CN113820612B - Error compensation circuit and integrated circuit for measuring battery impedance - Google Patents
Error compensation circuit and integrated circuit for measuring battery impedance Download PDFInfo
- Publication number
- CN113820612B CN113820612B CN202010567832.7A CN202010567832A CN113820612B CN 113820612 B CN113820612 B CN 113820612B CN 202010567832 A CN202010567832 A CN 202010567832A CN 113820612 B CN113820612 B CN 113820612B
- Authority
- CN
- China
- Prior art keywords
- error
- signal
- unit
- circuit
- compensation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 claims abstract description 55
- 230000000630 rising effect Effects 0.000 claims abstract description 51
- 238000002847 impedance measurement Methods 0.000 claims description 29
- 230000003111 delayed effect Effects 0.000 abstract description 17
- 238000005259 measurement Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000000157 electrochemical-induced impedance spectroscopy Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000001453 impedance spectrum Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/389—Measuring internal impedance, internal conductance or related variables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R35/00—Testing or calibrating of apparatus covered by the other groups of this subclass
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Resistance Or Impedance (AREA)
- Measurement Of Current Or Voltage (AREA)
Abstract
本发明涉及一种误差补偿电路,包括延时单元、第一误差检测单元、第二误差检测单元、第一误差补偿单元、第二误差补偿单元和输出控制单元。其中,延时单元用于对输入信号进行固定时间的延时以生成第一延时信号;第一误差检测单元用于比较第一延时信号和外接元件的输出信号以检测输出信号的上升沿误差,第二误差检测单元用于比较第一延时信号和外接元件的输出信号以检测输出信号的下降沿误差;第一误差补偿单元用于根据上升沿误差和输入信号生成第一补偿信号,第二误差补偿单元用于根据下降沿误差和输入信号生成第二补偿信号;输出控制单元用于控制误差补偿电路输出第一补偿信号或第二补偿信号,从而补偿由于外接元件所产生的输出信号的误差。
The invention relates to an error compensation circuit, which includes a delay unit, a first error detection unit, a second error detection unit, a first error compensation unit, a second error compensation unit and an output control unit. Among them, the delay unit is used to delay the input signal for a fixed time to generate the first delayed signal; the first error detection unit is used to compare the first delayed signal with the output signal of the external component to detect the rising edge of the output signal error, the second error detection unit is used to compare the first delay signal and the output signal of the external component to detect the falling edge error of the output signal; the first error compensation unit is used to generate the first compensation signal according to the rising edge error and the input signal, The second error compensation unit is used to generate the second compensation signal according to the falling edge error and the input signal; the output control unit is used to control the error compensation circuit to output the first compensation signal or the second compensation signal, so as to compensate the output signal generated by the external components error.
Description
技术领域technical field
本发明涉及集成电路领域,具体地涉及一种误差补偿电路和测量电池阻抗的集成电路。The invention relates to the field of integrated circuits, in particular to an error compensation circuit and an integrated circuit for measuring battery impedance.
背景技术Background technique
在电池研究领域中,测量电池内阻(阻抗)参数是评价电池性能的重要手段。通常采用电化学阻抗法(EIS,Electrochemical Impedance Spectroscopy)测量电池内阻。其测量原理是在电池的正常工作状态下,给电池系统输入小幅度不同频率的正弦电压(电流)信号,测量相应的输出电流(电压)信号,根据各频率的电压信号与电流信号比值得到锂电池的频率阻抗谱,可以反映电池中的细微变化。In the field of battery research, measuring battery internal resistance (impedance) parameters is an important means to evaluate battery performance. Electrochemical Impedance Spectroscopy (EIS, Electrochemical Impedance Spectroscopy) is usually used to measure the internal resistance of the battery. The measurement principle is to input sinusoidal voltage (current) signals of small amplitude and different frequencies to the battery system under the normal working state of the battery, measure the corresponding output current (voltage) signal, and obtain the lithium battery according to the ratio of the voltage signal to the current signal of each frequency. The frequency impedance spectrum of the battery can reflect subtle changes in the battery.
图1是一种电池阻抗测量系统的示意图。参考图1所示,该电池阻抗测量系统100主要包括信号发生器110和测量电路120。其中,信号发生器110输出正弦波信号和余弦波信号到外接电池140和测量电路120。信号发生器110可以产生频率在7.45mHz到7.8kHz的正弦波信号(Sin)和余弦波信号(Cos)。其中的Cos和-Cos之间具有180度的相位差。该测量电路120通常是一种FFT/DFT(Fast Fourier Transform/Discrete Fourier Transform)电路。该电池阻抗测量系统100中还包括与外接电池140相并联的外接晶体管130。该外接晶体管130起到开关的作用,外接晶体管130与一外接电阻131一起,用于控制是否使来自信号发生器110的电流/电压信号输入到外接电池140。如图1所示,经过测量电路120计算可以得到外接电池140阻抗Z的实部(Zreal)和虚部(Zimag)。然而,由于外接晶体管130的特性受到温度和电压等的影响,使通过外接晶体管130的信号会发生变形,例如相位和幅度的变化,从而也使输入到外接电池140的信号发生变形,例如使电流信号的占空比和幅度都有所变化。并且这种变化不是常量,而是随着环境温度和施加在外接晶体管130上的电压,以及外接晶体管130本身的特性而不同。这样会导致对外接电池140的阻抗测量结果不准确。FIG. 1 is a schematic diagram of a battery impedance measurement system. Referring to FIG. 1 , the battery
图2是图1中的外接晶体管的信号发生变形的示意图。参考图2所示,理想情况下,外接晶体管130的栅极电压(Ideal Gate voltage)和流经该外接晶体管130的MOS电流(Ideal MOS current)都是方波,该方波具有理想的垂直的上升沿和下降沿,并且信号的占空比为50%。然而,由于上述的问题,使该外接晶体管130实际的栅极电压(Gate voltage)和MOS电流(MOS current)都发生了变形,具体表现在其上升沿和下降沿不是理想的垂直上升和下降,而是呈曲线上升和下降。图2中的左图示出了上升沿(Up)的变形,右图示出了下降沿(Down)的变形。此外,栅极电压和MOS电流的上升沿和下降沿都分别发生了相移,并且上升沿的相移和下降沿的相移并不相等,相当于信号的占空比也发生了改变,造成了误差。对于不同类型、参数的外接晶体管130,以及不同的环境温度和电压,图2所示的曲线会不同。因此,需要提供一种可以补偿各种外接晶体管130处于不同的环境温度和电压下所发生的信号误差的方法。FIG. 2 is a schematic diagram of signal deformation of the external transistor in FIG. 1 . 2, ideally, the gate voltage (Ideal Gate voltage) of the
发明内容Contents of the invention
本发明所要解决的技术问题是提供一种误差补偿电路,对电池阻抗测量电路中外接元件的输出信号进行误差补偿,实现对外接电池阻抗的精确测量。The technical problem to be solved by the present invention is to provide an error compensation circuit, which performs error compensation on the output signal of the external components in the battery impedance measurement circuit, and realizes accurate measurement of the external battery impedance.
为解决上述技术问题,本发明提供一种误差补偿电路,所述误差补偿电路的输入信号具有上升沿和下降沿,所述误差补偿电路与外接元件相连接用于补偿由所述外接元件造成的误差,所述误差补偿电路包括:延时单元,第一误差检测单元,第二误差检测单元,第一误差补偿单元,第二误差补偿单元和输出控制单元;其中,所述延时单元用于对所述输入信号进行固定时间的延时以生成第一延时信号;所述第一误差检测单元用于比较所述第一延时信号和所述外接元件的输出信号以检测所述输出信号的上升沿误差,所述第二误差检测单元用于比较所述第一延时信号和所述外接元件的输出信号以检测所述输出信号的下降沿误差;所述第一误差补偿单元用于根据所述上升沿误差和所述输入信号生成第一补偿信号,所述第二误差补偿单元用于根据所述下降沿误差和所述输入信号生成第二补偿信号;以及所述输出控制单元用于控制所述误差补偿电路输出所述第一补偿信号或第二补偿信号。In order to solve the above technical problems, the present invention provides an error compensation circuit, the input signal of the error compensation circuit has a rising edge and a falling edge, and the error compensation circuit is connected with an external component for compensating the error caused by the external component. error, the error compensation circuit includes: a delay unit, a first error detection unit, a second error detection unit, a first error compensation unit, a second error compensation unit and an output control unit; wherein the delay unit is used for Delaying the input signal for a fixed time to generate a first delayed signal; the first error detection unit is used to compare the first delayed signal with the output signal of the external component to detect the output signal The rising edge error of the second error detection unit is used to compare the first delay signal and the output signal of the external component to detect the falling edge error of the output signal; the first error compensation unit is used to Generate a first compensation signal according to the rising edge error and the input signal, the second error compensation unit is used to generate a second compensation signal according to the falling edge error and the input signal; and the output control unit uses for controlling the error compensation circuit to output the first compensation signal or the second compensation signal.
在本发明的一实施例中,误差补偿电路还包括第一计数单元和第二计数单元,所述第一计数单元用于对所述第一误差检测单元所检测到的上升沿误差进行计数,所述第二计数单元用于对所述第二误差检测单元所检测到的下降沿误差进行计数。In an embodiment of the present invention, the error compensation circuit further includes a first counting unit and a second counting unit, the first counting unit is used to count the rising edge errors detected by the first error detection unit, The second counting unit is used for counting the falling edge errors detected by the second error detecting unit.
在本发明的一实施例中,所述第一计数单元包括用于寄存所述上升沿误差的数量的第一寄存器,所述第二计数单元包括用于寄存所述下降沿误差的数量的第二寄存器。In an embodiment of the present invention, the first counting unit includes a first register for registering the number of rising edge errors, and the second counting unit includes a first register for registering the number of falling edge errors Second register.
在本发明的一实施例中,当所述上升沿误差的数量达到一第一阈值时,所述第一计数单元将所述上升沿误差的数量发送给所述第一误差补偿单元;当所述下降沿误差的数量达到一第二阈值时,所述第二计数单元用于将所述下降沿误差的数量发送给所述第二误差补偿单元。In an embodiment of the present invention, when the number of rising edge errors reaches a first threshold, the first counting unit sends the number of rising edge errors to the first error compensation unit; When the number of falling edge errors reaches a second threshold, the second counting unit is configured to send the number of falling edge errors to the second error compensation unit.
在本发明的一实施例中,所述第一误差检测单元和/或所述第二误差检测单元是相位频率检测器。In an embodiment of the present invention, the first error detection unit and/or the second error detection unit is a phase frequency detector.
在本发明的一实施例中,所述固定时间的延时是2微秒。In an embodiment of the present invention, the fixed time delay is 2 microseconds.
在本发明的一实施例中,所述输出控制单元是开关电路。In an embodiment of the present invention, the output control unit is a switch circuit.
在本发明的一实施例中,所述输入信号是方波。In an embodiment of the present invention, the input signal is a square wave.
在本发明的一实施例中,所述输出信号连接至外接电池,并用于测量所述外接电池的阻抗。In an embodiment of the present invention, the output signal is connected to an external battery and used to measure the impedance of the external battery.
在本发明的一实施例中,所述误差补偿电路适于集成在电池阻抗测量电路中。In an embodiment of the present invention, the error compensation circuit is adapted to be integrated in a battery impedance measurement circuit.
本发明为解决上述技术问题还提出一种电池阻抗测量系统,包括如上所述的误差补偿电路。In order to solve the above-mentioned technical problems, the present invention also proposes a battery impedance measurement system, which includes the above-mentioned error compensation circuit.
本发明的误差补偿电路将外接元件的输出信号作为反馈输入,通过对外接元件的输出信号的上升沿和下降沿分别进行检测,从而分别对该上升沿和下降沿的误差进行实时的误差补偿,可以有效地补偿温度、电压等对外接元件的输出信号所造成的误差,并且适用于各种不同类型的外接元件。本发明的电池阻抗测量系统采用该误差补偿电路,可以提高对外接电池的阻抗测量的准确性。The error compensation circuit of the present invention uses the output signal of the external component as a feedback input, and detects the rising edge and falling edge of the output signal of the external component respectively, thereby performing real-time error compensation for the error of the rising edge and falling edge respectively, It can effectively compensate the errors caused by temperature, voltage, etc. on the output signal of external components, and is suitable for various types of external components. The battery impedance measurement system of the present invention adopts the error compensation circuit, which can improve the accuracy of the impedance measurement of the external battery.
附图说明Description of drawings
为让本发明的上述目的、特征和优点能更明显易懂,以下结合附图对本发明的具体实施方式作详细说明,其中:In order to make the above-mentioned purposes, features and advantages of the present invention more obvious and understandable, the specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings, wherein:
图1是电池阻抗测量系统的示意图;1 is a schematic diagram of a battery impedance measurement system;
图2是图1中的外接晶体管的信号发生变形的示意图;Fig. 2 is a schematic diagram of deformation of the signal of the external transistor in Fig. 1;
图3是本发明一实施例的电池阻抗测量系统的结构示意图;3 is a schematic structural diagram of a battery impedance measurement system according to an embodiment of the present invention;
图4是本发明另一实施例的电池阻抗测量系统的结构示意图;4 is a schematic structural diagram of a battery impedance measurement system according to another embodiment of the present invention;
图5是经过本发明一实施例的误差补偿电路补偿后的信号示意图。FIG. 5 is a schematic diagram of signals after being compensated by an error compensation circuit according to an embodiment of the present invention.
具体实施方式detailed description
为让本发明的上述目的、特征和优点能更明显易懂,以下结合附图对本发明的具体实施方式作详细说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific implementations of the present invention will be described in detail below in conjunction with the accompanying drawings.
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其它不同于在此描述的其它方式来实施,因此本发明不受下面公开的具体实施例的限制。In the following description, many specific details are set forth in order to fully understand the present invention, but the present invention can also be implemented in other ways than those described here, so the present invention is not limited by the specific embodiments disclosed below.
此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本申请保护范围的限制。此外,尽管本申请中所使用的术语是从公知公用的术语中选择的,但是本申请说明书中所提及的一些术语可能是申请人按他或她的判断来选择的,其详细含义在本文的描述的相关部分中说明。此外,要求不仅仅通过所使用的实际术语,而是还要通过每个术语所蕴含的意义来理解本申请。In addition, it should be noted that the use of words such as "first" and "second" to define components is only for the convenience of distinguishing corresponding components. To limit the protection scope of this application. In addition, although the terms used in this application are selected from well-known and commonly used terms, some terms mentioned in the specification of this application may be selected by the applicant according to his or her judgment, and their detailed meanings are listed in this article described in the relevant section of the description. Furthermore, it is required that this application be understood not only by the actual terms used, but also by the meaning implied by each term.
应当理解,当一个部件被称为“在另一个部件上”、“连接到另一个部件”、“耦合于另一个部件”或“接触另一个部件”时,它可以直接在该另一个部件之上、连接于或耦合于、或接触该另一个部件,或者可以存在插入部件。相比之下,当一个部件被称为“直接在另一个部件上”、“直接连接于”、“直接耦合于”或“直接接触”另一个部件时,不存在插入部件。同样的,当第一个部件被称为“电接触”或“电耦合于”第二个部件,在该第一部件和该第二部件之间存在允许电流流动的电路径。该电路径可以包括电容器、耦合的电感器和/或允许电流流动的其它部件,甚至在导电部件之间没有直接接触。It will be understood that when an element is referred to as being "on," "connected to," "coupled to" or "contacting" another element, it can be directly on the other element. On, connected or coupled to, or in contact with, the other component, or there may be an intervening component. In contrast, when an element is referred to as being "directly on," "directly connected to," "directly coupled to" or "directly contacting" another element, there are no intervening elements present. Likewise, when a first component is referred to as being "electrically contacting" or "electrically coupled to" a second component, there exists an electrical path between the first component and the second component that allows electrical current to flow. This electrical path may include capacitors, coupled inductors, and/or other components that allow current to flow, even without direct contact between conductive components.
在电池阻抗测量电路中,外接元件用于控制传输至待测电池的电流的通断,因而外接元件自身的性能对测量信号的传输具有重要的影响,对测量结果的准确性亦有明显影响。本发明的实施例描述误差补偿电路和包括该误差补偿电路的电池阻抗测量系统。In the battery impedance measurement circuit, the external components are used to control the on-off of the current transmitted to the battery under test, so the performance of the external components itself has an important impact on the transmission of the measurement signal, and also has a significant impact on the accuracy of the measurement results. Embodiments of the present invention describe an error compensation circuit and a battery impedance measurement system including the error compensation circuit.
图3是本发明一实施例的电池阻抗测量系统的结构示意图。如图3所示,在该电池阻抗测量系统200中,信号发生器210可以生成作为本发明的误差补偿电路220的输入信号S的方波信号。可以理解,该方波信号具有上升沿和下降沿。从方波信号中提取一次谐波(thefirst harmonic)可产生正弦波信号。正弦波信号根据相位的差异可为正弦函数或余弦函数形式,该正弦波信号和余弦波信号可以作为阻抗测量电路250的输入信号。FIG. 3 is a schematic structural diagram of a battery impedance measurement system according to an embodiment of the present invention. As shown in FIG. 3 , in the battery
在通常情况下,从待测阻抗的外接电池240两端测量得到的信号经过处理电路260之后输入至阻抗测量电路250。阻抗测量电路250根据由信号发生器210所生成的正弦波信号和/或余弦波信号,以及经过处理电路260之后的信号,计算获得并输出外接240的阻抗Z。阻抗测量电路250可以是如图1中所述的测量电路120。Under normal circumstances, the signal measured from both ends of the
参考图3所示,本发明提供一种误差补偿电路220,该误差补偿电路220与外接元件230相连接用于补偿由于该外接元件230造成的误差。该误差补偿电路220包括延时单元221、第一误差检测单元222a、第二误差检测单元222b、第一误差补偿单元223a、第二误差补偿单元223b和输出控制单元224。其中,延时单元221用于对输入信号S进行固定时间的延时后生成第一延时信号S1。第一延时信号S1传输至第一误差检测单元222a和第二误差检测单元222b。相应地,第一延时信号S1也包括上升沿和下降沿。Referring to FIG. 3 , the present invention provides an
在本发明的一实施例中,该第一延时信号S1相对于输入信号S的固定延时为2μs。该固定延时的时长由外接元件230所能造成的最大延时来确定。In an embodiment of the present invention, the fixed delay of the first delayed signal S1 relative to the input signal S is 2 μs. The duration of the fixed delay is determined by the maximum delay that the
参考图3所示,第一延时信号S1分别输入第一误差检测单元222a和第二误差检测单元222b。在图3所示的实施例中,外接元件230具体地为一晶体管,该晶体管的漏极经过一电阻231后连接至外接240的正极;该晶体管的源极连接至外接240的负极。输出控制单元224的输出端与晶体管的栅极相连接,即输出控制单元224的输出信号作为晶体管的开关控制信号Sc,控制该晶体管的开启和关闭。晶体管的漏极与第一误差检测单元222a和第二误差检测单元222b相连接,将经过外接元件230之后的输出信号Sext输入到第一误差检测单元222a和第二误差检测单元222b。Referring to FIG. 3 , the first delayed signal S1 is input into the first
第一误差检测单元222a用于比较第一延时信号S1和外接元件230的输出信号Sext以检测该输出信号Sext的上升沿误差Sd_u,第二误差检测单元222b用于比较第一延时信号S1和外接元件230的输出信号Sext以检测该输出信号Sext的下降沿误差Sd_d。The first
本发明对外接元件230的具体实施方式不做限制,该外接元件230可以是各种类型的晶体管,例如双极型晶体管(BJT)、场效应晶体管(FET)等,也可以是其他类似的会造成误差的电子元件。The present invention does not limit the specific implementation of the
参考图3所示,第一误差检测单元222a与第一误差补偿单元223a相连接,将所检测到的上升沿误差Sd_u输入到第一误差补偿单元223a;第二误差检测单元222b与第二误差补偿单元223b相连接,将所检测到的下降沿误差Sd_d输入到第二误差补偿单元223b。从信号发生器210所生成的输入信号S同时也输入到第一误差补偿单元223a和第二误差补偿单元223b中。3, the first
第一误差补偿单元223a根据输入信号S和上升沿误差Sd_u确定其输出的第一补偿信号Sc1,并将该第一补偿信号Sc1输入至输出控制单元224;第二误差补偿单元223b根据输入信号S和下降沿误差Sd_d确定其输出的第二补偿信号Sc2,并将该第二补偿信号Sc2输入至输出控制单元224。The first
输出控制单元224用于控制误差补偿电路220输出第一补偿信号Sc1或第二补偿信号Sc2。具体地,输出控制单元224根据第一补偿信号Sc1和第二补偿信号Sc2来确定所要输出至外接元件230的控制信号Sc。该控制信号Sc可以是第一补偿信号Sc1或第二补偿信号Sc2。通过控制信号Sc控制输入至外接元件230的信号,从而达到补偿由外接元件230所造成的上升沿和下降沿变形及延时等问题。The
在一些实施例中,输出控制单元224是一种开关电路。In some embodiments, the
举例说明,当所设定的第一延时信号S1相对于输入信号S的固定延时为2μs,即2000ns。第一误差检测单元222a检测到输出信号Sext的上升沿误差Sd_u为200ns,第二误差检测单元222b检测到输出信号Sext的下降沿误差Sd_d为600ns,则第一误差补偿单元223a将使第一补偿信号Sc1相比于输入信号S延时1800ns,第二误差补偿单元223b将使第二补偿信号Sc2相比于输入信号S延时1400ns。For example, when the fixed delay of the first delayed signal S1 relative to the input signal S is set to be 2 μs, that is, 2000 ns. The first
在一些实施例中,第一误差检测单元222a和/或第二误差检测单元222b可以是相位检测器或相位和频率检测器(Phase and Frequency Detector)。相位检测器可以用于检测输入信号和参考信号之间的相位差。第一误差检测单元222a用于检测输出信号Sext的上升沿和第一延时信号S1的上升沿之间的相位差,第二误差检测单元222b用于检测输出信号Sext的下降沿和第一延时信号S1的下降沿之间的相位差。In some embodiments, the first
在优选的实施例中,第一误差检测单元222a和第二误差检测单元222b都是相位和频率检测器,用于比较待测信号和参考信号的相位或频率差值。通常,相位和频率检测器包括两个输出引脚:上升(UP)引脚和下降(DOWN)引脚。根据比较结果在UP和DOWN引脚上产生脉冲串,该脉冲串表示所要检测的信号需要被调整的程度,例如UP引脚的脉冲串表示待测信号的频率需要提高的程度,DOWN引脚的脉冲串表示待测信号的频率需要降低的程度。对于输入到相位和频率检测器的信号来说,该信号的相位可通过所检测到的信号边沿的位置获得,该信号的频率可通过所检测到的信号边沿的数目获得。可以理解,相位和频率检测器通过一定的计算方法获得其所检测信号的相位和频率。In a preferred embodiment, both the first
将作为第一误差检测单元222a的相位和频率检测器设置为上升沿触发。相应地,将作为第二误差检测单元222b的相位和频率检测器设置为下降沿触发。当第一延时信号S1的上升沿和外接元件230的输出信号Sext的上升沿的频率和/或相位不同时,第一误差检测单元222a的UP引脚或DOWN引脚输出脉冲串,作为第一误差检测单元222a所输出的上升沿误差Sd_u。相应地,当第一延时信号S1的下降沿和外接元件230的输出信号Sext的下降沿的频率和/或相位不同时,第二误差检测单元222b的UP引脚或DOWN引脚输出脉冲串,作为第二误差检测单元222b所输出的下降沿误差Sd_d。The phase and frequency detector as the first
本发明所采用的相位检测器或相位和频率检测器可以是本领域常用的相位和频率检测器,并适于集成在集成电路中。The phase detector or phase and frequency detector used in the present invention can be a commonly used phase and frequency detector in the field, and is suitable for integration in an integrated circuit.
在一些情况下,由于第一延时信号S1和/或输出信号Sext的抖动,会造成第一误差检测单元222a和第二误差检测单元222b将一些抖动错误检测为上升沿误差Sd_u和/或下降沿误差Sd_d。为了解决这一问题,在一些实施例中,本发明的误差补偿电路220还包括第一计数单元225a和第二计数单元225b,如图4所示。In some cases, due to the jitter of the first delayed signal S1 and/or the output signal Sext, the first
图4是本发明另一实施例的电池阻抗测量系统的结构示意图。在图4所示的实施例中,第一误差检测单元222a将所检测到的上升沿误差Sd_u发送给第一计数单元225a,第一计数单元225a对所接收到的上升沿误差Sd_u的数量进行计数,当发现该数量达到一第一阈值时,第一计数单元225a才将该上升沿误差Sd_u发送给第一误差补偿单元223a。参考图4所示,该实施例的第一计数单元225a还与第一寄存器226a相连接,该第一寄存器226a用于寄存第一计数单元225a所获得的上升沿误差Sd_u的数量,并在该上升沿误差Sd_u的数量达到第一阈值时,才将该上升沿误差Sd_u发送给第一误差补偿单元223a。FIG. 4 is a schematic structural diagram of a battery impedance measurement system according to another embodiment of the present invention. In the embodiment shown in FIG. 4, the first
同样地,第二误差检测单元222b将所检测到的下降沿误差Sd_d发送给第二计数单元225b,第二计数单元225b对所接收到的下降沿误差Sd_d的数量进行计数,当发现该数量达到一第二阈值时,第二计数单元225b才将该下降沿误差Sd_d发送给第二误差补偿单元223b。参考图4所示,该实施例的第二计数单元225b还与第二寄存器226b相连接,该第二寄存器226b用于寄存第二计数单元225b所获得的下降沿误差Sd_d的数量,并在该下降沿误差Sd_d的数量达到第二阈值时,才将该下降沿误差Sd_d发送给第二误差补偿单元223b。Similarly, the second
在一些实施例中,第一阈值和第二阈值是两个固定值。只有第一计数单元225a和第二计数单元225b的计数结果分别达到第一阈值和第二阈值时,第一寄存器226a和第二寄存器226b的输出结果才会被更新一次,这样可以避免由于信号的抖动造成误补偿。In some embodiments, the first threshold and the second threshold are two fixed values. Only when the counting results of the
在图3和图4所示的实施例中,第一误差检测单元222a检测输出信号Sext的下降沿误差Sd_d,第二误差检测单元222b检测输出信号Sext的上升沿误差Sd_u。在其他的实施例中,可以由第一误差检测单元222a检测输出信号Sext的上升沿误差Sd_u,由第二误差检测单元222b检测输出信号Sext的下降沿误差Sd_d。In the embodiment shown in FIG. 3 and FIG. 4 , the first
在一具体实施例中,假设本发明的电池阻抗测量系统200的时钟周期为62.5ns。若经过本发明的误差补偿电路220的测量,由第一寄存器226a得到的计数结果为13,第二寄存器226b得到的计数结果为8,则表示所检测到的输出信号Sext的上升沿误差Sd_u为13*62.5=812.5ns,下降沿误差Sd_d为8*62.5=500ns。In a specific embodiment, it is assumed that the clock period of the battery
第一误差补偿单元223a和第二误差补偿单元223b根据从第一寄存器226a和第二寄存器226b所获得的计数结果,分别对输入到外接元件230的信号的上升沿和下降沿进行补偿,从而抵消由于外接元件230所造成的信号的失真。The first
参考图4所示,第一误差补偿单元223a根据第一寄存器226a的计数结果和输入信号S获得经过补偿的第一补偿信号Sc1,该第一补偿信号Sc1表示经过补偿的上升沿信号。第二误差补偿单元223b根据第二寄存器226b的计数结果和输入信号S获得经过补偿的第二补偿信号Sc2,该第二补偿信号Sc2表示经过补偿的下降沿信号。当第一补偿信号Sc1的上升沿信号经过输出控制单元224被发送至外接元件230后,外接元件230被导通;当第二补偿信号Sc2的下降沿信号经过输出控制单元224被发送至外接元件230后,外接元件230被截止。输出控制单元224控制第一补偿信号Sc1和第二补偿信号Sc2轮流与外接元件230相连接,相应地,该外接元件230被导通或截止。Referring to FIG. 4 , the first
图5是经过本发明一实施例的误差补偿电路补偿后的信号示意图。图5从上至下依次示出了输出信号Sext、控制信号Sc、外接元件230的栅极电流(Gate current)以及外接元件230的MOS电流(MOS current)。其中,输出信号Sext是从电阻231与外接元件230相连接处的测量得到的电压信号(VR),控制信号Sc是从外接元件230的栅极测量得到的栅极电压(Gatevoltage)。参考图5所示,经过本发明的误差补偿电路220之后,外接元件230的栅极电压和MOS电流的上升沿和下降沿几乎都呈垂直状,并且两种信号的占空比达到了理想状态下的50%,没有发生偏移。因此,本发明的误差补偿电路220分别对上升沿和下降沿信号进行了补偿。FIG. 5 is a schematic diagram of signals after being compensated by an error compensation circuit according to an embodiment of the present invention. FIG. 5 shows the output signal Sext, the control signal Sc, the gate current (Gate current) of the
在一些实施例中,电池阻抗测量电路设置在集成电路芯片中,本发明的误差补偿电路适于集成在包括电池阻抗测量电路的集成电路芯片中。In some embodiments, the battery impedance measurement circuit is provided in an integrated circuit chip, and the error compensation circuit of the present invention is suitable for being integrated in the integrated circuit chip including the battery impedance measurement circuit.
参考图3所示,在本发明的电池阻抗测量系统200中还包括一附加延时单元T1。该附加延时单元T1用于对信号发生器210所生成的输入信号S进行一定延时得到延时信号S2,并将该延时信号S2输入到阻抗测量电路250中。处理电路260中可以包括模数转换单元ADC、延时单元、CIC滤波器(Cascaded integrator–comb filter,积分-梳状级联滤波器)等,对经过误差补偿的输出信号Sext进行处理得到经处理的输出信号Sext1。Referring to FIG. 3 , the battery
结合图1和图3所示,该阻抗测量电路250可以如图1中所示的测量电路120,是一种FFT/DFT电路,包括乘法器等模块,可以根据延时信号S2和经处理后的输出信号Sext1输入到该阻抗测量电路250中,从而计算得到待测的外接电池240阻抗Z的实部(Zreal)和虚部(Zimag)的数值。As shown in FIG. 1 and FIG. 3, the
另外,需要说明,参考图1所示,本发明的电池阻抗测量系统200中还可以包括相应的模数转换单元ADC、数模转换单元DAC等。本领域技术人员可以在本发明的思想的基础上添加其他电子元件、功能模块等。In addition, it should be noted that referring to FIG. 1 , the battery
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述发明的实施例披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。The basic concepts have been described above, and obviously, for those skilled in the art, the disclosure of the above-mentioned embodiments of the invention is only used as an example, and does not constitute a limitation to the present application. Although not expressly stated here, various modifications, improvements and amendments to this application may be made by those skilled in the art. Such modifications, improvements, and amendments are suggested in this application, so such modifications, improvements, and amendments still belong to the spirit and scope of the exemplary embodiments of this application.
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。Meanwhile, the present application uses specific words to describe the embodiments of the present application. For example, "one embodiment", "an embodiment", and/or "some embodiments" refer to a certain feature, structure or characteristic related to at least one embodiment of the present application. Therefore, it should be emphasized and noted that two or more references to "an embodiment" or "an embodiment" or "an alternative embodiment" in different places in this specification do not necessarily refer to the same embodiment . In addition, certain features, structures or characteristics of one or more embodiments of the present application may be properly combined.
虽然本发明已参照当前的具体实施例来描述,但是本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说明本发明,在没有脱离本发明精神的情况下还可作出各种等效的变化或替换,因此,只要在本发明的实质精神范围内对上述实施例的变化、变型都将落在本申请的权利要求书的范围内。Although the present invention has been described with reference to the current specific embodiments, those of ordinary skill in the art should recognize that the above embodiments are only used to illustrate the present invention, and other modifications can be made without departing from the spirit of the present invention. Various equivalent changes or substitutions, therefore, as long as the changes and modifications to the above embodiments are within the spirit of the present invention, they will all fall within the scope of the claims of the present application.
Claims (11)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010567832.7A CN113820612B (en) | 2020-06-19 | 2020-06-19 | Error compensation circuit and integrated circuit for measuring battery impedance |
PCT/CN2021/086090 WO2021253934A1 (en) | 2020-06-19 | 2021-04-09 | Error compensation circuit, and integrated circuit for measuring battery impedance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010567832.7A CN113820612B (en) | 2020-06-19 | 2020-06-19 | Error compensation circuit and integrated circuit for measuring battery impedance |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113820612A CN113820612A (en) | 2021-12-21 |
CN113820612B true CN113820612B (en) | 2022-12-27 |
Family
ID=78912104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010567832.7A Active CN113820612B (en) | 2020-06-19 | 2020-06-19 | Error compensation circuit and integrated circuit for measuring battery impedance |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113820612B (en) |
WO (1) | WO2021253934A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1494217A (en) * | 2002-10-30 | 2004-05-05 | 联发科技股份有限公司 | Phase-locked loop with low steady-state error and correction circuit thereof |
CN1901376A (en) * | 2005-07-21 | 2007-01-24 | 联发科技股份有限公司 | PLL with cycle drop detector to compensate errors caused by cycle drop |
CN104702249A (en) * | 2013-12-10 | 2015-06-10 | 苏州普源精电科技有限公司 | Signal generator with burst synchronization function |
EP3528388A1 (en) * | 2018-02-19 | 2019-08-21 | Melexis Technologies SA | Offset compensation circuit for a tracking loop |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100246795B1 (en) * | 1997-08-02 | 2000-03-15 | 윤종용 | Design parameter error compensating circuit for chip having filter and boost |
KR100569798B1 (en) * | 2002-07-18 | 2006-04-10 | 미쓰비시덴키 가부시키가이샤 | Power converter |
KR100505657B1 (en) * | 2002-12-10 | 2005-08-03 | 삼성전자주식회사 | Delay time compensation circuit with delay cells having various unit delay time |
CN100495925C (en) * | 2003-12-22 | 2009-06-03 | 上海贝岭股份有限公司 | A Frequency and Phase Detector Circuit Effectively Suppressing Frequency Doubling Mislocking |
EP2136218A1 (en) * | 2007-03-22 | 2009-12-23 | Advantest Corporation | Data receiving circuit, tester using same, and timing adjusting circuit for strobe signal and method |
US7800437B2 (en) * | 2008-05-21 | 2010-09-21 | Silicon Laboratories Inc. | Closed loop timing feedback for PWM switching amplifiers using predictive feedback compensation |
CN102353837B (en) * | 2011-10-10 | 2013-12-18 | 国电联合动力技术有限公司 | Method and device for measuring pulse frequency |
CN103513208B (en) * | 2012-06-29 | 2016-06-29 | 中国船舶重工集团公司第七0九研究所 | A kind of error compensating method of the total timing offset calibration of picosecond integrated circuit test system |
CN106133539A (en) * | 2014-03-26 | 2016-11-16 | 日产自动车株式会社 | Impedance measuring instrument and impedance measuring method |
US9634678B1 (en) * | 2016-02-25 | 2017-04-25 | Silicon Laboratories Inc. | Feedback control system with rising and falling edge detection and correction |
CN106842093A (en) * | 2016-12-20 | 2017-06-13 | 惠州市蓝微新源技术有限公司 | A kind of verification method of battery test apparatus sampling rate |
CN106707020B (en) * | 2016-12-22 | 2019-06-11 | 武汉盛帆电子股份有限公司 | Pulse detecting equipment and pulse detecting method |
DE102018100692B4 (en) * | 2018-01-12 | 2019-08-22 | Infineon Technologies Ag | Method for monitoring a battery, monitoring system and monitoring circuit |
CN109254251B (en) * | 2018-09-20 | 2021-03-09 | 大唐恩智浦半导体有限公司 | Battery impedance measuring device, method and chip |
-
2020
- 2020-06-19 CN CN202010567832.7A patent/CN113820612B/en active Active
-
2021
- 2021-04-09 WO PCT/CN2021/086090 patent/WO2021253934A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1494217A (en) * | 2002-10-30 | 2004-05-05 | 联发科技股份有限公司 | Phase-locked loop with low steady-state error and correction circuit thereof |
CN1901376A (en) * | 2005-07-21 | 2007-01-24 | 联发科技股份有限公司 | PLL with cycle drop detector to compensate errors caused by cycle drop |
CN104702249A (en) * | 2013-12-10 | 2015-06-10 | 苏州普源精电科技有限公司 | Signal generator with burst synchronization function |
EP3528388A1 (en) * | 2018-02-19 | 2019-08-21 | Melexis Technologies SA | Offset compensation circuit for a tracking loop |
Also Published As
Publication number | Publication date |
---|---|
WO2021253934A1 (en) | 2021-12-23 |
CN113820612A (en) | 2021-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5300174B2 (en) | Jitter measuring apparatus, jitter measuring method, test apparatus, and electronic device | |
Baker et al. | Online junction temperature measurement via internal gate resistance during turn-on | |
CN100401077C (en) | Method and circuit arrangement for analyzing and measuring capacitance | |
US7508217B2 (en) | Test apparatus and test module | |
US8847896B2 (en) | Adaptive high dynamic range surface capacitive touchscreen controller | |
US9423438B2 (en) | Dielectric constant measurement circuit and dielectric constant measurement method | |
CN110708047B (en) | Structure and method for measuring precision of high-speed comparator based on TDC chip | |
CN109581062B (en) | High-precision impedance measurement system for oscilloscope calibrator probe | |
Grigoriev et al. | Ultrafast electrical measurements of polarization dynamics in ferroelectric thin-film capacitors | |
CN111585244B (en) | Leakage protection circuit, integrated circuit, electronic device, and method | |
CN113820612B (en) | Error compensation circuit and integrated circuit for measuring battery impedance | |
Gantsog et al. | 0.89 mW on-chip jitter-measurement circuit for high speed clock with sub-picosecond resolution | |
US20130015837A1 (en) | On-chip signal waveform measurement circuit | |
US9212952B1 (en) | Voltage and temperature sensor for a serializer/deserializer communication application | |
CN111289940A (en) | Step delay-based direct-current voltage mutual inductance transient characteristic testing method | |
US20250138071A1 (en) | Methods and apparatus for in-situ measurement of mututal inductance between embedded interconnects | |
Nishizawa et al. | Capacitance measurement of running hardware devices and its application to malicious modification detection | |
Depari et al. | A complementary metal oxide semiconductor—integrable conditioning circuit for resistive chemical sensor management | |
CN212433385U (en) | Current sensor test system | |
CN209820646U (en) | IGBT module temperature measurement circuit | |
US10955462B2 (en) | Apparatus and method for frequency characterization of an electronic system | |
US7855582B2 (en) | Device and method for detecting a timing of an edge of a signal with respect to a predefined edge of a periodic signal | |
TWI801878B (en) | Impedance measurement device and system and method for determining impedances of devices under test | |
TW202024649A (en) | Circuit and method for measuring signal period | |
Ateşavcı et al. | Degradation sensor circuits for indirect measurements in re-configurable analog circuit design |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241204 Address after: Building 39, No. 700 Wanrong Road, Jing'an District, Shanghai, 200072 Patentee after: Shanghai Da'en Xinyuan Microelectronics Co.,Ltd. Country or region after: China Address before: 226400 south of Huanghe Road West of Jinggangshan Road, Rudong County, Nantong City, Jiangsu Province Patentee before: DATANG NXP SEMICONDUCTORS Co.,Ltd. Country or region before: China |