CN113660996A - Acidic exhaust gas treatment agent, acidic exhaust gas treatment method, and acidic exhaust gas treatment device - Google Patents
Acidic exhaust gas treatment agent, acidic exhaust gas treatment method, and acidic exhaust gas treatment device Download PDFInfo
- Publication number
- CN113660996A CN113660996A CN202080028089.6A CN202080028089A CN113660996A CN 113660996 A CN113660996 A CN 113660996A CN 202080028089 A CN202080028089 A CN 202080028089A CN 113660996 A CN113660996 A CN 113660996A
- Authority
- CN
- China
- Prior art keywords
- waste gas
- acidic
- acid
- acid waste
- gas treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000011282 treatment Methods 0.000 title claims abstract description 118
- 230000002378 acidificating effect Effects 0.000 title claims abstract description 85
- 238000000034 method Methods 0.000 title claims abstract description 42
- 239000002912 waste gas Substances 0.000 claims abstract description 104
- 239000002253 acid Substances 0.000 claims abstract description 85
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 80
- 229910003023 Mg-Al Inorganic materials 0.000 claims abstract description 75
- 239000007789 gas Substances 0.000 claims abstract description 35
- 239000000126 substance Substances 0.000 claims abstract description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims abstract description 26
- 150000001875 compounds Chemical class 0.000 claims abstract description 18
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims abstract description 10
- 230000001172 regenerating effect Effects 0.000 claims abstract description 4
- 239000002131 composite material Substances 0.000 claims description 24
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims description 18
- 238000012545 processing Methods 0.000 claims description 11
- 239000012286 potassium permanganate Substances 0.000 claims description 8
- 239000002244 precipitate Substances 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 3
- 230000009467 reduction Effects 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 abstract description 54
- 238000002485 combustion reaction Methods 0.000 abstract description 9
- 230000015572 biosynthetic process Effects 0.000 description 27
- 238000003786 synthesis reaction Methods 0.000 description 27
- 239000007864 aqueous solution Substances 0.000 description 18
- 239000011777 magnesium Substances 0.000 description 18
- 239000000047 product Substances 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 11
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 8
- 238000000634 powder X-ray diffraction Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000011572 manganese Substances 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- 229910018663 Mn O Inorganic materials 0.000 description 4
- 229910003176 Mn-O Inorganic materials 0.000 description 4
- 229910002089 NOx Inorganic materials 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000005349 anion exchange Methods 0.000 description 4
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 4
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- MFUVDXOKPBAHMC-UHFFFAOYSA-N magnesium;dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MFUVDXOKPBAHMC-UHFFFAOYSA-N 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 238000006386 neutralization reaction Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000003672 processing method Methods 0.000 description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 3
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 3
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 3
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 3
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 3
- 239000000920 calcium hydroxide Substances 0.000 description 3
- 235000011116 calcium hydroxide Nutrition 0.000 description 3
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000010531 catalytic reduction reaction Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000011565 manganese chloride Substances 0.000 description 3
- 235000002867 manganese chloride Nutrition 0.000 description 3
- 229940099607 manganese chloride Drugs 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 3
- 229910052815 sulfur oxide Inorganic materials 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- XNDZQQSKSQTQQD-UHFFFAOYSA-N 3-methylcyclohex-2-en-1-ol Chemical compound CC1=CC(O)CCC1 XNDZQQSKSQTQQD-UHFFFAOYSA-N 0.000 description 2
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 229910000514 dolomite Inorganic materials 0.000 description 2
- 239000010459 dolomite Substances 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 238000004056 waste incineration Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- JLDSOYXADOWAKB-UHFFFAOYSA-N aluminium nitrate Chemical compound [Al+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O JLDSOYXADOWAKB-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 229910001701 hydrotalcite Inorganic materials 0.000 description 1
- 229960001545 hydrotalcite Drugs 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- WJCNZQLZVWNLKY-UHFFFAOYSA-N thiabendazole Chemical compound S1C=NC(C=2NC3=CC=CC=C3N=2)=C1 WJCNZQLZVWNLKY-UHFFFAOYSA-N 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Catalysts (AREA)
- Treating Waste Gases (AREA)
- Separation Of Gases By Adsorption (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Chemical And Physical Treatments For Wood And The Like (AREA)
Abstract
提供:在使用层状双氢氧化物对由火力发电厂、焚烧设施等燃烧设施产生的酸性废气进行处理时,能够比以往提高一氧化氮的去除效率的酸性废气处理剂、酸性废气处理方法、及酸性废气处理设备。本发明的酸性废气处理方法包括如下工序:工序(1),使用包含Mg‑Al系层状双氢氧化物的基于氧化锰和高锰酸化合物中的至少任一者的复合化物的酸性废气处理剂,使前述酸性废气与前述酸性废气处理剂接触,并吸附前述酸性废气中的酸性物质;工序(2),使在前述工序(1)中吸附于前述酸性废气处理剂上的酸性物质脱附,再生前述酸性废气处理剂;及工序(3),回收在前述工序(2)中从前述酸性废气处理剂上脱附的酸性物质。
To provide: Acid waste gas treatment agent, acid waste gas treatment method, which can improve the removal efficiency of nitric oxide when using layered double hydroxide to treat acid waste gas generated by combustion facilities such as thermal power plants and incineration facilities. And acid waste gas treatment equipment. The acid waste gas treatment method of the present invention includes the following steps: Step (1), treatment of acid waste gas using a complex compound based on at least one of manganese oxide and a permanganic acid compound containing a Mg-Al-based layered double hydroxide The above-mentioned acid waste gas is contacted with the above-mentioned acid waste gas treatment agent, and the acid substance in the acid waste gas is adsorbed; step (2), the acid substance adsorbed on the acid waste gas treatment agent in the above-mentioned step (1) is desorbed , regenerating the acidic waste gas treating agent; and step (3), recovering the acidic substances desorbed from the acidic exhaust gas treating agent in the aforementioned step (2).
Description
技术领域technical field
本发明涉及:适于由火力发电厂、焚烧设施等燃烧设施产生的酸性废气的处理的酸性废气处理剂、酸性废气处理方法、及酸性废气处理设备。The present invention relates to an acid waste gas treatment agent, acid waste gas treatment method, and acid waste gas treatment equipment suitable for the treatment of acid waste gas produced by combustion facilities such as thermal power plants and incineration facilities.
背景技术Background technique
由火力发电、废弃物焚烧等产生的燃烧废气中包含氯化氢、硫氧化物、氮氧化物等有害的酸性物质。因此,对于包含前述酸性物质的酸性废气,基于各种方法进行了用于去除前述酸性物质的处理。The combustion exhaust gas generated by thermal power generation, waste incineration, etc. contains harmful acidic substances such as hydrogen chloride, sulfur oxides, and nitrogen oxides. Therefore, with respect to the acidic waste gas containing the said acidic substance, the process for removing the said acidic substance is performed based on various methods.
对于前述酸性物质中的氯化氢、硫氧化物,普及了如下处理:使用熟石灰等碱性剂进行中和,通过用集尘机捕集产物的干式法、用洗涤器进行中和处理的湿式法的处理。Hydrogen chloride and sulfur oxides among the above-mentioned acidic substances are generally treated by neutralization using an alkaline agent such as slaked lime, a dry method in which the product is collected with a dust collector, and a wet method in which the neutralization treatment is performed with a scrubber. processing.
另外,对于氮氧化物,普及了基于选择性催化还原法(SCR)以及无催化还原法(SNCR)的处理,所述选择性催化还原法是将氨、尿素等还原剂与燃烧废气混合后用陶瓷等载体上负载有钒、铂等的催化剂分解成氮气和水的处理,所述无催化还原法是向焚烧炉内等直接喷雾氨、尿素等还原剂使氮氧化物分解的处理。In addition, for nitrogen oxides, treatments by selective catalytic reduction (SCR) and non-catalytic reduction (SNCR) in which a reducing agent such as ammonia and urea is mixed with combustion exhaust gas have become popular. A catalyst in which vanadium, platinum, etc. are supported on a carrier such as ceramics is decomposed into nitrogen and water, and the non-catalytic reduction method is a treatment in which a reducing agent such as ammonia or urea is directly sprayed into an incinerator to decompose nitrogen oxides.
然而,上述的基于中和处理的处理需要中和产物的处理工序,而且需要对氮氧化物另行进行处理。However, the above-mentioned treatment based on the neutralization treatment requires a treatment process of the neutralized product, and further treatment of nitrogen oxides is required.
另外,基于SCR、SNCR的氮氧化物的处理存在需要使用还原剂、催化剂等、以及需要为此的设备、能量等成本的课题。In addition, the treatment of nitrogen oxides by SCR and SNCR has problems such as the need to use a reducing agent, a catalyst, and the like, and the cost of equipment, energy, and the like for this.
针对这样的课题,本发明人等提出了如下方法:使用碳酸型Mg-Al系层状双氢氧化物,能够有效地且以更低成本处理前述酸性废气(参照专利文献1)。In response to such a problem, the present inventors have proposed a method for efficiently treating the acidic waste gas at a lower cost by using a carbonic acid-type Mg—Al-based layered double hydroxide (see Patent Document 1).
现有技术文献prior art literature
专利文献Patent Literature
专利文献1:日本特开2016-190199号公报Patent Document 1: Japanese Patent Laid-Open No. 2016-190199
发明内容SUMMARY OF THE INVENTION
发明要解决的问题Invention to solve problem
然而,即使利用上述专利文献1中记载的处理方法,有时一氧化氮的去除处理也未必一定充分。However, even if the treatment method described in the above-mentioned Patent Document 1 is used, the removal treatment of nitric oxide may not always be sufficient.
因此,使用了层状双氢氧化物的酸性废气的处理中,要求改善一氧化氮的去除效率。Therefore, in the treatment of the acidic waste gas using the layered double hydroxide, it is required to improve the removal efficiency of nitric oxide.
本发明是在这样的状况下完成的,其目的在于提供:在使用层状双氢氧化物对由火力发电厂、焚烧设施等燃烧设施产生的酸性废气进行处理时,能够比以往提高一氧化氮的去除效率的酸性废气处理剂、酸性废气处理方法、及酸性废气处理设备。The present invention has been accomplished under such circumstances, and an object of the present invention is to provide a method capable of increasing the level of nitrogen monoxide in the treatment of acidic waste gas generated by combustion facilities such as thermal power plants and incineration facilities using layered double hydroxides. Acid waste gas treatment agent with high removal efficiency, acid waste gas treatment method, and acid waste gas treatment equipment.
用于解决问题的方案solution to the problem
本发明基于如下发现:Mg-Al系层状双氢氧化物(以下也称为Mg-Al LDH(LayeredDouble Hydroxide)。)的基于氧化锰等的复合化物的优异的一氧化氮的去除性能。The present invention is based on the discovery that a complex based on manganese oxide or the like of a Mg-Al-based layered double hydroxide (hereinafter also referred to as Mg-Al LDH (Layered Double Hydroxide)) has excellent nitric oxide removal performance.
即,本发明提供以下的[1]~[7]。That is, the present invention provides the following [1] to [7].
[1]一种酸性废气处理剂,其包含Mg-Al系层状双氢氧化物的基于氧化锰和高锰酸化合物中的至少任一者的复合化物。[1] An acidic exhaust gas treating agent comprising a composite of at least one of manganese oxide and a permanganic acid compound of a Mg—Al-based layered double hydroxide.
[2]根据上述[1]所述的酸性废气处理剂,其中,前述复合化物为二氧化锰复合Mg-Al系层状双氢氧化物、及高锰酸型Mg-Al系层状双氢氧化物中的至少任一者。[2] The acidic exhaust gas treatment agent according to the above [1], wherein the composite is a manganese dioxide composite Mg-Al-based layered double hydroxide and a permanganate-type Mg-Al-based layered double hydroxide at least any of the oxides.
[3]根据上述[1]或[2]所述的酸性废气处理剂,其包含碳酸型Mg-Al系层状双氢氧化物。[3] The acidic exhaust gas treating agent according to the above [1] or [2], comprising a carbonic acid-type Mg—Al-based layered double hydroxide.
[4]一种酸性废气处理方法,其为使用上述[1]~[3]中任一项所述的酸性废气处理剂对酸性废气进行处理的方法,所述处理方法包括如下工序:工序(1),使前述酸性废气与前述酸性废气处理剂接触,并吸附前述酸性废气中的酸性物质;工序(2),使在前述工序(1)中吸附于前述酸性废气处理剂上的酸性物质脱附,再生前述酸性废气处理剂;及工序(3),回收在前述工序(2)中从前述酸性废气处理剂上脱附的酸性物质。[4] A method for treating acidic waste gas using the acidic waste gas treating agent according to any one of the above [1] to [3], the processing method comprising the steps of: step ( 1), the acid waste gas is brought into contact with the acid waste gas treatment agent, and the acid substance in the acid waste gas is adsorbed; step (2), the acid substance adsorbed on the acid waste gas treatment agent in the step (1) is removed. Attached, regenerating the acidic waste gas treating agent; and step (3), recovering the acidic substance desorbed from the acidic exhaust gas treating agent in the aforementioned step (2).
[5]根据上述[4]所述的酸性废气处理方法,其中,重复进行包括前述工序(1)~(3)的处理循环,在前述处理循环的第2次及之后的至少任一个处理循环的工序(1)中,作为前述酸性废气处理剂的至少一部分使用在该处理循环以前的至少任一个处理循环的工序(2)中再生的酸性废气处理剂。[5] The acid waste gas treatment method according to the above [4], wherein the treatment cycle including the above-mentioned steps (1) to (3) is repeatedly performed, and at least any one of the second and subsequent treatment cycles of the treatment cycle is performed repeatedly. In the step (1) of the above, the acidic waste gas treating agent regenerated in the step (2) of at least one of the treatment cycles preceding the treatment cycle is used as at least a part of the acidic exhaust gas treating agent.
[6]一种酸性废气处理设备,其为使用上述[1]~[3]中任一项所述的酸性废气处理剂对酸性废气进行处理的设备,所述处理设备具备如下装置:装置(1),使前述酸性废气与前述酸性废气处理剂接触,并吸附前述酸性废气中的酸性物质;装置(2),使在前述装置(1)中吸附于前述酸性废气处理剂上的酸性物质脱附,再生前述酸性废气处理剂;及装置(3),回收在前述装置(2)中从前述酸性废气处理剂上脱附的酸性物质。[6] An acid waste gas treatment facility for treating acid waste gas using the acid waste gas treatment agent according to any one of the above [1] to [3], the treatment facility including a device ( 1), the above-mentioned acidic waste gas is brought into contact with the above-mentioned acidic waste gas treatment agent, and the acidic substances in the above-mentioned acidic waste gas are adsorbed; device (2), in the above-mentioned device (1), the acidic substances adsorbed on the above-mentioned acidic waste gas treatment agent are removed Attached, regenerating the above-mentioned acidic waste gas treatment agent; and a device (3), recovering the acidic substance desorbed from the above-mentioned acidic waste gas treatment agent in the above-mentioned device (2).
[7]根据上述[4]所述的酸性废气处理方法,其中,所述二氧化锰复合Mg-Al系层状双氢氧化物通过不需要还原工序的制法而生成,所述二氧化锰复合Mg-Al系层状双氢氧化物通过在高锰酸钾水溶液中添加Mg-Al氧化物并将沉淀物过滤、干燥而生成。[7] The acid waste gas treatment method according to the above [4], wherein the manganese dioxide composite Mg-Al-based layered double hydroxide is produced by a production method that does not require a reduction step, and the manganese dioxide The composite Mg-Al-based layered double hydroxide is produced by adding Mg-Al oxide to an aqueous potassium permanganate solution, filtering and drying the precipitate.
发明的效果effect of invention
通过使用本发明的酸性废气处理剂,从而能够同时对由火力发电厂、焚烧设施等燃烧设施产生的氯化氢、硫氧化物和氮氧化物等酸性废气进行去除处理,特别是,与使用以往的层状双氢氧化物的情况相比,一氧化氮的去除效率提高。By using the acid waste gas treatment agent of the present invention, it is possible to simultaneously remove acid waste gas such as hydrogen chloride, sulfur oxides, and nitrogen oxides generated by combustion facilities such as thermal power plants and incineration facilities. The removal efficiency of nitric oxide is improved compared to the case of the double hydroxide.
另外,根据使用了前述酸性废气处理剂的本发明的酸性废气处理方法,能够以比以往更少的处理剂量有效地去除酸性废气,另外,能够再生利用前述酸性废气处理剂。Moreover, according to the acidic waste gas processing method of this invention using the said acidic waste gas processing agent, acidic waste gas can be removed efficiently with a smaller treatment amount than the prior art, and the said acidic waste gas processing agent can be regenerated.
另外,根据本发明的酸性废气处理装置,能够适宜地进行前述酸性废气处理方法,能够比以往更有效且低成本地处理酸性废气。Moreover, according to the acidic waste gas processing apparatus of this invention, the said acidic waste gas processing method can be suitably performed, and it becomes possible to process an acidic waste gas more efficiently and at low cost than before.
附图说明Description of drawings
图1是示出实施例的酸性废气处理性能评价试验中的反应管出口气体的NOx浓度的经时变化的图。FIG. 1 is a graph showing the change with time of the NOx concentration in the outlet gas of the reaction tube in the acid exhaust gas treatment performance evaluation test of the Example.
图2是合成例1的产物的粉末X射线衍射图。FIG. 2 is a powder X-ray diffraction pattern of the product of Synthesis Example 1. FIG.
图3是合成例2的产物的粉末X射线衍射图。3 is a powder X-ray diffraction pattern of the product of Synthesis Example 2. FIG.
图4是CO3型Mg-Al LDH的粉末X射线衍射图。Figure 4 is a powder X-ray diffraction pattern of CO3 -type Mg-Al LDH.
图5是合成例1的产物的XPS图谱。FIG. 5 is the XPS spectrum of the product of Synthesis Example 1. FIG.
图6是合成例2的产物的XPS图谱。FIG. 6 is the XPS spectrum of the product of Synthesis Example 2. FIG.
具体实施方式Detailed ways
以下对本发明的酸性废气处理剂、及使用了其的酸性废气处理方法以及酸性废气处理设备进行详细地说明。Hereinafter, the acidic waste gas processing agent of this invention, the acidic waste gas processing method and the acidic waste gas processing equipment using the same are demonstrated in detail.
[酸性废气处理剂][Acid waste gas treatment agent]
本发明的酸性废气处理剂包含Mg-Al LDH的基于氧化锰和高锰酸化合物中的至少任一者(以下也称为Mn-O化合物。)的复合化物。The acidic exhaust gas treating agent of the present invention contains a complex of Mg-Al LDH based on at least one of manganese oxide and permanganic acid compound (hereinafter also referred to as Mn-O compound.).
如此,通过将Mg-Al LDH制成基于锰和氧的化合物(Mn-O化合物)的复合化物作为酸性废气处理剂使用,从而与使用以往的作为层状双氢氧化物的Mg-Al LDH等的情况相比,能够改善一氧化氮的去除效率。In this way, by using Mg-Al LDH as a complex compound based on a compound of manganese and oxygen (Mn-O compound) as an acidic exhaust gas treatment agent, it is possible to use Mg-Al LDH as a conventional layered double hydroxide, etc. Compared with the case of nitric oxide, the removal efficiency of nitric oxide can be improved.
可推测这是由于:Mg-Al LDH本身虽然不易吸附一氧化氮,但在经复合化的Mn-O化合物的催化作用下,一氧化氮被氧化成二氧化氮,进而变得容易氧化成硝酸根离子,变得容易吸附于Mg-Al LDH的复合化物。It is presumed that this is because Mg-Al LDH itself is not easy to adsorb nitric oxide, but under the catalytic action of the composite Mn-O compound, nitric oxide is oxidized to nitrogen dioxide, and then becomes easily oxidized to nitric acid The root ion becomes easily adsorbed to the complex of Mg-Al LDH.
锰可以取+2~+7的氧化数,但从作为氧化催化剂的作用的观点出发,优选氧化数大者。作为前述复合化物,从合成容易性等的观点出发,例如优选:基于氧化数+4的锰的二氧化锰复合Mg-Al层状双氢氧化物(以下也称为MnO2复合Mg-Al LDH。)、或基于氧化数+7的锰的高锰酸型Mg-Al系层状双氢氧化物(以下也称为MnO4型Mg-Al LDH。)等。前述复合化物可以单独包含1种,也可以包含2种以上。Manganese may have an oxidation number of +2 to +7, but from the viewpoint of its function as an oxidation catalyst, a larger oxidation number is preferred. As the composite compound, from the viewpoint of ease of synthesis and the like, for example, a manganese dioxide composite Mg-Al layered double hydroxide based on manganese having an oxidation number of +4 (hereinafter also referred to as MnO 2 composite Mg-Al LDH) is preferable. .), or a permanganate-type Mg-Al-based layered double hydroxide based on manganese with an oxidation number of +7 (hereinafter also referred to as MnO 4 -type Mg-Al LDH.), etc. The above-mentioned complexes may be contained alone or two or more types may be contained.
MnO2复合Mg-Al LDH的结构式由下述式(1)表示,另外,MnO4型Mg-Al LDH的结构式由下述式(2)表示。The structural formula of the MnO 2 complex Mg-Al LDH is represented by the following formula (1), and the structural formula of the MnO 4 type Mg-Al LDH is represented by the following formula (2).
Mg1-xAlx(OH)2(MnO2)2.5x(Cl)x·mH2O (1)Mg 1-x Al x (OH) 2 (MnO 2 ) 2.5x (Cl) x mH 2 O (1)
Mg1-xAlx(OH)2(MnO4)x·mH2O (2)Mg 1-x Al x (OH) 2 (MnO 4 ) x mH 2 O (2)
前述式(1)和(2)中,通常为x=0.20~0.40、m=1~12。In the aforementioned formulas (1) and (2), usually x=0.20 to 0.40 and m=1 to 12.
前述酸性废气处理剂中优选包含碳酸型Mg-Al系层状双氢氧化物(以下也称为CO3型Mg-Al LDH。)。The acidic exhaust gas treating agent preferably contains a carbonic acid-type Mg-Al-based layered double hydroxide (hereinafter also referred to as CO3 -type Mg-Al LDH.).
如上述专利文献1记载,CO3型Mg-Al LDH是能够适宜用于酸性废气的处理的化合物,能够有效地去除酸性废气中包含的、例如氯化氢、二氧化硫、二氧化氮等除一氧化氮以外的酸性化合物。因此,优选与前述复合化物组合使用。As described in the above-mentioned Patent Document 1, CO 3 type Mg—Al LDH is a compound that can be suitably used for the treatment of acidic exhaust gas, and can effectively remove, for example, hydrogen chloride, sulfur dioxide, nitrogen dioxide, etc. contained in the acidic exhaust gas except for nitrogen monoxide. of acidic compounds. Therefore, it is preferably used in combination with the aforementioned complex.
在此情况下,前述酸性废气处理剂中的前述复合化物与CO3型Mg-Al LDH的含量比例没有特别限定,可根据要处理的酸性废气中包含的一氧化氮的量等酸性废气的成分组成进行适宜设定。In this case, the content ratio of the composite compound and CO 3 -type Mg-Al LDH in the acid waste gas treating agent is not particularly limited, and may be determined according to the components of the acid waste gas such as the amount of nitric oxide contained in the acid waste gas to be treated. The composition is appropriately set.
CO3型Mg-Al LDH还作为水滑石存在于天然产生的粘土矿物,但进行合成时,其合成方法没有特别限定,可以使用公知的方法(例如,上述专利文献1中记载的方法)。CO 3 -type Mg—Al LDH also exists as hydrotalcite in naturally occurring clay minerals, but when synthesizing, the method for synthesizing is not particularly limited, and a known method (for example, the method described in Patent Document 1 above) can be used.
例如,通过边将以Mg/Al=2/1(摩尔比)混合了硝酸镁(Mg(NO3)2)和硝酸铝(Al(NO3)3)的水溶液保持在pH10.5,边滴加至碳酸钠(Na2CO3)水溶液中,从而可以得到。具体而言,可以利用下述实施例所示的方法合成。For example, dropping an aqueous solution in which magnesium nitrate (Mg(NO 3 ) 2 ) and aluminum nitrate (Al(NO 3 ) 3 ) are mixed at Mg/Al=2/1 (molar ratio) at pH 10.5 can be added. It can be obtained by adding it to an aqueous solution of sodium carbonate (Na 2 CO 3 ). Specifically, it can be synthesized by the method shown in the following examples.
另外,MnO2复合Mg-Al LDH和MnO4型Mg-Al LDH的合成方法也没有特别限定,可以通过将CO3型Mg-Al LDH作为原料化合物,并利用基于其嵌入的阴离子交换功能而合成。In addition, the method for synthesizing MnO 2 composite Mg-Al LDH and MnO 4 type Mg-Al LDH is also not particularly limited, and can be synthesized by using CO 3 type Mg-Al LDH as a raw material compound and utilizing the anion exchange function based on its intercalation. .
例如,在500℃下将CO3型Mg-Al LDH预焙烧而得到Mg-Al氧化物后,添加至高锰酸钾(KMnO4)水溶液中并混合,由此能够合成捕获了高锰酸根离子(MnO4 -)的MnO4型Mg-AlLDH。For example, CO 3 -type Mg-Al LDH is pre-calcined at 500° C. to obtain Mg-Al oxide, which is then added to and mixed with an aqueous potassium permanganate (KMnO 4 ) solution to synthesize and capture permanganate ions ( MnO 4 - ) of the MnO 4 type Mg-AlLDH.
进而,MnO4型Mg-Al LDH在高锰酸钾(KMnO4)水溶液中变为MnO2复合Mg-Al LDH。Furthermore, MnO 4 type Mg-Al LDH becomes MnO 2 complex Mg-Al LDH in potassium permanganate (KMnO 4 ) aqueous solution.
另外,通过将前述MnO4型Mg-Al LDH添加至氯化锰(MnCl2)水溶液中并混合,从而能够合成MnO2复合Mg-Al LDH。In addition, the MnO 4 -type Mg-Al LDH can be synthesized by adding and mixing the aforementioned MnO 4 -type Mg-Al LDH to a manganese chloride (MnCl 2 ) aqueous solution.
前述酸性废气处理剂在不损害本发明的效果的范围内,例如可以包含氢氧化钙(熟石灰)、氧化钙、碳酸氢钠(sodium bicarbonate)、碳酸钠、氢氧化物白云石、轻烧白云石、氢氧化铝、氧化铝、氢氧化镁、氧化镁等层状双氢氧化物以外的药剂。但是,后述的酸性废气处理方法中,在再生前述酸性废气处理剂、并将其供于再利用的情况下,从再生品的纯度、回收操作等的观点出发,优选不包含这些药剂。The aforementioned acidic waste gas treatment agent may contain, for example, calcium hydroxide (slaked lime), calcium oxide, sodium bicarbonate (sodium bicarbonate), sodium carbonate, hydroxide dolomite, and light-burned dolomite within a range that does not impair the effects of the present invention. , Chemicals other than layered double hydroxides such as aluminum hydroxide, aluminum oxide, magnesium hydroxide, and magnesium oxide. However, in the acidic waste gas treatment method described later, when the above-mentioned acidic waste gas treatment agent is regenerated and reused, it is preferable not to contain these chemicals from the viewpoints of the purity of the regenerated product, the recovery operation, and the like.
[酸性废气处理方法][Acid waste gas treatment method]
使用前述酸性废气处理剂对酸性废气进行处理的方法没有特别限定,前述酸性废气处理剂(以下也简称为处理剂。)优选适于本发明的酸性废气处理方法。The method for treating acidic exhaust gas using the above-mentioned acidic exhaust gas treating agent is not particularly limited, but the aforementioned acidic exhaust gas treating agent (hereinafter also simply referred to as a treating agent) is preferably suitable for the acidic exhaust gas treating method of the present invention.
本发明的酸性废气处理方法包括如下工序:工序(1),使酸性废气与前述处理剂接触,并吸附前述酸性废气中的酸性物质;工序(2),使在前述工序(1)中吸附于前述处理剂上的酸性物质脱附,再生前述处理剂;及工序(3),回收在前述工序(2)中从前述处理剂上脱附的酸性物质。The acid waste gas treatment method of the present invention includes the following steps: step (1), contacting the acid waste gas with the treatment agent, and adsorbing the acid substances in the acid waste gas; The acidic substances on the treatment agent are desorbed to regenerate the treatment agent; and in step (3), the acidic substances desorbed from the treatment agent in the step (2) are recovered.
根据上述那样的处理方法,可以再利用经再生的处理剂。另外,酸性物质例如溶解于水中并作为酸(水溶液)回收,该酸也可以供于工业用途等的利用。According to the above-mentioned treatment method, the regenerated treatment agent can be reused. In addition, an acidic substance is dissolved in water, for example, and is recovered as an acid (aqueous solution), and this acid can also be used for industrial use or the like.
前述工序(1)中,一氧化氮被前述处理剂中的前述复合化物氧化,另外,通过在层状双氢氧化物的层间组入了酸性废气中的酸性物质的阴离子交换等,使前述酸性物质吸附于前述处理剂上。In the above-mentioned step (1), the nitric oxide is oxidized by the above-mentioned complex compound in the above-mentioned treatment agent, and the above-mentioned nitric oxide is oxidized by anion exchange of the acidic substance in the acid waste gas incorporated between the layers of the layered double hydroxide, and the like. The acidic substance is adsorbed on the aforementioned treating agent.
接着,前述工序(2)中,通过可逆的阴离子交换等,使吸附于前述处理剂上的前述酸性物质从该处理剂上脱附。此时的阴离子交换例如可以与CO3型Mg-Al LDH、MnO2复合Mg-Al LDH和MnO4型Mg-Al LDH的合成方法同样地、使用各种水溶液并进行混合搅拌而进行,由此,能够容易地再生处理剂。Next, in the said step (2), the said acidic substance adsorbed on the said processing agent is desorbed from the said processing agent by reversible anion exchange etc. The anion exchange at this time can be performed, for example, by using various aqueous solutions and mixing and stirring in the same manner as in the synthesis method of CO 3 type Mg-Al LDH, MnO 2 composite Mg-Al LDH, and MnO 4 type Mg-Al LDH. , the treatment agent can be easily regenerated.
如此再生的处理剂可以再利用,因此能够降低酸性废气的处理成本。The treatment agent thus regenerated can be reused, so that the treatment cost of the acid waste gas can be reduced.
前述工序(3)中,回收在前述工序(2)中从前述处理剂上脱附的酸性物质。例如,可以溶解于水中并作为酸(水溶液)回收,前述酸也可以供于工业用途等的利用。In the aforementioned step (3), the acidic substance desorbed from the aforementioned treatment agent in the aforementioned step (2) is recovered. For example, it can be dissolved in water and recovered as an acid (aqueous solution), and the above-mentioned acid can also be used for industrial use or the like.
如此,本发明的处理方法是不仅对前述处理剂而且对成为处理对象的酸性废气的再循环性优异的方法。In this way, the treatment method of the present invention is a method that is excellent in recyclability not only with respect to the aforementioned treatment agent but also with respect to the acidic exhaust gas to be treated.
前述处理方法中,优选:重复进行包括前述工序(1)~(3)的处理循环,在前述处理循环的第2次及之后的至少任一个处理循环的工序(1)中,作为前述处理剂的至少一部分使用在该处理循环以前的至少任一个处理循环的工序(2)中再生的处理剂。In the aforementioned treatment method, it is preferable to repeat the treatment cycle including the aforementioned steps (1) to (3), and to use the treatment agent as the aforementioned treatment agent in the second and subsequent step (1) of at least one treatment cycle. At least a part of it uses the treatment agent regenerated in step (2) of at least any one treatment cycle preceding this treatment cycle.
如此,在重复进行前述处理方法时,通过再利用在前工序中再生的处理剂,从而能够减少酸性废气的处理所需的处理剂的总用量,从而能够降低酸性废气的处理成本。In this way, when the above-described treatment method is repeated, by reusing the treatment agent regenerated in the previous step, the total amount of the treatment agent required for the treatment of the acid waste gas can be reduced, and the treatment cost of the acid waste gas can be reduced.
上述那样的本发明的酸性废气的处理方法可以用1种处理剂同时对酸性废气中的各种酸性物质进行去除处理,因此作业效率优异。特别是,通过使用前述复合化物作为处理剂,从而与现有相比能够提高一氧化氮的去除效率。The above-described method for treating an acidic waste gas of the present invention can simultaneously remove various acidic substances in an acidic waste gas with a single treatment agent, and thus is excellent in work efficiency. In particular, the removal efficiency of nitric oxide can be improved compared with the prior art by using the above-mentioned complex as a treatment agent.
另外,在处理时不会产生中和产物、且能够减少伴随处理所产生的废弃物的处理负荷。In addition, neutralization products are not generated during the treatment, and the treatment load of the waste generated accompanying the treatment can be reduced.
[酸性废气处理设备][Acid waste gas treatment equipment]
用于使用前述酸性废气处理剂来处理酸性废气的设备没有特别限定,前述处理剂优选适用于本发明的酸性废气处理设备。The equipment for treating acidic exhaust gas using the aforementioned acidic exhaust gas treating agent is not particularly limited, and the aforementioned treating agent is preferably applied to the acidic exhaust gas treating equipment of the present invention.
本发明的酸性废气处理设备具备如下装置:装置(1),使酸性废气与前述处理剂接触,并吸附前述酸性废气中的酸性物质;装置(2),使在前述装置(1)中吸附于前述处理剂的酸性物质脱附,再生前述处理剂;及装置(3),回收在前述装置(2)中从前述处理剂上脱附的酸性物质。The acid waste gas treatment equipment of the present invention is provided with the following means: a device (1) for contacting the acid waste gas with the treatment agent to adsorb the acid substances in the acid waste gas; and a device (2) for adsorbing the acid in the device (1) on The acid substance of the treatment agent is desorbed to regenerate the treatment agent; and a device (3) is used to recover the acid substance desorbed from the treatment agent in the device (2).
前述装置(1)例如可以通过在收纳有前述处理剂的容器中设置酸性废气的流通路而构成。The said apparatus (1) can be comprised by providing the flow path of an acidic waste gas in the container which accommodated the said processing agent, for example.
前述装置(2)例如可以以如下浸渍槽的方式构成,所述浸渍槽可以对从流通酸性废气后的前述容器内取出的处理剂,利用与上述的CO3型Mg-Al LDH、MnO2复合Mg-Al LDH和MnO4型Mg-Al LDH的合成方法同样的方法,根据与Mg-Al LDH复合化的化学种类,浸渍于各种水溶液中并进行混合搅拌。The apparatus (2) can be configured as, for example, a dipping tank that can use the above-mentioned CO 3 type Mg-Al LDH and MnO 2 to compound the treatment agent taken out from the container through which the acidic waste gas flows. Mg-Al LDH and MnO 4 -type Mg-Al LDH were immersed in various aqueous solutions and mixed and stirred according to the chemical type to be complexed with Mg-Al LDH in the same method.
前述装置(3)例如可以以溶解于水中并作为酸(水溶液)回收的水溶液收纳罐的方式构成。The said apparatus (3) can be comprised so that it may be comprised so that the aqueous solution storage tank which melt|dissolved in water, and was collect|recovered as an acid (aqueous solution), for example.
前述酸性废气处理设备可以附设于火力发电、废弃物焚烧等中的燃烧设备中。例如,在对处理废弃物焚烧炉产生的酸性废气进行处理时,可以如下构成:继在焚烧炉主体的燃烧废气系统中依次设置的锅炉、废气冷却装置、集尘机之后,设置前述酸性废气处理设备,通过吸引通风机等将来自该酸性废气处理设备的经处理的废气导入烟囱中,从该烟囱释放到大气中。The aforementioned acid waste gas treatment equipment may be attached to combustion equipment in thermal power generation, waste incineration, and the like. For example, when treating the acid waste gas generated by the waste incinerator, it may be configured as follows: the above-mentioned acid waste gas treatment is provided after the boiler, the waste gas cooling device, and the dust collector, which are sequentially installed in the combustion waste gas system of the main body of the incinerator. A device from which the treated exhaust gas from the acid exhaust gas treatment plant is introduced into a chimney by means of a suction fan or the like, from which it is released into the atmosphere.
实施例Example
以下对本发明进行更详细地说明,但本发明不受下述实施例限定。The present invention will be described in more detail below, but the present invention is not limited to the following examples.
[合成例1]MnO2复合Mg-Al LDH的合成[Synthesis Example 1] Synthesis of MnO2 -composite Mg-Al LDH
使用硝酸镁六水合物和硝酸铝九水合物,制备了镁浓度0.33摩尔/L、铝浓度0.17摩尔/L的混合水溶液(镁/铝=2/1(摩尔比))。Using magnesium nitrate hexahydrate and aluminum nitrate nonahydrate, a mixed aqueous solution having a magnesium concentration of 0.33 mol/L and an aluminum concentration of 0.17 mol/L (magnesium/aluminum=2/1 (molar ratio)) was prepared.
将该混合溶液在30℃下边搅拌边滴加至浓度0.1摩尔/L的碳酸钠水溶液中。此时,通过滴加浓度1.25摩尔/L的氢氧化钠水溶液而使pH保持在10.5。The mixed solution was added dropwise to an aqueous sodium carbonate solution having a concentration of 0.1 mol/L at 30°C with stirring. At this time, the pH was kept at 10.5 by dropwise addition of an aqueous sodium hydroxide solution having a concentration of 1.25 mol/L.
滴加结束后,在30℃下搅拌1小时。然后,将沉淀物过滤并重复清洗后,在40℃下进行40小时减压干燥,得到CO3型Mg-Al LDH。After completion of the dropwise addition, the mixture was stirred at 30°C for 1 hour. Then, the precipitate was filtered and repeatedly washed, and then dried under reduced pressure at 40° C. for 40 hours to obtain CO 3 type Mg—Al LDH.
将得到的CO3型Mg-Al LDH在500℃下预焙烧2小时后,在氮气气流下投入浓度0.2摩尔/L的高锰酸钾水溶液中,在30℃下搅拌6小时。然后,将沉淀物过滤并重复清洗后,将在40℃下进行40小时减压干燥而得到的产物在氮气气流下投入浓度0.1摩尔/L的氯化锰水溶液中,在30℃下搅拌3小时。然后,将沉淀物过滤并重复清洗后,在40℃下进行减压干燥,得到MnO2复合Mg-Al LDH(Mg0.62Al0.38(OH)2(MnO2)0.95(Cl)0.38·1.13H2O)。The obtained CO 3 type Mg-Al LDH was pre-calcined at 500°C for 2 hours, then put into a potassium permanganate aqueous solution with a concentration of 0.2 mol/L under nitrogen flow, and stirred at 30°C for 6 hours. Then, after filtering the precipitate and repeating the washing, the product obtained by drying under reduced pressure at 40°C for 40 hours was put into an aqueous solution of manganese chloride with a concentration of 0.1 mol/L under nitrogen flow, and stirred at 30°C for 3 hours. . Then, the precipitate was filtered and repeatedly washed, and then dried under reduced pressure at 40° C. to obtain MnO 2 composite Mg-Al LDH (Mg 0.62 Al 0.38 (OH) 2 (MnO 2 ) 0.95 (Cl) 0.38 1.13H 2 ) O).
[合成例2]MnO2复合Mg-Al LDH的合成[Synthesis example 2] Synthesis of MnO 2 composite Mg-Al LDH
使用硝酸镁六水合物和硝酸铝九水合物,制备了镁浓度0.33摩尔/L、铝浓度0.17摩尔/L的混合水溶液(镁/铝=2/1(摩尔比))。Using magnesium nitrate hexahydrate and aluminum nitrate nonahydrate, a mixed aqueous solution having a magnesium concentration of 0.33 mol/L and an aluminum concentration of 0.17 mol/L (magnesium/aluminum=2/1 (molar ratio)) was prepared.
将该混合溶液在30℃下边搅拌边滴加至浓度0.1摩尔/L的碳酸钠水溶液中。此时,通过滴加浓度1.25摩尔/L的氢氧化钠水溶液而使pH保持在10.5。The mixed solution was added dropwise to an aqueous sodium carbonate solution having a concentration of 0.1 mol/L at 30°C with stirring. At this time, the pH was kept at 10.5 by dropwise addition of an aqueous sodium hydroxide solution having a concentration of 1.25 mol/L.
滴加结束后,在30℃下搅拌1小时。然后,将沉淀物过滤并重复清洗后,在40℃下进行40小时减压干燥,得到CO3型Mg-Al LDH。After completion of the dropwise addition, the mixture was stirred at 30°C for 1 hour. Then, the precipitate was filtered and repeatedly washed, and then dried under reduced pressure at 40° C. for 40 hours to obtain CO 3 type Mg—Al LDH.
将得到的CO3型Mg-Al LDH在500℃下预焙烧2小时后,在氮气气流下投入浓度0.2摩尔/L的高锰酸钾水溶液中,在30℃下搅拌6小时。然后,将沉淀物过滤并重复清洗后,在40℃下进行40小时减压干燥。The obtained CO 3 type Mg-Al LDH was pre-calcined at 500°C for 2 hours, then put into a potassium permanganate aqueous solution with a concentration of 0.2 mol/L under nitrogen flow, and stirred at 30°C for 6 hours. Then, the precipitate was filtered and repeatedly washed, and then dried under reduced pressure at 40° C. for 40 hours.
需要说明的是,通过粉末X射线衍射测定法(粉末XRD)鉴定了合成例1和合成例2中的CO3型Mg-Al LDH、MnO4型Mg-Al LDH、和MnO2复合Mg-Al LDH。对于CO3型Mg-Al LDH,图4示出粉末X射线衍射图。需要说明的是,使用的X射线衍射测定装置为Rigaku Corporation制“RINT-2200VHF”,作为特性X射线,使用CuKα射线(1.5418A)进行测定。另外,对于基于Mn-O化合物的复合化物,也示出基于电感耦合等离子体发光光谱分析法(ICP-AES)的元素分析值。另外,合成例1和合成例2中的MnO4型Mg-Al LDH、和MnO2复合Mg-Al LDH通过使用X射线光电子能谱法(XPS)来确定Mn的氧化数而鉴定。It should be noted that CO 3 type Mg-Al LDH, MnO 4 type Mg-Al LDH, and MnO 2 composite Mg-Al in Synthesis Example 1 and Synthesis Example 2 were identified by powder X-ray diffraction measurement (powder XRD). LDH. For the CO3 -type Mg-Al LDH, Figure 4 shows the powder X-ray diffraction pattern. In addition, the X-ray diffraction measurement apparatus used was "RINT-2200VHF" by Rigaku Corporation, and CuKα rays (1.5418A) were used for measurement as characteristic X-rays. In addition, the elemental analysis value by inductively coupled plasma emission spectrometry (ICP-AES) is also shown for the complex compound based on the Mn-O compound. In addition, the MnO 4 type Mg-Al LDH and the MnO 2 complex Mg-Al LDH in Synthesis Example 1 and Synthesis Example 2 were identified by determining the oxidation number of Mn using X-ray photoelectron spectroscopy (XPS).
[酸性废气处理性能评价试验][Acid waste gas treatment performance evaluation test]
(实施例1)(Example 1)
将合成例1中得到的MnO2复合Mg-Al LDH1.0g填充于管状电炉的反应管(内径16mm)内的玻璃棉上。将管状电炉的设定温度设为170℃,通过质量流量控制器对试验气体(载气:氮气、一氧化氮气体浓度150volppm、氧气浓度10vol%)进行流量调整,以线速度1.0m/分钟流入反应管中。利用基于恒电位电解法的燃烧废气分析计(Testo SE&Co.KGaA制)测定了反应管的出口气体的NOx浓度的经时变化(90分钟)。1.0 g of MnO 2 composite Mg-Al LDH obtained in Synthesis Example 1 was filled on glass wool in a reaction tube (inner diameter: 16 mm) of a tubular electric furnace. The set temperature of the tubular electric furnace was set at 170°C, and the flow rate of the test gas (carrier gas: nitrogen, 150 volppm of nitric oxide gas concentration, 10 vol% of oxygen concentration) was adjusted by a mass flow controller, and flowed at a linear velocity of 1.0 m/min. in the reaction tube. The time-dependent change (90 minutes) of the NOx concentration in the outlet gas of the reaction tube was measured with a combustion exhaust gas analyzer (manufactured by Testo SE & Co. KGaA) based on the potentiostatic electrolysis method.
(比较例1)(Comparative Example 1)
实施例1中,将MnO2复合Mg-Al LDH变更为合成例1的合成过程中得到的CO3型Mg-AlLDH,除此以外与实施例1同样地进行评价试验。In Example 1, the evaluation test was carried out in the same manner as in Example 1, except that the MnO 2 complex Mg-Al LDH was changed to the CO 3 type Mg-Al LDH obtained in the synthesis process of Synthesis Example 1.
图1中图示出实施例1和比较例1中的反应管的出口气体的NOx浓度的经时变化。In FIG. 1 , the change with time of the NOx concentration in the outlet gas of the reaction tubes in Example 1 and Comparative Example 1 is shown.
另外,由NOx浓度的累积浓度求出试验气体中的一氧化氮气体的反应率,结果:实施例1为91.5vol%、比较例1为2.2vol%。In addition, the reaction rate of the nitric oxide gas in the test gas was obtained from the cumulative concentration of NOx concentration, and as a result, Example 1 was 91.5 vol%, and Comparative Example 1 was 2.2 vol%.
由这些结果明确了:二氧化锰与Mg-Al系层状双氢氧化物的复合化物比CO3型Mg-Al LDH的一氧化氮的去除性能优异。From these results, it became clear that the complex of manganese dioxide and Mg-Al-based layered double hydroxide is superior in removal performance of nitric oxide than CO 3 type Mg-Al LDH.
[基于合成例1和合成例2的MnO2复合Mg-Al LDH的存在比的分析][Analysis of Existence Ratio of MnO Composite Mg-Al LDH Based on Synthesis Example 1 and Synthesis Example 2]
图2和图3中示出基于合成例1和合成例2的产物的粉末X射线衍射图。另外,图5和图6中示出基于合成例1和合成例2的产物的XPS图谱。The powder X-ray diffraction patterns of the products based on Synthesis Example 1 and Synthesis Example 2 are shown in FIGS. 2 and 3 . 5 and 6 show the XPS patterns of the products based on Synthesis Example 1 and Synthesis Example 2.
从元素分析值来看,合成例1和合成例2的产物的Mg/Al摩尔比分别为1.9和1.6,与初始Mg/Al摩尔比2.0基本上一致。From the elemental analysis value, the Mg/Al molar ratios of the products of Synthesis Example 1 and Synthesis Example 2 are 1.9 and 1.6, respectively, which are basically consistent with the initial Mg/Al molar ratio of 2.0.
根据图2和图3的粉末X射线衍射图,示出了均归属于LDH的X射线峰,确认了晶面间距(d 003)为任意产物均具有LDH结构。From the powder X-ray diffraction patterns of FIGS. 2 and 3 , X-ray peaks all attributed to LDH were shown, and it was confirmed that the interplanar spacing (d 003 ) was Any product has the LDH structure.
根据图5和图6的XPS图谱,确认了源自MnO2的Mn(IV)的峰,从峰面积确认了相对于Mn的总量均存在95%以上的Mn(IV)。From the XPS spectra of FIGS. 5 and 6 , the peak of Mn(IV) derived from MnO 2 was confirmed, and it was confirmed from the peak area that 95% or more of Mn(IV) was present with respect to the total amount of Mn.
根据这些结果,确认了:即使如合成例2那样没有投入合成例1所示的氯化锰水溶液的还原工序,也能够合成MnO2复合Mg-Al LDH。From these results, it was confirmed that MnO 2 composite Mg—Al LDH can be synthesized even without the reduction step of adding the manganese chloride aqueous solution shown in Synthesis Example 1 as in Synthesis Example 2.
需要说明的是,可认为合成例2中的MnO2复合Mg-Al LDH如下生成。In addition, the MnO 2 composite Mg-Al LDH in Synthesis Example 2 is considered to be produced as follows.
首先,将CO3型Mg-Al LDH在500℃下预焙烧2小时后,将生成的Mg-Al氧化物(Mg1- xAlxO1+x/2)在氮气气流下投入浓度0.2摩尔/L的高锰酸钾水溶液中,在30℃下搅拌6小时时,如式(3)所示,生成MnO4型Mg-Al LDH(Mg1-xAlx(OH)2(MnO4)x)。First, after pre-calcining CO 3 type Mg-Al LDH at 500°C for 2 hours, the resulting Mg-Al oxide (Mg 1- x Al x O 1+x/2 ) was charged in a nitrogen gas stream at a concentration of 0.2 mol MnO 4 type Mg-Al LDH (Mg 1-x Al x (OH) 2 (MnO 4 ) is produced as shown in formula (3) when stirred in a potassium permanganate aqueous solution of /L for 6 hours at 30° C. x ).
Mg1-xAlxO1+x/2+xMnO4 -+(1+x/2)H2OMg 1-x Al x O 1+x/2 +xMnO 4 - +(1+x/2)H 2 O
→Mg1-xAlx(OH)2(MnO4)x+xOH- (3)→Mg 1-x Al x (OH) 2 (MnO 4 ) x +xOH- (3)
进而,在高锰酸钾水溶液中,发生式(4)所示的反应,生成MnO2型Mg-Al LDH(Mg1- xAlx(OH)2(MnO2)x)。Furthermore, in the potassium permanganate aqueous solution, the reaction represented by the formula (4) occurs to generate MnO 2 type Mg—Al LDH (Mg 1- x Al x (OH) 2 (MnO 2 ) x ).
Mg1-xAlx(OH)2(MnO4)x+x/2H2OMg 1-x Al x (OH) 2 (MnO 4 ) x +x/2H 2 O
→Mg1-xAlx(OH)2(MnO2)x+3/4xO2+xOH- (4)。→Mg 1-x Al x (OH) 2 (MnO 2 ) x +3/4xO 2 +xOH- (4).
Claims (7)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-080221 | 2019-04-19 | ||
JP2019080221 | 2019-04-19 | ||
JP2019193749A JP6898625B2 (en) | 2019-04-19 | 2019-10-24 | Acid exhaust gas treatment agent, acid exhaust gas treatment method, and acid exhaust gas treatment equipment |
JP2019-193749 | 2019-10-24 | ||
PCT/JP2020/009327 WO2020213281A1 (en) | 2019-04-19 | 2020-03-05 | Acidic exhaust gas treatment agent, acidic exhaust gas treatment method, and acidic exhaust gas treatment equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113660996A true CN113660996A (en) | 2021-11-16 |
CN113660996B CN113660996B (en) | 2024-03-15 |
Family
ID=72936863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202080028089.6A Active CN113660996B (en) | 2019-04-19 | 2020-03-05 | Acid exhaust gas treating agent, acid exhaust gas treating method, and acid exhaust gas treating apparatus |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6898625B2 (en) |
CN (1) | CN113660996B (en) |
TW (1) | TWI809255B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104071756A (en) * | 2014-06-24 | 2014-10-01 | 太原理工大学 | A kind of preparation method of MnO2 intercalation hydrotalcite composite material |
JP2016190199A (en) * | 2015-03-31 | 2016-11-10 | 栗田工業株式会社 | Method for treating acidic exhaust gas generated from combustion facility, combustion facility and acidic exhaust gas treatment agent |
CN109046357A (en) * | 2018-08-27 | 2018-12-21 | 上海大学 | A kind of preparation method of metal oxide-LDH loaded catalyst |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5114691A (en) * | 1990-01-18 | 1992-05-19 | Board Of Trustees Operating Michigan State University | Process using sorbents for the removal of SOx from flue gas |
CA2082639A1 (en) * | 1990-06-08 | 1991-12-09 | Terence William Turney | Ethylene sorbing substances |
US6028023A (en) * | 1997-10-20 | 2000-02-22 | Bulldog Technologies U.S.A., Inc. | Process for making, and use of, anionic clay materials |
AU2003243054A1 (en) * | 2003-07-07 | 2005-01-21 | Instituto Mexicano Del Petroleo | Method of obtaining multimetallic oxides derived from hydrotalcite-type compounds |
JP2007516073A (en) * | 2003-12-05 | 2007-06-21 | インターカット インコーポレイテッド | Mixed metal oxide adsorbent |
US9248426B2 (en) * | 2012-02-02 | 2016-02-02 | Samsung Electronics Co., Ltd. | Adsorbent for carbon dioxide, method of preparing the same, and capture module for carbon dioxide |
EP3015429A1 (en) * | 2014-10-30 | 2016-05-04 | Wintershall Holding GmbH | Monolayer from at least one layered double hydroxide (LDH) |
-
2019
- 2019-10-24 JP JP2019193749A patent/JP6898625B2/en active Active
-
2020
- 2020-03-05 CN CN202080028089.6A patent/CN113660996B/en active Active
- 2020-03-11 TW TW109108020A patent/TWI809255B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104071756A (en) * | 2014-06-24 | 2014-10-01 | 太原理工大学 | A kind of preparation method of MnO2 intercalation hydrotalcite composite material |
JP2016190199A (en) * | 2015-03-31 | 2016-11-10 | 栗田工業株式会社 | Method for treating acidic exhaust gas generated from combustion facility, combustion facility and acidic exhaust gas treatment agent |
CN109046357A (en) * | 2018-08-27 | 2018-12-21 | 上海大学 | A kind of preparation method of metal oxide-LDH loaded catalyst |
Also Published As
Publication number | Publication date |
---|---|
JP2020175376A (en) | 2020-10-29 |
TW202041464A (en) | 2020-11-16 |
TWI809255B (en) | 2023-07-21 |
JP6898625B2 (en) | 2021-07-07 |
CN113660996B (en) | 2024-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4768636B2 (en) | Sulfur oxide adsorbent and emission control | |
US8496895B2 (en) | Exhaust gas treating apparatus and treating method for carbon dioxide capture process | |
JP6173703B2 (en) | Carbon dioxide adsorbent, method for producing the same, and carbon dioxide capturing module including the same | |
CN101274208B (en) | Method for simultaneously removing sulfur dioxide and nitrogen oxide in exhaust air | |
KR20170021713A (en) | Functional electrolysis cell for capturing and collecting NOx using FeEDTA | |
JP4364798B2 (en) | Method for producing manganese compound and method for using the same | |
Lou et al. | Efficient recovery of scrapped V2O5-WO3/TiO2 SCR catalyst by cleaner hydrometallurgical process | |
CN106964238A (en) | A comprehensive flue gas treatment method, a series-type comprehensive flue gas treatment system, and an integrated flue gas comprehensive treatment system | |
CN109821381A (en) | A method for enhancing wet complex desulfurization and denitrification with modified activated carbon | |
KR102558233B1 (en) | Acid exhaust gas treatment agent, acid exhaust gas treatment method, and acid exhaust gas treatment facility | |
TW592791B (en) | Treatment method for decomposing perfluorocompound, decomposing catalyst and treatment apparatus | |
JP2005518938A (en) | Manganese oxide regeneration, pretreatment and precipitation | |
CN113660996B (en) | Acid exhaust gas treating agent, acid exhaust gas treating method, and acid exhaust gas treating apparatus | |
JP4861018B2 (en) | Nitric oxide oxidation catalyst and nitric oxide oxidation method | |
JP3457953B2 (en) | Nitrogen oxide and / or sulfur oxide adsorbent | |
CN102755886A (en) | Preparation of vanadium intercalation hydrotalcite-like compound derivative composite oxide catalytic material and application thereof in hydrogen sulfide selective oxidation process | |
TWI850542B (en) | Acid waste gas treatment method, acid waste gas treatment equipment and incineration facility | |
JP4394555B2 (en) | Method and apparatus for treating fluorine compound-containing gas | |
TWI874728B (en) | Acid waste gas treatment method, acid waste gas treatment equipment and incineration facility | |
JP5851440B2 (en) | Selenium recovery system and method for recovering selenium in exhaust gas | |
CN117042865A (en) | Method for treating acid waste gas, equipment for treating acid waste gas, and incineration facility | |
JPH0687943B2 (en) | Exhaust gas purification method | |
KR102556856B1 (en) | Carbon dioxide absorbent and method for producing desul | |
KR102556854B1 (en) | Resource Circulation System | |
KR102556855B1 (en) | A Carbon Dioxide Absorbent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |