CN113555287B - Preparation method of moisture triggered degradation P-type transient thin film transistor - Google Patents
Preparation method of moisture triggered degradation P-type transient thin film transistor Download PDFInfo
- Publication number
- CN113555287B CN113555287B CN202110827733.2A CN202110827733A CN113555287B CN 113555287 B CN113555287 B CN 113555287B CN 202110827733 A CN202110827733 A CN 202110827733A CN 113555287 B CN113555287 B CN 113555287B
- Authority
- CN
- China
- Prior art keywords
- sample
- deposition
- substrate
- thin film
- iron foil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D99/00—Subject matter not provided for in other groups of this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/6755—Oxide semiconductors, e.g. zinc oxide, copper aluminium oxide or cadmium stannate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6758—Thin-film transistors [TFT] characterised by the insulating substrates
Landscapes
- Thin Film Transistor (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种水分触发降解的P型瞬态薄膜晶体管制备方法。The invention relates to a preparation method of a P-type transient thin film transistor with moisture-triggered degradation.
背景技术Background technique
传统的硅基电子器件具有坚固耐用的优点,但任何事物都有两面性,过于坚固也限制了其在一些特殊领域的应用,比如医疗领域中,传统器件植入人体后,在完成治疗或监测任务后,还需要二次手术来取出器件,破坏已经愈合的组织,给病人带来巨大痛苦,增加了术后并发症的风险;在军事领域,传统器件一旦落入敌手,很容易被破解,造成机密泄露。而近年来出现了可降解的瞬态电子器件就可以很好地解决以上问题,瞬态电子器件一般由可降解的基底材料、半导体功能材料以及电极材料构成,当所制备的电子功能器件在完成指定功能后,瞬态电子器件的物理形态和功能可以在外界刺激触发下完全或者部分消失,这种新兴的电子器件在生物医疗、信息安全、环境保护等方面将具有非常广阔的应用前景。触发瞬态器件降解的方式有水分触发、热触发、光触发、酸/碱触发以及生物降解等。其中,以水分触发的瞬态电子器件由于可以在人的体液中溶解,因此在植入式可降解医疗电子器件领域中具有独特的优势。Traditional silicon-based electronic devices have the advantage of being strong and durable, but everything has two sides. Too strong also limits its application in some special fields, such as the medical field. After traditional devices are implanted into the human body, they are used for treatment or monitoring tasks. Afterwards, a second operation is required to remove the device, destroying the healed tissue, causing great pain to the patient and increasing the risk of postoperative complications; in the military field, once traditional devices fall into the hands of the enemy, they can be easily cracked, causing Confidential disclosure. In recent years, the emergence of degradable transient electronic devices can solve the above problems well. Transient electronic devices are generally composed of degradable substrate materials, semiconductor functional materials and electrode materials. After the function, the physical form and function of the transient electronic device can be completely or partially disappeared under the trigger of external stimuli. This emerging electronic device will have very broad application prospects in biomedical, information security, environmental protection and so on. The methods of triggering transient device degradation include moisture triggering, thermal triggering, light triggering, acid/base triggering, and biodegradation. Among them, transient electronic devices triggered by moisture have unique advantages in the field of implantable degradable medical electronic devices because they can be dissolved in human body fluids.
电子器件的种类繁多,而晶体管是最重要的核心器件之一,目前,一些科研人员已经在可降解的聚合物基底或者蛋白质基底上制备出了瞬态晶体管器件。尽管已经有了一些成功的先例,但在蛋白质基底上制备电子器件仍然很有挑战性,首先,蛋白质基底通常耐热性较差,分解温度一般不超过200℃,而对于半导体材料的生长来说,较高的温度有利于提高材料的结晶质量,减少缺陷,进而提高器件性能。受到基底材料耐热性的限制,可降解的瞬态器件的制备工艺温度要低于基底材料的分解温度,这严重影响了半导体器件的性能。其次,蛋白质基底耐酸/碱以及有机溶剂能力较差,而半导体器件制备过程中,通常会使用酸/碱、有机溶剂或者等离子体进行处理,这些苛刻的处理条件会破坏蛋白质基底,继而损坏半导体器件。因此,半导体器件的制备工艺条件需要向蛋白质基底的耐热性以及耐酸/碱性能等做出让步。一部分材料体系可以在较低的制备温度下达到较好的性能,如n型AZO-TFT、TZO-TFT、AZTO-TFT等,但有一些材料仍然需要高温工艺才能实现理想的性能,如p型氧化物,其中SnO-TFT需在200~300℃条件下退火,CuxO-TFT需在500℃条件下退火。因此,可降解基底材料较差的耐热性严重限制了那些需要高温工艺的半导体材料与器件在可降解器件领域中的应用。此外,对于水分触发降解的瞬态器件,在器件制备过程中如何使水溶性蛋白质基底避免接触酸/碱以及溶剂是另一个棘手的问题。There are many types of electronic devices, and transistors are one of the most important core devices. At present, some researchers have fabricated transient transistor devices on degradable polymer substrates or protein substrates. Although there have been some successful precedents, it is still challenging to fabricate electronic devices on protein substrates. First, protein substrates generally have poor thermal resistance, and the decomposition temperature generally does not exceed 200 °C, while for the growth of semiconductor materials , a higher temperature is beneficial to improve the crystalline quality of the material, reduce defects, and thus improve device performance. Limited by the heat resistance of the base material, the fabrication temperature of the degradable transient device is lower than the decomposition temperature of the base material, which seriously affects the performance of the semiconductor device. Secondly, protein substrates have poor resistance to acid/alkali and organic solvents. During the preparation of semiconductor devices, acid/alkali, organic solvents or plasma are usually used for treatment. These harsh processing conditions will damage the protein substrate and then damage the semiconductor device. . Therefore, the fabrication process conditions of semiconductor devices need to make concessions to the heat resistance and acid/alkali resistance of protein substrates. Some material systems can achieve better performance at lower preparation temperature, such as n-type AZO-TFT, TZO-TFT, AZTO-TFT, etc., but some materials still require high temperature process to achieve ideal performance, such as p-type Oxides, in which SnO-TFT needs to be annealed at 200-300 °C, and Cu x O-TFT needs to be annealed at 500 °C. Therefore, the poor thermal resistance of degradable base materials severely limits the application of semiconductor materials and devices that require high-temperature processes in the field of degradable devices. In addition, for transient devices with moisture-triggered degradation, how to keep water-soluble protein substrates away from acids/bases and solvents during device fabrication is another thorny issue.
发明内容SUMMARY OF THE INVENTION
本发明设计开发了一种水分触发降解的P型瞬态薄膜晶体管制备方法,在单面抛光的铁箔基底上制备晶体管器件,克服了基底材料耐热性对器件制备温度的限制,有利于提高器件性能,还避免了器件制备过程中水溶液对水溶性蛋白质基底的破坏。The invention designs and develops a P-type transient thin film transistor preparation method with moisture-triggered degradation. The transistor device is prepared on a single-sided polished iron foil substrate, which overcomes the limitation of the heat resistance of the substrate material on the preparation temperature of the device, and is beneficial to improving the The device performance is also avoided from the damage of the water-soluble protein substrate by the aqueous solution during the device preparation process.
本发明提供的技术方案为:The technical scheme provided by the present invention is:
一种水分触发降解的P型瞬态薄膜晶体管制备方法,包括:A method for preparing a P-type transient thin film transistor with moisture-triggered degradation, comprising:
步骤一、将单面抛光的铁箔基底置于等离子增强化学气相沉积设备中,在铁箔基底抛光的一侧进行绝缘层沉积,得到第一样品;Step 1, placing the iron foil substrate polished on one side in a plasma enhanced chemical vapor deposition device, and depositing an insulating layer on the polished side of the iron foil substrate to obtain a first sample;
步骤二、将有源层模板覆盖在第一样品上,并在射频磁控溅射设备中,进行有源层材料沉积,得到第二样品;Step 2, covering the active layer template on the first sample, and depositing the active layer material in the radio frequency magnetron sputtering equipment to obtain the second sample;
步骤三、将源漏电极掩模板覆盖在第二样品上,并将其放置在热蒸发台中进行源漏电极材料沉积,得到第三样品,将所述第三样品置于快速退火炉中,进行退火,得到第四样品;Step 3: Cover the source-drain electrode mask on the second sample, and place it in a thermal evaporation stage for source-drain electrode material deposition to obtain a third sample, which is placed in a rapid annealing furnace for Annealing to obtain a fourth sample;
步骤四、将浓度为6%的丝素蛋白水溶液涂覆在第四样品的表面,并进行烘干,得到第五样品;Step 4, coating the surface of the fourth sample with an aqueous solution of silk fibroin with a concentration of 6%, and drying to obtain the fifth sample;
步骤五、在第五样品的未抛光基底上覆盖保护层掩模板,并在射频磁控溅射设备中,沉积保护层材料,得到第六样品;Step 5, covering the protective layer mask on the unpolished substrate of the fifth sample, and depositing the protective layer material in the radio frequency magnetron sputtering equipment to obtain the sixth sample;
步骤六、将第六样品固定在夹具中,并将其浸入稀盐酸中对第六样品中的铁箔基底进行溶解,得到第七样品;Step 6, fixing the sixth sample in the fixture, and immersing it in dilute hydrochloric acid to dissolve the iron foil substrate in the sixth sample to obtain the seventh sample;
其中,将第六样品中铁箔基底抛光的一侧朝向夹具的下板,未抛光的一侧朝向夹具的上板;Wherein, in the sixth sample, the polished side of the iron foil base faces the lower plate of the fixture, and the unpolished side faces the upper plate of the fixture;
步骤七、将第七样品放置在电子束蒸发设备中,进行蒸镀栅电极,得到水分触发降解的p型薄膜晶体管。Step 7: The seventh sample is placed in the electron beam evaporation equipment, and the gate electrode is evaporated to obtain a p-type thin film transistor with moisture-triggered degradation.
优选的是,所述步骤一包括:Preferably, the step 1 includes:
在铁箔基底抛光的一侧沉积SiO2绝缘层材料;Deposit SiO2 insulating layer material on the polished side of iron foil substrate;
其中,射频功率为50~100W,沉积温度为150~250℃,压力为0.2~0.6torr,SiH4流量为20~40sccm,N2O流量为80~150sccm,SiO2薄膜厚度为150~250nm。Among them, the radio frequency power is 50-100W, the deposition temperature is 150-250°C, the pressure is 0.2-0.6torr, the SiH4 flow rate is 20-40sccm, the N2O flow rate is 80-150sccm, and the SiO2 film thickness is 150-250nm.
优选的是,所述步骤二包括:Preferably, the second step includes:
所述有源层材料为SnO,采用金属Sn靶,进行有源层材料沉积;The active layer material is SnO, and a metal Sn target is used to deposit the active layer material;
其中,溅射功率为25~35W,温度为室温,压力为5~7mtorr,Ar/O2为9:1~2:1,沉积时间为10~20min,薄膜厚度为45~70nm。Among them, the sputtering power is 25-35 W, the temperature is room temperature, the pressure is 5-7 mtorr, the Ar/O 2 is 9:1-2:1, the deposition time is 10-20 min, and the film thickness is 45-70 nm.
优选的是,所述步骤三包括:Preferably, the step 3 includes:
所用电极材料为Au,厚度为50~100nm;The electrode material used is Au, with a thickness of 50-100 nm;
相邻源漏电极之间的距离为10μm~1mm;The distance between adjacent source and drain electrodes is 10 μm to 1 mm;
退火温度为250~350℃,退火时间为25~40min。The annealing temperature is 250~350℃, and the annealing time is 25~40min.
优选的是,所述步骤四包括:Preferably, the step 4 includes:
所述保护层材料为HfO2,溅射功率为100~250W,温度为25~200℃,压力为8~20mtorr,Ar/O2为9:1~2:1,沉积时间为50~150min,薄膜厚度为50~200nm。The protective layer material is HfO 2 , the sputtering power is 100-250W, the temperature is 25-200° C., the pressure is 8-20mtorr, the Ar/O 2 is 9:1-2:1, and the deposition time is 50-150min, The film thickness is 50 to 200 nm.
优选的是,所述步骤六包括:Preferably, the step 6 includes:
所述夹具包括夹具上板和夹具下板,所述夹具上板和所述夹具下板均为矩形,所述夹具下板的中心设有矩形凹槽,所述夹具上板的中心有通孔;The clamp includes an upper clamp plate and a lower clamp plate, the clamp upper plate and the clamp lower plate are both rectangular, the center of the clamp lower plate is provided with a rectangular groove, and the center of the clamp upper plate is provided with a through hole ;
所述稀盐酸的浓度为:1~30wt%.。The concentration of the dilute hydrochloric acid is: 1-30wt%.
优选的是,所述步骤七包括:Preferably, the step 7 includes:
电极材料为Al,电极厚度为50~200nm。The electrode material is Al, and the electrode thickness is 50-200 nm.
优选的是,Preferably,
所述步骤一中,射频功率为50W,沉积温度为200℃,压力为0.2torr,SiH4流量为20sccm,N2O流量为80sccm,SiO2薄膜厚度为150nm;In the first step, the radio frequency power is 50W, the deposition temperature is 200°C, the pressure is 0.2torr, the flow rate of SiH4 is 20sccm, the flow rate of N2O is 80sccm, and the thickness of the SiO2 film is 150nm;
所述步骤二中,溅射功率为25W,温度为室温,压力为5mtorr,Ar/O2为9:1,沉积时间为10min,薄膜厚度为45nm;In the second step, the sputtering power is 25W, the temperature is room temperature, the pressure is 5mtorr, the Ar/O is 9: 1 , the deposition time is 10min, and the film thickness is 45nm;
所述步骤三中,所用电极材料为Au,厚度为50nm;In the third step, the electrode material used is Au, and the thickness is 50 nm;
相邻源漏电极之间的距离为:10μm;The distance between adjacent source and drain electrodes is: 10 μm;
退火温度为:250℃,退火时间为25min;The annealing temperature is: 250℃, and the annealing time is 25min;
所述步骤四中,溅射功率为:100W,温度为25℃,压力为8mtorr,Ar/O2为2:1,沉积时间为50min,薄膜厚度为50nm;In the fourth step, the sputtering power is 100W, the temperature is 25°C, the pressure is 8mtorr, the Ar/O 2 is 2:1, the deposition time is 50min, and the film thickness is 50nm;
所述步骤六中,所述稀盐酸的浓度为:1wt%;In the step 6, the concentration of the dilute hydrochloric acid is: 1wt%;
所述步骤七中,所述电极厚度为50nm。In the seventh step, the thickness of the electrode is 50 nm.
本发明所述的有益效果:The beneficial effects of the present invention:
本发明提供的水分触发降解的p型瞬态薄膜晶体管制备方法,首先将半导体器件制备于耐热性好的单面抛光铁箔基底上,然后将可降解基底材料的溶液滴涂于器件之上,待溶剂蒸发后,将铁箔的未抛光一面暴露于稀盐酸溶液中,将铁箔溶解,由于绝缘层的隔离作用,有效防止了盐酸溶液对蛋白质基底的破坏,最后制备栅电极,得到水分触发降解的p型瞬态薄膜晶体管器件,可以在耐热性较差的基底上制备需要经过高温处理工艺的器件,克服了基底材料耐热性对器件制备温度的限制,有利于提高器件性能,同时,还避免了器件制备过程中水溶液对水溶性蛋白质基底的破坏,使制备水分触发降解的、需经过高温处理的瞬态电子器件成为可能。In the method for preparing a p-type transient thin film transistor with moisture-triggered degradation provided by the present invention, the semiconductor device is first prepared on a single-sided polished iron foil substrate with good heat resistance, and then a solution of degradable substrate material is drop-coated on the device. , after the solvent evaporates, the unpolished side of the iron foil is exposed to dilute hydrochloric acid solution, and the iron foil is dissolved. Due to the isolation effect of the insulating layer, the damage of the hydrochloric acid solution to the protein substrate is effectively prevented, and finally the gate electrode is prepared to obtain moisture. The p-type transient thin film transistor device that triggers degradation can prepare devices that need to undergo high-temperature treatment on a substrate with poor heat resistance, overcomes the limitation of the heat resistance of the substrate material on the preparation temperature of the device, and is conducive to improving device performance. At the same time, it also avoids the damage of the water-soluble protein substrate by the aqueous solution during the device preparation process, making it possible to prepare transient electronic devices that are degraded by moisture and require high temperature treatment.
附图说明Description of drawings
图1为本发明所述的绝缘层沉积的结构示意图。FIG. 1 is a schematic structural diagram of the insulating layer deposition according to the present invention.
图2为本发明所述的有源层掩模板的结构示意图。FIG. 2 is a schematic structural diagram of the active layer mask according to the present invention.
图3为本发明所述的有源层沉积的结构示意图。FIG. 3 is a schematic structural diagram of the active layer deposition according to the present invention.
图4为本发明所述的源漏电极掩模板的结构示意图。FIG. 4 is a schematic structural diagram of the source-drain electrode mask according to the present invention.
图5为本发明所述的Au源漏电极沉积的结构示意图。FIG. 5 is a schematic structural diagram of the deposition of Au source-drain electrodes according to the present invention.
图6为本发明所述的蛋白质薄膜的结构示意图。FIG. 6 is a schematic structural diagram of the protein film according to the present invention.
图7为本发明所述的保护层掩模板的结构示意图。FIG. 7 is a schematic structural diagram of the protective layer mask according to the present invention.
图8为本发明所述的保护层掩模板覆盖在铁箔基底未抛光一侧的结构示意图。FIG. 8 is a schematic structural diagram of the protective layer mask covering the unpolished side of the iron foil substrate according to the present invention.
图9为本发明所述的HfO2保护层的结构示意图。FIG. 9 is a schematic structural diagram of the HfO 2 protective layer according to the present invention.
图10为本发明所述的夹具和HfO2保护层的结构示意图。FIG. 10 is a schematic structural diagram of the clamp and the HfO 2 protective layer according to the present invention.
图11为去除铁箔基底的结构示意图。FIG. 11 is a schematic diagram of the structure of removing the iron foil substrate.
图12为经过栅电极沉积后得到的水分触发降解的p型SnO薄膜晶体管的结构示意图。FIG. 12 is a schematic structural diagram of a p-type SnO thin film transistor with moisture-triggered degradation obtained after gate electrode deposition.
具体实施方式Detailed ways
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。The present invention will be further described in detail below with reference to the accompanying drawings, so that those skilled in the art can implement it with reference to the description.
如图1-12所示,本发明提供一种水分触发降解的P型瞬态薄膜晶体管制备方法,首先将半导体器件制备于耐热性好的单面抛光铁箔基底上,然后将可降解基底材料的溶液滴涂于器件之上,待溶剂蒸发后,将铁箔的未抛光一面暴露于稀盐酸溶液中,将铁箔溶解,由于绝缘层的隔离作用,有效防止了盐酸溶液对蛋白质基底的破坏,最后制备栅电极,得到水分触发降解的p型瞬态薄膜晶体管器件,包括:铁箔基底100、SiO2绝缘层200、有源层掩模板310、SnO有源层320、源漏电极掩模板410、Au源漏电极420、丝素蛋白膜基底500、保护层掩模板610、HfO2保护层620、夹具上板710、夹具下板720、Al栅电极800,具体包括:As shown in Figures 1-12, the present invention provides a method for preparing a P-type transient thin film transistor with moisture-triggered degradation. First, the semiconductor device is prepared on a single-sided polished iron foil substrate with good heat resistance, and then the degradable substrate is The solution of the material is dripped on the device. After the solvent evaporates, the unpolished side of the iron foil is exposed to dilute hydrochloric acid solution to dissolve the iron foil. Due to the isolation effect of the insulating layer, the hydrochloric acid solution can effectively prevent the protein substrate. Finally, the gate electrode is prepared to obtain a p-type transient thin film transistor device with moisture-triggered degradation, including:
步骤一、将单面抛光的铁箔基底置于等离子增强化学气相沉积设备中,在铁箔基底抛光的一侧进行绝缘层沉积,得到第一样品;Step 1, placing the iron foil substrate polished on one side in a plasma enhanced chemical vapor deposition device, and depositing an insulating layer on the polished side of the iron foil substrate to obtain a first sample;
步骤二、将有源层模板覆盖在第一样品上,并在射频磁控溅射设备中,进行有源层材料沉积,得到第二样品;Step 2, covering the active layer template on the first sample, and depositing the active layer material in the radio frequency magnetron sputtering equipment to obtain the second sample;
步骤三、将源漏电极掩模板覆盖在第二样品上,并将其放置在热蒸发台中进行源漏电极材料沉积,得到第三样品,将所述第三样品置于快速退火炉中,进行退火,得到第四样品;Step 3: Cover the source-drain electrode mask on the second sample, and place it in a thermal evaporation stage for source-drain electrode material deposition to obtain a third sample, which is placed in a rapid annealing furnace for Annealing to obtain a fourth sample;
步骤四、将浓度为6%的丝素蛋白水溶液涂覆在第四样品的表面,并进行烘干,得到第五样品;Step 4, coating the surface of the fourth sample with an aqueous solution of silk fibroin with a concentration of 6%, and drying to obtain the fifth sample;
步骤五、在第五样品的未抛光基底上覆盖保护层掩模板,并在射频磁控溅射设备中,沉积保护层材料,得到第六样品;Step 5, covering the protective layer mask on the unpolished substrate of the fifth sample, and depositing the protective layer material in the radio frequency magnetron sputtering equipment to obtain the sixth sample;
步骤六、将第六样品固定在夹具中,并将其浸入稀盐酸中对第六样品中的铁箔基底进行溶解,得到第七样品;Step 6: Fix the sixth sample in the fixture, and immerse it in dilute hydrochloric acid to dissolve the iron foil substrate in the sixth sample to obtain the seventh sample;
其中,将第六样品中铁箔基底抛光的一侧朝向夹具的下板,未抛光的一侧朝向夹具的上板;Wherein, in the sixth sample, the polished side of the iron foil base faces the lower plate of the fixture, and the unpolished side faces the upper plate of the fixture;
步骤七、将第七样品放置在电子束蒸发设备中,进行蒸镀栅电极800,得到水分触发降解的p型薄膜晶体管,包括:Step 7. The seventh sample is placed in the electron beam evaporation equipment, and the
1、绝缘层沉积1. Deposition of insulating layer
将单面抛光的铁箔基底100置于等离子增强化学气相沉积(PECVD)设备中,在抛光的一侧沉积SiO2绝缘层200材料,其中,射频功率范围为50~100W,温度范围为150~250℃,压力范围0.2~0.6torr,SiH4流量范围20~40sccm,N2O流量范围80~150sccm,SiO2薄膜厚度范围150~250nm,得到第一样品,如图1所示。The single-side polished
2、有源层沉积2. Active layer deposition
如图2所示,将带有有源图案的有源层掩模板310覆盖在第一样品之上,将其放置在射频磁控溅射设备中,进行有源层材料沉积,在本发明中作为一种优选,有源层材料为SnO,采用金属Sn靶,通过反应溅射得到SnO有源层320,其中,溅射功率范围为25~35W,温度为室温,压力范围为5~7mtorr,Ar/O2范围9:1~2:1,沉积时间范围为10~20min,薄膜厚度为45~70nm,得到第二样品,如图3所示。As shown in FIG. 2, an
3、源漏电极沉积3. Source-drain electrode deposition
如图4所示,将带有源漏电极图案的源漏掩模板410覆盖在第二样品上,并将其放置在热蒸发台中,进行源漏电极材料沉积,在本发明中,作为一种优选,所用电极材料为Au,厚度为50~100nm,得到第三样品,如图5所示。其中,源漏电极之间的距离定义了晶体管器件的沟道长度,根据不同需求,该沟道长度可以为不同值,范围为10μm~1mm不等。As shown in FIG. 4 , a source-
4、有源层退火4. Active layer annealing
将得到的第三样品放置在快速退火炉中,在250~350℃范围条件下退火25~40min,得到第四样品。The obtained third sample is placed in a rapid annealing furnace, and annealed at 250-350° C. for 25-40 min to obtain a fourth sample.
5、蛋白质薄膜制备5. Preparation of protein films
将浓度为6wt%的丝素蛋白水溶液涂覆在第四样品的表面,并防止在干燥箱内进行烘干,待蛋白溶液中的溶剂蒸发后,在第四样品表面形成丝素蛋白薄膜,并能够将其作为丝素蛋白膜基底500,得到第五样品,如图6所示。A silk fibroin aqueous solution with a concentration of 6 wt % is coated on the surface of the fourth sample, and is prevented from being dried in a drying oven. After the solvent in the protein solution is evaporated, a silk fibroin film is formed on the surface of the fourth sample, and This can be used as a silk
6、铁箔保护层制备6. Preparation of iron foil protective layer
如图7、8所示,将带有保护层图案的掩模板610覆盖在第五样品中,铁箔基底100的未抛光面上,并置于射频磁控溅射设备中,沉积保护层材料,保护层的作用是在后续的去除铁箔基底过程中,防止铁箔边缘起固定作用的位置被腐蚀,在本发明中,作为一种优选,保护层材料为HfO2,采用陶瓷HfO2靶溅射获得HfO2保护层620,溅射功率范围为100~250W,温度为25~200℃,压力范围8~20mtorr,Ar/O2范围9:1~2:1,沉积时间范围为50~150min,薄膜厚度为50~200nm,得到第六样品,如图9所示。As shown in FIGS. 7 and 8 , the
7、去除铁箔基底7. Remove the iron foil base
如图10所示,将第六样品放置在夹具中,夹具包括:夹具上板710和夹具下板720,夹具下板710为矩形架构,在中心位置开设有矩形凹槽,用于容纳蛋白质基底和半导体器件;夹具上板710为矩形结构,并与夹具下板720匹配设置,尺寸与夹具下板720相同,夹具上板710的中心有通孔,其与夹具下板的凹槽尺寸相同,用于在后续工艺中,溶液通过通孔与铁箔发生反应,在本发明中,作为一种优选,夹具上板710和夹具下板720选用耐酸材料。As shown in FIG. 10, the sixth sample is placed in a fixture, the fixture includes: a fixture upper plate 710 and a fixture lower plate 720, the fixture lower plate 710 is a rectangular structure, and a rectangular groove is opened in the center position for accommodating the protein substrate and semiconductor devices; the upper plate 710 of the fixture is of a rectangular structure and is matched with the lower plate 720 of the fixture, and the size is the same as that of the lower plate 720 of the fixture. In the subsequent process, the solution reacts with the iron foil through the through hole. In the present invention, as a preference, the upper clamp plate 710 and the lower clamp plate 720 are made of acid-resistant materials.
将第六样品中铁箔抛光的一侧朝向夹具下板710,将未抛光的一侧朝向夹具上板710,夹具上板710和夹具下板720四周紧密固定,防止后续工艺中溶液进入夹具的凹槽部分进而破坏蛋白质基底。将固定好的夹具浸入浓度为1~30wt%的稀盐酸溶液中刻蚀铁箔基底,由于SiO2不溶于稀盐酸,因此可以有效防止丝素蛋白膜基底被溶解,同时,丝素蛋白基底为晶体管器件提供支撑,防止在外力作用下破裂,待铁箔基底100被溶解后,用去离子水将夹具清洗干净,并在室温下晾干,拆下夹具,切除四周的HfO2保护层下未被腐蚀的铁箔区域,得到第七样品,如图11所示。p型薄膜晶体管器件即将被转移至丝素蛋白质基底500上。In the sixth sample, the polished side of the iron foil faces the lower jig plate 710, and the unpolished side faces the upper jig plate 710. The upper jig plate 710 and the lower jig plate 720 are tightly fixed around to prevent the solution from entering the recess of the jig in the subsequent process. The groove portion in turn destroys the protein substrate. Immerse the fixed fixture in a dilute hydrochloric acid solution with a concentration of 1-30wt% to etch the iron foil substrate. Since SiO2 is insoluble in dilute hydrochloric acid, it can effectively prevent the silk fibroin film substrate from being dissolved. At the same time, the silk fibroin substrate is The transistor device provides support to prevent rupture under the action of external force. After the
将第七样品放置在电子束蒸发(EB)设备中,在SiO2绝缘层200的表面蒸镀栅电极800,如图12所示,在本发明中,作为一种优选,电极材料为Al,电极厚度范围50~200nm,最终在丝素蛋白基底上得到水分触发降解的p型SnO薄膜晶体管。p型薄膜晶体管开关比可达到10的4次方,将该瞬态器件置于水中,丝素蛋白质基底在30分钟内即可水解,而半导体功能层由于失去支撑而破裂,实现降解。The seventh sample is placed in an electron beam evaporation (EB) device, and a
实施例1Example 1
1、绝缘层沉积1. Deposition of insulating layer
将单面抛光的铁箔基底100置于等离子增强化学气相沉积(PECVD)设备中,在抛光的一侧沉积SiO2绝缘层200材料,其中,射频功率范围为50W,温度为200℃,压力为0.2torr,SiH4流量为20sccm,N2O流量为80sccm,SiO2薄膜厚度为150nm,得到第一样品,如图1所示。The single-side polished
2、有源层沉积2. Active layer deposition
如图2所示,将带有有源图案的有源层掩模板310覆盖在第一样品之上,将其放置在射频磁控溅射设备中,进行有源层材料沉积,在本发明中作为一种优选,有源层材料为SnO,采用金属Sn靶,通过反应溅射得到SnO有源层320,其中,溅射功率为25W,温度为室温,压力为5mtorr,Ar/O2为9:1,沉积时间为10min,薄膜厚度为45nm,得到第二样品,如图3所示。As shown in FIG. 2, an
3、源漏电极沉积3. Source-drain electrode deposition
如图4所示,将带有源漏电极图案的源漏掩模板410覆盖在第二样品上,并将其放置在热蒸发台中,进行源漏电极材料沉积,在本发明中,作为一种优选,所用电极材料为Au,厚度为50nm,得到第三样品,如图5所示。其中,源漏电极之间的距离定义了晶体管器件的沟道长度,在本实施例中,作为一种优选,该沟道长度为10μm。As shown in FIG. 4 , a source-
4、有源层退火4. Active layer annealing
将得到的第三样品放置在快速退火炉中,在250℃条件下退火25min,得到第四样品。The obtained third sample was placed in a rapid annealing furnace, and annealed at 250° C. for 25 minutes to obtain a fourth sample.
5、蛋白质薄膜制备5. Preparation of protein films
将浓度为6wt%的丝素蛋白水溶液涂覆在第四样品的表面,并防止在干燥箱内进行烘干,待蛋白溶液中的溶剂蒸发后,在第四样品表面形成丝素蛋白薄膜,并能够将其作为丝素蛋白膜基底500,得到第五样品,如图6所示。A silk fibroin aqueous solution with a concentration of 6 wt % is coated on the surface of the fourth sample, and is prevented from being dried in a drying oven. After the solvent in the protein solution is evaporated, a silk fibroin film is formed on the surface of the fourth sample, and This can be used as a silk
6、铁箔保护层制备6. Preparation of iron foil protective layer
如图7、8所示,将带有保护层图案的掩模板610覆盖在第五样品中,铁箔基底100的未抛光面上,并置于射频磁控溅射设备中,沉积保护层材料,保护层的作用是在后续的去除铁箔基底过程中,防止铁箔边缘起固定作用的位置被腐蚀,在本发明中,作为一种优选,保护层材料为HfO2,采用陶瓷HfO2靶溅射获得HfO2保护层620,溅射功率为100W,温度为25℃,压力为8mtorr,Ar/O2为2:1,沉积时间为50min,薄膜厚度为50nm,得到第六样品,如图9所示。As shown in FIGS. 7 and 8 , the
7、去除铁箔基底7. Remove the iron foil base
如图10所示,将第六样品放置在夹具中,夹具包括:夹具上板710和夹具下板720,夹具下板710为矩形架构,在中心位置开设有矩形凹槽,用于容纳蛋白质基底和半导体器件;夹具上板710为矩形结构,并与夹具下板720匹配设置,尺寸与夹具下板720相同,夹具上板710的中心有通孔,其与夹具下板的凹槽尺寸相同,用于在后续工艺中,溶液通过通孔与铁箔发生反应,在本发明中,作为一种优选,夹具上板710和夹具下板720选用耐酸材料。As shown in FIG. 10, the sixth sample is placed in a fixture, the fixture includes: a fixture upper plate 710 and a fixture lower plate 720, the fixture lower plate 710 is a rectangular structure, and a rectangular groove is opened in the center position for accommodating the protein substrate and semiconductor devices; the upper plate 710 of the fixture is of a rectangular structure and is matched with the lower plate 720 of the fixture, and the size is the same as that of the lower plate 720 of the fixture. In the subsequent process, the solution reacts with the iron foil through the through hole. In the present invention, as a preference, the upper clamp plate 710 and the lower clamp plate 720 are made of acid-resistant materials.
将第六样品中铁箔抛光的一侧朝向夹具下板710,将未抛光的一侧朝向夹具上板710,夹具上板710和夹具下板720四周紧密固定,防止后续工艺中溶液进入夹具的凹槽部分进而破坏蛋白质基底。将固定好的夹具浸入浓度为1wt%的稀盐酸溶液中刻蚀铁箔基底,由于SiO2不溶于稀盐酸,因此可以有效防止丝素蛋白膜基底被溶解,同时,丝素蛋白基底为晶体管器件提供支撑,防止在外力作用下破裂,待铁箔基底100被溶解后,用去离子水将夹具清洗干净,并在室温下晾干,拆下夹具,切除四周的HfO2保护层下未被腐蚀的铁箔区域,得到第七样品,如图11所示。p型薄膜晶体管器件即将被转移至丝素蛋白质基底500上。In the sixth sample, the polished side of the iron foil faces the lower jig plate 710, and the unpolished side faces the upper jig plate 710. The upper jig plate 710 and the lower jig plate 720 are tightly fixed around to prevent the solution from entering the recess of the jig in the subsequent process. The groove portion in turn destroys the protein substrate. Immerse the fixed fixture in a dilute hydrochloric acid solution with a concentration of 1wt% to etch the iron foil substrate. Since SiO2 is insoluble in dilute hydrochloric acid, it can effectively prevent the silk fibroin film substrate from being dissolved. At the same time, the silk fibroin substrate is a transistor device Provide support to prevent rupture under the action of external force. After the
将第七样品放置在电子束蒸发(EB)设备中,在SiO2绝缘层200的表面蒸镀栅电极800,如图12所示,在本发明中,作为一种优选,电极材料为Al,电极厚度为50nm,最终在丝素蛋白基底上得到水分触发降解的p型SnO薄膜晶体管。The seventh sample is placed in an electron beam evaporation (EB) device, and a
实施例2Example 2
1、绝缘层沉积1. Deposition of insulating layer
将单面抛光的铁箔基底100置于等离子增强化学气相沉积(PECVD)设备中,在抛光的一侧沉积SiO2绝缘层200材料,其中,射频功率范围为50W,温度范围为150℃,压力范围0.3torr,SiH4流量范围30sccm,N2O流量范围100sccm,SiO2薄膜厚度范围170nm,得到第一样品,如图1所示。The single-side polished
2、有源层沉积2. Active layer deposition
如图2所示,将带有有源图案的有源层掩模板310覆盖在第一样品之上,将其放置在射频磁控溅射设备中,进行有源层材料沉积,在本发明中作为一种优选,有源层材料为SnO,采用金属Sn靶,通过反应溅射得到SnO有源层320,其中,溅射功率范围为30W,温度为室温,压力范围为6mtorr,Ar/O2范围7:1,沉积时间范围为13min,薄膜厚度为65nm,得到第二样品,如图3所示。As shown in FIG. 2, an
3、源漏电极沉积3. Source-drain electrode deposition
如图4所示,将带有源漏电极图案的源漏掩模板410覆盖在第二样品上,并将其放置在热蒸发台中,进行源漏电极材料沉积,在本发明中,作为一种优选,所用电极材料为Au,厚度为100nm,得到第三样品,如图5所示。其中,源漏电极之间的距离定义了晶体管器件的沟道长度,在本发明中,该沟道长度为1mm。As shown in FIG. 4 , a source-
4、有源层退火4. Active layer annealing
将得到的第三样品放置在快速退火炉中,在300℃条件下退火20min,得到第四样品。The obtained third sample was placed in a rapid annealing furnace, and annealed at 300° C. for 20 minutes to obtain a fourth sample.
5、蛋白质薄膜制备5. Preparation of protein films
将浓度为6wt%的丝素蛋白水溶液涂覆在第四样品的表面,并防止在干燥箱内进行烘干,待蛋白溶液中的溶剂蒸发后,在第四样品表面形成丝素蛋白薄膜,并能够将其作为丝素蛋白膜基底500,得到第五样品,如图6所示。A silk fibroin aqueous solution with a concentration of 6 wt % is coated on the surface of the fourth sample, and is prevented from being dried in a drying oven. After the solvent in the protein solution is evaporated, a silk fibroin film is formed on the surface of the fourth sample, and This can be used as a silk
6、铁箔保护层制备6. Preparation of iron foil protective layer
如图7、8所示,将带有保护层图案的掩模板610覆盖在第五样品中,铁箔基底100的未抛光面上,并置于射频磁控溅射设备中,沉积保护层材料,保护层的作用是在后续的去除铁箔基底过程中,防止铁箔边缘起固定作用的位置被腐蚀,在本发明中,作为一种优选,保护层材料为HfO2,采用陶瓷HfO2靶溅射获得HfO2保护层620,溅射功率范围为250W,温度为200℃,压力范围20mtorr,Ar/O2范围2:1,沉积时间范围为150min,薄膜厚度为200nm,得到第六样品,如图9所示。As shown in FIGS. 7 and 8 , the
7、去除铁箔基底7. Remove the iron foil base
如图10所示,将第六样品放置在夹具中,夹具包括:夹具上板710和夹具下板720,夹具下板710为矩形架构,在中心位置开设有矩形凹槽,用于容纳蛋白质基底和半导体器件;夹具上板710为矩形结构,并与夹具下板720匹配设置,尺寸与夹具下板720相同,夹具上板710的中心有通孔,其与夹具下板的凹槽尺寸相同,用于在后续工艺中,溶液通过通孔与铁箔发生反应,在本发明中,作为一种优选,夹具上板710和夹具下板720选用耐酸材料。As shown in FIG. 10, the sixth sample is placed in a fixture, the fixture includes: a fixture upper plate 710 and a fixture lower plate 720, the fixture lower plate 710 is a rectangular structure, and a rectangular groove is opened in the center position for accommodating the protein substrate and semiconductor devices; the upper plate 710 of the fixture is of a rectangular structure and is matched with the lower plate 720 of the fixture, and the size is the same as that of the lower plate 720 of the fixture. In the subsequent process, the solution reacts with the iron foil through the through hole. In the present invention, as a preference, the upper clamp plate 710 and the lower clamp plate 720 are made of acid-resistant materials.
将第六样品中铁箔抛光的一侧朝向夹具下板710,将未抛光的一侧朝向夹具上板710,夹具上板710和夹具下板720四周紧密固定,防止后续工艺中溶液进入夹具的凹槽部分进而破坏蛋白质基底。将固定好的夹具浸入浓度为50wt%的稀盐酸溶液中刻蚀铁箔基底,由于SiO2不溶于稀盐酸,因此可以有效防止丝素蛋白膜基底被溶解,同时,丝素蛋白基底为晶体管器件提供支撑,防止在外力作用下破裂,待铁箔基底100被溶解后,用去离子水将夹具清洗干净,并在室温下晾干,拆下夹具,切除四周的HfO2保护层下未被腐蚀的铁箔区域,得到第七样品,如图11所示。p型薄膜晶体管器件即将被转移至丝素蛋白质基底500上。In the sixth sample, the polished side of the iron foil faces the lower jig plate 710, and the unpolished side faces the upper jig plate 710. The upper jig plate 710 and the lower jig plate 720 are tightly fixed around to prevent the solution from entering the recess of the jig in the subsequent process. The groove portion in turn destroys the protein substrate. Immerse the fixed fixture in a dilute hydrochloric acid solution with a concentration of 50wt% to etch the iron foil substrate. Since SiO2 is insoluble in dilute hydrochloric acid, it can effectively prevent the silk fibroin film substrate from being dissolved. At the same time, the silk fibroin substrate is a transistor device Provide support to prevent rupture under the action of external force. After the
将第七样品放置在电子束蒸发(EB)设备中,在SiO2绝缘层200的表面蒸镀栅电极800,如图12所示,在本发明中,作为一种优选,电极材料为Al,电极厚度范围200nm,最终在丝素蛋白基底上得到水分触发降解的p型SnO薄膜晶体管。The seventh sample is placed in an electron beam evaporation (EB) device, and a
实施例3Example 3
1、绝缘层沉积1. Deposition of insulating layer
将单面抛光的铁箔基底100置于等离子增强化学气相沉积(PECVD)设备中,在抛光的一侧沉积SiO2绝缘层200材料,其中,射频功率范围为50W,温度为200℃,压力为0.2torr,SiH4流量为25sccm,N2O流量为100sccm,SiO2薄膜厚度为200nm,得到第一样品,如图1所示。The single-side polished
2、有源层沉积2. Active layer deposition
如图2所示,将带有有源图案的有源层掩模板310覆盖在第一样品之上,将其放置在射频磁控溅射设备中,进行有源层材料沉积,在本发明中作为一种优选,有源层材料为SnO,采用金属Sn靶,通过反应溅射得到SnO有源层320,其中,溅射功率为25W,温度为室温,压力为5mtorr,Ar/O2为9:1,沉积时间为10min,薄膜厚度为50nm,得到第二样品,如图3所示。As shown in FIG. 2, an
3、源漏电极沉积3. Source-drain electrode deposition
如图4所示,将带有源漏电极图案的源漏掩模板410覆盖在第二样品上,并将其放置在热蒸发台中,进行源漏电极材料沉积,在本发明中,作为一种优选,所用电极材料为Au,厚度为50nm,得到第三样品,如图5所示。其中,源漏电极之间的距离定义了晶体管器件的沟道长度,在本实施例中,作为一种优选,该沟道长度为50μm。As shown in FIG. 4 , a source-
4、有源层退火4. Active layer annealing
将得到的第三样品放置在快速退火炉中,在250℃条件下退火30min,得到第四样品。The obtained third sample was placed in a rapid annealing furnace, and annealed at 250° C. for 30 min to obtain a fourth sample.
5、蛋白质薄膜制备5. Preparation of protein films
将浓度为6wt%的丝素蛋白水溶液涂覆在第四样品的表面,并放置在干燥箱内进行烘干,待蛋白溶液中的溶剂蒸发后,在第四样品表面形成丝素蛋白薄膜,并能够将其作为丝素蛋白膜基底500,得到第五样品,如图6所示。A silk fibroin aqueous solution with a concentration of 6 wt % is coated on the surface of the fourth sample, and placed in a drying oven for drying. After the solvent in the protein solution is evaporated, a silk fibroin film is formed on the surface of the fourth sample, and This can be used as a silk
6、铁箔保护层制备6. Preparation of iron foil protective layer
如图7、8所示,将带有保护层图案的掩模板610覆盖在第五样品中,铁箔基底100的未抛光面上,并置于射频磁控溅射设备中,沉积保护层材料,保护层的作用是在后续的去除铁箔基底过程中,防止铁箔边缘起固定作用的位置被腐蚀,在本发明中,作为一种优选,保护层材料为HfO2,采用陶瓷HfO2靶溅射获得HfO2保护层620,溅射功率为150W,温度为30℃,压力为8mtorr,Ar/O2为9:1,沉积时间为120min,薄膜厚度为200nm,得到第六样品,如图9所示。As shown in FIGS. 7 and 8 , the
7、去除铁箔基底7. Remove the iron foil base
如图10所示,将第六样品放置在夹具中,夹具包括:夹具上板710和夹具下板720,夹具下板710为矩形架构,在中心位置开设有矩形凹槽,用于容纳蛋白质基底和半导体器件;夹具上板710为矩形结构,并与夹具下板720匹配设置,尺寸与夹具下板720相同,夹具上板710的中心有通孔,其与夹具下板的凹槽尺寸相同,用于在后续工艺中,溶液通过通孔与铁箔发生反应,在本发明中,作为一种优选,夹具上板710和夹具下板720选用耐酸材料。As shown in FIG. 10, the sixth sample is placed in a fixture, the fixture includes: a fixture upper plate 710 and a fixture lower plate 720, the fixture lower plate 710 is a rectangular structure, and a rectangular groove is opened in the center position for accommodating the protein substrate and semiconductor devices; the upper plate 710 of the fixture is of a rectangular structure and is matched with the lower plate 720 of the fixture, and the size is the same as that of the lower plate 720 of the fixture. In the subsequent process, the solution reacts with the iron foil through the through hole. In the present invention, as a preference, the upper clamp plate 710 and the lower clamp plate 720 are made of acid-resistant materials.
将第六样品中铁箔抛光的一侧朝向夹具下板710,将未抛光的一侧朝向夹具上板710,夹具上板710和夹具下板720四周紧密固定,防止后续工艺中溶液进入夹具的凹槽部分进而破坏蛋白质基底。将固定好的夹具浸入浓度为10wt%的稀盐酸溶液中刻蚀铁箔基底,由于SiO2不溶于稀盐酸,因此可以有效防止丝素蛋白膜基底被溶解,同时,丝素蛋白基底为晶体管器件提供支撑,防止在外力作用下破裂,待铁箔基底100被溶解后,用去离子水将夹具清洗干净,并在室温下晾干,拆下夹具,切除四周的HfO2保护层下未被腐蚀的铁箔区域,得到第七样品,如图11所示。p型薄膜晶体管器件即将被转移至丝素蛋白质基底500上。In the sixth sample, the polished side of the iron foil faces the lower jig plate 710, and the unpolished side faces the upper jig plate 710. The upper jig plate 710 and the lower jig plate 720 are tightly fixed around to prevent the solution from entering the recess of the jig in the subsequent process. The groove portion in turn destroys the protein substrate. Immerse the fixed fixture in a dilute hydrochloric acid solution with a concentration of 10wt% to etch the iron foil substrate. Since SiO2 is insoluble in dilute hydrochloric acid, it can effectively prevent the silk fibroin film substrate from being dissolved. At the same time, the silk fibroin substrate is a transistor device Provide support to prevent rupture under the action of external force. After the
将第七样品放置在电子束蒸发(EB)设备中,在SiO2绝缘层200的表面蒸镀栅电极,如图12所示,在本发明中,作为一种优选,电极材料为Al,电极厚度为50nm,最终在丝素蛋白基底上得到水分触发降解的p型SnO薄膜晶体管。The seventh sample was placed in an electron beam evaporation (EB) device, and a grid electrode was evaporated on the surface of the SiO 2 insulating layer 200, as shown in Figure 12. In the present invention, as a preference, the electrode material is Al, and the electrode With a thickness of 50 nm, a p-type SnO thin film transistor with moisture-triggered degradation was finally obtained on the silk fibroin substrate.
实施例4Example 4
1、绝缘层沉积1. Deposition of insulating layer
将单面抛光的铁箔基底100置于等离子增强化学气相沉积(PECVD)设备中,在抛光的一侧沉积SiO2绝缘层200材料,其中,射频功率范围为100W,温度为250℃,压力为0.6torr,SiH4流量为40sccm,N2O流量为150sccm,SiO2薄膜厚度为250nm,得到第一样品,如图1所示。The single-side polished
2、有源层沉积2. Active layer deposition
如图2所示,将带有有源图案的有源层掩模板310覆盖在第一样品之上,将其放置在射频磁控溅射设备中,进行有源层材料沉积,在本发明中作为一种优选,有源层材料为SnO,采用金属Sn靶,通过反应溅射得到SnO有源层320,其中,溅射功率为35W,温度为室温,压力为7mtorr,Ar/O2为4:1,沉积时间为20min,薄膜厚度为70nm,得到第二样品,如图3所示。As shown in FIG. 2, an
3、源漏电极沉积3. Source-drain electrode deposition
如图4所示,将带有源漏电极图案的源漏掩模板410覆盖在第二样品上,并将其放置在热蒸发台中,进行源漏电极材料沉积,在本发明中,作为一种优选,所用电极材料为Au,厚度为75nm,得到第三样品,如图5所示。其中,源漏电极之间的距离定义了晶体管器件的沟道长度,在本实施例中,作为一种优选,该沟道长度为200μm。As shown in FIG. 4 , a source-
4、有源层退火4. Active layer annealing
将得到的第三样品放置在快速退火炉中,在300℃条件下退火40min,得到第四样品。The obtained third sample was placed in a rapid annealing furnace, and annealed at 300° C. for 40 minutes to obtain a fourth sample.
5、蛋白质薄膜制备5. Preparation of protein films
将浓度为6wt%的丝素蛋白水溶液涂覆在第四样品的表面,并放置在干燥箱内进行烘干,待蛋白溶液中的溶剂蒸发后,在第四样品表面形成丝素蛋白薄膜,并能够将其作为丝素蛋白膜基底500,得到第五样品,如图6所示。A silk fibroin aqueous solution with a concentration of 6 wt % is coated on the surface of the fourth sample, and placed in a drying oven for drying. After the solvent in the protein solution is evaporated, a silk fibroin film is formed on the surface of the fourth sample, and This can be used as a silk
6、铁箔保护层制备6. Preparation of iron foil protective layer
如图7、8所示,将带有保护层图案的掩模板610覆盖在第五样品中,铁箔基底100的未抛光面上,并置于射频磁控溅射设备中,沉积保护层材料,保护层的作用是在后续的去除铁箔基底过程中,防止铁箔边缘起固定作用的位置被腐蚀,在本发明中,作为一种优选,保护层材料为HfO2,采用陶瓷HfO2靶溅射获得HfO2保护层620,溅射功率为200W,温度为100℃,压力为13mtorr,Ar/O2为4:1,沉积时间为90min,薄膜厚度为150nm,得到第六样品,如图9所示。As shown in FIGS. 7 and 8 , the
7、去除铁箔基底7. Remove the iron foil base
如图10所示,将第六样品放置在夹具中,夹具包括:夹具上板710和夹具下板720,夹具下板710为矩形架构,在中心位置开设有矩形凹槽,用于容纳蛋白质基底和半导体器件;夹具上板710为矩形结构,并与夹具下板720匹配设置,尺寸与夹具下板720相同,夹具上板710的中心有通孔,其与夹具下板的凹槽尺寸相同,用于在后续工艺中,溶液通过通孔与铁箔发生反应,在本发明中,作为一种优选,夹具上板710和夹具下板720选用耐酸材料。As shown in FIG. 10, the sixth sample is placed in a fixture, the fixture includes: a fixture upper plate 710 and a fixture lower plate 720, the fixture lower plate 710 is a rectangular structure, and a rectangular groove is opened in the center position for accommodating the protein substrate and semiconductor devices; the upper plate 710 of the fixture is of a rectangular structure and is matched with the lower plate 720 of the fixture, and the size is the same as that of the lower plate 720 of the fixture. In the subsequent process, the solution reacts with the iron foil through the through hole. In the present invention, as a preference, the upper clamp plate 710 and the lower clamp plate 720 are made of acid-resistant materials.
将第六样品中铁箔抛光的一侧朝向夹具下板710,将未抛光的一侧朝向夹具上板710,夹具上板710和夹具下板720四周紧密固定,防止后续工艺中溶液进入夹具的凹槽部分进而破坏蛋白质基底。将固定好的夹具浸入浓度为15wt%的稀盐酸溶液中刻蚀铁箔基底,由于SiO2不溶于稀盐酸,因此可以有效防止丝素蛋白膜基底被溶解,同时,丝素蛋白基底为晶体管器件提供支撑,防止在外力作用下破裂,待铁箔基底100被溶解后,用去离子水将夹具清洗干净,并在室温下晾干,拆下夹具,切除四周的HfO2保护层下未被腐蚀的铁箔区域,得到第七样品,如图11所示。p型薄膜晶体管器件即将被转移至丝素蛋白质基底500上。In the sixth sample, the polished side of the iron foil faces the lower jig plate 710, and the unpolished side faces the upper jig plate 710. The upper jig plate 710 and the lower jig plate 720 are tightly fixed around to prevent the solution from entering the recess of the jig in the subsequent process. The groove portion in turn destroys the protein substrate. Immerse the fixed fixture in a dilute hydrochloric acid solution with a concentration of 15wt% to etch the iron foil substrate. Since SiO2 is insoluble in dilute hydrochloric acid, it can effectively prevent the silk fibroin film substrate from being dissolved. At the same time, the silk fibroin substrate is a transistor device Provide support to prevent rupture under the action of external force. After the
将第七样品放置在电子束蒸发(EB)设备中,在SiO2绝缘层200的表面蒸镀栅电极,如图12所示,在本发明中,作为一种优选,电极材料为Al,电极厚度为100nm,最终在丝素蛋白基底上得到水分触发降解的p型SnO薄膜晶体管。The seventh sample was placed in an electron beam evaporation (EB) device, and a grid electrode was evaporated on the surface of the SiO 2 insulating layer 200, as shown in Figure 12. In the present invention, as a preference, the electrode material is Al, and the electrode With a thickness of 100 nm, a p-type SnO thin film transistor with moisture-triggered degradation was finally obtained on the silk fibroin substrate.
对比例1Comparative Example 1
1、绝缘层沉积1. Deposition of insulating layer
将单面抛光的铁箔基底100置于等离子增强化学气相沉积(PECVD)设备中,在抛光的一侧沉积SiO2绝缘层200材料,其中,射频功率范围为50W,温度为200℃,压力为0.2torr,SiH4流量为25sccm,N2O流量为100sccm,SiO2薄膜厚度为200nm,得到第一样品,如图1所示。The single-side polished
2、有源层沉积2. Active layer deposition
如图2所示,将带有有源图案的有源层掩模板310覆盖在第一样品之上,将其放置在射频磁控溅射设备中,进行有源层材料沉积,在本发明中作为一种优选,有源层材料为SnO,采用金属Sn靶,通过反应溅射得到SnO有源层320,其中,溅射功率为40W,温度为室温,压力为15mtorr,Ar/O2为1:1,沉积时间为40min,薄膜厚度为200nm,得到第二样品,如图3所示。As shown in FIG. 2, an
3、源漏电极沉积3. Source-drain electrode deposition
如图4所示,将带有源漏电极图案的源漏掩模板410覆盖在第二样品上,并将其放置在热蒸发台中,进行源漏电极材料沉积,在本发明中,作为一种优选,所用电极材料为Au,厚度为50nm,得到第三样品,如图5所示。其中,源漏电极之间的距离定义了晶体管器件的沟道长度,在本实施例中,作为一种优选,该沟道长度为50μm。As shown in FIG. 4 , a source-
4、有源层退火4. Active layer annealing
将得到的第三样品放置在快速退火炉中,在250℃条件下退火30min,得到第四样品。The obtained third sample was placed in a rapid annealing furnace, and annealed at 250° C. for 30 min to obtain a fourth sample.
5、蛋白质薄膜制备5. Preparation of protein films
将浓度为6wt%的丝素蛋白水溶液涂覆在第四样品的表面,并放置在干燥箱内进行烘干,待蛋白溶液中的溶剂蒸发后,在第四样品表面形成丝素蛋白薄膜,并能够将其作为丝素蛋白膜基底500,得到第五样品,如图6所示。A silk fibroin aqueous solution with a concentration of 6 wt % is coated on the surface of the fourth sample, and placed in a drying oven for drying. After the solvent in the protein solution is evaporated, a silk fibroin film is formed on the surface of the fourth sample, and This can be used as a silk
6、铁箔保护层制备6. Preparation of iron foil protective layer
如图7、8所示,将带有保护层图案的掩模板610覆盖在第五样品中,铁箔基底100的未抛光面上,并置于射频磁控溅射设备中,沉积保护层材料,保护层的作用是在后续的去除铁箔基底过程中,防止铁箔边缘起固定作用的位置被腐蚀,在本发明中,作为一种优选,保护层材料为HfO2,采用陶瓷HfO2靶溅射获得HfO2保护层620,溅射功率为150W,温度为30℃,压力为8mtorr,Ar/O2为9:1,沉积时间为120min,薄膜厚度为200nm,得到第六样品,如图9所示。As shown in FIGS. 7 and 8 , the
7、去除铁箔基底7. Remove the iron foil base
如图10所示,将第六样品放置在夹具中,夹具包括:夹具上板710和夹具下板720,夹具下板710为矩形架构,在中心位置开设有矩形凹槽,用于容纳蛋白质基底和半导体器件;夹具上板710为矩形结构,并与夹具下板720匹配设置,尺寸与夹具下板720相同,夹具上板710的中心有通孔,其与夹具下板的凹槽尺寸相同,用于在后续工艺中,溶液通过通孔与铁箔发生反应,在本发明中,作为一种优选,夹具上板710和夹具下板720选用耐酸材料。As shown in FIG. 10 , the sixth sample is placed in a fixture, the fixture includes: a fixture upper plate 710 and a fixture lower plate 720, the fixture lower plate 710 is a rectangular structure, and a rectangular groove is opened in the center position for accommodating the protein substrate and semiconductor devices; the fixture upper plate 710 is of a rectangular structure, and is set to match the fixture lower plate 720, the size is the same as the fixture lower plate 720, and the center of the fixture upper plate 710 has a through hole, which is the same as the size of the groove of the fixture lower plate, In the subsequent process, the solution reacts with the iron foil through the through hole. In the present invention, as a preference, the upper clamp plate 710 and the lower clamp plate 720 are made of acid-resistant materials.
将第六样品中铁箔抛光的一侧朝向夹具下板710,将未抛光的一侧朝向夹具上板710,夹具上板710和夹具下板720四周紧密固定,防止后续工艺中溶液进入夹具的凹槽部分进而破坏蛋白质基底。将固定好的夹具浸入浓度为10wt%的稀盐酸溶液中刻蚀铁箔基底,由于SiO2不溶于稀盐酸,因此可以有效防止丝素蛋白膜基底被溶解,同时,丝素蛋白基底为晶体管器件提供支撑,防止在外力作用下破裂,待铁箔基底100被溶解后,用去离子水将夹具清洗干净,并在室温下晾干,拆下夹具,切除四周的HfO2保护层下未被腐蚀的铁箔区域,得到第七样品,如图11所示。p型薄膜晶体管器件即将被转移至丝素蛋白质基底500上。In the sixth sample, the polished side of the iron foil faces the lower jig plate 710, and the unpolished side faces the upper jig plate 710. The upper jig plate 710 and the lower jig plate 720 are tightly fixed around to prevent the solution from entering the recess of the jig in the subsequent process. The groove portion in turn destroys the protein substrate. Immerse the fixed fixture in a dilute hydrochloric acid solution with a concentration of 10wt% to etch the iron foil substrate. Since SiO2 is insoluble in dilute hydrochloric acid, it can effectively prevent the silk fibroin film substrate from being dissolved. At the same time, the silk fibroin substrate is a transistor device Provide support to prevent rupture under the action of external force. After the
将第七样品放置在电子束蒸发(EB)设备中,在SiO2绝缘层200的表面蒸镀栅电极,如图12所示,在本发明中,作为一种优选,电极材料为Al,电极厚度为50nm,最终在丝素蛋白基底上得到水分触发降解的p型SnO薄膜晶体管。The seventh sample was placed in an electron beam evaporation (EB) device, and a grid electrode was evaporated on the surface of the SiO 2 insulating layer 200, as shown in Figure 12. In the present invention, as a preference, the electrode material is Al, and the electrode With a thickness of 50 nm, a p-type SnO thin film transistor with moisture-triggered degradation was finally obtained on the silk fibroin substrate.
对比例2Comparative Example 2
直接在蛋白质基底上沉积p型薄膜晶体管,具体方法如下:Deposit p-type thin film transistors directly on protein substrates as follows:
1.制备蛋白质基底薄膜,取一块平整的PET塑料板,将浓度为6wt%的丝素蛋白水溶液涂覆在滴涂于PET塑料板上,并放置在干燥箱内进行烘干,待蛋白溶液中的溶剂蒸发后,获得可水解的蛋白质基底薄膜。1. Prepare a protein base film, take a flat PET plastic plate, apply a silk fibroin aqueous solution with a concentration of 6wt% on the PET plastic plate, and place it in a drying box for drying. After evaporation of the solvent, a hydrolyzable protein-based film was obtained.
2.将蛋白质基底置于电子束蒸发设备中,蒸镀铝薄膜,作为栅电极,电极厚度100nm。2. The protein substrate was placed in an electron beam evaporation device, and an aluminum film was evaporated to serve as a gate electrode with a thickness of 100 nm.
3.将镀有栅电极的蛋白质基底置于射频磁控溅射设备中,沉积绝缘层,绝缘层材料为HfO2,采用陶瓷HfO2靶溅射获得HfO2绝缘层,溅射功率为150W,反应室温度为25℃,压力为8mtorr,通入Ar和O2的流量比的为9:1,沉积时间为150min,绝缘层薄膜厚度为150nm。3. The protein substrate coated with the gate electrode is placed in a radio frequency magnetron sputtering equipment, and an insulating layer is deposited. The insulating layer material is HfO 2 , and the HfO 2 insulating layer is obtained by sputtering with a ceramic HfO 2 target. The sputtering power is 150W, The temperature of the reaction chamber was 25 °C, the pressure was 8 mtorr, the flow ratio of Ar and O 2 was 9:1, the deposition time was 150 min, and the thickness of the insulating layer film was 150 nm.
4.将有源层掩模板310覆盖在绝缘层之上,将其置于射频磁控溅射设备中,进行有源层材料沉积,进行有源层沉积,有源层材料为SnO,采用金属Sn靶,通过反应溅射获得SnO材料;溅射功率为25W,反应室温度为室温,压力为5mtorr,通入Ar和O2的流量比为9:1,沉积时间为10min,薄膜厚度为50nm。将沉积有源层后的蛋白质基底置于快速退火炉中,在100℃条件下退火30min。4. Cover the
5.将源漏掩模板410覆盖在有源层之上,并一同置于热蒸发台中,进行源漏电极材料沉积,所用源漏电极材料为Au,厚度为50nm,得到对比器件。5. Cover the active layer with the source-
表1.器件参数对比Table 1. Device parameter comparison
表1为实施例与对比例的器件参数对比,从表1中可以看出,实施例1-4可实现一种水分触发降解的p型瞬态薄膜晶体管器件,其开关比均大于10000,并且实施例1中的开关比最大,将实施例1-4中制备的器件置于水中,丝素蛋白质基底在30分钟内即可水解,而半导体功能层由于失去支撑而破裂,实现降解。Table 1 is a comparison of device parameters between the example and the comparative example. It can be seen from Table 1 that examples 1-4 can realize a p-type transient thin film transistor device with moisture-triggered degradation, and the on-off ratios are all greater than 10,000, and The switching ratio in Example 1 is the largest. When the devices prepared in Examples 1-4 are placed in water, the silk fibroin substrate can be hydrolyzed within 30 minutes, while the semiconductor functional layer is broken due to loss of support, achieving degradation.
对比例1的有源层制备条件偏离最优条件较大,使有源层的氧含量过高,源漏极电流几乎不随栅极电压的改变而变化,即沟道层载流子浓度不受栅极电压控制,不能呈现p型导电特性。The preparation conditions of the active layer of Comparative Example 1 deviate greatly from the optimal conditions, so that the oxygen content of the active layer is too high, and the source-drain current hardly changes with the change of the gate voltage, that is, the carrier concentration of the channel layer is not affected. The gate voltage is controlled and cannot exhibit p-type conductivity.
对比例2中直接在蛋白质基底上沉积的薄膜晶体管器件,受到蛋白质基底耐热性限制,退火温度限制在100℃以下,因此器件开关比小于100。The thin film transistor device deposited directly on the protein substrate in Comparative Example 2 is limited by the thermal resistance of the protein substrate, and the annealing temperature is limited below 100 °C, so the device on-off ratio is less than 100.
因此,本发明能够实现在蛋白质基底上制备晶体管器件,克服了基底材料耐热性对器件制备温度的限制,有利于提高器件性能,还避免了器件制备过程中水溶液对水溶性蛋白质基底的破坏,使制备水分触发降解的、需经过高温处理的瞬态电子器件成为可能。Therefore, the invention can realize the preparation of transistor devices on the protein substrate, overcome the limitation of the heat resistance of the substrate material on the preparation temperature of the device, help to improve the performance of the device, and avoid the damage of the water-soluble protein substrate by the aqueous solution during the preparation of the device. It is possible to prepare transient electronic devices that require high temperature treatment with moisture-triggered degradation.
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。Although the embodiment of the present invention has been disclosed as above, it is not limited to the application listed in the description and the embodiment, and it can be applied to various fields suitable for the present invention. For those skilled in the art, it can be easily Therefore, the invention is not limited to the specific details and illustrations shown and described herein without departing from the general concept defined by the appended claims and the scope of equivalents.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110827733.2A CN113555287B (en) | 2021-07-22 | 2021-07-22 | Preparation method of moisture triggered degradation P-type transient thin film transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110827733.2A CN113555287B (en) | 2021-07-22 | 2021-07-22 | Preparation method of moisture triggered degradation P-type transient thin film transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113555287A CN113555287A (en) | 2021-10-26 |
CN113555287B true CN113555287B (en) | 2022-05-24 |
Family
ID=78132347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110827733.2A Active CN113555287B (en) | 2021-07-22 | 2021-07-22 | Preparation method of moisture triggered degradation P-type transient thin film transistor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113555287B (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6331476B1 (en) * | 1998-05-26 | 2001-12-18 | Mausushita Electric Industrial Co., Ltd. | Thin film transistor and producing method thereof |
CN103011052A (en) * | 2012-12-21 | 2013-04-03 | 上海宏力半导体制造有限公司 | Sacrificial layer of MEMS (Micro-Electro-Mechanical-System) device, MEMS device and manufacturing method thereof |
CN103091979A (en) * | 2013-01-09 | 2013-05-08 | 华中科技大学 | Nanoimprint template as well as preparation method and application thereof |
CN104294206A (en) * | 2014-10-09 | 2015-01-21 | 沈阳富创精密设备有限公司 | Preparation method of high-temperature creep resistant grounding substrate for semiconductor equipment |
CN107170831A (en) * | 2017-06-14 | 2017-09-15 | 华南理工大学 | A kind of nanometer paper substrate film transistor and preparation method thereof |
CN108727640A (en) * | 2018-05-31 | 2018-11-02 | 中国科学院苏州纳米技术与纳米仿生研究所 | A kind of Transient Thin-Film, the preparation method of Transient Thin-Film and Transient Thin-Film device |
CN109360857A (en) * | 2018-08-15 | 2019-02-19 | 南昌工程学院 | Degradable self-supporting thin film transistor device and preparation method thereof |
CN110379716A (en) * | 2019-07-24 | 2019-10-25 | 吉林建筑大学 | Zinc oxide based film transistor preparation method in a kind of protein substrate |
CN112736033A (en) * | 2020-12-24 | 2021-04-30 | 吉林建筑大学 | Method for preparing large-batch p-type thin film transistors on protein substrate |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6918284B2 (en) * | 2003-03-24 | 2005-07-19 | The United States Of America As Represented By The Secretary Of The Navy | Interconnected networks of single-walled carbon nanotubes |
US7378286B2 (en) * | 2004-08-20 | 2008-05-27 | Sharp Laboratories Of America, Inc. | Semiconductive metal oxide thin film ferroelectric memory transistor |
US7800103B2 (en) * | 2004-12-02 | 2010-09-21 | Konica Minolta Holdings, Inc. | Organic thin film transistor material, organic thin film transistor, field-effect transistor, switching element, organic semiconductor material and organic semiconductor film |
WO2008085904A1 (en) * | 2007-01-05 | 2008-07-17 | Charles Stark Draper Laboratory, Inc. | Biodegradable electronic devices |
TWI418072B (en) * | 2010-05-28 | 2013-12-01 | Nat Univ Tsing Hua | Otft using paper as substrate and silk protein as dielectric material and method for manufacturing the same |
JP5740270B2 (en) * | 2011-09-27 | 2015-06-24 | 株式会社東芝 | THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND DISPLAY DEVICE |
WO2013089867A2 (en) * | 2011-12-01 | 2013-06-20 | The Board Of Trustees Of The University Of Illinois | Transient devices designed to undergo programmable transformations |
US9620654B2 (en) * | 2012-01-05 | 2017-04-11 | Quantum Devices, Llc | Coherent spin field effect transistor |
US9496229B2 (en) * | 2013-04-12 | 2016-11-15 | The Board Of Trustees Of The University Of Illinois | Transient electronic devices comprising inorganic or hybrid inorganic and organic substrates and encapsulates |
KR101793976B1 (en) * | 2015-06-11 | 2017-11-06 | 인천대학교 산학협력단 | A manufacturing method of a transient semiconductor based on single-wall nanotubes |
-
2021
- 2021-07-22 CN CN202110827733.2A patent/CN113555287B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6331476B1 (en) * | 1998-05-26 | 2001-12-18 | Mausushita Electric Industrial Co., Ltd. | Thin film transistor and producing method thereof |
CN103011052A (en) * | 2012-12-21 | 2013-04-03 | 上海宏力半导体制造有限公司 | Sacrificial layer of MEMS (Micro-Electro-Mechanical-System) device, MEMS device and manufacturing method thereof |
CN103091979A (en) * | 2013-01-09 | 2013-05-08 | 华中科技大学 | Nanoimprint template as well as preparation method and application thereof |
CN104294206A (en) * | 2014-10-09 | 2015-01-21 | 沈阳富创精密设备有限公司 | Preparation method of high-temperature creep resistant grounding substrate for semiconductor equipment |
CN107170831A (en) * | 2017-06-14 | 2017-09-15 | 华南理工大学 | A kind of nanometer paper substrate film transistor and preparation method thereof |
CN108727640A (en) * | 2018-05-31 | 2018-11-02 | 中国科学院苏州纳米技术与纳米仿生研究所 | A kind of Transient Thin-Film, the preparation method of Transient Thin-Film and Transient Thin-Film device |
CN109360857A (en) * | 2018-08-15 | 2019-02-19 | 南昌工程学院 | Degradable self-supporting thin film transistor device and preparation method thereof |
CN110379716A (en) * | 2019-07-24 | 2019-10-25 | 吉林建筑大学 | Zinc oxide based film transistor preparation method in a kind of protein substrate |
CN112736033A (en) * | 2020-12-24 | 2021-04-30 | 吉林建筑大学 | Method for preparing large-batch p-type thin film transistors on protein substrate |
Non-Patent Citations (2)
Title |
---|
医用镁及镁合金表面可生物降解有机高分子涂层的应用;史永娟等;《表面技术》;20170320(第03期);第72-78页 * |
玉米蛋白质基底上射频磁控溅射法制备Zn O薄膜;杨帆等;《发光学报》;20181015(第10期);第1431-1439页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113555287A (en) | 2021-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101460489B1 (en) | Method for manufacturing oxide semiconductor layer using sol-gel process including oxygen plasma treatment and oxide semiconductor layer manufactured thereby | |
CN102157562B (en) | Method for manufacturing bottom gate metal oxide thin film transistor | |
CN102157564A (en) | Preparation method of top gate metal oxide thin film transistor (TFT) | |
CN110690291A (en) | Enhancement mode Ga2O3 metal oxide semiconductor field effect transistor and fabrication method thereof | |
WO2022021685A1 (en) | Method for preparing sic-based ohmic contact | |
WO2013174108A1 (en) | Thin film transistor, method for manufacturing same, and array substrate | |
CN114400179A (en) | Hafnium oxide-based ferroelectric film, preparation method and application | |
CN109767988A (en) | Metal oxide thin film transistor and preparation method thereof | |
CN106252278B (en) | The preparation method of metal oxide thin-film transistor array | |
CN111029402A (en) | Zirconium-titanium oxide gate dielectric layer flexible bottom gate thin film transistor and fabrication method thereof | |
CN113555287B (en) | Preparation method of moisture triggered degradation P-type transient thin film transistor | |
CN112126896A (en) | Method for preparing C-axis crystalline IGZO film at low temperature | |
CN112635565A (en) | Two-dimensional semiconductor transistor structure with controllable performance and preparation method thereof | |
CN104766798A (en) | Methods of Improving SiC/SiO2 Interface Roughness | |
CN108417736A (en) | A kind of preparation method of transition metal oxide as hole injection layer | |
US8384082B2 (en) | Transistor using derivative polymethyl-methacrylate thin film as gate insulator and passivation layer, and fabrication method thereof | |
CN102738243A (en) | Transistor, array substrate and method for manufacturing array substrate, liquid crystal display panel and display device | |
CN112736033B (en) | Method for preparing large-batch p-type thin film transistors on protein substrate | |
CN110335820B (en) | Preparation method of p-type thin film transistor on protein substrate | |
CN111063803A (en) | Preparation method of carbon nano tube thin film transistor | |
TWI867102B (en) | Method of forming electrode | |
CN214012946U (en) | A two-dimensional semiconductor transistor structure | |
CN115565885A (en) | A method for preparing thin film transistors on corn protein substrates | |
CN106981420B (en) | Processing method of graphical sensitive metal or metal oxide material | |
CN112054055A (en) | A kind of preparation method of SiC-based ohmic contact with graphene as diffusion barrier layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |