar surface construction and its construction method |
US20240247455A1 (en) * | 2023-01-24 | 2024-07-25 | GM Global Technology Operations LLC | Emitter array for a lunar rover |
CN116852496A (en) * | 2023-06-30 | 2023-10-10 | 华中科技大学 | A reconfigurable lunar soil module sintering mold, system and method |
CN118596343A (en) * | 2024-06-28 | 2024-09-06 | 深圳大学 | Lunar soil solidification device and method |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS636312A (en) * | 1986-06-24 | 1988-01-12 | Matsushita Electric Ind Co Ltd | Micro-wave heating device |
RU2040640C1 (en) * | 1993-05-25 | 1995-07-25 | Виктор Викентьевич Пинаев | Method for thermal hardening ground and device for implementation of that |
US7723654B2 (en) * | 2006-06-29 | 2010-05-25 | Tranquility Base Incorporated | Apparatus for in-situ microwave consolidation of planetary materials containing nano-sized metallic iron particles |
CN100572682C (en) * | 2007-12-20 | 2009-12-23 | 张德胜 | Utilize the intelligent road making and the desert surface hardening system of solar energy |
CN209888154U (en) * | 2018-10-25 | 2020-01-03 | 中国科学技术大学 | Selective laser sintering's powder compaction's device is spread layer by layer of supplying with powder |
CN110508592B (en) * | 2019-07-31 | 2020-10-27 | 南华大学 | Microwave curing method for beach surface of uranium tailing pond |
CN111958750B (en) * | 2020-07-15 | 2022-08-12 | 北京卫星制造厂有限公司 | Laser sintering forming method and device suitable for simulating lunar soil |
CN112620647A (en) * | 2020-12-15 | 2021-04-09 | 华中科技大学 | High-strength part 3D printing method and device for lunar environment |
-
2021
- 2021-10-29 CN CN202111268700.5A patent/CN113863278B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113863278A (en) | 2021-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113863278B (en) | Microwave sintering automation equipment suitable for moon surface hardening | |
CN112378808A (en) | Microwave intelligent loading fracturing hard rock test system based on true triaxial stress | |
CN108407340B (en) | A kind of composite material component external field rapid self-repairing device and repairing method | |
CN108480638B (en) | A three-stage selective laser melting combined preheating system | |
CN103962557A (en) | Separable selective rapid forming device | |
CN104696173B (en) | The heat accumulation TRT of laser radio transmission energy | |
CN203791625U (en) | Detachable selective quick forming device | |
Corman et al. | General Electric company: selected applications of ceramics and composite materials | |
CN103411428A (en) | Art ceramics microwave sintering furnace | |
CN108518876A (en) | An in situ resource processing system utilizing electrostatic transport and concentrating fusion sintering | |
CN111958750A (en) | Laser sintering forming method and device suitable for simulating lunar soil | |
CN113734478A (en) | Lunar-based landing platform and construction method thereof | |
Gatto et al. | Preliminary study on localized microwave sintering of lunar regolith | |
CN114474717B (en) | A powder bed cladding additive manufacturing device and method for interstellar base construction | |
CN203464717U (en) | Microwave sintering furnace for art ceramics | |
CN116852496A (en) | A reconfigurable lunar soil module sintering mold, system and method | |
CN117508667A (en) | Lunar soil bag structure in-situ filling and curing equipment for lunar surface construction and construction method | |
CN117086977A (en) | Lunar soil solar sintering and curing equipment and method suitable for lunar surface | |
CN109278286B (en) | Method for operating at least one device for additive production of three-dimensional objects | |
CN113464128A (en) | Microwave-assisted rock breaking device and method for simulating lunar-based environment drilling process | |
CN217157505U (en) | Demonstration system for simulating heat extraction and thermoelectric conversion of heat pile heat pipe | |
CN116104311A (en) | Printing device and printing method for lunar surface structure | |
Guo et al. | Super-thick highly thermally conductive graphite/Sn laminated composites assembled by active Ti-containing Sn-Ag-Ti filler metals | |
CN118596343A (en) | Lunar soil solidification device and method | |
CN208637072U (en) | A kind of rock thermal energy drilling experimental device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |