CN113680379B - A kind of preparation method and application of microporous material supported copper catalyst - Google Patents
A kind of preparation method and application of microporous material supported copper catalyst Download PDFInfo
- Publication number
- CN113680379B CN113680379B CN202110988059.6A CN202110988059A CN113680379B CN 113680379 B CN113680379 B CN 113680379B CN 202110988059 A CN202110988059 A CN 202110988059A CN 113680379 B CN113680379 B CN 113680379B
- Authority
- CN
- China
- Prior art keywords
- zeolite
- microporous material
- ssz
- copper catalyst
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 56
- 239000010949 copper Substances 0.000 title claims abstract description 53
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 31
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 31
- 239000012229 microporous material Substances 0.000 title claims abstract description 18
- 238000002360 preparation method Methods 0.000 title abstract description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 39
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 31
- 239000010457 zeolite Substances 0.000 claims abstract description 31
- 239000013078 crystal Substances 0.000 claims abstract description 16
- 238000006114 decarboxylation reaction Methods 0.000 claims abstract description 16
- 238000005859 coupling reaction Methods 0.000 claims abstract description 15
- 230000003197 catalytic effect Effects 0.000 claims abstract description 10
- 150000001879 copper Chemical class 0.000 claims abstract description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 8
- 239000012266 salt solution Substances 0.000 claims abstract description 7
- 238000001035 drying Methods 0.000 claims abstract description 6
- 239000004570 mortar (masonry) Substances 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 230000009466 transformation Effects 0.000 claims abstract description 5
- 238000001354 calcination Methods 0.000 claims abstract description 3
- VTESCYNPUGSWKG-UHFFFAOYSA-N (4-tert-butylphenyl)hydrazine;hydrochloride Chemical compound [Cl-].CC(C)(C)C1=CC=C(N[NH3+])C=C1 VTESCYNPUGSWKG-UHFFFAOYSA-N 0.000 claims description 19
- 238000006243 chemical reaction Methods 0.000 claims description 17
- 239000000243 solution Substances 0.000 claims description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 15
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 claims description 6
- 238000012546 transfer Methods 0.000 claims description 6
- 239000012295 chemical reaction liquid Substances 0.000 claims description 5
- 230000008878 coupling Effects 0.000 claims description 5
- 238000010168 coupling process Methods 0.000 claims description 5
- 150000002170 ethers Chemical class 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 4
- 229910052573 porcelain Inorganic materials 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 claims description 3
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- 238000001291 vacuum drying Methods 0.000 claims description 3
- 229910000365 copper sulfate Inorganic materials 0.000 claims description 2
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 2
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 claims description 2
- YOPUATYREUZXIO-UHFFFAOYSA-N copper;methanol Chemical compound [Cu].OC YOPUATYREUZXIO-UHFFFAOYSA-N 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims 1
- SCGJLFGXXZTXSX-UHFFFAOYSA-N copper;ethanol Chemical compound [Cu].CCO SCGJLFGXXZTXSX-UHFFFAOYSA-N 0.000 claims 1
- 229960003280 cupric chloride Drugs 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 6
- 238000002156 mixing Methods 0.000 abstract description 6
- 230000008901 benefit Effects 0.000 abstract description 5
- 229910052751 metal Inorganic materials 0.000 abstract description 3
- 239000002184 metal Substances 0.000 abstract description 3
- 238000000926 separation method Methods 0.000 abstract description 3
- 230000007613 environmental effect Effects 0.000 abstract 1
- 238000005470 impregnation Methods 0.000 abstract 1
- 238000005342 ion exchange Methods 0.000 abstract 1
- 238000005406 washing Methods 0.000 abstract 1
- 239000000047 product Substances 0.000 description 21
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 18
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 8
- 239000012965 benzophenone Substances 0.000 description 8
- 238000010992 reflux Methods 0.000 description 7
- 239000000706 filtrate Substances 0.000 description 6
- 239000012074 organic phase Substances 0.000 description 6
- 239000003960 organic solvent Substances 0.000 description 6
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- -1 after vacuuming Chemical compound 0.000 description 4
- SYYURZPSSGNDQQ-UHFFFAOYSA-N 1-(2,3-dimethoxyphenyl)propan-2-one Chemical compound COC1=CC=CC(CC(C)=O)=C1OC SYYURZPSSGNDQQ-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- BBGVVPLPLBJJLS-UHFFFAOYSA-N copper ethanol dinitrate Chemical compound C(C)O.[N+](=O)([O-])[O-].[Cu+2].[N+](=O)([O-])[O-] BBGVVPLPLBJJLS-UHFFFAOYSA-N 0.000 description 1
- 238000006880 cross-coupling reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000002815 homogeneous catalyst Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000012450 pharmaceutical intermediate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/76—Iron group metals or copper
- B01J29/763—CHA-type, e.g. Chabazite, LZ-218
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/10—Heat treatment in the presence of water, e.g. steam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/30—Ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/61—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
- C07C45/64—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by introduction of functional groups containing oxygen only in singly bound form
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D319/00—Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
- C07D319/10—1,4-Dioxanes; Hydrogenated 1,4-dioxanes
- C07D319/12—1,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
- B01J2229/186—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Abstract
Description
技术领域technical field
本发明属于金属有机催化技术领域,具体地说是涉及一种微孔材料负载铜催化剂的制备方法及其在催化脱羧偶联反应中的应用。The invention belongs to the technical field of organometallic catalysis, and in particular relates to a preparation method of a microporous material-loaded copper catalyst and its application in catalytic decarboxylation coupling reactions.
背景技术Background technique
脱羧交叉偶联是现代有机化学合成中灵活构建C-C键化合物的非常重要的一种方法。α-酰基化醚是一种重要的分子片段,可用于制备各种生物活性产物和药物中间体。之前文献报道的合成方法主要以均相贵金属为催化剂,其昂贵的价格和有毒的配体难以回收利用都限制着其工业应用,因此非均相过渡金属负载催化剂备受关注。Decarboxylation cross-coupling is a very important method for the flexible construction of C-C bond compounds in modern organic chemical synthesis. α-Acylated ethers are important molecular fragments that can be used in the preparation of various bioactive products and pharmaceutical intermediates. Previously reported synthesis methods mainly use homogeneous noble metals as catalysts, and their high price and difficult recycling of toxic ligands limit their industrial applications. Therefore, heterogeneous transition metal-supported catalysts have attracted much attention.
近年来,过渡金属催化有机合成的发展正好迎合了这一时代需求,而制备廉价、高效、无毒的负载金属催化剂是推动这一领域发展的重点和难点。沸石化合物作为一种廉价易得且无毒的多孔材料,是合成金属有机催化剂载体的理想原料。非均相反应相对于均相反应具有很多优势。例如,反应完全后,催化剂与产物分离简单,可以循环使用大大降低了成本以及在反应中能更好的控制反应立体选择性等。科研工作者们看到了这些巨大的优势后,致力于各种各样的催化剂载体设计及合成,并将均相催化剂负载到各种各样的载体上。常见的载体有二氧化硅,生物质,磁性材料及高分子聚合物等,沸石是一类绿色环保的多孔材料,因其符合绿色环保要求及在过渡金属催化反应中扮演着重要角色而受到人们的关注。In recent years, the development of transition metal-catalyzed organic synthesis just caters to the needs of this era, and the preparation of cheap, efficient, and non-toxic supported metal catalysts is the focus and difficulty of promoting the development of this field. As a kind of cheap, easy-to-obtain and non-toxic porous materials, zeolite compounds are ideal raw materials for the synthesis of organometallic catalyst supports. Heterogeneous reactions have many advantages over homogeneous reactions. For example, after the reaction is complete, the separation of the catalyst and the product is simple, it can be recycled, the cost is greatly reduced, and the stereoselectivity of the reaction can be better controlled during the reaction. After seeing these huge advantages, scientific researchers have devoted themselves to the design and synthesis of various catalyst supports, and loaded homogeneous catalysts on various supports. Common carriers include silica, biomass, magnetic materials and polymers, etc. Zeolite is a kind of green and environmentally friendly porous material. s concern.
发明内容Contents of the invention
本发明的目的在于提供一种微孔材料负载铜催化剂的制备方法,及其在催化脱羧偶联反应中的应用,本发明催化剂可以用于高选择性脱羧制备Csp2-Csp3偶联化合物。The object of the present invention is to provide a preparation method of microporous material supported copper catalyst and its application in catalytic decarboxylation coupling reaction. The catalyst of the present invention can be used for highly selective decarboxylation to prepare Csp 2 -Csp 3 coupling compound.
一种微孔材料负载铜催化剂的制备方法,包括下述步骤:A preparation method of microporous material supported copper catalyst, comprising the steps of:
(1)在玛瑙研钵中将DY-32沸石、氢氧化钠、模版剂、水和晶种混合均匀在烘箱中转晶(晶化),产物经过洗涤煅烧得到Na型SSZ-39沸石,经过离子交换得到H型SSZ-39沸石;(1) In an agate mortar, mix DY-32 zeolite, sodium hydroxide, template agent, water and seed crystals evenly and turn crystallization (crystallization) in an oven. The product is washed and calcined to obtain Na-type SSZ-39 zeolite. Exchange to obtain H-type SSZ-39 zeolite;
(2)用铜盐溶液对H-SSZ-39沸石进行初湿浸渍,自然阴干后,真空干燥,然后焙烧后得到微孔材料负载铜催化剂Cu/H-SSZ-39。(2) The H-SSZ-39 zeolite was impregnated with a copper salt solution, dried in the shade, vacuum-dried, and calcined to obtain a microporous material supported copper catalyst Cu/H-SSZ-39.
作为优选,所述模版剂为N,N-二甲基-3,5-二甲基哌啶氢氧化物溶液,所述晶种为H-SSZ-39晶种。Preferably, the template agent is N,N-dimethyl-3,5-dimethylpiperidine hydroxide solution, and the seed crystal is H-SSZ-39 seed crystal.
作为优选,所述DY-32沸石、氢氧化钠、模版剂的质量比为1:0.115~0.135:0.85~1.05。更为优选的,所述DY-32沸石、氢氧化钠、模版剂的质量比为1:0.125:0.95。Preferably, the mass ratio of DY-32 zeolite, sodium hydroxide and template agent is 1:0.115-0.135:0.85-1.05. More preferably, the mass ratio of DY-32 zeolite, sodium hydroxide and template agent is 1:0.125:0.95.
作为优选,步骤(1)中转晶温度为120~160℃,转晶时间为2~4天;步骤(2)中真空干燥温度为60~120℃,干燥时间为8~16小时,焙烧温度为300~600℃。更为优选的真空干燥的温度为100℃,干燥时间为12小时,焙烧温度为450℃。Preferably, the crystal transformation temperature in step (1) is 120-160°C, and the crystal transformation time is 2-4 days; the vacuum drying temperature in step (2) is 60-120°C, the drying time is 8-16 hours, and the roasting temperature is 300~600℃. More preferably, the vacuum drying temperature is 100°C, the drying time is 12 hours, and the calcination temperature is 450°C.
作为优选,所述铜盐为醋酸铜、硫酸铜、硝酸铜、氯化铜中的一种;更为优选的,所述铜盐为硝酸铜;所述铜盐溶液为铜盐水溶液、铜盐乙醇溶液、或铜盐甲醇溶液。As preferably, the copper salt is one of copper acetate, copper sulfate, copper nitrate, copper chloride; more preferably, the copper salt is copper nitrate; the copper salt solution is copper salt solution, copper salt solution ethanol solution, or copper salt methanol solution.
作为优选,所述微孔材料负载铜催化剂的制备方法,包括下述步骤:As preferably, the preparation method of the microporous material supported copper catalyst comprises the following steps:
(1)在玛瑙研钵中加入1g DY-32沸石,加入0.95g N,N-二甲基-3,5-二甲基哌啶氢氧化物溶液,研磨均匀;在混合物中加入0.05g去离子水,研磨均匀;在混合物中加入0.125g粒状氢氧化钠,研磨均匀;在混合物中加入0.02g H-SSZ-39沸石晶种,研磨均匀;将混合物转移至水热釜中,150℃晶化3天;产物在550℃煅烧4小时;所得产物在1M硝酸铵溶液中经两次80℃离子交换获得H型产物H-SSZ-39-0.95沸石;(1) Add 1g DY-32 zeolite to an agate mortar, add 0.95g N,N-dimethyl-3,5-dimethylpiperidine hydroxide solution, and grind evenly; add 0.05g to the mixture to Ionized water, grind evenly; add 0.125g granular sodium hydroxide to the mixture, grind evenly; add 0.02g H-SSZ-39 zeolite seed crystals to the mixture, grind evenly; transfer the mixture to a hydrothermal kettle, crystallize at 150
(2)在烧杯里加入H-SSZ-39-0.95沸石,缓慢滴加硝酸铜溶液至沸石完全湿润,自然阴干;转移至真空烘箱100℃干燥12小时;将催化剂固体碾碎放入瓷舟中,以每分钟5℃升温,在450℃焙烧3小时,得到Cu/H-SSZ-39。(2) Add H-SSZ-39-0.95 zeolite into the beaker, slowly add copper nitrate solution dropwise until the zeolite is completely wet, and dry in the shade; transfer to a vacuum oven at 100°C for 12 hours; crush the catalyst solid and put it in a porcelain boat , heated at 5°C per minute, and fired at 450°C for 3 hours to obtain Cu/H-SSZ-39.
本发明微孔材料负载铜催化剂(Cu/H-SSZ-39)的制备路线图如图1所示。The preparation route of the microporous material-supported copper catalyst (Cu/H-SSZ-39) of the present invention is shown in FIG. 1 .
本发明还提供了上述微孔材料负载铜催化剂在催化脱羧偶联反应中的应用。The present invention also provides the application of the microporous material supported copper catalyst in catalyzing decarboxylation coupling reaction.
作为优选,上述微孔材料负载铜催化剂在催化脱羧偶联反应中的应用,采用下述方法:在反应器中加入苯甲酰甲酸、微孔材料负载铜催化剂、醚类化合物和叔丁基过氧化氢,抽真空后通入氮气,在加热条件下脱羧偶联反应1.5~3小时;反应结束后,将反应液冷却至室温,经过滤,蒸去溶剂得到脱羧偶联产物。As preferably, the application of the above-mentioned microporous material-loaded copper catalyst in the catalytic decarboxylation coupling reaction adopts the following method: add benzoylformic acid, microporous material-loaded copper catalyst, ether compounds and tert-butyl peroxide to the reactor. Hydrogen oxide, after vacuuming, nitrogen gas, decarboxylation coupling reaction under heating conditions for 1.5 to 3 hours; after the reaction, the reaction solution was cooled to room temperature, filtered, and the solvent was evaporated to obtain the decarboxylation coupling product.
本发明以苯甲酰甲酸为原料,微孔材料负载铜催化剂,液体醚类化合物为溶剂,在回流温度下经Csp2-Csp3脱羧偶联合成苯甲酰基次甲基醚化合物。In the invention, benzoylformic acid is used as a raw material, the microporous material is loaded with a copper catalyst, and a liquid ether compound is used as a solvent, and the benzoylmethine ether compound is synthesized through Csp 2 -Csp 3 decarboxylation coupling at reflux temperature.
作为优选,苯甲酰甲酸、微孔材料负载铜催化剂的物质的量比为100:5~25。更为优选的,苯甲酰甲酸、微孔材料负载铜催化剂的物质的量比为100:10。Preferably, the molar ratio of benzoylformic acid to the microporous material-supported copper catalyst is 100:5-25. More preferably, the molar ratio of the benzoylformic acid and the copper catalyst supported by the microporous material is 100:10.
作为优选,苯甲酰甲酸和醚类化合物的物质的量/溶液体积比为1∶1~4;更为优选的是1:3,例如1mmol:3mL。Preferably, the amount/volume ratio of benzoylformic acid and ether compounds is 1:1-4; more preferably 1:3, for example, 1 mmol:3 mL.
作为优选,脱羧偶联反应温度为80~170℃。更为优选的反应温度为120℃。Preferably, the decarboxylation coupling reaction temperature is 80-170°C. A more preferred reaction temperature is 120°C.
本发明Cu/H-SSZ-39催化脱羧偶联合成苯甲酰基次甲基醚化合物的路线如下:The route of Cu/H-SSZ-39 catalytic decarboxylation coupling of the present invention to synthesize benzoyl methine ether compound is as follows:
相对于现有技术,本发明的有益效果在于:Compared with the prior art, the beneficial effects of the present invention are:
本发明催化剂活性高、容易分离、稳定性好、活性高、使用寿命长,金属残留少,操作简单,设备要求简单;而且本发明催化剂多次循环使用活性高,具有经济、高效、绿色环保等优点。The catalyst of the present invention has high activity, easy separation, good stability, high activity, long service life, less metal residue, simple operation, and simple equipment requirements; and the catalyst of the present invention has high activity for repeated use, and is economical, efficient, and environmentally friendly. advantage.
附图说明Description of drawings
图1是本发明沸石负载铜催化剂(Cu/H-SSZ-39)的制备路线图;Fig. 1 is the preparation roadmap of zeolite supported copper catalyst (Cu/H-SSZ-39) of the present invention;
图2是本发明制备得到的产物2-(1,4-二氧六环)苯甲酮的1H NMR谱图;Fig. 2 is the 1 H NMR spectrogram of the product 2-(1,4-dioxane) benzophenone prepared by the present invention;
图3是本发明制备得到的产物2-(1,4-二氧六环)苯甲酮的13C NMR谱图;Fig. 3 is the 13 C NMR spectrogram of the product 2-(1,4-dioxane) benzophenone prepared by the present invention;
图4是本发明制备得到的产物2,3-二甲氧基苯基丙酮的1H NMR谱图;Fig. 4 is the 1 H NMR spectrogram of the
图5是本发明催化剂循环使用5次后的催化效果图。Fig. 5 is a catalytic effect diagram after the catalyst of the present invention is recycled for 5 times.
具体实施方式Detailed ways
下面结合具体实施例对发明作进一步说明,但发明的保护范围并不限于此。本领域的普通技术人员可以且应当知晓任何基于本发明实质精神的简单变化或者替换均应属于本发明所要求的保护范围。The invention will be further described below in conjunction with specific embodiments, but the protection scope of the invention is not limited thereto. Those skilled in the art can and should know that any simple changes or substitutions based on the essence and spirit of the present invention shall fall within the scope of protection required by the present invention.
实施例1Example 1
H-SSZ-39的合成Synthesis of H-SSZ-39
在玛瑙研钵中依次加入并研磨均匀1g DY-32、0.95g DMDMPOH、0.05g去离子水、0.125g粒状氢氧化钠、0.02g H-SSZ-39晶种。将混合物置于水热釜中,140℃晶化3天,产物洗涤干燥后550℃煅烧4得到Na-SSZ-39,所得产物在1M硝酸铵溶液中经两次80℃离子交换获得氢型产物H-SSZ-39。Add and grind 1g DY-32, 0.95g DMDMPOH, 0.05g deionized water, 0.125g granular sodium hydroxide, and 0.02g H-SSZ-39 seed crystals in an agate mortar in sequence. The mixture was placed in a hydrothermal kettle and crystallized at 140°C for 3 days. After the product was washed and dried, it was calcined at 550°C to obtain Na-SSZ-39. The obtained product was ion-exchanged twice at 80°C in 1M ammonium nitrate solution to obtain the hydrogen form product H-SSZ-39.
Cu/H-SSZ-39-300(400、450、500)-A的制备Preparation of Cu/H-SSZ-39-300(400, 450, 500)-A
在烧杯里加入H-SSZ-39沸石,缓慢滴加硝酸铜盐水溶液至沸石完全湿润,自然阴干,转移至真空烘箱100℃干燥12小时。将催化剂固体碾碎放入瓷舟中,以每分钟5℃升温,在300℃、400℃、450℃、500℃焙烧3小时得到催化剂Cu/H-SSZ-39-300-A、Cu/H-SSZ-39-400-A、Cu/H-SSZ-39-450-A、Cu/H-SSZ-39-500-A。Add H-SSZ-39 zeolite into the beaker, slowly add copper nitrate salt aqueous solution dropwise until the zeolite is completely wet, then dry it in the shade naturally, and transfer it to a vacuum oven at 100°C for 12 hours. Grind the catalyst solid into a porcelain boat, raise the temperature at 5°C per minute, and bake at 300°C, 400°C, 450°C, and 500°C for 3 hours to obtain catalysts Cu/H-SSZ-39-300-A, Cu/H - SSZ-39-400-A, Cu/H-SSZ-39-450-A, Cu/H-SSZ-39-500-A.
实施例2Example 2
Cu/H-SSZ-39-400-E的制备Preparation of Cu/H-SSZ-39-400-E
在烧杯里加入H-SSZ-39沸石,缓慢滴加硝酸铜乙醇溶液至沸石完全湿润,自然阴干,转移至真空烘箱100℃干燥12小时。将催化剂固体碾碎放入瓷舟中,以每分钟5℃升温,在400℃焙烧3小时得到催化剂Cu/H-SSZ-39-400-E。Add H-SSZ-39 zeolite into a beaker, slowly add copper nitrate ethanol solution dropwise until the zeolite is completely wet, then dry it in the shade naturally, and transfer it to a vacuum oven at 100°C for 12 hours. Grind the catalyst solid into a porcelain boat, raise the temperature at 5°C per minute, and bake at 400°C for 3 hours to obtain the catalyst Cu/H-SSZ-39-400-E.
实施例3Example 3
在150mL圆底烧瓶中加入苯甲酰甲酸(25mmol,3.753g)、Cu/H-SSZ-39-450-A(10mol%,0.3g)、1,4-二氧六环(75mL),利用超声混合均匀后加入叔丁基过氧化氢(37.5mmol,3.380g)。装上刺形分馏柱和三通管,在氮气保护下120℃下加热回流3小时。待反应中控结束后,将反应液冷却至室温,过滤催化剂,滤中液加过量碱液中和苯甲酰甲酸,用乙酸乙酯萃取混合液,取有机相,用旋转蒸发仪除去有机溶剂,得产物2-(1,4-二氧六环)苯甲酮,收率为98%,产物2-(1,4-二氧六环)苯甲酮的1H NMR谱图如图2所示,13C NMR谱图如图3所示。Add benzoylformic acid (25mmol, 3.753g), Cu/H-SSZ-39-450-A (10mol%, 0.3g), 1,4-dioxane (75mL) in a 150mL round bottom flask, and use After ultrasonic mixing, tert-butyl hydroperoxide (37.5 mmol, 3.380 g) was added. Install a thorn-shaped fractionating column and a three-way pipe, and heat to reflux at 120° C. for 3 hours under the protection of nitrogen. After the reaction control is completed, cool the reaction liquid to room temperature, filter the catalyst, add excess lye to neutralize benzoylformic acid in the filtrate, extract the mixed liquid with ethyl acetate, take the organic phase, and remove the organic solvent with a rotary evaporator , to obtain the product 2-(1,4-dioxane)benzophenone, the yield is 98%, and the 1 H NMR spectrum of the product 2-(1,4-dioxane)benzophenone is shown in Figure 2 As shown, the 13 C NMR spectrum is shown in FIG. 3 .
1H NMR(400MHz,DMSO-d6)δ8.05–8.01(m,2H),7.72–7.67(m,1H),7.56(t,J=7.7Hz,2H),6.03(s,1H),4.05(ddd,J=3.2,10.3,11.6Hz,1H),3.78(dt,J=2.3,19.0Hz,3H),3.74–3.68(m,1H),3.63(dt,J=2.4,11.7Hz,1H)。 1 H NMR (400MHz,DMSO-d 6 )δ8.05–8.01(m,2H),7.72–7.67(m,1H),7.56(t,J=7.7Hz,2H),6.03(s,1H), 4.05(ddd, J=3.2, 10.3, 11.6Hz, 1H), 3.78(dt, J=2.3, 19.0Hz, 3H), 3.74–3.68(m, 1H), 3.63(dt, J=2.4, 11.7Hz, 1H).
13C NMR(101MHz,DMSO-d6)δ164.44,133.69,129.44,129.34,128.85,89.59,67.06,65.37。 13 C NMR (101 MHz, DMSO-d 6 ) δ 164.44, 133.69, 129.44, 129.34, 128.85, 89.59, 67.06, 65.37.
实施例4Example 4
在150mL圆底烧瓶中加入苯甲酰甲酸(25mmol,3.753g)、Cu/H-SSZ-39-400-A(10mol%,0.3g)、1,4-二氧六环(75mL),利用超声混合均匀后加入叔丁基过氧化氢(37.5mmol,3.380g)。装上刺形分馏柱和三通管,在氮气保护下120℃下加热回流3小时。待反应中控结束后,将反应液冷却至室温,过滤催化剂,滤中液加过量碱液中和苯甲酰甲酸,用乙酸乙酯萃取混合液,取有机相,用旋转蒸发仪除去有机溶剂,得产物2-(1,4-二氧六环)苯甲酮,收率为95%。Add benzoylformic acid (25mmol, 3.753g), Cu/H-SSZ-39-400-A (10mol%, 0.3g), 1,4-dioxane (75mL) in a 150mL round bottom flask, and use After ultrasonic mixing, tert-butyl hydroperoxide (37.5 mmol, 3.380 g) was added. Install a thorn-shaped fractionating column and a three-way pipe, and heat to reflux at 120° C. for 3 hours under the protection of nitrogen. After the reaction control is completed, cool the reaction liquid to room temperature, filter the catalyst, add excess lye to neutralize benzoylformic acid in the filtrate, extract the mixed liquid with ethyl acetate, take the organic phase, and remove the organic solvent with a rotary evaporator , the product 2-(1,4-dioxane)benzophenone was obtained with a yield of 95%.
实施例5Example 5
在150mL圆底烧瓶中加入苯甲酰甲酸(25mmol,3.753g)、Cu/H-SSZ-39-500-A(10mol%,0.3g)、1,4-二氧六环(75mL),利用超声混合均匀后加入叔丁基过氧化氢(37.5mmol,3.380g)。装上刺形分馏柱和三通管,在氮气保护下120℃下加热回流3小时。待反应中控结束后,将反应液冷却至室温,过滤催化剂,滤中液加过量碱液中和苯甲酰甲酸,用乙酸乙酯萃取混合液,取有机相,用旋转蒸发仪除去有机溶剂,得产物2-(1,4-二氧六环)苯甲酮,收率为92%。In a 150mL round bottom flask, add benzoylformic acid (25mmol, 3.753g), Cu/H-SSZ-39-500-A (10mol%, 0.3g), 1,4-dioxane (75mL), and use After ultrasonic mixing, tert-butyl hydroperoxide (37.5 mmol, 3.380 g) was added. Install a thorn-shaped fractionating column and a three-way pipe, and heat to reflux at 120° C. for 3 hours under the protection of nitrogen. After the reaction control is completed, cool the reaction liquid to room temperature, filter the catalyst, add excess lye to neutralize benzoylformic acid in the filtrate, extract the mixed liquid with ethyl acetate, take the organic phase, and remove the organic solvent with a rotary evaporator , the product 2-(1,4-dioxane)benzophenone was obtained with a yield of 92%.
实施例6Example 6
在150mL圆底烧瓶中加入苯甲酰甲酸(25mmol,3.753g)、Cu/H-SSZ-39-400-E(10mol%,0.3g)、1,4-二氧六环(75mL),利用超声混合均匀后加入叔丁基过氧化氢(37.5mmol,3.380g)。装上刺形分馏柱和三通管,在氮气保护下加热回流3小时。待反应中控结束后,将反应液冷却至室温,过滤催化剂,滤中液加过量碱液中和苯甲酰甲酸,用乙酸乙酯萃取混合液,取有机相,用旋转蒸发仪除去有机溶剂,得产物2-(1,4-二氧六环)苯甲酮,收率为90%。In a 150mL round bottom flask, add benzoylformic acid (25mmol, 3.753g), Cu/H-SSZ-39-400-E (10mol%, 0.3g), 1,4-dioxane (75mL), and use After ultrasonic mixing, tert-butyl hydroperoxide (37.5 mmol, 3.380 g) was added. Install a thorn-shaped fractionating column and a three-way pipe, and heat to reflux for 3 hours under nitrogen protection. After the reaction control is completed, cool the reaction solution to room temperature, filter the catalyst, add excess lye to neutralize benzoylformic acid in the filtrate, extract the mixed solution with ethyl acetate, take the organic phase, and remove the organic solvent with a rotary evaporator , the product 2-(1,4-dioxane)benzophenone was obtained with a yield of 90%.
实施例7Example 7
在150mL圆底烧瓶中加入苯甲酰甲酸(25mmol,3.753g)、Cu/H-SSZ-39-450-A(10mol%,0.3g)、乙二醇二甲醚(75mL),利用超声混合均匀后加入叔丁基过氧化氢(37.5mmol,3.380g)。装上刺形分馏柱和三通管,在氮气保护下100℃下加热回流3小时。待反应中控结束后,将反应液冷却至室温,过滤催化剂,滤中液加过量碱液中和苯甲酰甲酸,用乙酸乙酯萃取混合液,取有机相,用旋转蒸发仪除去有机溶剂,得产物2,3-二甲氧基苯基丙酮,收率为90%,产物2,3-二甲氧基苯基丙酮的1H NMR谱图如图4所示。Add benzoylformic acid (25mmol, 3.753g), Cu/H-SSZ-39-450-A (10mol%, 0.3g), ethylene glycol dimethyl ether (75mL) into a 150mL round bottom flask, and mix by ultrasonic After homogenization, tert-butyl hydroperoxide (37.5 mmol, 3.380 g) was added. Install a thorn-shaped fractionating column and a three-way pipe, and heat to reflux at 100° C. for 3 hours under the protection of nitrogen. After the reaction control is completed, cool the reaction liquid to room temperature, filter the catalyst, add excess lye to neutralize benzoylformic acid in the filtrate, extract the mixed liquid with ethyl acetate, take the organic phase, and remove the organic solvent with a rotary evaporator , the
1H NMR(400MHz,CDCl3)δ8.10(t,J=8.0Hz,2H),7.59(t,J=7.8Hz,1H),7.47(q,J=7.3,7.7Hz,2H),6.14(t,J=4.9Hz,1H),3.64(t,J=4.5Hz,2H),3.55(s,3H),3.44(s,3H)。 1 H NMR (400MHz, CDCl 3 ) δ8.10 (t, J = 8.0Hz, 2H), 7.59 (t, J = 7.8Hz, 1H), 7.47 (q, J = 7.3, 7.7Hz, 2H), 6.14 (t, J=4.9Hz, 1H), 3.64(t, J=4.5Hz, 2H), 3.55(s, 3H), 3.44(s, 3H).
实施例8Example 8
Cu/H-SSZ-39-450-A循环使用Cu/H-SSZ-39-450-A recycling
在150mL圆底烧瓶中加入苯甲酰甲酸(25mmol,3.753g)、Cu/H-SSZ-39-450-A(10mol%,0.3g)、1,4-二氧六环(75mL),利用超声混合均匀后加入叔丁基过氧化氢(37.5mmol,3.380g)。装上刺形分馏柱和三通管,在氮气保护下120℃下加热回流3小时。待反应中控结束后,将反应液冷却至室温,离心回收催化剂,将滤液加过量碱液中和苯甲酰甲酸,用乙酸乙酯萃取混合液,取有机相,用旋转蒸发仪除去有机溶剂,得产物2-(1,4-二氧六环)苯甲酮,将烘干的催化剂在相同催化条件下使用,循环使用5次后催化效果如图5所示,结果显示催化剂在循环5次后催化效果没有明显降低。Add benzoylformic acid (25mmol, 3.753g), Cu/H-SSZ-39-450-A (10mol%, 0.3g), 1,4-dioxane (75mL) in a 150mL round bottom flask, and use After ultrasonic mixing, tert-butyl hydroperoxide (37.5 mmol, 3.380 g) was added. Install a thorn-shaped fractionating column and a three-way pipe, and heat to reflux at 120° C. for 3 hours under the protection of nitrogen. After the reaction control is completed, cool the reaction solution to room temperature, centrifuge to recover the catalyst, add excess lye to the filtrate to neutralize benzoylformic acid, extract the mixed solution with ethyl acetate, take the organic phase, and remove the organic solvent with a rotary evaporator , the product 2-(1,4-dioxane)benzophenone was obtained, and the dried catalyst was used under the same catalytic conditions, and the catalytic effect after recycling 5 times was shown in Figure 5, and the results showed that the catalyst was recycled after 5 cycles. The catalytic effect did not decrease significantly after that.
以上结合实施例对本发明进行了详细说明,但所述内容仅为本发明的具体实施方式,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,凡依本发明申请范围所做出的若干变形与改进等,均应仍属于本发明的专利涵盖范围之内。The present invention has been described in detail above in conjunction with the examples, but the content is only the specific implementation of the present invention, but it should not be construed as limiting the patent scope of the present invention. It should be pointed out that for those of ordinary skill in the art, without departing from the concept of the present invention, any modifications and improvements made according to the scope of the application of the present invention should still belong to the scope of the patent of the present invention. within range.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110988059.6A CN113680379B (en) | 2021-08-26 | 2021-08-26 | A kind of preparation method and application of microporous material supported copper catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110988059.6A CN113680379B (en) | 2021-08-26 | 2021-08-26 | A kind of preparation method and application of microporous material supported copper catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113680379A CN113680379A (en) | 2021-11-23 |
CN113680379B true CN113680379B (en) | 2023-02-03 |
Family
ID=78582890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110988059.6A Active CN113680379B (en) | 2021-08-26 | 2021-08-26 | A kind of preparation method and application of microporous material supported copper catalyst |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113680379B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115286572B (en) * | 2022-07-15 | 2023-10-13 | 绍兴文理学院 | 4-acyl-isoquinoline derivative and preparation method and application thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102614927A (en) * | 2012-03-15 | 2012-08-01 | 苏州大学 | Copper catalyst system for decarboxylation coupling reaction |
ES2586770A1 (en) * | 2015-04-16 | 2016-10-18 | Consejo Superior De Investigaciones Científicas (Csic) | DIRECT SYNTHESIS METHOD OF CU-SILICOALUMINATE MATERIAL WITH AEI ZEOLITHIC STRUCTURE, AND ITS CATALYTIC APPLICATIONS |
CN109796426A (en) * | 2019-03-05 | 2019-05-24 | 常州大学 | A method of utilizing basic zeolite molecular sieve catalytic cortex cinnamomi acid decarboxylation coupling reaction |
CN110980761A (en) * | 2019-11-22 | 2020-04-10 | 中触媒新材料股份有限公司 | Method for preparing SSZ-39 molecular sieve by taking sulfur modified Y-type molecular sieve as raw material |
CN112958148A (en) * | 2021-02-05 | 2021-06-15 | 中化学科学技术研究有限公司 | Cu-SSZ-39@ Cu-SSZ-13 composite molecular sieve with core-shell structure and synthesis method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101186311B (en) * | 2007-11-22 | 2012-02-22 | 复旦大学 | Y/MCM-48 composite molecular sieve and its preparation method |
CN105985248B (en) * | 2015-02-15 | 2018-10-26 | 上海泰禾国际贸易有限公司 | A kind of method of synthesizing amino Diaromatic compound |
EP3455201A1 (en) * | 2016-05-10 | 2019-03-20 | Basf Se | Process for the manufacture of hydroxy-substituted aromatic compounds |
-
2021
- 2021-08-26 CN CN202110988059.6A patent/CN113680379B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102614927A (en) * | 2012-03-15 | 2012-08-01 | 苏州大学 | Copper catalyst system for decarboxylation coupling reaction |
ES2586770A1 (en) * | 2015-04-16 | 2016-10-18 | Consejo Superior De Investigaciones Científicas (Csic) | DIRECT SYNTHESIS METHOD OF CU-SILICOALUMINATE MATERIAL WITH AEI ZEOLITHIC STRUCTURE, AND ITS CATALYTIC APPLICATIONS |
CN109796426A (en) * | 2019-03-05 | 2019-05-24 | 常州大学 | A method of utilizing basic zeolite molecular sieve catalytic cortex cinnamomi acid decarboxylation coupling reaction |
CN110980761A (en) * | 2019-11-22 | 2020-04-10 | 中触媒新材料股份有限公司 | Method for preparing SSZ-39 molecular sieve by taking sulfur modified Y-type molecular sieve as raw material |
CN112958148A (en) * | 2021-02-05 | 2021-06-15 | 中化学科学技术研究有限公司 | Cu-SSZ-39@ Cu-SSZ-13 composite molecular sieve with core-shell structure and synthesis method thereof |
Non-Patent Citations (5)
Title |
---|
"Design and synthesis of the basic Cu-doped zeolite X catalyst with high activity in oxidative coupling reactions";Shengchun Chen et al.;《Journal of Catalysis》;20160307;第338卷;38-46页 * |
"Solvent-free synthesis of aluminosilicate SSZ-39 zeolite";Hao Xu et al.;《Microporous and Mesoporous Materials》;20201030;第312卷;第2页第2.2节,第2.4节,第3节 * |
"Transition-Metal-Free Formal Decarboxylative Coupling of α-Oxocarboxylates with α-Bromoketones under Neutral Conditions: A Simple Access to 1,3-Diketones";Zhen He et al.;《Angewandte Chemie International Edition》;20141120;第54卷(第3期);855-859页 * |
"酸性Cu/ZSM-5-NA催化剂提高肉桂酸脱羧偶联反应活性";傅雯倩 等;《常州大学学报(自然科学版)》;20200928;第32卷(第5期);第41页第1段 * |
Hao Xu et al.."Solvent-free synthesis of aluminosilicate SSZ-39 zeolite".《Microporous and Mesoporous Materials》.2020,第312卷110736:1-6页. * |
Also Published As
Publication number | Publication date |
---|---|
CN113680379A (en) | 2021-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014173229A1 (en) | Fischer-tropsch synthesis catalyst for syngas to low carbon olefins, modified molecular sieve carrier and preparation method thereof | |
CN101791575B (en) | Preparation method of heterogeneous catalyst of organic coordination compounds of mesoporous structure metals | |
CN106040282A (en) | SO 3H-SBA-15 molecular sieve catalyst for catalyzing synthesis of tert-butyl carboxylate from isobutene and carboxylic acid, and preparation method and application thereof | |
WO2020019276A1 (en) | Catalyst for preparing ethylbenzene from ethanol and benzene, preparation therefor and use thereof | |
WO2022206673A1 (en) | Molecular sieve catalyst for low-temperature carbonylation, and use thereof | |
CN105562046B (en) | Methanol and the ethanol condensed catalyst for preparing propyl alcohol and butanol and preparation method and application | |
CN113231102B (en) | Glutaric acid selective polyacid catalyst based on micro-mesoporous Zr-MOF material and preparation method and application thereof | |
CN113387908B (en) | Application of magnesium cobaltate catalyst in selective oxidation reaction of styrene | |
CN113680379B (en) | A kind of preparation method and application of microporous material supported copper catalyst | |
CN110270368B (en) | A solution-free method for the synthesis of carbon-chemical embedded catalyst materials | |
CN101367041A (en) | Preparation of a solid base catalyst and its application in aldol condensation reaction | |
CN105126897B (en) | A kind of molecular sieve carried copper-based catalysts of SBA 15 and preparation method and application | |
CN104447254A (en) | Method for preparing 3-methoxy-4-hydroxybenzaldehyde | |
CN108503547A (en) | A method of by transesterification path synthesizing n-butyl acetate | |
CN106380394A (en) | Preparation method of carbon-silicon solid acid catalyst and application of carbon-silicon solid acid catalyst in extraction of organic acid in fermentation liquor | |
CN103191768B (en) | Preparation method of mesoporous solid strong base catalyst | |
CN111151301B (en) | Bifunctional heterogeneous Pd @ MIL-101@ SGO composite material and preparation method and application thereof | |
CN101564686A (en) | Catalyst for oxidizing-synthesizing glutaric dialdehyde with cyclopentene and preparation method thereof | |
CN108786846B (en) | A kind of catalyst of zirconium silicate modified sulfonic acid grafting mesoporous silica and preparation method and application | |
CN111001442A (en) | A metal organic framework MIL-101 (Cr) loaded chitosan material and its preparation method and application | |
CN107098802B (en) | Beta zeolite based 2-alkyl anthraquinone preparation method | |
CN112456513B (en) | Open system solid-phase synthesis of aluminum phosphate-based molecular sieve with AEL structure and its preparation method and application | |
CN1100614C (en) | Solid catalyst for synthesizing glycol monoether acetate | |
CN112619688B (en) | A kind of preparation method and application of catalyst for one-step methylation of synthesis gas and biphenyl/4-methylbiphenyl | |
CN110586187B (en) | Supported phosphotungstic acid catalyst, and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |