[go: up one dir, main page]

CN113817956B - 一种700MPa级经济型无缝气瓶钢管及其制造方法 - Google Patents

一种700MPa级经济型无缝气瓶钢管及其制造方法 Download PDF

Info

Publication number
CN113817956B
CN113817956B CN202110882197.6A CN202110882197A CN113817956B CN 113817956 B CN113817956 B CN 113817956B CN 202110882197 A CN202110882197 A CN 202110882197A CN 113817956 B CN113817956 B CN 113817956B
Authority
CN
China
Prior art keywords
percent
section
heating
blank
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110882197.6A
Other languages
English (en)
Other versions
CN113817956A (zh
Inventor
余泽金
张昭
姜海龙
郭志文
张行刚
许占海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia Bao Gang United Steel Co ltd
Original Assignee
Baotou Iron and Steel Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baotou Iron and Steel Group Co Ltd filed Critical Baotou Iron and Steel Group Co Ltd
Priority to CN202110882197.6A priority Critical patent/CN113817956B/zh
Publication of CN113817956A publication Critical patent/CN113817956A/zh
Application granted granted Critical
Publication of CN113817956B publication Critical patent/CN113817956B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本发明公开了一种700MPa级经济型无缝气瓶钢管的生产方法,属于冶金及成型技术领域,管坯化学成分及含量(wt%)为:C0.34‑0.38;Si0.17‑0.30;Mn1.55‑1.70;P≤0.015;S≤0.010;Cr0.15‑0.25;Al0.020‑0.045;Ni<0.10;Cu<0.10;余量为基体Fe和无法检测的微量杂质元素。其工艺流程为:圆连铸坯→定尺切割→管坯加热→菌式穿孔→PQF机组连续轧管→微张力定径→带温矫直→冷床冷却→定尺锯切→水压试验→超声波+无损探伤→正火热处理;本发明的产品具有生产成本低、夹杂含量少、尺寸精度高和强韧性能匹配好的特点。

Description

一种700MPa级经济型无缝气瓶钢管及其制造方法
技术领域
本发明涉及黑色金属冶炼及金属压力加工领域,尤其涉及一种700MPa级经济型无缝气瓶钢管及其制造方法。
背景技术
近几年来,随着经济的发展,高压气瓶的设计壁厚大大减薄,这样不仅实现了高压气瓶的轻量化,节约了资源,减少了运输和搬运过程中的损耗,最为重要的是大大提高了单个高压气瓶的气体装载量,为气体的使用提供了有利条件。
针对气瓶标准的变化,国标GB/T18248-2008中涉及的37Mn钢种碳化学元素成分范围已不能满足的下游用户的要求,新标准GB/T18248-2020《气瓶用无缝钢管》(征求意见稿)中将碳元素成分范围调整到0.34%~0.38%,由于碳元素范围上限较原来降低0.2%范围,钢管经正火热处理后的屈服强度很难满足用户提出520MPa及以上的要求,抗拉强度达730MPa以上,本发明旨在提供一种700MPa级经济型无缝气瓶钢管制造方法,可以生产出满足用户性能要求的钢管。
发明内容
为了解决上述技术问题,本发明的目的是提供一种生产成本低、尺寸精度高、正火热处理后产品性能满足用户要求的700MPa级经济型无缝气瓶钢管制造方法。
为解决上述技术问题,本发明采用如下技术方案:
一种700MPa级经济型无缝气瓶钢管,其化学成分按质量百分比包括:C0.34-0.38%;Si0.17-0.30%;Mn1.55-1.70%;P≤0.015%;S≤0.010%;Cr0.15-0.25%;Al0.020-0.045%;Ni<0.10%;Cu<0.10%;余量为Fe和无法无法避免的杂质;其力学性能为:屈服强度:530~560MPa;抗拉强度:760~795MPa;屈强比:≤0.75;延伸率:≥20%;-20℃时的横向冲击值:aKV≥20J/cm2;晶粒度:≥8.0级。
一种700MPa级经济型无缝气瓶钢管的制造方法,包括:
采用圆连铸坯,对连铸管坯进行加热,然后对加热好的管坯进行穿孔和连轧使其成为连轧管,对轧管进行定径,进行带温矫直,入冷床冷却,然后实施定尺锯切,先后经过水压试验、无损探伤的检测,最后经过正火热处理。
进一步的,其工艺流程简述为:圆连铸坯→定尺切割→管坯加热→菌式穿孔→PQF热连轧连续轧管→微张力定径→带温矫直→冷床冷却→定尺锯切→水压试验→无损探伤→正火热处理。
进一步的,连铸圆管坯的生产过程如下所述:
对管坯进行化学成分化验,管坯的化学成分应符合下述要求:C0.34-0.38%;Si0.17-0.30%;Mn1.55-1.70%;P≤0.015%;S≤0.010%;Cr0.15-0.25%;Al0.020-0.045%;Ni<0.10%;Cu<0.10%;余量为Fe及不可避免的杂质;
将成分化验合格及硫印不大于1.5级的连铸圆管坯进行制管,制管过程如下:
将管坯放入加热炉进行加热,连续检查并控制好加热炉预热段、加热段、均热段的温度,各段温度的控制范围见表:
Figure BDA0003192774750000021
Figure BDA0003192774750000031
用微机对加热炉各段温度进行自动控制并自动记录;
将加热好的管坯穿孔后在相应的PQF轧管机组进行连续轧制,再经微张力定径、带温矫直、冷床冷却、定尺锯切,成为用户所需规格的无缝钢管。轧制时每批至少进行一次热取样,检查几何尺寸,保证钢管的精确成型。
然后对钢管逐支进行水压试验和无损探伤检测,合格者进行正火热处理。
进一步的,所述正火热处理包括加热到860℃保温30分钟出炉空冷。
与现有技术相比,本发明的有益技术效果:
采用科学的加热温度+成熟的轧管工艺+钢管的精确成型+钢管在550℃以上进行带温矫直等一系列技术措施;采用连铸圆管坯+菌式穿孔+PQF连续轧管+微张力减径+钢管的带温矫直+全程的在线检测等一系列技术措施,因此,钢管的尺寸精度相对较高;
含元素Cr的独特成分设计+成熟的轧管工艺+带温矫直,使得钢管的各项性能优异,具体性能指标如下:
屈服强度:530~560MPa;抗拉强度:760~795MPa;屈强比:≤0.75;延伸率:≥20%;-20℃时的横向冲击值:aKV≥20J/cm2;晶粒度:≥8.0级。
具体实施方式
下面结合实施例1~实施例3对本发明作进一步详细说明。
生产工艺流程顺序为圆连铸坯→定尺切割→管坯加热→菌式穿孔→PQF热连轧连续轧管→微涨力定径→带温矫直→冷床冷却→定尺锯切→水压试验→无损探伤→热处理。
具体生产工艺流程简述如下:
对规格为
Figure BDA0003192774750000041
的圆管坯取样进行化、检验,其化学成分化验结果(重量百分比含量)见表1。
表1管坯的化学成分检测结果(重量%)
C Si Mn P S Cr Al Ni Cu
实施例1 0.36 0.20 1.66 0.013 0.005 0.17 0.038 0.005 0.005
实施例2 0.35 0.23 1.57 0.012 0.006 0.20 0.025 0.005 0.005
实施例3 0.37 0.25 1.60 0.016 0.005 0.18 0.022 0.005 0.005
硫印:均不超过1.0级,低倍检验合格。
将化、检验合格的规格为
Figure BDA0003192774750000042
的管坯进行制管,制管过程如下:
将规格为
Figure BDA0003192774750000043
的管坯放入环形加热炉进行加热,连续检查并控制好环形加热炉的预热段、加热段、均热段等各段的温度,保证加热透彻均匀而不过热,各段温度的控制范围见表2;
表2环形加热炉的各段温度控制(℃)
预热Ⅰ段 预热Ⅱ段 加热Ⅰ段 加热Ⅱ段 均热Ⅰ段 均热Ⅱ段
800~1000 1000~1150 1150~1250 1220~1260 1240~1280 1240~1280
用微机对环形加热炉各段温度进行自动控制并自动记录。
热工具在使用前必须测量,轧前必须检查、处理辊道,避免划伤管壁。
将加热好的规格为
Figure BDA0003192774750000044
的管坯进行菌式穿孔、然后在
Figure BDA0003192774750000045
轧管机组上进行连续轧制、然后在定径及其上制成规格为
Figure BDA0003192774750000046
的无缝钢管,每批进行一次热取样,检查几何尺寸。
当无缝钢管的温度降到517℃时进行矫直。
对上述工艺生产的规格为
Figure BDA0003192774750000047
的无缝钢管先后进行无损探伤和水压试验,合格的无缝钢管进行正火热处理,即加热到860℃保温30分钟出炉空冷。用其制取试样进行力学性能及金相性能检验。
经过检验,实施例1~实施例3所产的规格为
Figure BDA0003192774750000048
的无缝钢管的力学性能检测结果及见表3、金相性能检测结果见表4。
表3无缝钢管的力学性能检测结果
R<sub>t0.5</sub>(MPa) R<sub>m</sub>(MPa) R<sub>t0.5</sub>/R<sub>m</sub> A(%) a<sub>KV</sub>(-20℃,横向,J/cm<sup>2</sup>)
实施例1 542 754 0.71 25.0 36
实施例2 550 761 0.72 24.0 40
实施例3 559 780 0.71 22.0 32
表4无缝钢管的金相性能检测结果(级)
Figure BDA0003192774750000051
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (2)

1.一种700MPa级经济型无缝气瓶钢管,其特征在于:其化学成分按质量百分比包括:C0.34-0.38%;Si 0.17-0.30%;Mn 1.55-1.70%;P≤0.015%;S≤0.010%;Cr 0.15-0.25%;Al0.020-0.045%;Ni<0.10%;Cu<0.10%;余量为Fe和无法避免的杂质;其力学性能为:屈服强度:530~560MPa;抗拉强度:760~795MPa;屈强比:≤0.75;延伸率:≥20%;-20℃时的横向冲击值:aKV≥20J/cm2;晶粒度:≥8.0级;
其工艺流程简述为:圆连铸坯→定尺切割→管坯加热→菌式穿孔→PQF热连轧连续轧管→微张力定径→带温矫直→冷床冷却→定尺锯切→水压试验→无损探伤→正火热处理;
连铸圆管坯的生产过程如下所述:
对管坯进行化学成分化验,管坯的化学成分应符合下述要求:C 0.34-0.38%;Si 0.17-0.30%;Mn 1.55-1.70%;P≤0.015%;S≤0.010%;Cr 0.15-0.25%;Al 0.020-0.045%;Ni<0.10%;Cu<0.10%;余量为Fe及不可避免的杂质;
将成分化验合格及硫印不大于1.5级的连铸圆管坯进行制管,制管过程如下:
将管坯放入加热炉进行加热,连续检查并控制好加热炉预热段、加热段、均热段的温度,各段温度的控制范围:预热Ⅰ段:800~1050℃;预热Ⅱ段:1000~1120℃;加热Ⅰ段:1150~1230℃;加热Ⅱ段:1220~1250℃;均热Ⅰ段:1240~1260℃;均热Ⅱ段:1240~1270℃;
用微机对加热炉各段温度进行自动控制并自动记录;
将加热好的管坯穿孔后在相应的PQF轧管机组进行连续轧制,再经微张力定径、带温矫直、冷床冷却、定尺锯切,成为用户所需规格的无缝钢管;轧制时每批至少进行一次热取样,检查几何尺寸,保证钢管的精确成型;
然后对钢管逐支进行水压试验和无损探伤检测,合格者进行正火热处理;
所述正火热处理包括加热到860℃保温30分钟出炉空冷。
2.根据权利要求1所述的700MPa级经济型无缝气瓶钢管的制造方法,其特征在于:其工艺流程简述为:圆连铸坯→定尺切割→管坯加热→菌式穿孔→PQF热连轧连续轧管→微张力定径→带温矫直→冷床冷却→定尺锯切→水压试验→无损探伤→正火热处理;
连铸圆管坯的生产过程如下所述:
对管坯进行化学成分化验,管坯的化学成分应符合下述要求:C 0.34-0.38%;Si 0.17-0.30%;Mn 1.55-1.70%;P≤0.015%;S≤0.010%;Cr 0.15-0.25%;Al 0.020-0.045%;Ni<0.10%;Cu<0.10%;余量为Fe及不可避免的杂质;
将成分化验合格及硫印不大于1.5级的连铸圆管坯进行制管,制管过程如下:
将管坯放入加热炉进行加热,连续检查并控制好加热炉预热段、加热段、均热段的温度,各段温度的控制范围:预热Ⅰ段:800~1050℃;预热Ⅱ段:1000~1120℃;加热Ⅰ段:1150~1230℃;加热Ⅱ段:1220~1250℃;均热Ⅰ段:1240~1260℃;均热Ⅱ段:1240~1270℃;
用微机对加热炉各段温度进行自动控制并自动记录;
将加热好的管坯穿孔后在相应的PQF轧管机组进行连续轧制,再经微张力定径、带温矫直、冷床冷却、定尺锯切,成为用户所需规格的无缝钢管;轧制时每批至少进行一次热取样,检查几何尺寸,保证钢管的精确成型;
然后对钢管逐支进行水压试验和无损探伤检测,合格者进行正火热处理;
所述正火热处理包括加热到860℃保温30分钟出炉空冷。
CN202110882197.6A 2021-08-02 2021-08-02 一种700MPa级经济型无缝气瓶钢管及其制造方法 Active CN113817956B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110882197.6A CN113817956B (zh) 2021-08-02 2021-08-02 一种700MPa级经济型无缝气瓶钢管及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110882197.6A CN113817956B (zh) 2021-08-02 2021-08-02 一种700MPa级经济型无缝气瓶钢管及其制造方法

Publications (2)

Publication Number Publication Date
CN113817956A CN113817956A (zh) 2021-12-21
CN113817956B true CN113817956B (zh) 2022-09-20

Family

ID=78912791

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110882197.6A Active CN113817956B (zh) 2021-08-02 2021-08-02 一种700MPa级经济型无缝气瓶钢管及其制造方法

Country Status (1)

Country Link
CN (1) CN113817956B (zh)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100489263C (zh) * 2007-01-31 2009-05-20 天津钢管集团股份有限公司 钻铤用厚壁无缝钢管的制作工艺
CN102330030B (zh) * 2011-10-14 2013-02-20 天津钢管集团股份有限公司 直径559~711mm车载高压气瓶用无缝钢管及生产方法
EP2789701A1 (en) * 2013-04-08 2014-10-15 DALMINE S.p.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
CN103556069B (zh) * 2013-11-04 2016-02-17 洛阳双瑞特种装备有限公司 一种高压气瓶用大直径无缝钢管及其制造方法
CZ306401B6 (cs) * 2015-12-03 2017-01-04 VĂŤTKOVICE CYLINDERS a. s. Způsob výroby vysokotlaké bezešvé láhve z korozivzdorné oceli
CN105586532B (zh) * 2016-03-25 2017-07-07 攀钢集团成都钢钒有限公司 低合金高强度大口径厚壁无缝钢管及其制造方法
KR20190112021A (ko) * 2017-01-26 2019-10-02 싸브 테크놀로지 에이비 경화강의 ?칭
CN109338220B (zh) * 2018-11-07 2021-06-22 包头钢铁(集团)有限责任公司 一种气瓶用含稀土37MnRE轧制方坯及其制造方法
CN109402527B (zh) * 2018-11-07 2021-02-23 林州凤宝管业有限公司 一种经济型p110钢级石油套管及其制造方法
CN109594021A (zh) * 2019-01-11 2019-04-09 包头钢铁(集团)有限责任公司 一种1000MPa级高强气瓶用无缝钢管及其制备方法
EP4060069A4 (en) * 2019-12-26 2023-05-24 JFE Steel Corporation High-strength seamless steel pipe and method for manufacturing same
CN111534742A (zh) * 2020-04-30 2020-08-14 天津钢管制造有限公司 防止气瓶钢管坯内部裂纹的管坯、制造方法及应用
CN112011735A (zh) * 2020-08-03 2020-12-01 鞍钢股份有限公司 一种经济型耐腐蚀性能良好的低温钢管及其制造方法

Also Published As

Publication number Publication date
CN113817956A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
CN107937828B (zh) F6nm马氏体不锈钢筒体锻件及热处理方法
CN101665891A (zh) 不锈耐热合金钢无缝钢管及其生产方法
CN113234899B (zh) 厚壁p92钢管的热处理方法
CN112251665A (zh) 一种超低温液氢容器用奥氏体不锈钢锻件及其制造方法
CN108517461B (zh) 一种高性能马氏体不锈钢法兰及其制造方法
CN108914015A (zh) 低合金高强度高冲击功特大型异形环锻件及其锻造方法
CN111979382A (zh) 大口径薄壁无缝钢管及其制备方法
CN107639129A (zh) 耐腐蚀不锈钢无缝钢管的加工工艺
CN111575450A (zh) 一种无缝钢管及其制备方法
US20070006946A1 (en) Manufacturing method of martensite stainless seamless steel pipe
CN113817956B (zh) 一种700MPa级经济型无缝气瓶钢管及其制造方法
CN112941410A (zh) 一种奥氏体不锈钢中α相含量控制方法
CN109338221B (zh) 一种挂车车轴管及其生产方法
CN115555407A (zh) 一种经济型、在线正火工艺生产壁厚16mm以下的BNSL245NS的制造方法
CN116694891A (zh) 一种壁厚>25mm的L360QS/X52QS无缝钢管的制造方法
CN105154652A (zh) 提高粗大光坯锻轴件力学性能的热处理方法
CN111979482B (zh) 一种CrMn弹簧钢大方坯及其一火成材制备方法
CN116607068A (zh) 一种页岩气用125Ksi高强韧SUP13Cr油井管及热连轧工艺制造方法
CN103343288B (zh) 一种缠绕气瓶用无缝钢管及其制造方法
CN113655060A (zh) 一种过共析钢网状渗碳体析出速度的定量评价方法
CN117965863A (zh) 一种经济型l360nx52n管线管的制造方法
CN113088639B (zh) 一种冷碾扩轴承用轴承钢管检验品控方法
CN119082596A (zh) 一种超低碳l245nh输氢用无缝钢管的制造方法
CN118389954A (zh) 一种超低碳厚壁x65qs抗腐蚀无缝管线钢管及制造方法
CN118768868A (zh) 一种l245qh纯氢输送用无缝钢管的制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240913

Address after: 014000 Hexi Industrial Zone, Kunqu District, Baotou City, Inner Mongolia Autonomous Region

Patentee after: Inner Mongolia BAO GANG UNITED STEEL Co.,Ltd.

Country or region after: China

Address before: 014010 Hexi Industrial Zone, Kunqu District, Baotou, the Inner Mongolia Autonomous Region

Patentee before: BAOTOU IRON & STEEL (GROUP) Co.,Ltd.

Country or region before: China

TR01 Transfer of patent right