[go: up one dir, main page]

CN113811624B - 经冷轧的马氏体钢及其马氏体钢的方法 - Google Patents

经冷轧的马氏体钢及其马氏体钢的方法 Download PDF

Info

Publication number
CN113811624B
CN113811624B CN202080033667.5A CN202080033667A CN113811624B CN 113811624 B CN113811624 B CN 113811624B CN 202080033667 A CN202080033667 A CN 202080033667A CN 113811624 B CN113811624 B CN 113811624B
Authority
CN
China
Prior art keywords
steel sheet
equal
temperature
cold rolled
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080033667.5A
Other languages
English (en)
Other versions
CN113811624A (zh
Inventor
马蒂厄·西本特里特
文森特·洛伊斯特
奥雷莉·埃斯诺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal SA
Original Assignee
ArcelorMittal SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArcelorMittal SA filed Critical ArcelorMittal SA
Publication of CN113811624A publication Critical patent/CN113811624A/zh
Application granted granted Critical
Publication of CN113811624B publication Critical patent/CN113811624B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种经冷轧的马氏体钢板,所述经冷轧的马氏体钢板包含以下元素:0.3%≤C≤0.4%;0.5%≤Mn≤1%;0.2%≤Si≤0.6%;0.1%≤Cr≤1%;0.01%≤Al≤1%;0.01%≤Mo≤0.5%;0.001%≤Ti≤0.1%;0%≤S≤0.09%;0%≤P≤0.09%;0%≤N≤0.09%;0%≤Nb≤0.1%;0%≤V≤0.1%;0%≤Ni≤1%;0%≤Cu≤1%;0%≤B≤0.05%;0.001%≤Ca≤0.01%;0%≤Sn≤0.1%;0%≤Pb≤0.1%;0%≤Sb≤0.1%;剩余部分组成由铁和由加工引起的不可避免的杂质组成,钢的显微组织以面积百分比计:至少95%的马氏体,累积量为1%至5%的铁素体和贝氏体,以及0%至2%的任选量的残余奥氏体。

Description

经冷轧的马氏体钢及其马氏体钢的方法
本发明涉及制造适用于汽车工业的经冷轧的马氏体钢的方法,特别地涉及拉伸强度为1700MPa或更大的马氏体钢。
汽车部件需要满足两个不一致的需求,即,易于成形且具有强度,但是近年来,考虑到全球环境问题,还给予汽车以改善燃料消耗的第三个要求。因此,现在汽车部件必须由具有高可成形性的材料制成,以符合复杂汽车组件的易于装配的标准,并且同时必须针对车辆耐撞性和耐久性而改善强度同时减小车辆的重量以改善燃料效率。
因此,进行了大量的研究和开发努力以通过增加材料的强度来减少汽车中使用的材料的量。相反地,钢板强度的增加使可成形性降低,并因此必须开发具有高强度和高可成形性二者的材料。
高强度和高可成形性钢板领域中的早期研究和开发已经产生了数种用于生产高强度和高可成形性钢板的方法,本文中列举其中的一些方法以用于对本发明的明确理解:
WO2017/065371的钢板通过以下步骤制造:将材料钢板经3至60秒快速加热至Ac3转变点或更高并使材料钢板保持,所述材料钢板包含0.08重量%至0.30重量%的C、0.01重量%至2.0重量%的Si、0.30重量%至3.0重量%的Mn、0.05重量%或更小的P、和0.05重量%或更小的S,剩余部分为Fe和其他不可避免的杂质;用水或油以100℃/秒或更高将经加热的钢板快速冷却;并快速回火至500℃至A1转变点持续3秒至60秒,这包括加热和保持时间。但是WO2017/065371的钢不能够在具有1700MPa的拉伸强度的同时提供22%的扩孔率。
本发明的目的是通过制造同时具有以下的可获得的经冷轧的马氏体钢板来解决这些问题:
-大于或等于1700MPa,并且优选大于1750MPa的极限拉伸强度,
-大于或等于1500MPa,并且优选大于1550MPa的屈服强度。
-至少22%且优选大于25%的扩孔率。
优选地,这样的钢还可以具有良好的成形适用性(对于轧制)以及良好的可焊性和可涂覆性。
本发明的另一个目的还在于使得可获得与常规工业应用相容同时对制造参数变化稳健的用于制造这些板的方法。
通过对本发明的优选实施方案的详细描述,本发明的上述目的和其他优点将变得更加明显。
经冷轧的马氏体钢的化学组成包含以下元素:
本发明的钢中存在的碳为0.3%至0.4%。碳是通过产生低温转变相例如马氏体来提高本发明钢的强度所必需的元素,因此,碳起到两个关键作用,一个是提高强度。但是,小于0.3%的碳含量将不能赋予本发明钢拉伸强度。另一方面,在碳含量超过0.4%时,钢表现出差的可点焊性,这限制其用于汽车部件的应用。对于本发明的优选含量可以保持0.3%至0.38%,并且更优选0.3%至0.36%。
本发明钢的锰含量为0.5%至1%。该元素是γ相生成元素(gammagenous)。锰提供固溶强化并且抑制铁素体转变温度和降低铁素体转变速率,因此有助于马氏体的形成。需要至少0.5%的量以赋予强度和有助于马氏体的形成。但是,当锰含量大于1%时,其产生不利的作用,例如其阻碍在退火之后的冷却期间奥氏体向马氏体的转变。大于1%的锰含量可能在凝固期间中在钢中过度偏析并且材料内部的均匀性受损,这可能导致在热加工期间的表面开裂。锰存在的优选限制为0.5%至0.9%,并且更优选为0.6%至0.8%。
本发明钢的硅含量为0.2%至0.6%。硅是通过固溶强化而有助于提高强度的元素。硅是可以阻碍在退火之后的冷却期间碳化物析出的成分,因此,硅促进马氏体的形成。但硅也是铁素体形成元素,并还提高了Ac3转变点,这将退火温度推到更高的温度范围,这是将硅的含量保持在最大0.6%的原因。高于0.6%的硅含量也可能回火脆化并且此外硅也损害可涂覆性。硅存在的优选限制为0.2%至0.5%,并且更优选为0.25%至0.45%。
本发明钢的组合带卷的铬含量为0.1%至1%。铬是通过固溶强化向钢提供强度的必要元素,需要最少0.1%以赋予强度,但当高于1%使用时损害钢的表面光洁度。铬存在的优选限制为0.3%至0.9%并且更优选为0.4%至0.8%。
铝的含量为0.01%至1%。在本发明中,铝去除钢水中存在的氧以防止氧在凝固过程期间形成气相。铝还将氮固定在钢中以形成氮化铝,从而减小晶粒尺寸。较高的铝含量(高于1%)使Ac3点增加至高温,从而降低生产率。铝存在的优选限制为0.01%至0.5%。
向本发明钢中添加0.001%至0.1%的钛。其形成在铸件的凝固期间出现的氮化钛。钛的量因此被限制为0.1%以避免形成对可成形性有害的粗氮化钛。在低于0.001%的钛含量的情况下,不会对本发明钢产生任何影响。
钼是必需元素,其构成本发明钢的0.01%至0.5%;钼在改善淬透性和硬度方面起着有效作用,延缓贝氏体的出现从而促进马氏体的形成,特别是当以至少0.01%的量添加时。钼还促进在热轧之后的冷却期间铁素体和珠光体显微组织的形成,该铁素体和珠光体显微组织促进冷轧。然而,过度添加钼增加合金元素的添加成本,因此出于经济原因将其含量限制为0.5%。钼的优选限制为0.1%至0.3%。
硫不是必需的元素,但可能作为杂质包含在钢中,从本发明的观点出发,硫含量优选尽可能低,但从制造成本的观点出发,硫含量为0.09%或更小。此外,如果在钢中存在较高的硫,则其尤其是与锰结合形成硫化物并降低锰对本发明的有益影响。
本发明钢的磷成分为0%至0.09%。磷降低可点焊性和热延性,特别是由于其倾向于在晶界处偏析或与锰共偏析。由于这些原因,其含量被限制为0.09%,并且优选低于0.06%。
氮被限制为0.09%以避免材料老化并以使在凝固期间对钢的机械特性有害的氮化铝的析出最小化。
铌在本发明钢中以0%至0.1%存在,并且适合于形成碳氮化物以通过析出硬化来赋予本发明钢强度。铌还将通过其作为碳氮化物的析出以及通过阻碍在加热过程期间的再结晶来影响显微组织组分的尺寸。因此,在保持温度结束时并因此在完全退火之后形成的更细的显微组织将引起产物的硬化。然而,由于观察到其影响的饱和作用(这意味着额外量的铌不会引起产品的任何强度改善),因此高于0.1%的铌含量在经济上得不到关注。
钒通过形成碳化物或碳氮化物而有效地提高钢的强度,从经济的观点出发上限为0.1%。
镍可以以0%至1%的量作为任选的元素添加以增加本发明钢的强度并改善其韧性。优选0.01%的最小值来获得这样的效果。然而,当其含量大于1%时,镍导致延性劣化。
铜可以作为任选元素以0%至1%的量添加,从而提高本发明钢的强度并改善其耐腐蚀性。优选0.01%的最小值来获得这样的效果。然而,当其含量大于1%时,其可以使表面外观劣化。
硼是本发明钢的任选元素并且可以以0%至0.05%存在。当硼以至少0.0001%的量添加时,其形成硼氮化物并赋予本发明钢额外的强度。
可以以0.001%至0.01%%的量向本发明钢添加钙。钙作为任选的元素尤其是在夹杂物处理期间被添加至本发明钢。钙通过结合呈球状形式的有害硫内容物从而阻碍硫的有害作用来有助于钢的精炼。
其他元素如Sn、Pb或Sb可以以以下比例单独添加或组合添加:Sn≤0.1%,Pb≤0.1%,和Sb≤0.1%。最高至所示的最大含量水平,这些元素使得可以在凝固期间使晶粒细化。钢的组成的剩余部分由铁和由加工产生的不可避免的杂质组成。
现在将详细描述马氏体钢板的显微组织,所有百分比均为面积分数。
马氏体以面积分数计构成显微组织的至少95%。本发明的马氏体可以包含新鲜马氏体和回火马氏体。然而,新鲜马氏体是任选的显微成分,优选地其在钢中被限制以0%至4%,优选0%至2%,并且甚至更好等于0%的量。新鲜马氏体可以在回火之后的冷却期间形成。回火马氏体由在退火之后的第二步冷却期间并且特别是在低于Ms温度之后,并且更特别地Ms-10℃至20℃形成的马氏体形成。然后将这样的马氏体在保持在150℃至300℃的回火温度T回火期间回火。本发明的马氏体赋予这样的钢延性和强度。优选地,马氏体的含量为96%至99%,并且更优选为97%至99%。
铁素体和贝氏体的累积量为显微组织的1%至5%。贝氏体和铁素体的累积存在在5%之前不会对本发明产生不利影响,但超过5%机械特性可能受到不利地影响。因此,将铁素体和贝氏体的累积存在的优选限制保持为1%至4%,并且更优选1%至3%。
贝氏体在回火之前的再加热期间形成。在一个优选的实施方案中,本发明钢包含1%至3%的贝氏体。贝氏体可以赋予钢的可成形性,但是当以太大量存在时,其可能会对钢的拉伸强度产生不利影响。
铁素体可以在退火之后的第一步冷却期间形成,但作为显微组织成分不需要其。铁素体的形成必须保持尽可能低,并且优选小于2%或甚至小于1%。
残余奥氏体是任选的显微组织,其可以在钢中以0%至2%存在。
除上述显微组织之外,经冷轧的马氏体钢板的显微组织不含诸如珠光体和渗碳体的显微组织组分。
根据本发明的钢可以通过任何合适的方法来制造。然而,作为非限制性实例,优选使用将详述的根据本发明的方法。
这样的优选的方法在于提供具有根据本发明的初始钢的化学组成的钢的半成品铸件。可以将铸件制成锭或者连续地制成薄板坯或薄带材的形式,即,厚度范围从对于板坯的约220mm到对于薄带材的几十毫米。
例如,具有根据本发明的化学组成的板坯通过连铸来制造,其中板坯在连铸过程期间任选地经历直接轻压下以避免中心偏析并确保局部碳与标称碳之比保持低于1.10。通过连铸过程提供的板坯可以在连铸之后在高温下直接使用,或者可以首先冷却至室温然后再加热用于热轧。
使其经历热轧的板坯的温度必须为至少1000℃,并且必须低于1280℃。在板坯的温度低于1280℃的情况下,在轧机上施加过大的负荷,此外,在精轧期间中钢的温度可能降低至铁素体转变温度,从而钢会在组织中包含转变铁素体的状态下被轧制。因此,板坯的温度必须足够高,使得热轧应在Ac3至Ac3+100℃的温度范围内完成。必须避免在高于1280℃的温度下再加热,因为这在工业上是昂贵的。
然后将以此方式获得的板以至少20℃/秒的冷却速率冷却至必须低于650℃的卷取温度。优选地,冷却速率小于或等于200℃/秒。
然后将经热轧的钢板在低于650℃的卷取温度下卷取以避免椭圆化,并且优选475℃至625℃以避免氧化皮形成,其中这样的卷取温度的甚至优选范围为500℃至625℃。然后将经卷取的经热轧的钢板冷却至室温,然后对其进行任选的热带退火。
可以使经热轧的钢板经历任选的氧化皮去除步骤以除去在任选的热带退火之前的热轧期间形成的氧化皮。然后可以使经热轧的板经受任选的热带退火。在一个优选的实施方案中,这样的热带退火在400℃至750℃的温度下进行优选持续至少12小时并且不超过96小时,温度优选保持低于750℃以避免使经热轧的显微组织部分转变,并因此,可能失去显微组织均匀性。此后,该经热轧的钢板的任选的氧化皮去除步骤可以通过例如这样的板的酸洗来进行。
然后以35%至90%的厚度压下率使该经热轧的钢板经历冷轧以获得经冷轧的钢板。
此后对经冷轧的钢板进行热处理,这将赋予本发明钢所需的机械特性和显微组织。
然后以两步加热过程加热经冷轧的钢板,其中第一步加热从室温开始,将经冷轧的钢板以至少10℃/秒的加热速率HR1加热至550℃至750℃的范围内的温度HT1。在一个优选的实施方案中,对于这样的第一步加热的加热速率HR1为至少15℃/秒并且更优选为至少18℃/秒。对于这样的第一步的优选HT1温度为575℃至725℃。
在第二步加热中,将经冷轧的钢板以1℃/秒至50℃/秒的加热速率HR2从HT1加热至为Ac3至Ac3+100℃,优选为Ac3+10℃至Ac3+100℃的退火温度T均热。在一个优选的实施方案中,第二步加热的加热速率HR2为1℃/秒至25℃/秒并且更优选为1℃/秒至20℃/秒,其中钢板的Ac3通过使用下式来计算:
Ac3=910-203[C]^(1/2)-15.2[Ni]+44.7[Si]+104[V]+31.5[Mo]+13.1[W]-30[Mn]
-11[Cr]-20[Cu]+700[P]+400[Al]+120[As]+400[Ti]
其中元素含量以经冷轧的钢板的重量百分比表示。
将经冷轧的钢板在T均热下保持10秒至500秒的时间以确保强加工硬化的初始组织的完全再结晶和完全转变为奥氏体。
然后以两步冷却过程将经冷轧的钢板冷却,其中第一步冷却从T均热开始,经冷轧的钢板以30℃/秒至150℃/秒的冷却速率CR1冷却至630℃至750℃的范围内的温度T1。在一个优选的实施方案中,这样的第一步冷却的冷却速率CR1为30℃/秒至120℃/秒。这样的第一步的优选T1温度为640℃至725℃。
在第二步冷却中,将经冷轧的钢板以至少50℃/秒的冷却速率CR2从T1冷却至Ms-10℃至20℃的温度T2。在一个优选的实施方案中,第二步冷却的冷却速率CR2为至少100℃/秒,并且更优选为至少150℃/秒。这样的第二步的优选T2温度为Ms-50℃至20℃。
钢板的Ms通过使用下式来计算:
Ms=545-601.2*(1-EXP(-0.868[C]))-34.4[Mn]-13.7[Si]-9.2[Cr]-17.3[Ni]
-15.4[Mo]+10.8[V]+4.7[Co]-1.4[At]-16.3[cu]-361[Nb]-2.44[Ti]
-3448[B]
此后,将经冷轧的钢板以至少1℃/秒,并且优选至少2℃/秒和更大、至少5℃/秒的加热速率再加热至150℃至300℃的回火温度T回火持续100秒和600秒的时间。回火的优选温度范围为200℃至300℃,保持在T回火下的优选持续时间为200秒至500秒。
然后,将经冷轧的钢板冷却至室温以获得经冷轧的马氏体钢。
本发明的经冷轧的马氏体钢板可以任选地用锌或锌合金,或者用铝或铝合金涂覆以改善其耐腐蚀性。
实施例
本文中呈现的以下测试、实施例、图形示例和表本质上是非限制性的,并且必须仅出于说明的目的而被考虑,并且将显示本发明的有利特征。
表1中汇总了由具有不同组成的钢制成的钢板,其中分别根据如表2记明的工艺参数生产钢板。此后,表3汇总了在试验期间获得的钢板的显微组织,表4汇总了获得的特性的评估结果。
表2
表2汇总了热轧工艺参数和对经冷轧的钢板实施的以赋予表1的钢所需的机械特性以成为经冷轧的马氏体钢的退火工艺参数。
表3例示了以面积分数表示的在用于确定本发明的钢和参照钢二者的显微组织的不同显微镜例如扫描电子显微镜上根据标准进行的测试的结果。本文中记明了结果:
表3:
试验 马氏体 铁素体+贝氏体 残余奥氏体
I1 98 2% -
l2 98 2% -
l3 98 2% -
R1 89% 11% -
R2 93.5% 6.5% -
R3 94% 6% -
I=根据本发明,R=参照;带下划线的值:未根据本发明。
表4
汇总了根据标准进行的各种机械测试的结果。为了测试极限拉伸强度和屈服强度,根据JIS-Z2241测试极限拉伸强度和屈服强度。为了评估扩孔,应用了被称为扩孔的测试,在该测试中,对样品进行冲孔(10mm的孔)并变形,在变形之后我们测量孔径并计算HER%=100*(Df-Di)/Di
I=根据本发明,R=参照;带下划线的值:未根据本发明。

Claims (17)

1.一种经冷轧的马氏体钢板,以重量百分比表示,所述经冷轧的马氏体钢板包含以下元素:
0.3%≤C≤0.4%;
0.5%≤Mn≤1%;
0.2%≤Si≤0.6%;
0.1%≤Cr≤1%;
0.01%≤Al≤1%;
0.01%≤Mo≤0.5%;
0.001%≤Ti≤0.1%;
0%≤S≤0.09%;
0%≤P≤0.09%;
0%≤N≤0.09%;
并且任选地包含以下任选元素中的一者或更多者:
0%≤Nb≤0.1%;
0%≤V≤0.1%;
0%≤Ni≤1%;
0%≤Cu≤1%;
0%≤B≤0.05%;
0.001%≤Ca≤0.01%;
0%≤Sn≤0.1%;
0%≤Pb≤0.1%;
0%≤Sb≤0.1%;
剩余部分组成由铁和由加工引起的不可避免的杂质组成,所述钢的显微组织以面积百分比计包含:至少95%的马氏体,累积量为1%至5%的铁素体和贝氏体,以及0%至2%的任选量的残余奥氏体;
所述经冷轧的马氏体钢板具有1700MPa或更大的极限拉伸强度,1500MPa或更大的屈服强度,和至少22%的扩孔率。
2.根据权利要求1所述的经冷轧的马氏体钢板,其中组成包含0.3%至0.36%的碳。
3.根据权利要求1或2所述的经冷轧的马氏体钢板,其中组成包含0.3%至0.38%的碳。
4.根据权利要求1或2所述的经冷轧的马氏体钢板,其中组成包含0.01%至0.5%的铝。
5.根据权利要求1或2所述的经冷轧的马氏体钢板,其中组成包含0.5%至0.9%的锰。
6.根据权利要求1或2所述的经冷轧的马氏体钢板,其中组成包含0.3%至0.9%的铬。
7.根据权利要求1或2所述的经冷轧的马氏体钢板,其中马氏体的量为96%至99%。
8.根据权利要求1或2所述的经冷轧的马氏体钢板,其中铁素体和贝氏体的所述累积量为1%至4%。
9.一种生产经冷轧的马氏体钢板的方法,所述方法包括以下顺序步骤:
-提供具有根据权利要求1至6中任一项所述的钢组成的半成品;
-将所述半成品再加热至1000℃至1280℃的温度;
-在奥氏体范围内对所述半成品进行轧制以获得经热轧的钢板,其中热轧终轧温度为Ac3至Ac3+100℃;
-将所述板以至少20℃/秒的冷却速率冷却至低于650℃的卷取温度;并且卷取所述经热轧的板;
-使所述经热轧的板冷却至室温;
-任选地对所述经热轧的钢板进行氧化皮去除过程;
-任选地可以对经热轧的钢板进行退火;
-任选地对所述经热轧的钢板进行氧化皮去除过程;
-以35~90%的压下率对所述经热轧的钢板进行冷轧以获得经冷轧的钢板;
-然后,以两步加热将所述经冷轧的钢板加热,其中:
O第一步加热,将所述经冷轧的钢板以至少10℃/秒的冷却速率HR1从室温开始加热至550℃至750℃的温度HT1;
O第二步加热,以1℃/秒至50℃/秒的加热速率HR2从HT1开始加热至AC3至AC3+100℃的温度T均热,在所述温度T均热下将所述经冷轧的钢板保持10秒至500秒的时间,
-然后,以两步冷却将所述经冷轧的钢板冷却,其中:
○第一步冷却,将所述经冷轧的钢板以30℃/秒至150℃/秒的冷却速率CR1从T均温开始冷却至630℃至750℃的温度T1;
○第二步冷却,以至少50℃/秒的冷却速率CR2从T1开始冷却至Ms-10℃至20℃的温度T2,
-然后将所述经冷轧的钢板以至少1℃/秒的速率再加热至150℃至300℃的回火温度T回火,在所述回火温度下将所述经冷轧的钢板保持100秒至600秒的时间;
-然后以至少1℃/秒的冷却速率冷却至室温以获得经冷轧的马氏体钢板。
10.根据权利要求9所述的方法,其中所述卷取温度为475℃至625℃。
11.根据权利要求9或10所述的方法,其中T均热为Ac3+10℃至Ac3+100℃。
12.根据权利要求9或10所述的方法,其中CR1为30℃/秒至120℃/秒。
13.根据权利要求9或10所述的方法,其中T1为640℃至725℃。
14.根据权利要求9或10所述的方法,其中CR2为至少100℃/秒。
15.根据权利要求9或10所述的方法,其中T2为Ms-50℃至20℃。
16.根据权利要求9或10所述的方法,其中T回火为200℃至300℃。
17.根据权利要求1至8中任一项获得的钢板或根据权利要求9至16中任一项所述的方法制造的钢板用于制造车辆的结构部件的用途。
CN202080033667.5A 2019-06-12 2020-06-05 经冷轧的马氏体钢及其马氏体钢的方法 Active CN113811624B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/IB2019/054901 WO2020250009A1 (en) 2019-06-12 2019-06-12 A cold rolled martensitic steel and a method of martensitic steel thereof
IBPCT/IB2019/054901 2019-06-12
PCT/IB2020/055319 WO2020250098A1 (en) 2019-06-12 2020-06-05 A cold rolled martensitic steel and a method of martensitic steel thereof

Publications (2)

Publication Number Publication Date
CN113811624A CN113811624A (zh) 2021-12-17
CN113811624B true CN113811624B (zh) 2023-10-20

Family

ID=66951997

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080033667.5A Active CN113811624B (zh) 2019-06-12 2020-06-05 经冷轧的马氏体钢及其马氏体钢的方法

Country Status (11)

Country Link
US (1) US20220298614A1 (zh)
EP (1) EP3983568A1 (zh)
JP (1) JP7547392B2 (zh)
KR (1) KR102708271B1 (zh)
CN (1) CN113811624B (zh)
CA (1) CA3139633A1 (zh)
MA (1) MA56172A (zh)
MX (1) MX2021015171A (zh)
UA (1) UA128772C2 (zh)
WO (2) WO2020250009A1 (zh)
ZA (1) ZA202108295B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240046196A (ko) * 2021-10-13 2024-04-08 닛폰세이테츠 가부시키가이샤 냉연 강판 및 그 제조 방법, 그리고 용접 조인트
CN118056030A (zh) * 2021-10-29 2024-05-17 安赛乐米塔尔公司 经冷轧和热处理的钢板及其制造方法
WO2023073411A1 (en) * 2021-10-29 2023-05-04 Arcelormittal Cold rolled and heat treated steel sheet and a method of manufacturing thereof
WO2023223078A1 (en) * 2022-05-19 2023-11-23 Arcelormittal A martensitic steel sheet and a method of manunfacturing thereof
WO2024105429A1 (en) * 2022-11-14 2024-05-23 Arcelormittal High toughness press-hardened steel part and method of manufacturing the same
WO2024105428A1 (en) * 2022-11-14 2024-05-23 Arcelormittal High toughness press-hardened steel part and method of manufacturing the same
WO2024201098A1 (en) * 2023-03-27 2024-10-03 Arcelormittal Cold rolled and heat treated steel sheet and a method of manufacturing thereof
WO2024209234A1 (en) * 2023-04-05 2024-10-10 Arcelormittal Cold rolled and heat treated steel sheet and a method of manufacturing thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928875A (zh) * 2009-06-22 2010-12-29 鞍钢股份有限公司 具有良好成形性能的高强度冷轧钢板及其制备方法
WO2015043411A1 (zh) * 2013-09-29 2015-04-02 宝山钢铁股份有限公司 一种高成形性冷轧双相带钢及其制造方法
CN105452513A (zh) * 2013-08-09 2016-03-30 杰富意钢铁株式会社 高屈服比高强度冷轧钢板及其制造方法
CN105874086A (zh) * 2013-12-11 2016-08-17 安赛乐米塔尔公司 高强度钢及其制造方法
CN107614732A (zh) * 2015-06-10 2018-01-19 安赛乐米塔尔公司 高强度钢及生产方法
WO2018115935A1 (en) * 2016-12-21 2018-06-28 Arcelormittal Tempered and coated steel sheet having excellent formability and a method of manufacturing the same
CN108463340A (zh) * 2016-01-18 2018-08-28 安赛乐米塔尔公司 具有优异的可成形性的高强度钢板及其制造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3837400C2 (de) * 1988-11-01 1995-02-23 Mannesmann Ag Verfahren zur Herstellung nahtloser Druckbehälter
JP2528387B2 (ja) * 1990-12-29 1996-08-28 日本鋼管株式会社 成形性及びストリップ形状の良好な超高強度冷延鋼板の製造法
JPH0841535A (ja) * 1994-07-29 1996-02-13 Nippon Steel Corp 低温靱性に優れた高硬度耐摩耗鋼の製造方法
JP5655356B2 (ja) 2010-04-02 2015-01-21 Jfeスチール株式会社 低温焼戻脆化割れ性に優れた耐摩耗鋼板
JP5126399B2 (ja) 2010-09-06 2013-01-23 Jfeスチール株式会社 伸びフランジ性に優れた高強度冷延鋼板およびその製造方法
CN104126022B (zh) * 2011-11-28 2016-11-09 安赛乐米塔尔研发有限公司 具有1700至2200MPa拉伸强度的马氏体钢
JP5966730B2 (ja) 2012-07-30 2016-08-10 Jfeスチール株式会社 耐衝撃摩耗特性に優れた耐摩耗鋼板およびその製造方法
BR112016012424B1 (pt) * 2013-12-11 2019-08-27 Arcelormittal folha de aço martensítico, diretamente obtida após laminação a frio, recozimento e resfriamento e método para produzir uma folha de aço martensítico laminada a frio e recozida
KR101568549B1 (ko) * 2013-12-25 2015-11-11 주식회사 포스코 우수한 굽힘성 및 초고강도를 갖는 열간 프레스 성형품용 강판, 이를 이용한 열간 프레스 성형품 및 이들의 제조방법
EP3187613B1 (en) 2014-12-12 2019-09-04 JFE Steel Corporation High-strength cold-rolled steel sheet and method for producing same
JP6245220B2 (ja) 2015-05-29 2017-12-13 Jfeスチール株式会社 低温靱性および耐腐食摩耗性に優れた耐摩耗鋼板
KR101725274B1 (ko) 2015-10-16 2017-04-10 삼화스틸(주) 고강도 강판 및 그 제조방법
KR101917472B1 (ko) * 2016-12-23 2018-11-09 주식회사 포스코 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강 및 그 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928875A (zh) * 2009-06-22 2010-12-29 鞍钢股份有限公司 具有良好成形性能的高强度冷轧钢板及其制备方法
CN105452513A (zh) * 2013-08-09 2016-03-30 杰富意钢铁株式会社 高屈服比高强度冷轧钢板及其制造方法
WO2015043411A1 (zh) * 2013-09-29 2015-04-02 宝山钢铁股份有限公司 一种高成形性冷轧双相带钢及其制造方法
CN105874086A (zh) * 2013-12-11 2016-08-17 安赛乐米塔尔公司 高强度钢及其制造方法
CN107614732A (zh) * 2015-06-10 2018-01-19 安赛乐米塔尔公司 高强度钢及生产方法
CN108463340A (zh) * 2016-01-18 2018-08-28 安赛乐米塔尔公司 具有优异的可成形性的高强度钢板及其制造方法
WO2018115935A1 (en) * 2016-12-21 2018-06-28 Arcelormittal Tempered and coated steel sheet having excellent formability and a method of manufacturing the same

Also Published As

Publication number Publication date
ZA202108295B (en) 2022-08-31
CN113811624A (zh) 2021-12-17
CA3139633A1 (en) 2020-12-17
KR102708271B1 (ko) 2024-09-20
JP7547392B2 (ja) 2024-09-09
EP3983568A1 (en) 2022-04-20
WO2020250098A1 (en) 2020-12-17
UA128772C2 (uk) 2024-10-16
JP2022537932A (ja) 2022-08-31
MX2021015171A (es) 2022-01-18
KR20220005572A (ko) 2022-01-13
MA56172A (fr) 2022-04-20
WO2020250009A1 (en) 2020-12-17
BR112021021695A2 (pt) 2021-12-21
US20220298614A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
CN113748219B (zh) 经冷轧的马氏体钢及其马氏体钢的方法
CN113811624B (zh) 经冷轧的马氏体钢及其马氏体钢的方法
CN115698365B (zh) 经热处理的冷轧钢板及其制造方法
CN114746562A (zh) 经热轧的钢板及其制造方法
CN115698346A (zh) 经热处理的冷轧钢板及其制造方法
CN112689684B (zh) 经冷轧和涂覆的钢板及其制造方法
CA3163313C (en) Heat treated cold rolled steel sheet and a method of manufacturing thereof
RU2785760C1 (ru) Холоднокатаная мартенситная сталь и способ получения мартенситной стали
CN119213157A (zh) 马氏体钢板及其制造方法
CN119137303A (zh) 经冷轧的马氏体钢及其生产方法
WO2025056941A1 (en) A cold rolled martensitic steel and a method of martensitic steel thereof
CN118159678A (zh) 经冷轧和热处理的钢板及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant