CN113723207B - 一种基于直方图距离的声发射信号突变检测方法 - Google Patents
一种基于直方图距离的声发射信号突变检测方法 Download PDFInfo
- Publication number
- CN113723207B CN113723207B CN202110895055.3A CN202110895055A CN113723207B CN 113723207 B CN113723207 B CN 113723207B CN 202110895055 A CN202110895055 A CN 202110895055A CN 113723207 B CN113723207 B CN 113723207B
- Authority
- CN
- China
- Prior art keywords
- histogram
- signal
- acoustic emission
- distance
- mutation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/043—Analysing solids in the interior, e.g. by shear waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/14—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/36—Detecting the response signal, e.g. electronic circuits specially adapted therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
- G01N29/4472—Mathematical theories or simulation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
- G01N29/449—Statistical methods not provided for in G01N29/4409, e.g. averaging, smoothing and interpolation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/025—Change of phase or condition
- G01N2291/0258—Structural degradation, e.g. fatigue of composites, ageing of oils
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/02—Preprocessing
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Data Mining & Analysis (AREA)
- Immunology (AREA)
- Mathematical Physics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Biochemistry (AREA)
- Chemical & Material Sciences (AREA)
- Pure & Applied Mathematics (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Computational Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Probability & Statistics with Applications (AREA)
- Algebra (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Databases & Information Systems (AREA)
- Operations Research (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Signal Processing (AREA)
- Acoustics & Sound (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明提供一种基于直方图距离的声发射信号突变检测方法,所述包括以下步骤:(1)采集原始声发射信号;(2)分割声发射信号,将原始声发射信号以k点为分界点分为两个窗口段;(3)计算两个窗口段的相对频率直方图;(4)获取两个窗口段的相对频率直方图距离;(5)确定声发射信号突变点,移动两相邻窗口段,搜索直方图距离最大的点,将该点的对应时间视为信号突变时间。本发明能准确、快速识别声发射信号发生突变的时间,解决了现有声发射信号突变检测方法检测精度低、稳定性差问题,适用于故障诊断、地质学等多种领域。
Description
技术领域
本发明涉及信号检测技术领域,尤其涉及一种基于直方图距离的声发射信号突变检测方法。
背景技术
突变信号中的突变点经常携带重要的信息,是信号重要的特征之一。在机械故障诊断领域,信号突变点往往表示故障的产生。在地质学领域,地震信号在P波、S波到达时会产生突变。然而,在实际环境中,由于背景噪声过大,或者信号本身比较微弱,很难对信号突变时间做出准确的判断。这对信号的处理和后续工作带来了影响。因此,准确识别信号突变时间具有重要意义。
现有的突变信号检测的方法包括基于赤池信息准则(AIC)方法,时窗能量法等。然而,赤池信息方法对低信噪比信号处理效果不理想,并且突变点难以确定,容易产生误判;时窗能量法窗口选择对信号处理影响过大,同样也不适用于低信噪比情况。
发明内容
为了解决不同信噪比环境下突变信号检测精度低、稳定性差等问题,本发明提出一种基于直方图距离的声发射信号突变检测方法。本方法具有效率高、判断准确的特点,克服了窗口选择带来的问题,可应用于多种领域和不同信噪比的信号,例如机械加工监测和地震信号拾取。
本发明提供一种基于直方图距离的声发射信号突变检测方法,所述包括以下步骤:
(1)采集信号:以符合香农采样定理的采样频率来采集时域声发射信号;
(2)分割信号:对含有n个元素的原始离散信号进行分割,将原始信号分割成任意两相邻窗口段,记为interval1和interval2:interval1包含从第1个到第k个元素,interval2包含从第(k+1)个到第n个元素;
(3)计算窗口的相对频率直方图:定义信号时间序列直方图并计算相邻两段信号直方图;
(4)获取两窗口段相对频率直方图距离:使用巴氏系数定义直方图距离,使其满足度量公理,计算相邻两窗口段的直方图距离;
(5)突变点确定:根据dB(hA,hB)的定义,移动两个相邻窗口段interval1和interval2,搜索直方图距离最大的点,并将该点的对应时间视为声发射信号的突变时间点。
步骤(3)中计算窗口的相对频率直方图包括以下步骤:
(3.1)定义直方图:定义为窗口直方图,其中/>
(3.2)计算直方图:根据公式,计算生成两个窗口段的相对频率直方图:其中/>为第i个直方中样本的概率,/>为属于[xi,xi+1]区间的元素数量,n是离散信号中的元素数量。
步骤(4)中获取两窗口段相对频率直方图距离包括以下步骤:
(4.1)定义直方图距离:其中B(hA,hB)是直方图hA与直方图hB之间巴氏系数,记为:/>dB(hA,hB)为直方图hA与直方图hB的直方图距离,其满足度量公理,即满足正定性、对称性和三角不等式;
(4.2)直方图距离判定突变点:dB介于0到1之间,当两个直方图趋近相同时,dB为趋近0;信号突变点前后两直方图距离最大。
本发明的有益成果为:
(1)本发明改进了算法流程,通过移动窗口段来代替传统的窗口分段方式,有效解决了传统算法由于窗口选择带来的问题,方法更具有实用性。
(2)本发明利用断铅实验和多组地震波的P相识别评估本方法的效果,并与现有技术相比较。测试结果表明,本发明相对于现有技术识别精度更高、稳定性更好、识别速度更快。本发明可以运用于机械加工、地质学等多种领域和不同信噪比下声发射信号突变检测。
附图说明
图1为本发明基于直方图距离的声发射信号突变检测方法的流程示意图。
图2为本发明基于直方图距离的声发射信号突变检测方法的原始信号分割示意图。
图3为本发明基于直方图距离的声发射信号突变检测方法检测误差及分布曲线。
图4为本发明基于直方图距离的声发射信号突变检测方法断铅实验的检测结果。
图5为本发明基于直方图距离的声发射信号突变检测方法的检测结果与人工标记的P波到达时间的偏移量。
图6为本发明基于直方图距离的突变信号检测方法地震波的P相识别实验的检测结果。
图7为现有技术基于AIC的突变信号检测方法误差。
图8为现有技术人工标记断铅实验的检测结果。
图9为现有技术基于AIC的突变信号检测方法断铅实验的检测结果。
图10为现有技术基于AIC的突变信号检测方法的检测结果与人工标记的P波到达时间的偏移量。
图11为现有技术人工标记地震波的P相识别实验的检测结果。
具体实施方式
本发明提供一种基于直方图距离的声发射信号突变检测方法,图1为为本发明基于直方图距离的声发射信号突变检测方法的流程示意图。下面结合图1,描述本发明方法的具体实施方式。
识别信号发生突变时间的难度为:低信噪比信号处理效果不理想;突变点难以确定,容易产生误判;窗口选择对信号处理影响过大。为解决以上问题,本发明提出一种基于直方图距离的声发射信号突变检测方法,用于判断信号发生突变的准确时间,可以识别振动等故障信号、地震信号等到达时间。尤其在低信噪比情况下,本发明依然有着较高的精确度和稳定性,并且可以避免窗口选择带来的问题。
本发明提供一种基于直方图距离的声发射信号突变检测方法,所述包括如下步骤:
(1)采集信号:以符合香农采样定理的采样频率采集的时域信号为对象;
(2)分割信号:如图2所示对原始离散信号进分割,将原始信号分割成任意两相邻窗口段,记为interval1和interval2。interval1包含从第1个到第k个元素,interval2包含从第(k+1)个到第n个元素。通过此分段方式,避免了窗口长度等参数的影响;
(3)计算窗口的相对频率直方图:定义信号时间序列直方图并计算相邻两段信号直方图;
(4)获取两窗口段相对频率直方图距离:使用巴氏系数定义直方图距离,使其满足度量公理,计算相邻两窗口段的直方图距离;
(6)突变点确定:根据dB(hA,hB)的定义,移动两个相邻窗口段interval1和interval2,搜索直方图距离最大的点,并将该点的对应时间视为信号突变时间。
步骤(3)中计算窗口的相对频率直方图包括以下步骤:
(3.1)定义直方图:定义为窗口直方图,其中/>
(3.2)计算直方图:根据公式:计算生成两个窗口段的相对频率直方图:其中/>为第i个直方中样本的概率,/>为属于[xi,xi+1]区间的元素数量,n是离散时间序列中的元素数量。
步骤(4)中获取两窗口段相对频率直方图距离包括以下步骤:
(4.1)定义直方图距离:其中B(hA,hB)是直方图hA与直方图hB之间巴氏系数,记为:/>dB(hA,hB)为直方图hA与直方图hB的直方图距离,其满足度量公理,即满足正定性、对称性和三角不等式;
(4.2)直方图距离判定突变点:dB介于0到1之间,当两个直方图趋近相同时,dB为趋近0;信号突变点前后两直方图距离最大。
本发明提出的一种基于直方图距离的声发射信号突变检测方法可以准确的识别突变点,不容易误判。实验验证如下:
(1)断铅实验验证:铅芯断裂时会产生突变的声发射信号,通过与人工检测结果比较(人工检测结果,定义为分析人员在其常规分析中确定的结果,经经验认为是正确的),从而验证本发明所述的方法识别不同信噪比信号突变时间的精度。将直径0.3mm,长约30mm的铅笔芯固定在混凝土梁的表面。使铅笔芯断裂在三个不同点。铅芯断裂释放的能量由10个工作频率范围为200-850kHz的压电式声发射传感器收集。原始信号使用26dB增益放大。采样频率为1MHz,阈值为31dB。铅芯断裂测试生成了100组声发射信号。经过上述5个步骤,得到100组声信号的突变时间点。将其与人工检测的突变时间点比较。
自动检测结果与手动检测结果的误差如图3所示。信噪比是声发射信号与噪声信号的比值,信噪比越小,噪声相对越大。密度曲线为相应的经验分布,提供了对均值的估计。偏移量为自动检测结果的误差,均值为偏移量数据集的平均大小,标准差用来衡量偏移量数据点的离散程度,均值和标准差越小,误差越小,检测结果越稳定,越精确。当信噪比大于10dB时,误差值大多集中在均值附近。当信噪比低于10dB时,自动检测结果和手动检测结果之间的分散程度高。高信噪比组(信噪比大于10dB)中误差小于20μs的百分比为94%。低信噪比组(信噪比小于10dB)中小于20μs的误差百分比为76.5%。
基于赤池信息准则(AIC)的算法是目前常用的突变信号自动识别算法。将本发明所述的检测方法与AIC方法作比较。如图7所示,AIC方法在高信噪比(信噪比大于10dB)时结果与本发明所述的方法相似,但在低信噪比(信噪比小于10dB)时结果更为分散,表明在低信噪比情况下赤池信息方法不容易准确识别低信噪比信号。使用本发明的检测方法和AIC方法的检测结果如图4、图8和图9所示:图8为人工标记断铅实验的检测结果。信号在时间为0.1920秒时发生突变,图4为本发明所示方法对断铅实验的检测结果,信号在时间为0.1920秒时发生突变,与人工标记的结果一样。图9为AIC方法对对断铅实验的检测结果,AIC值最小点的对应时间视为AIC方法检测到的信号突变时间,可以看出在手动选取点处(0.1920秒)的AIC值发生明显下降,但此后AIC值开始波动,最小值点出现在手动选取点的后面,信号在0.2580秒处发生突变。AIC方法生成的突变时间产生了延迟。相比之下,本发明所述的方法准确地反映信号突变,突变点为直方图距离的最大值。
(2)地震波的P相识别验证:地震信号在P波到达时会发生突变,通过与地震台站测得的P波到达时间比较即可验证本发明所述方法识别信号突变时间的效果。由于地震信号垂直分量上P相最强,这里使用地震信号的垂直分量数据。地震信号从IRIS(IncorporatedResearch Institutions for Seismology,美国地震学研究联合会)地震台站获取,采样频率为100Hz。选择300组不同波形特性的信号,其涵盖了广泛的信噪比。通过本发明所述的方法步骤计算得到信号突变时间。
图5显示了本发明所示方法的检测结果与人工标记的P波到达时间的时间差(偏移量)。图10显示了基于AIC方法的检测结果与人工标记的P波到达时间的时间差。可以看出本发明所述方法的结果偏移分布比AIC方法的要窄得多,即本发明所述的方法误差更小。对于本发明所述的方法,±2秒内的偏移量数占数据集的45%。对于AIC方法,落在同一范围内偏移数的百分比为39.7%。相比之下,本发明所述的方法有更高的精度。图11为人工标记人地震波的P相识别实验的检测结果,在时间为21:39:26时P波到达,信号发生突变。图6为本发明所示方法P相识别实验的检测结果,在时间为21:39:26时P波到达,信号发生突变,这与人工标记结果一样。Z相为垂直分量上的地震信号。对于不同的波形特性,本发明所述的方法可以成功地检测到P的到达,第一个峰值即本发明所述方法认为的突变时间,这与人工标记的P波到达时间精确一致。
上述的两个验证性实验中,断铅实验是最常用的声发射相关检测和验证实验,而声发射技术广泛运用于无损检测领域。地震波P相识别是地震信号后处理,震源定位的基础,在地质学领域有着重要意义。本发明所述的方法历经多次实验,可信度高;本发明所述的方法在与现有常用的AIC方法比较中,展现了精度高的特点。本发明所述的方法历经广泛分布的信噪比信号测试,尤其对于低信噪比声发射信号突变的识别,本发明所述的方法具有准确率高的特点,适用范围广。综上,本发明所述的一种基于直方图距离的声发射信号突变检测方法具有很高的实用性,可广泛地运用于机械加工、地质学等领域。
本说明书实施例所述的内容仅仅是对发明构思的实现形式的列举,本发明的保护范围不应当被视为仅限于实施例所陈述的具体形式,本发明的保护范围也及于本领域技术人员根据本发明构思所能够想到的等同技术手段。
Claims (1)
1.一种基于直方图距离的声发射信号突变检测方法,其特征在于,包括以下步骤:
(1)采集信号:以符合香农采样定理的采样频率来采集时域声发射信号;
(2)分割信号:对含有n个元素的原始离散信号进行分割,将原始信号分割成任意两相邻窗口段,记为interval1和interval2:interval1包含从第1个到第k个元素,interval2包含从第(k+1)个到第n个元素;
(3)计算窗口的相对频率直方图:定义信号时间序列直方图并计算相邻两段信号直方图。包括以下步骤:
(3.1)定义直方图:定义为窗口直方图,其中/>
(3.2)计算直方图:根据公式,计算生成两个窗口段的相对频率直方图:其中为第i个直方中样本的概率,/>为属于[xi,xi+1]区间的元素数量,n是离散信号中的元素数量;
(4)获取两窗口段相对频率直方图距离:使用巴氏系数定义直方图距离,使其满足度量公理,计算相邻两窗口段的直方图距离。包括以下步骤:
(4.1)定义直方图距离:其中B(hA,hB)是直方图hA与直方图hB之间巴氏系数,记为:/>dB(hA,hB)为直方图hA与直方图hB的直方图距离,其满足度量公理,即满足正定性、对称性和三角不等式;
(4.2)通过直方图距离判定突变点:dB介于0到1之间,当两个直方图趋近相同时,dB为趋近0;信号突变点前后两直方图距离最大;
(5)突变点确定:根据dB(hA,hB)的定义,移动两个相邻窗口段interval1和interval2,搜索直方图距离最大的点,并将该点的对应时间视为声发射信号的突变时间点。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110895055.3A CN113723207B (zh) | 2021-08-03 | 2021-08-03 | 一种基于直方图距离的声发射信号突变检测方法 |
US17/704,369 US11971950B2 (en) | 2021-08-03 | 2022-03-25 | Method for onset time detection of acoustic emission based on histogram distance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110895055.3A CN113723207B (zh) | 2021-08-03 | 2021-08-03 | 一种基于直方图距离的声发射信号突变检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113723207A CN113723207A (zh) | 2021-11-30 |
CN113723207B true CN113723207B (zh) | 2024-06-04 |
Family
ID=78674896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110895055.3A Active CN113723207B (zh) | 2021-08-03 | 2021-08-03 | 一种基于直方图距离的声发射信号突变检测方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11971950B2 (zh) |
CN (1) | CN113723207B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115834023B (zh) * | 2023-02-21 | 2023-05-09 | 山东水发紫光大数据有限责任公司 | 一种基于大数据的数据加密方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5638465A (en) * | 1994-06-14 | 1997-06-10 | Nippon Telegraph And Telephone Corporation | Image inspection/recognition method, method of generating reference data for use therein, and apparatuses therefor |
CN102360519A (zh) * | 2011-07-29 | 2012-02-22 | 电子科技大学 | 一种分布式光纤围栏入侵检测与定位的方法 |
CN107272066A (zh) * | 2017-06-22 | 2017-10-20 | 东华理工大学 | 一种含噪地震信号初至走时拾取方法及装置 |
CN108777755A (zh) * | 2018-04-18 | 2018-11-09 | 上海电力学院 | 一种视频场景切换检测方法 |
CN109104609A (zh) * | 2018-09-12 | 2018-12-28 | 浙江工业大学 | 一种融合hevc压缩域和像素域的镜头边界检测方法 |
CN111766307A (zh) * | 2020-06-17 | 2020-10-13 | 上海海事大学 | 一种基于概率密度函数相似度的声发射到达时间判断方法 |
-
2021
- 2021-08-03 CN CN202110895055.3A patent/CN113723207B/zh active Active
-
2022
- 2022-03-25 US US17/704,369 patent/US11971950B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5638465A (en) * | 1994-06-14 | 1997-06-10 | Nippon Telegraph And Telephone Corporation | Image inspection/recognition method, method of generating reference data for use therein, and apparatuses therefor |
CN102360519A (zh) * | 2011-07-29 | 2012-02-22 | 电子科技大学 | 一种分布式光纤围栏入侵检测与定位的方法 |
CN107272066A (zh) * | 2017-06-22 | 2017-10-20 | 东华理工大学 | 一种含噪地震信号初至走时拾取方法及装置 |
CN108777755A (zh) * | 2018-04-18 | 2018-11-09 | 上海电力学院 | 一种视频场景切换检测方法 |
CN109104609A (zh) * | 2018-09-12 | 2018-12-28 | 浙江工业大学 | 一种融合hevc压缩域和像素域的镜头边界检测方法 |
CN111766307A (zh) * | 2020-06-17 | 2020-10-13 | 上海海事大学 | 一种基于概率密度函数相似度的声发射到达时间判断方法 |
Non-Patent Citations (2)
Title |
---|
视频摘要系统的技术研究与实现;吴凌琳;杨磊;吴晓雨;;中国传媒大学学报(自然科学版);20130228(01);全文 * |
邹俊晨 ; 齐金鹏 ; 李娜 ; 刘佳伦 ; 朱厚杰 ; .一种快速的突变点在线检测算法设计与实现.电子科技.(08),全文. * |
Also Published As
Publication number | Publication date |
---|---|
CN113723207A (zh) | 2021-11-30 |
US20230130080A1 (en) | 2023-04-27 |
US11971950B2 (en) | 2024-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SE509733C2 (sv) | Sätt att detektera och klassificera objekt med hjälp av radar | |
CN108535354B (zh) | 一种钢丝绳漏磁检测和磁发射检测的损伤判定及定位方法 | |
CN109190272B (zh) | 基于弹性波和机器学习的混凝土结构缺陷检测方法 | |
Piñal-Moctezuma et al. | An acoustic emission activity detection method based on short-term waveform features: Application to metallic components under uniaxial tensile test | |
WO2016004687A1 (zh) | 超高频局放信号初始时刻判别方法 | |
EP2715289B1 (en) | Dynamic clustering of transient signals | |
CN111487678A (zh) | 一种确定高分辨率小多道地震最小偏移距和系统延迟的分析方法 | |
CN113723207B (zh) | 一种基于直方图距离的声发射信号突变检测方法 | |
EP2406658A1 (en) | Method of detecting and compensating for precipitation in sodar systems | |
CN112162295A (zh) | 一种基于时频分析的太赫兹厚度检测优化方法 | |
CN111999726B (zh) | 一种基于毫米波雷达的人员定位方法 | |
EP3321673A1 (en) | Structure evaluation system, structure evaluation device, and structure evaluation method | |
CN112332807A (zh) | 一种弱包络信号检测方法和系统 | |
Ince et al. | A machine learning approach for locating acoustic emission | |
KR101768714B1 (ko) | 트리거된 관측소의 아웃라이어 제거를 통하여 정확도가 향상된 진앙위치 결정방법 | |
CN109212601B (zh) | 一种地震数据异常测点检测方法 | |
JP6258574B2 (ja) | パッシブソーナー装置、方位集中処理方法、及び、パッシブソーナー信号処理プログラム | |
CN113050070A (zh) | 激光雷达数据处理方法、装置、设备及存储介质 | |
CN113687192B (zh) | 输电线路放电信号采集及定位方法 | |
CN103336063B (zh) | 一种声发射信号初至点检测方法 | |
Wirtz et al. | Improved signal processing of acoustic emission for structural health monitoring using a data-driven approach | |
CN110455922B (zh) | 一种基于k近邻法的锚杆锚固质量等级评定方法 | |
CN119064720B (zh) | 一种电缆故障精准定位系统 | |
CN114415118B (zh) | 一种基于二维分形特征的海面目标检测方法 | |
Liu et al. | Determining Ultrasound Arrival Time by HHT and Kurtosis in Wind Speed Measurement. Electronics 2021, 10, 93 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |