CN113630601B - An affine motion estimation method, device, equipment and storage medium - Google Patents
An affine motion estimation method, device, equipment and storage medium Download PDFInfo
- Publication number
- CN113630601B CN113630601B CN202110732236.4A CN202110732236A CN113630601B CN 113630601 B CN113630601 B CN 113630601B CN 202110732236 A CN202110732236 A CN 202110732236A CN 113630601 B CN113630601 B CN 113630601B
- Authority
- CN
- China
- Prior art keywords
- current block
- motion vector
- affine motion
- rate distortion
- distortion cost
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 title claims abstract description 123
- 238000000034 method Methods 0.000 title claims abstract description 53
- 239000013598 vector Substances 0.000 claims abstract description 95
- 230000003247 decreasing effect Effects 0.000 claims abstract 2
- 238000004590 computer program Methods 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 2
- 230000007423 decrease Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 238000005457 optimization Methods 0.000 description 5
- 238000013519 translation Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000000802 evaporation-induced self-assembly Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/146—Data rate or code amount at the encoder output
- H04N19/147—Data rate or code amount at the encoder output according to rate distortion criteria
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/182—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a pixel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/513—Processing of motion vectors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/567—Motion estimation based on rate distortion criteria
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Image Analysis (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
Description
技术领域Technical field
本申请涉及视频编解码技术领域,具体涉及一种仿射运动估计方法、装置、设备及存储介质。The present application relates to the field of video coding and decoding technology, and in particular to an affine motion estimation method, device, equipment and storage medium.
背景技术Background technique
视频编解码技术的主要作用,是在可用的计算资源内,追求尽可能高的视频重建质量和尽可能高的压缩比。例如先进视频编码(Advanced Video Coding,简称AVS)。The main function of video coding and decoding technology is to pursue the highest possible video reconstruction quality and the highest possible compression ratio within the available computing resources, such as Advanced Video Coding (AVS).
基于Affine(仿射)的运动补偿技术是一种用于淡入/淡出,旋转,放缩等不规则运动的位移变换模型,解决了平移变换模型运动补偿不准确的问题。基于Affine的运动补偿技术包含了AffineMerge模式(仿射合并模式)和仿射运动估计模式(Affine MotionEstimation),二者包含在帧间模式选择的过程中。仿射运动估计和普通的运动估计一起计算率失真代价RDCost。仿射运动估计作为帧间预测的一项新工具,增加了编码器的时间复杂度以及需要较多的硬件资源。Affine-based motion compensation technology is a displacement transformation model used for irregular movements such as fade-in/fade-out, rotation, scaling, etc., which solves the problem of inaccurate motion compensation in translation transformation models. Affine-based motion compensation technology includes AffineMerge mode (affine merge mode) and affine motion estimation mode (Affine MotionEstimation), both of which are included in the inter-frame mode selection process. Affine motion estimation is used together with ordinary motion estimation to calculate the rate-distortion cost RDCost. As a new tool for inter-frame prediction, affine motion estimation increases the time complexity of the encoder and requires more hardware resources.
发明内容Summary of the invention
本申请的目的是提供一种仿射运动估计方法、装置、设备及存储介质,以降低仿射运动估计的复杂度,并且易于硬件实现。The purpose of this application is to provide an affine motion estimation method, device, equipment and storage medium to reduce the complexity of affine motion estimation and facilitate hardware implementation.
本申请第一方面提供一种仿射运动估计方法,包括:The first aspect of this application provides an affine motion estimation method, including:
对当前块进行初始化,得到当前块的属性信息;Initialize the current block and obtain the attribute information of the current block;
根据所述属性信息确定当前块的初始预测运动矢量;Determine an initial predicted motion vector of the current block according to the attribute information;
基于所述初始预测运动矢量对当前块进行仿射运动估计,得到仿射运动矢量;Perform affine motion estimation on the current block based on the initial predicted motion vector to obtain an affine motion vector;
基于计算所述仿射运动矢量的线性方程组,沿着均方误差梯度下降的方向迭代更新所述仿射运动矢量,迭代完成后得到当前块的最优仿射运动矢量。Based on the linear equation system for calculating the affine motion vector, the affine motion vector is iteratively updated along the direction of mean square error gradient descent, and after the iteration is completed, the optimal affine motion vector of the current block is obtained.
本申请第二方面提供一种仿射运动估计装置,包括:A second aspect of this application provides an affine motion estimation device, including:
初始化模块,用于对当前块进行初始化,得到当前块的属性信息;The initialization module is used to initialize the current block and obtain the attribute information of the current block;
确定模块,用于根据所述属性信息确定当前块的初始预测运动矢量;Determining module, configured to determine the initial predicted motion vector of the current block according to the attribute information;
仿射运动估计模块,用于基于所述初始预测运动矢量对当前块进行仿射运动估计,得到仿射运动矢量;An affine motion estimation module, used for performing affine motion estimation on the current block based on the initial predicted motion vector to obtain an affine motion vector;
迭代更新模块,用于基于计算所述仿射运动矢量的线性方程组,沿着均方误差梯度下降的方向迭代更新所述仿射运动矢量,迭代完成后得到当前块的最优仿射运动矢量。An iterative update module, configured to iteratively update the affine motion vector along the direction of mean square error gradient descent based on the linear equation system for calculating the affine motion vector, and obtain the optimal affine motion vector of the current block after the iteration is completed. .
本申请第三方面提供一种仿射运动估计设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行以实现本申请第一方面所述的方法。A third aspect of the present application provides an affine motion estimation device, including: a memory, a processor, and a computer program stored on the memory and executable on the processor. When the processor runs the computer program Executed to implement the method described in the first aspect of this application.
本申请第四方面提供一种计算机可读介质,其上存储有计算机可读指令,所述计算机可读指令可被处理器执行以实现本申请第一方面所述的方法。A fourth aspect of the present application provides a computer-readable medium on which computer-readable instructions are stored, and the computer-readable instructions can be executed by a processor to implement the method described in the first aspect of the present application.
相较于现有技术,本申请提供的仿射运动估计方法,对当前块进行初始化,得到当前块的属性信息;根据所述属性信息确定当前块的初始预测运动矢量;基于所述初始预测运动矢量对当前块进行仿射运动估计,得到仿射运动矢量;基于计算所述仿射运动矢量的线性方程组,沿着均方误差梯度下降的方向迭代更新所述仿射运动矢量,迭代完成后得到当前块的最优仿射运动矢量,相较于现有技术,本申请基于梯度的快速仿射运动估计,可以降低仿射运动估计的复杂度,并且易于硬件实现。Compared with the existing technology, the affine motion estimation method provided by this application initializes the current block to obtain the attribute information of the current block; determines the initial predicted motion vector of the current block based on the attribute information; based on the initial predicted motion The vector performs affine motion estimation on the current block to obtain the affine motion vector; based on the linear equation system for calculating the affine motion vector, the affine motion vector is iteratively updated along the direction of mean square error gradient descent. After the iteration is completed The optimal affine motion vector of the current block is obtained. Compared with the existing technology, the gradient-based fast affine motion estimation of this application can reduce the complexity of affine motion estimation and is easy to implement in hardware.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:Various other advantages and benefits will become apparent to those of ordinary skill in the art upon reading the following detailed description of the preferred embodiments. The drawings are for the purpose of illustrating preferred embodiments only and are not to be construed as limiting the application. Also throughout the drawings, the same reference characters are used to designate the same components. In the attached picture:
图1示出了本申请提供的一种仿射运动估计方法的流程图;Figure 1 shows a flow chart of an affine motion estimation method provided by this application;
图2示出了本申请提供的一种具体的仿射运动估计方法的流程图;Figure 2 shows a flow chart of a specific affine motion estimation method provided by this application;
图3示出了本申请提供的一种计算率失真代价的流程图;Figure 3 shows a flow chart for calculating rate distortion cost provided by this application;
图4示出了本申请提供的一种仿射运动补偿的流水结构的示意图;Figure 4 shows a schematic diagram of a pipeline structure for affine motion compensation provided by this application;
图5示出了本申请提供的迭代更新仿射运动矢量的流程图;Figure 5 shows a flow chart for iteratively updating affine motion vectors provided by this application;
图6示出了方程组求解步骤前三级的除法运算的示意图;Figure 6 shows a schematic diagram of the division operations of the first three levels of the solution step of the system of equations;
图7示出了本申请提供的一种仿射运动估计装置的示意图;Figure 7 shows a schematic diagram of an affine motion estimation device provided by this application;
图8示出了本申请提供的一种仿射运动估计设备的示意图;Figure 8 shows a schematic diagram of an affine motion estimation device provided by this application;
图9示出了本申请提供的一种计算机可读存储介质的示意图。Figure 9 shows a schematic diagram of a computer-readable storage medium provided by this application.
具体实施方式Detailed ways
下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。Exemplary embodiments of the present disclosure will be described in more detail below with reference to the accompanying drawings. Although exemplary embodiments of the present disclosure are shown in the drawings, it should be understood that the disclosure may be embodied in various forms and should not be limited to the embodiments set forth herein. Rather, these embodiments are provided to provide a thorough understanding of the disclosure, and to fully convey the scope of the disclosure to those skilled in the art.
需要注意的是,除非另有说明,本申请使用的技术术语或者科学术语应当为本申请所属领域技术人员所理解的通常意义。It should be noted that, unless otherwise stated, the technical terms or scientific terms used in this application should have the usual meanings understood by those skilled in the art to which this application belongs.
另外,术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。In addition, terms such as "first" and "second" are used to distinguish different objects and are not used to describe a specific order. Furthermore, the terms "including" and "having" and any variations thereof are intended to cover non-exclusive inclusion. For example, a process, method, system, product or device that includes a series of steps or units is not limited to the listed steps or units, but optionally also includes steps or units that are not listed, or optionally also includes Other steps or units inherent to such processes, methods, products or devices.
为进一步说明本申请实施例的方案,下面将结合附图进行描述。可以理解的是,下面各实施例中,相同或相应的内容可以相互参考,为描述简便,后续不作赘述。To further illustrate the solution of the embodiment of the present application, the following description will be made in conjunction with the accompanying drawings. It is understandable that in the following embodiments, the same or corresponding contents can be referenced to each other, and for the sake of simplicity of description, no further description will be given later.
首先对本申请中的一些技术术语介绍如下:First, some technical terms used in this application are introduced as follows:
affine motion estimation,即仿射运动估计。affine motion estimation, that is, affine motion estimation.
affine motion compensation,即仿射运动补偿。affine motion compensation, that is, affine motion compensation.
CU:coding unit,即编码单元。CU: coding unit, that is, coding unit.
ME:motion estimation,即运动估计。ME: motion estimation, that is, motion estimation.
mv:motion vector,即运动矢量。mv: motion vector, that is, motion vector.
mvd:motion vector,即运动矢量差值。mvd: motion vector, which is the motion vector difference.
RDO:rate distortion optimization,即率失真优化。RDO: rate distortion optimization, that is, rate distortion optimization.
satd:sum of absolute transformed difference,绝对变换差和。satd: sum of absolute transformed difference, sum of absolute transformed difference.
本申请实施例提供一种仿射运动估计方法及装置、一种仿射运动估计设备以及计算机可读存储介质,下面结合附图进行说明。Embodiments of the present application provide an affine motion estimation method and device, an affine motion estimation device, and a computer-readable storage medium, which will be described below with reference to the accompanying drawings.
请参考图1,其示出了本申请的一些实施方式所提供的一种仿射运动估计方法的流程图,该方法可应用于AVS3硬件编码器中。Please refer to Figure 1, which shows a flow chart of an affine motion estimation method provided by some embodiments of the present application. This method can be applied to the AVS3 hardware encoder.
如图1所示,上述仿射运动估计方法,可以包括以下步骤S101至S104:As shown in Figure 1, the above affine motion estimation method may include the following steps S101 to S104:
步骤S101:对当前块进行初始化,得到当前块的属性信息;Step S101: Initialize the current block and obtain the attribute information of the current block;
具体的,当前块的属性信息包括当前块的尺寸和当前块在当前帧中的位置等信息。该步骤主要涉及数据拆分(partition),数据partition后,各数据块可以并行处理。Specifically, the attribute information of the current block includes information such as the size of the current block and the position of the current block in the current frame. This step mainly involves data splitting. After data partitioning, each data block can be processed in parallel.
步骤S102:根据所述属性信息确定当前块的初始预测运动矢量;Step S102: determining an initial predicted motion vector of the current block according to the attribute information;
请参考图2,其示出了本申请的一些实施方式所提供的一种具体的仿射运动估计方法的流程图。具体的,步骤S102可以实现为:Please refer to FIG. 2 , which shows a flow chart of a specific affine motion estimation method provided by some embodiments of the present application. Specifically, step S102 can be implemented as:
根据所述属性信息,获取当前块的平移运动矢量以及相邻块的仿射运动矢量;According to the attribute information, obtain the translation motion vector of the current block and the affine motion vector of the adjacent block;
根据相邻块的仿射运动矢量对当前块进行运动补偿,计算运动补偿后的第一率失真代价;Performing motion compensation on the current block according to the affine motion vector of the adjacent block, and calculating the first rate distortion cost after motion compensation;
根据当前块的平移运动矢量对当前块进行运动补偿,计算运动补偿后的第二率失真代价;Performing motion compensation on the current block according to the translation motion vector of the current block, and calculating a second rate distortion cost after motion compensation;
根据零向量对当前块进行运动补偿,计算运动补偿后的第三率失真代价;Perform motion compensation on the current block according to the zero vector, and calculate the third-rate distortion cost after motion compensation;
从第一率失真代价、第二率失真代价和第三率失真代价中选择出最小率失真代价,将最小率失真代价对应的运动矢量作为当前块的初始预测运动矢量。The minimum rate distortion cost is selected from the first rate distortion cost, the second rate distortion cost and the third rate distortion cost, and the motion vector corresponding to the minimum rate distortion cost is used as the initial predicted motion vector of the current block.
本申请的一些实施方式中,上述对当前块进行运动补偿的方式可以如下:In some implementations of the present application, the above-mentioned method of motion compensation for the current block may be as follows:
将当前块分为多个子块;Divide the current block into multiple sub-blocks;
采用流水结构对所述多个子块进行运动补偿。A pipeline structure is used to perform motion compensation on the plurality of sub-blocks.
请参考图3,其示出了本申请的一些实施方式所提供的一种计算率失真代价的流程图。Please refer to FIG. 3 , which shows a flow chart of calculating rate-distortion cost provided by some embodiments of the present application.
具体的,图3中,运动补偿的作用是根据当前坐标、运动矢量及参考像素插值出运动后的预测像素。目前,运动补偿是仿射运动估计中时钟周期(cycle)数及硬件资源的优化瓶颈,本申请对此设计了仿射运动补偿的流水结构,其微结构如图4所示。Specifically, in Figure 3, the function of motion compensation is to interpolate the predicted pixels after motion based on the current coordinates, motion vectors and reference pixels. Currently, motion compensation is an optimization bottleneck in the number of clock cycles and hardware resources in affine motion estimation. This application designs a pipeline structure for affine motion compensation, and its microstructure is shown in Figure 4.
图4中,以32x32 CU尺寸为例,CU内64个4x4子块流水结构进行运动补偿。其中,每个子块的运动补偿分为四步。第一步,计算子块所对应的参考块的坐标(图4中表示为coordcalc);第二步,根据参考块的坐标获取参考块的像素值(图4中表示为split ref);第三步,基于参考块的像素值插值计算出预测像素(图4中表示为mc);第四步,存储预测像素(图4中表示为write pred)。每个4x4子块的上述四个步骤按照串行的方式进行;子块与子块之间按照流水结构进行各自的运动补偿。In Figure 4, taking the 32x32 CU size as an example, there are 64 4x4 sub-block pipeline structures in the CU for motion compensation. Among them, the motion compensation of each sub-block is divided into four steps. The first step is to calculate the coordinates of the reference block corresponding to the sub-block (shown as coordcalc in Figure 4); the second step is to obtain the pixel value of the reference block according to the coordinates of the reference block (shown as split ref in Figure 4); the third step In the first step, the predicted pixel is calculated based on the pixel value interpolation of the reference block (indicated as mc in Figure 4); in the fourth step, the predicted pixel is stored (indicated as write pred in Figure 4). The above four steps of each 4x4 sub-block are performed in a serial manner; the motion compensation between sub-blocks is performed according to the pipeline structure.
如果以4x4子块为单位逐块进行运动补偿,硬件速度较慢;若将所有4x4子块的运动补偿过程并行,又会造成硬件面积过大的问题,因此本申请采用了上述运动补偿流水结构,实现硬件面积和硬件速度的平衡。If motion compensation is performed block by block in units of 4x4 sub-blocks, the hardware speed will be slow; if the motion compensation process of all 4x4 sub-blocks is parallelized, it will cause a problem of excessive hardware area. Therefore, this application adopts the above motion compensation pipeline structure , to achieve a balance between hardware area and hardware speed.
步骤S103:基于所述初始预测运动矢量对当前块进行仿射运动估计,得到仿射运动矢量;Step S103: Perform affine motion estimation on the current block based on the initial predicted motion vector to obtain an affine motion vector;
步骤S104:基于计算所述仿射运动矢量的线性方程组,沿着均方误差梯度下降的方向迭代更新所述仿射运动矢量,迭代完成后得到当前块的最优仿射运动矢量。Step S104: Based on the linear equation system for calculating the affine motion vector, iteratively update the affine motion vector along the direction of mean square error gradient descent, and obtain the optimal affine motion vector of the current block after the iteration is completed.
具体的,迭代更新仿射运动矢量是仿射运动估计的关键步骤,沿着均方误差(MSE)梯度下降的方向迭代更新仿射运动矢量,最终收敛到的最优仿射运动矢量为仿射运动估计输出的运动矢量。Specifically, iteratively updating the affine motion vector is a key step in affine motion estimation. Iteratively updating the affine motion vector along the direction of mean square error (MSE) gradient descent, and the optimal affine motion vector that finally converges is affine Motion vector output by motion estimation.
图5所示为本申请中迭代更新仿射运动矢量的流程图。其中,本申请对方程组求解步骤进行了优化,方程组求解步骤在优化前包含7级64bit的除法运算,每级除法运算需要消耗较多cycle。图6所示为方程组求解步骤前三级的除法运算的示意图。Figure 5 shows a flow chart for iteratively updating affine motion vectors in this application. Among them, this application optimizes the solution steps of the system of equations. Before optimization, the solution step of the system of equations includes 7 levels of 64-bit division operations. Each level of division operation consumes more cycles. Figure 6 shows a schematic diagram of the first three levels of division operations in the step of solving the system of equations.
本申请采用如下方法对方程组求解步骤的cycle进行优化。首先是将前级的除法运算合并到最后一级,即减少除法运算级数,但是由于前级没有进行除法计算,会导致中间变量数据溢出,因此需要首先降低参与运算的数据精度。本申请是将除法运算的除数与被除数都替换为距其最近的2的幂次对应的数(例如将9替换为2的3次幂数,即8),可以将除法运算替换为移位运算,该优化方法虽然会造成部分算法精度的损失,但大大减少了cycle数以及节约了硬件资源。This application uses the following method to optimize the cycle of the solution step of the system of equations. The first is to merge the division operations of the previous stage into the last stage, that is, to reduce the number of division operation stages. However, because the division calculation is not performed in the previous stage, it will cause the intermediate variable data to overflow, so the accuracy of the data involved in the operation needs to be reduced first. This application replaces both the divisor and the dividend of the division operation with numbers corresponding to the nearest power of 2 (for example, replace 9 with the 3rd power of 2, that is, 8). The division operation can be replaced with a shift operation. , although this optimization method will cause some loss of algorithm accuracy, it greatly reduces the number of cycles and saves hardware resources.
在基于梯度的仿射运动估计的仿射运动矢量预测过程中,涉及较多除法操作,影响硬件速度,且由于除数与被除数都是变量,本申请的运算方法是分别找到临近除数与被除数的2次幂数,以移位操作替代除法操作,提升硬件速度,且减少硬件资源。In the process of affine motion vector prediction based on gradient-based affine motion estimation, a lot of division operations are involved, which affects the hardware speed. Since the divisor and the dividend are both variables, the calculation method of this application is to find the 2 adjacent divisor and dividend respectively. Power numbers use shift operations instead of division operations to increase hardware speed and reduce hardware resources.
本申请提供的仿射运动估计方法,对当前块进行初始化,得到当前块的属性信息;根据所述属性信息确定当前块的初始预测运动矢量;基于所述初始预测运动矢量对当前块进行仿射运动估计,得到仿射运动矢量;基于计算所述仿射运动矢量的线性方程组,沿着均方误差梯度下降的方向迭代更新所述仿射运动矢量,迭代完成后得到当前块的最优仿射运动矢量,相较于现有技术,本申请基于梯度的仿射运动估计,可以降低仿射运动估计的复杂度,易于硬件实现。The affine motion estimation method provided by this application initializes the current block to obtain attribute information of the current block; determines the initial predicted motion vector of the current block based on the attribute information; and performs affine on the current block based on the initial predicted motion vector. Motion estimation is used to obtain the affine motion vector; based on the linear equation system for calculating the affine motion vector, the affine motion vector is iteratively updated along the direction of the mean square error gradient descent. After the iteration is completed, the optimal affine motion vector of the current block is obtained. Compared with the existing technology, the gradient-based affine motion estimation of this application can reduce the complexity of affine motion estimation and is easy to implement in hardware.
在上述的实施例中,提供了一种仿射运动估计方法,与之相对应的,本申请还提供一种仿射运动估计装置。请参考图7,其示出了本申请的一些实施方式所提供的一种仿射运动估计装置的示意图。由于装置实施例基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。下述描述的装置实施例仅仅是示意性的。In the above embodiment, an affine motion estimation method is provided. Correspondingly, the present application also provides an affine motion estimation device. Please refer to FIG. 7 , which shows a schematic diagram of an affine motion estimation device provided by some embodiments of the present application. Since the device embodiment is basically similar to the method embodiment, the description is relatively simple. For relevant details, please refer to the partial description of the method embodiment. The device embodiments described below are merely illustrative.
如图7所示,所述仿射运动估计装置10包括:As shown in Figure 7, the affine motion estimation device 10 includes:
初始化模块101,用于对当前块进行初始化,得到当前块的属性信息;Initialization module 101 is used to initialize the current block and obtain the attribute information of the current block;
确定模块102,用于根据所述属性信息确定当前块的初始预测运动矢量;Determining module 102, configured to determine the initial predicted motion vector of the current block according to the attribute information;
仿射运动估计模块103,用于基于所述初始预测运动矢量对当前块进行仿射运动估计,得到仿射运动矢量;An affine motion estimation module 103 is used to perform affine motion estimation on the current block based on the initial predicted motion vector to obtain an affine motion vector;
迭代更新模块104,用于基于计算所述仿射运动矢量的线性方程组,沿着均方误差梯度下降的方向迭代更新所述仿射运动矢量,迭代完成后得到当前块的最优仿射运动矢量。The iterative update module 104 is configured to iteratively update the affine motion vector along the direction of mean square error gradient descent based on the linear equation system for calculating the affine motion vector, and obtain the optimal affine motion of the current block after the iteration is completed. Vector.
根据本申请的一些实施方式中,所述确定模块102,具体用于:According to some implementations of the present application, the determining module 102 is specifically configured to:
根据所述属性信息,获取当前块的平移运动矢量以及相邻块的仿射运动矢量;According to the attribute information, obtaining a translation motion vector of a current block and an affine motion vector of an adjacent block;
根据相邻块的仿射运动矢量对当前块进行运动补偿,计算运动补偿后的第一率失真代价;Performing motion compensation on the current block according to the affine motion vector of the adjacent block, and calculating the first rate distortion cost after motion compensation;
根据当前块的平移运动矢量对当前块进行运动补偿,计算运动补偿后的第二率失真代价;Performing motion compensation on the current block according to the translation motion vector of the current block, and calculating a second rate distortion cost after motion compensation;
根据零向量对当前块进行运动补偿,计算运动补偿后的第三率失真代价;Perform motion compensation on the current block according to the zero vector, and calculate the third-rate distortion cost after motion compensation;
从第一率失真代价、第二率失真代价和第三率失真代价中选择出最小率失真代价,将最小率失真代价对应的运动矢量作为当前块的初始预测运动矢量。The minimum rate distortion cost is selected from the first rate distortion cost, the second rate distortion cost and the third rate distortion cost, and the motion vector corresponding to the minimum rate distortion cost is used as the initial predicted motion vector of the current block.
根据本申请的一些实施方式中,所述确定模块102对当前块进行运动补偿的方式如下:According to some implementations of the present application, the determination module 102 performs motion compensation on the current block in the following manner:
将当前块分为多个子块;Divide the current block into multiple sub-blocks;
采用流水结构对所述多个子块进行运动补偿。A pipeline structure is used to perform motion compensation on the plurality of sub-blocks.
根据本申请的一些实施方式中,所述属性信息包括当前块的尺寸和当前块在当前帧中的位置。According to some implementations of the present application, the attribute information includes the size of the current block and the position of the current block in the current frame.
本申请实施例提供的仿射运动估计装置,与本申请前述实施例提供的仿射运动估计方法出于相同的发明构思,具有相同的有益效果。The affine motion estimation device provided in the embodiment of the present application is based on the same inventive concept as the affine motion estimation method provided in the aforementioned embodiment of the present application and has the same beneficial effects.
本申请实施方式还提供一种与前述实施方式所提供的仿射运动估计方法对应的仿射运动估计设备,例如手机、笔记本电脑、平板电脑、台式机电脑等,以执行上述仿射运动估计方法。The embodiments of the present application also provide an affine motion estimation device corresponding to the affine motion estimation method provided in the aforementioned embodiments, such as a mobile phone, a laptop computer, a tablet computer, a desktop computer, etc., to execute the aforementioned affine motion estimation method.
请参考图8,其示出了本申请的一些实施方式所提供的一种仿射运动估计设备的示意图。如图8所示,所述仿射运动估计设备20包括:处理器200,存储器201,总线202和通信接口203,所述处理器200、通信接口203和存储器201通过总线202连接;所述存储器201中存储有可在所述处理器200上运行的计算机程序,所述处理器200运行所述计算机程序时执行本申请前述任一实施方式所提供的仿射运动估计方法。Please refer to Figure 8, which shows a schematic diagram of an affine motion estimation device provided by some embodiments of the present application. As shown in Figure 8, the affine motion estimation device 20 includes: a processor 200, a memory 201, a bus 202 and a communication interface 203, wherein the processor 200, the communication interface 203 and the memory 201 are connected via the bus 202; the memory 201 stores a computer program that can be run on the processor 200, and the processor 200 executes the affine motion estimation method provided by any of the aforementioned embodiments of the present application when running the computer program.
其中,存储器201可能包含高速随机存取存储器(RAM:Random Access Memory),也可能还包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。通过至少一个通信接口203(可以是有线或者无线)实现该系统网元与至少一个其他网元之间的通信连接,可以使用互联网、广域网、本地网、城域网等。The memory 201 may include a high-speed random access memory (RAM), and may also include a non-volatile memory, such as at least one disk memory. The communication connection between the system network element and at least one other network element is realized through at least one communication interface 203 (which may be wired or wireless), and the Internet, wide area network, local area network, metropolitan area network, etc. may be used.
总线202可以是ISA总线、PCI总线或EISA总线等。所述总线可以分为地址总线、数据总线、控制总线等。其中,存储器201用于存储程序,所述处理器200在接收到执行指令后,执行所述程序,前述本申请实施例任一实施方式揭示的所述运动估计方法可以应用于处理器200中,或者由处理器200实现。The bus 202 may be an ISA bus, a PCI bus, an EISA bus, etc. The bus can be divided into address bus, data bus, control bus, etc. The memory 201 is used to store a program, and the processor 200 executes the program after receiving the execution instruction. The motion estimation method disclosed in any of the aforementioned embodiments of the present application can be applied to the processor 200, Or implemented by processor 200.
处理器200可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器200中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器200可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器201,处理器200读取存储器201中的信息,结合其硬件完成上述方法的步骤。The processor 200 may be an integrated circuit chip with signal processing capabilities. During the implementation process, each step of the above method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor 200 . The above-mentioned processor 200 can be a general-purpose processor, including a central processing unit (Central Processing Unit, CPU for short), a network processor (Network Processor, NP for short), etc.; it can also be a digital signal processor (DSP), an application-specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components. Each method, step and logical block diagram disclosed in the embodiment of this application can be implemented or executed. A general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc. The steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor. The software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field. The storage medium is located in the memory 201. The processor 200 reads the information in the memory 201 and completes the steps of the above method in combination with its hardware.
本申请实施例提供的仿射运动估计设备与本申请实施例提供的仿射运动估计方法出于相同的发明构思,具有与其采用、运行或实现的方法相同的有益效果。The affine motion estimation device provided by the embodiments of the present application and the affine motion estimation method provided by the embodiments of the present application are based on the same inventive concept and have the same beneficial effects as the methods adopted, run or implemented.
本申请实施方式还提供一种与前述实施方式所提供的运动估计方法对应的计算机可读存储介质,请参考图9,其示出的计算机可读存储介质为光盘30,其上存储有计算机程序(即程序产品),所述计算机程序在被处理器运行时,会执行前述任意实施方式所提供的仿射运动估计方法。An embodiment of the present application also provides a computer-readable storage medium corresponding to the motion estimation method provided in the aforementioned embodiment. Please refer to Figure 9, which shows that the computer-readable storage medium is a CD 30 on which a computer program (i.e., a program product) is stored. When the computer program is run by the processor, it will execute the affine motion estimation method provided in any of the aforementioned embodiments.
需要说明的是,所述计算机可读存储介质的例子还可以包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他光学、磁性存储介质,在此不再一一赘述。It should be noted that examples of the computer-readable storage medium may also include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other optical or magnetic storage media, which are not listed here one by one.
本申请的上述实施例提供的计算机可读存储介质与本申请实施例提供的仿射运动估计方法出于相同的发明构思,具有与其存储的应用程序所采用、运行或实现的方法相同的有益效果。The computer-readable storage medium provided in the above-mentioned embodiment of the present application and the affine motion estimation method provided in the embodiment of the present application are based on the same inventive concept and have the same beneficial effects as the method adopted, run or implemented by the application program stored therein.
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。Finally, it should be noted that the above embodiments are only used to illustrate the technical solution of the present application, but not to limit it; although the present application has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: The technical solutions described in the foregoing embodiments can still be modified, or some or all of the technical features can be equivalently replaced; and these modifications or substitutions do not deviate from the essence of the corresponding technical solutions from the technical solutions of the embodiments of the present application. The scope shall be covered by the claims and description of this application.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110732236.4A CN113630601B (en) | 2021-06-29 | 2021-06-29 | An affine motion estimation method, device, equipment and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110732236.4A CN113630601B (en) | 2021-06-29 | 2021-06-29 | An affine motion estimation method, device, equipment and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113630601A CN113630601A (en) | 2021-11-09 |
CN113630601B true CN113630601B (en) | 2024-04-02 |
Family
ID=78378647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110732236.4A Active CN113630601B (en) | 2021-06-29 | 2021-06-29 | An affine motion estimation method, device, equipment and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113630601B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114466198A (en) * | 2022-01-13 | 2022-05-10 | 杭州未名信科科技有限公司 | Affine motion estimation circuit and method |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103458245A (en) * | 2013-08-30 | 2013-12-18 | 上海高清数字科技产业有限公司 | Water-flowing design method and system of decoder motion compensation module |
CN106658012A (en) * | 2017-01-06 | 2017-05-10 | 华南理工大学 | Parallel pipeline task division method for VP9 decoder |
CN109640097A (en) * | 2018-12-07 | 2019-04-16 | 辽宁师范大学 | The video Affine motion estimation method of adaptive factor |
CN109660800A (en) * | 2017-10-12 | 2019-04-19 | 北京金山云网络技术有限公司 | Method for estimating, device, electronic equipment and computer readable storage medium |
WO2019160860A1 (en) * | 2018-02-14 | 2019-08-22 | Futurewei Technologies, Inc. | Adaptive interpolation filter |
WO2019199152A1 (en) * | 2018-04-14 | 2019-10-17 | 엘지전자 주식회사 | Method and device for processing video signal by using affine prediction |
CN110383839A (en) * | 2017-03-14 | 2019-10-25 | 高通股份有限公司 | Affine motion information export |
WO2019231256A1 (en) * | 2018-05-30 | 2019-12-05 | 엘지전자 주식회사 | Method and device for processing video signal using affine motion prediction |
CN110891176A (en) * | 2018-09-10 | 2020-03-17 | 华为技术有限公司 | Motion vector prediction method and device based on affine motion model |
CN111050168A (en) * | 2019-12-27 | 2020-04-21 | 浙江大华技术股份有限公司 | Affine prediction method and related device thereof |
US10671076B1 (en) * | 2017-03-01 | 2020-06-02 | Zoox, Inc. | Trajectory prediction of third-party objects using temporal logic and tree search |
CN111479110A (en) * | 2020-04-15 | 2020-07-31 | 郑州轻工业大学 | Fast Affine Motion Estimation Method for H.266/VVC |
WO2020242350A2 (en) * | 2019-09-30 | 2020-12-03 | Huawei Technologies Co., Ltd. | Usage of dct based interpolation filter and enhanced bilinear interpolation filter in affine motion compensation |
CN112118451A (en) * | 2019-06-20 | 2020-12-22 | 杭州海康威视数字技术股份有限公司 | Encoding and decoding method, device and equipment |
CN112703733A (en) * | 2018-09-21 | 2021-04-23 | 交互数字Vc控股公司 | Translation and affine candidates in a unified list |
CN112868234A (en) * | 2019-09-24 | 2021-05-28 | 深圳市大疆创新科技有限公司 | Motion estimation method, system and storage medium |
CN112956190A (en) * | 2018-09-17 | 2021-06-11 | 高通股份有限公司 | Affine motion prediction |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8665958B2 (en) * | 2008-01-29 | 2014-03-04 | Electronics And Telecommunications Research Institute | Method and apparatus for encoding and decoding video signal using motion compensation based on affine transformation |
-
2021
- 2021-06-29 CN CN202110732236.4A patent/CN113630601B/en active Active
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103458245A (en) * | 2013-08-30 | 2013-12-18 | 上海高清数字科技产业有限公司 | Water-flowing design method and system of decoder motion compensation module |
CN106658012A (en) * | 2017-01-06 | 2017-05-10 | 华南理工大学 | Parallel pipeline task division method for VP9 decoder |
US10671076B1 (en) * | 2017-03-01 | 2020-06-02 | Zoox, Inc. | Trajectory prediction of third-party objects using temporal logic and tree search |
CN110383839A (en) * | 2017-03-14 | 2019-10-25 | 高通股份有限公司 | Affine motion information export |
CN109660800A (en) * | 2017-10-12 | 2019-04-19 | 北京金山云网络技术有限公司 | Method for estimating, device, electronic equipment and computer readable storage medium |
WO2019160860A1 (en) * | 2018-02-14 | 2019-08-22 | Futurewei Technologies, Inc. | Adaptive interpolation filter |
WO2019199152A1 (en) * | 2018-04-14 | 2019-10-17 | 엘지전자 주식회사 | Method and device for processing video signal by using affine prediction |
WO2019231256A1 (en) * | 2018-05-30 | 2019-12-05 | 엘지전자 주식회사 | Method and device for processing video signal using affine motion prediction |
CN110891176A (en) * | 2018-09-10 | 2020-03-17 | 华为技术有限公司 | Motion vector prediction method and device based on affine motion model |
CN112956190A (en) * | 2018-09-17 | 2021-06-11 | 高通股份有限公司 | Affine motion prediction |
CN112703733A (en) * | 2018-09-21 | 2021-04-23 | 交互数字Vc控股公司 | Translation and affine candidates in a unified list |
CN109640097A (en) * | 2018-12-07 | 2019-04-16 | 辽宁师范大学 | The video Affine motion estimation method of adaptive factor |
CN112118451A (en) * | 2019-06-20 | 2020-12-22 | 杭州海康威视数字技术股份有限公司 | Encoding and decoding method, device and equipment |
CN112868234A (en) * | 2019-09-24 | 2021-05-28 | 深圳市大疆创新科技有限公司 | Motion estimation method, system and storage medium |
WO2020242350A2 (en) * | 2019-09-30 | 2020-12-03 | Huawei Technologies Co., Ltd. | Usage of dct based interpolation filter and enhanced bilinear interpolation filter in affine motion compensation |
CN111050168A (en) * | 2019-12-27 | 2020-04-21 | 浙江大华技术股份有限公司 | Affine prediction method and related device thereof |
CN111479110A (en) * | 2020-04-15 | 2020-07-31 | 郑州轻工业大学 | Fast Affine Motion Estimation Method for H.266/VVC |
Non-Patent Citations (4)
Title |
---|
An improved frame-level pipelined architecture for high resolution video motion estimation;Wei-feng He等;2007 IEEE International Symposium on Circuits and Systems;20070530;全文 * |
Efficient Macroblock Pipeline Structure in High Definition AVS Video Encoder VLSI Architecture;贾惠柱等;2010 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS;20200101;全文 * |
基于FPGA的HEVC后处理CNN硬件加速器研究;严伟等;计算机研究与发;20181215;全文 * |
端云融合系统中运动补偿研究与实现;徐一凡;中国优秀硕士学位论文全文数据库 信息科技辑;20210601;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN113630601A (en) | 2021-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107316078B (en) | Apparatus and method for performing artificial neural network self-learning operation | |
US11249721B2 (en) | Multiplication circuit, system on chip, and electronic device | |
US7778494B2 (en) | FIR-based interpolation in advanced video codecs on VLIW processor | |
US10681367B2 (en) | Intra-prediction video coding method and device | |
CN113032007B (en) | Data processing method and device | |
CN116663618B (en) | Operator optimization method and device, storage medium and electronic equipment | |
TWI397268B (en) | Entropy processor for decoding | |
CN110210346A (en) | A kind of optimization method that video template matching is handled in real time | |
CN113630601B (en) | An affine motion estimation method, device, equipment and storage medium | |
JP4547503B2 (en) | Arithmetic coding apparatus, arithmetic coding method, arithmetic coding program, and computer-readable recording medium storing the program | |
CN116185498A (en) | Storage and calculation integrated chip, calculation method and device thereof | |
US20060126739A1 (en) | SIMD optimization for H.264 variable block size motion estimation algorithm | |
CN116150563B (en) | A business execution method, device, storage medium and electronic equipment | |
JP2010259116A (en) | Cost function arithmetic method, cost function arithmetic unit, and interpolation method therefor | |
CN115022628B (en) | JPEG-LS (joint photographic experts group-LS) -based high-throughput lossless image compression method | |
CN116389743A (en) | Image encoding method, image encoding device, chip, terminal, storage medium, and program product | |
TW202038628A (en) | Electronic circuit and electronic device performing motion estimation through hierarchical search | |
CN110038301B (en) | Data processing method and device, electronic equipment and storage medium | |
CN108322759B (en) | Pixel value acquisition method and device and electronic equipment | |
JP7516793B2 (en) | Video encoding system and video encoding method | |
Biswas et al. | An efficient VLSI architecture of the enhanced three step search algorithm | |
CN101252692B (en) | Apparatus and method for predicting between frames and video encoding and decoding eqiupment | |
Lee et al. | Algorithmic complexity analysis on data transfer rate and data storage for multidimensional signal processing | |
CN114327637B (en) | Data conversion method, device, electronic device, medium and computer program product | |
CN115168284B (en) | Deep learning-oriented coarse granularity reconfigurable array system and computing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20211109 Assignee: Hangzhou Beixinyuan Technology Industry Co.,Ltd. Assignor: Institute of Information Technology, Zhejiang Peking University|Hangzhou Weiming Information Technology Co.,Ltd. Contract record no.: X2024980043001 Denomination of invention: A method, device, equipment, and storage medium for affine motion estimation Granted publication date: 20240402 License type: Common License Record date: 20250102 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20211109 Assignee: Hangzhou Xiandao Information Technology Co.,Ltd. Assignor: Institute of Information Technology, Zhejiang Peking University|Hangzhou Weiming Information Technology Co.,Ltd. Contract record no.: X2024980043041 Denomination of invention: A method, device, equipment, and storage medium for affine motion estimation Granted publication date: 20240402 License type: Common License Record date: 20250102 Application publication date: 20211109 Assignee: Hangzhou Lezhi Weiming Technology Co.,Ltd. Assignor: Institute of Information Technology, Zhejiang Peking University|Hangzhou Weiming Information Technology Co.,Ltd. Contract record no.: X2024980043019 Denomination of invention: A method, device, equipment, and storage medium for affine motion estimation Granted publication date: 20240402 License type: Common License Record date: 20250103 |