[go: up one dir, main page]

CN113409991B - Flexible composite conductive film and preparation method and application thereof - Google Patents

Flexible composite conductive film and preparation method and application thereof Download PDF

Info

Publication number
CN113409991B
CN113409991B CN202110679210.8A CN202110679210A CN113409991B CN 113409991 B CN113409991 B CN 113409991B CN 202110679210 A CN202110679210 A CN 202110679210A CN 113409991 B CN113409991 B CN 113409991B
Authority
CN
China
Prior art keywords
layer
metal
conductive film
metal nanowire
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110679210.8A
Other languages
Chinese (zh)
Other versions
CN113409991A (en
Inventor
范江峰
刘腾蛟
胡源
苏燕平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Nameida Photoelectric Technology Co ltd
Original Assignee
Jiangsu Nameida Photoelectric Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Nameida Photoelectric Technology Co ltd filed Critical Jiangsu Nameida Photoelectric Technology Co ltd
Priority to CN202110679210.8A priority Critical patent/CN113409991B/en
Publication of CN113409991A publication Critical patent/CN113409991A/en
Application granted granted Critical
Publication of CN113409991B publication Critical patent/CN113409991B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

本公开涉及一种高性能柔性复合导电膜及其制备方法和应用,该高性能柔性复合导电膜包括衬底、金属纳米线层、金属网格层和第一锚定层,金属纳米线层和金属网格层均设置在衬底与第一锚定层之间,并且,金属纳米线层和金属网格层的排列顺序可调换;金属纳米线层和金属网格层之间形成导电通路;金属网格层包括多个金属线构成的网格状导电结构,纳米线层包括由多个金属纳米线构成的网络状导电结构,并且,网络状导电结构中的网络空隙小于网格状导电结构中的网格空隙。该高性能柔性复合导电膜还可以包括平面导电层和第二锚定层。本发明提供的高性能柔性复合导电膜兼具优异的导电性能和较好的透光率,能够满足大尺寸柔性触显及光电器件的应用需求。

Figure 202110679210

The disclosure relates to a high-performance flexible composite conductive film and its preparation method and application. The high-performance flexible composite conductive film includes a substrate, a metal nanowire layer, a metal grid layer and a first anchor layer, a metal nanowire layer and a metal nanowire layer. The metal grid layers are arranged between the substrate and the first anchor layer, and the arrangement order of the metal nanowire layer and the metal grid layer can be exchanged; a conductive path is formed between the metal nanowire layer and the metal grid layer; The metal grid layer includes a grid-like conductive structure composed of a plurality of metal wires, the nanowire layer includes a network-like conductive structure composed of a plurality of metal nanowires, and the network gaps in the network-like conductive structure are smaller than those of the grid-like conductive structure Grid gaps in . The high-performance flexible composite conductive film may also include a planar conductive layer and a second anchor layer. The high-performance flexible composite conductive film provided by the invention has both excellent conductivity and good light transmittance, and can meet the application requirements of large-scale flexible touch displays and optoelectronic devices.

Figure 202110679210

Description

柔性复合导电膜及其制备方法和应用Flexible composite conductive film and its preparation method and application

技术领域technical field

本公开涉及导电膜、制造导电膜的方法以及该导电膜的应用,特别涉及一种柔性复合导电膜及其制备方法和应用。The disclosure relates to a conductive film, a method for manufacturing the conductive film and applications of the conductive film, in particular to a flexible composite conductive film and its preparation method and application.

背景技术Background technique

近年来,随着柔性电子产业的崛起,柔性触控及器件已成为电子行业的发展趋势,在这产业趋势之下,具有可挠性、高光穿透度、高导电性的软性透明导电膜是许多柔性光电产品的基础。众所周知,传统的触控产品所用的ITO(Indium-Tin-Oxide,氧化铟锡)透明导电膜导电层易碎易断,缺乏柔韧性且大尺寸电极应用存在压降的问题,限制了其在大尺寸柔性触控及器件方面的应用。In recent years, with the rise of the flexible electronics industry, flexible touch and devices have become the development trend of the electronics industry. Under this industry trend, soft transparent conductive films with flexibility, high light penetration, and high conductivity It is the basis of many flexible optoelectronic products. As we all know, the conductive layer of ITO (Indium-Tin-Oxide, indium tin oxide) transparent conductive film used in traditional touch products is fragile and easy to break, lacks flexibility and has the problem of voltage drop in the application of large-scale electrodes, which limits its application in large Size flexible touch and device applications.

纳米银线透明导电膜具有优异的光电特性、耐挠曲特性、制备工艺简单等优点,已在触控屏、手写板、加热膜、PDLC(Polymer Dispersed Liquid Crystal,聚合物分散液晶)和电磁屏蔽等领域得到广泛的应用。然而纳米银线透明导电膜也存在一些缺陷,如受限于纳米银线导电性能不足和网络导电的特点,无法在一些要求高导电性的器件中应用。Nano-silver wire transparent conductive film has the advantages of excellent photoelectric properties, flex resistance properties, and simple preparation process. and other fields have been widely used. However, the silver nanowire transparent conductive film also has some defects, such as limited by the insufficient conductivity of the silver nanowire and the characteristics of network conduction, it cannot be applied in some devices that require high conductivity.

发明内容Contents of the invention

针对现有技术的缺陷,本公开的目的在于提供一种柔性复合导电膜及其制备方法和应用,提高柔性复合导电膜的导电性能,使柔性复合导电膜满足大尺寸柔性触控及器件中高导电性的需求。In view of the defects of the prior art, the purpose of this disclosure is to provide a flexible composite conductive film and its preparation method and application, to improve the conductive performance of the flexible composite conductive film, so that the flexible composite conductive film can meet the needs of large-scale flexible touch and high conductivity in devices. sexual needs.

本发明的第一方面,提供了一种柔性复合导电膜,所述柔性复合导电膜包括衬底、金属纳米线层、金属网格层和第一锚定层,所述金属纳米线层和所述金属网格层均设置在所述衬底与所述第一锚定层之间,并且,所述金属纳米线层和所述金属网格层的排列顺序可调换;The first aspect of the present invention provides a flexible composite conductive film, the flexible composite conductive film includes a substrate, a metal nanowire layer, a metal grid layer and a first anchor layer, the metal nanowire layer and the The metal grid layers are all arranged between the substrate and the first anchor layer, and the arrangement order of the metal nanowire layer and the metal grid layer can be exchanged;

所述金属纳米线层和所述金属网格层之间形成导电通路;A conductive path is formed between the metal nanowire layer and the metal mesh layer;

所述金属网格层包括多个金属线构成的网格状导电结构,相邻的多条金属线之间形成网格空隙,所述金属纳米线层包括由多个金属纳米线构成的网络状导电结构,相邻的多条金属纳米线之间形成网络空隙,所述网络空隙小于所述网格空隙。The metal grid layer includes a grid-shaped conductive structure composed of a plurality of metal wires, and grid gaps are formed between adjacent multiple metal wires, and the metal nanowire layer includes a network-shaped conductive structure composed of a plurality of metal nanowires. In the conductive structure, network gaps are formed between a plurality of adjacent metal nanowires, and the network gaps are smaller than the grid gaps.

在一个可行的实现方式中,所述柔性复合导电膜还包括平面导电层,所述平面导电层为平面导电结构,In a feasible implementation manner, the flexible composite conductive film further includes a planar conductive layer, and the planar conductive layer is a planar conductive structure,

所述平面导电层设置在所述衬底、所述金属纳米线层、所述金属网层和所述第一锚定层中的任意两个层之间或者所述第一锚定层之上;The planar conductive layer is disposed between any two layers of the substrate, the metal nanowire layer, the metal mesh layer and the first anchor layer or on the first anchor layer ;

所述金属纳米线层、所述金属网格层和所述平面导电层之间形成导电通路。A conductive path is formed among the metal nanowire layer, the metal mesh layer and the planar conductive layer.

在一个可行的实现方式中,所述柔性复合导电膜还包括第二锚定层,In a feasible implementation manner, the flexible composite conductive film further includes a second anchor layer,

所述第二锚定层设置在所述金属纳米线层、所述金属网格层和所述平面导电层中的任意两个层之间。The second anchor layer is disposed between any two layers of the metal nanowire layer, the metal mesh layer and the planar conductive layer.

本发明的第二方面,提供了一种柔性复合导电膜的制备方法,所述方法包括:A second aspect of the present invention provides a method for preparing a flexible composite conductive film, the method comprising:

在衬底上形成导电复合层,所述导电复合层包括金属纳米线层和金属网格层,所述金属纳米线层和所述金属网格层的位置可调换,所述金属纳米线层和所述金属网格层之间形成导电通路;Form a conductive composite layer on the substrate, the conductive composite layer includes a metal nanowire layer and a metal grid layer, the positions of the metal nanowire layer and the metal grid layer can be exchanged, the metal nanowire layer and the metal grid layer A conductive path is formed between the metal grid layers;

在所述导电复合层上形成第一锚定层。A first anchor layer is formed on the conductive composite layer.

在一个可行的实现方式中,所述方法还包括:In a feasible implementation, the method also includes:

在所述衬底、所述金属纳米线层、所述金属网层和所述第一锚定层中的任意两个层之间或者所述第一锚定层之上形成平面导电层;forming a planar conductive layer between any two layers of the substrate, the metal nanowire layer, the metal mesh layer, and the first anchor layer or on the first anchor layer;

所述金属纳米线层、所述金属网格层和所述平面导电层之间形成导电通路。A conductive path is formed among the metal nanowire layer, the metal mesh layer and the planar conductive layer.

在一个可行的实现方式中,所述方法还包括:In a feasible implementation, the method also includes:

在所述金属纳米线层、所述金属网格层和所述平面导电层中的任意两个层之间形成第二锚定层。A second anchor layer is formed between any two layers of the metal nanowire layer, the metal mesh layer and the planar conductive layer.

本发明的第三方面,提供了一种柔性复合导电膜的应用,包括上述第一方面所述的柔性复合导电膜在触控屏、显示器、手机天线电路、红外光学成像元件、光电传感器、电磁屏蔽、智能窗、智能手写板和太阳能电池方面的应用。The third aspect of the present invention provides an application of a flexible composite conductive film, including the application of the flexible composite conductive film described in the first aspect above in touch screens, displays, mobile phone antenna circuits, infrared optical imaging components, photoelectric sensors, electromagnetic Applications in shielding, smart windows, smart tablet and solar cells.

本发明提供的柔性复合导电膜包括由衬底、金属纳米线层、锚定层和金属网格层形成的层状结构,通过将金属纳米线层与金属网格层复合,使柔性复合导电膜同时具有较好的导电性能、柔性弯曲特性以及较好的透光率;本发明提供的柔性复合导电膜中,金属纳米线层的表面被其他层结构包覆,故金属纳米线层不会暴露在外,进而使柔性复合导电膜具有较好的抗氧化性能,提升了柔性复合导电膜的耐用性,并且使柔性复合导电膜具有较好的表面平整度。The flexible composite conductive film provided by the present invention includes a layered structure formed by a substrate, a metal nanowire layer, an anchor layer and a metal grid layer, and the flexible composite conductive film is formed by compounding the metal nanowire layer and the metal grid layer At the same time, it has good electrical conductivity, flexible bending characteristics and good light transmittance; in the flexible composite conductive film provided by the present invention, the surface of the metal nanowire layer is covered by other layer structures, so the metal nanowire layer will not be exposed On the outside, the flexible composite conductive film has better oxidation resistance, the durability of the flexible composite conductive film is improved, and the flexible composite conductive film has better surface smoothness.

采用本发明提供的方法制备得到的柔性复合导电膜兼具较好的透光率和较好的导电性,可广泛应用于触控屏、显示器、手机天线电路、红外光学成像元件、光电传感器、电磁屏蔽、智能窗、智能手写板和太阳能电池方面,能够满足大尺寸柔性触控及器件中高导电性的需求。The flexible composite conductive film prepared by the method provided by the invention has both good light transmittance and good conductivity, and can be widely used in touch screens, displays, mobile phone antenna circuits, infrared optical imaging elements, photoelectric sensors, In terms of electromagnetic shielding, smart windows, smart tablet and solar cells, it can meet the needs of large-scale flexible touch and high conductivity in devices.

附图说明Description of drawings

为了更清楚地说明本公开的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它附图。In order to illustrate the technical solutions of the present disclosure more clearly, the following will briefly introduce the drawings that are required in the embodiments or the description of the prior art. Apparently, the drawings in the following description are only some embodiments of the present disclosure, and those skilled in the art can obtain other drawings according to these drawings without creative efforts.

图1是本公开实施例提供的柔性复合导电膜的一种结构的示意图;FIG. 1 is a schematic diagram of a structure of a flexible composite conductive film provided by an embodiment of the present disclosure;

图2是本公开实施例提供的柔性复合导电膜的一种结构的示意图;2 is a schematic diagram of a structure of a flexible composite conductive film provided by an embodiment of the present disclosure;

图3是本公开实施例提供的柔性复合导电膜的一种结构的示意图;3 is a schematic diagram of a structure of a flexible composite conductive film provided by an embodiment of the present disclosure;

图4是本公开实施例提供的柔性复合导电膜的一种结构的示意图;Fig. 4 is a schematic diagram of a structure of a flexible composite conductive film provided by an embodiment of the present disclosure;

图5是本公开实施例提供的柔性复合导电膜的一种结构的示意图;5 is a schematic diagram of a structure of a flexible composite conductive film provided by an embodiment of the present disclosure;

图6是本公开实施例提供的柔性复合导电膜的一种结构的示意图;6 is a schematic diagram of a structure of a flexible composite conductive film provided by an embodiment of the present disclosure;

图7是本公开实施例提供的柔性复合导电膜的一种结构的示意图;Fig. 7 is a schematic diagram of a structure of a flexible composite conductive film provided by an embodiment of the present disclosure;

图8是本公开实施例提供的柔性复合导电膜的一种结构的示意图;8 is a schematic diagram of a structure of a flexible composite conductive film provided by an embodiment of the present disclosure;

图9是本公开实施例提供的柔性复合导电膜的一种结构的示意图;9 is a schematic diagram of a structure of a flexible composite conductive film provided by an embodiment of the present disclosure;

图10是本公开实施例提供的柔性复合导电膜的一种结构的示意图;Fig. 10 is a schematic diagram of a structure of a flexible composite conductive film provided by an embodiment of the present disclosure;

图11是本公开实施例提供的柔性复合导电膜的一种结构的示意图;Fig. 11 is a schematic diagram of a structure of a flexible composite conductive film provided by an embodiment of the present disclosure;

图12是本公开实施例提供的柔性复合导电膜的一种结构的示意图;Fig. 12 is a schematic diagram of a structure of a flexible composite conductive film provided by an embodiment of the present disclosure;

图13是本公开实施例提供的柔性复合导电膜的一种结构的示意图;Fig. 13 is a schematic diagram of a structure of a flexible composite conductive film provided by an embodiment of the present disclosure;

图14是本公开实施例提供的柔性复合导电膜的一种结构的示意图;Fig. 14 is a schematic diagram of a structure of a flexible composite conductive film provided by an embodiment of the present disclosure;

图15是本公开实施例提供的柔性复合导电膜的一种结构的示意图;Fig. 15 is a schematic diagram of a structure of a flexible composite conductive film provided by an embodiment of the present disclosure;

图16是本公开实施例提供的柔性复合导电膜的一种结构的示意图。Fig. 16 is a schematic diagram of a structure of a flexible composite conductive film provided by an embodiment of the present disclosure.

图中:1-衬底,2-金属纳米线层,3-金属网格层,4-第一锚定层,5-平面导电层,6-第二锚定层。In the figure: 1-substrate, 2-metal nanowire layer, 3-metal grid layer, 4-first anchoring layer, 5-plane conductive layer, 6-second anchoring layer.

具体实施方式Detailed ways

为了使本技术领域的人员更好地理解本公开方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分的实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本公开保护的范围。In order to enable those skilled in the art to better understand the present disclosure, the technical solutions in the embodiments of the present disclosure will be clearly and completely described below in conjunction with the drawings in the embodiments of the present disclosure. Obviously, the described embodiments are only It is an embodiment of a part of the present disclosure, but not all of the embodiments. Based on the embodiments in the present disclosure, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts shall fall within the protection scope of the present disclosure.

需要说明的是,本公开的说明书和权利要求书及附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。It should be noted that the terms "first" and "second" in the specification, claims and drawings of the present disclosure are used to distinguish similar objects, but not necessarily used to describe a specific sequence or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances such that the embodiments of the disclosure described herein can be practiced in sequences other than those illustrated or described herein. Furthermore, the terms "comprising" and "having", as well as any variations thereof, are intended to cover a non-exclusive inclusion.

目前,大多数电容式触控面板使用制作工艺成熟的ITO(氧化铟锡)导电膜,但ITO导电膜具有阻值高、易碎等缺陷,不适于制作中大尺寸触控面板及柔性面板。金属网格导电膜(Metal Mesh)具有比ITO导电膜更低的阻值、更好的透光性,并且响应速度快,特别适用于制作中大尺寸触控面板和柔性面板,从而使其成为ITO导电膜极具竞争力的替代方案之一。此外,纳米银线导电膜因其较好的光电特性和耐挠曲特性等优点,在触控屏、手写板、加热膜和电磁屏蔽等领域也得到广泛的应用,但因导电性能偏弱而限制了其在一些高导电性要求的器件中的应用。随着科技发展,大尺寸触控面板和柔性面板的需求增多,然而,在探索大尺寸触控面板和柔性面板的制作方面,一直未取得较好的成效。本发明创新性的将金属网格导电结构和纳米银线网络导电结构结合获得柔性复合导电膜,在使柔性复合导电膜满足大尺寸触控面板和柔性面板应用中对透光性要求的前提下,通过层结构的组合和对层厚度的选择,尽可能的降低复合透明导电膜的电阻,提升导电性能。以下就本发明提供的柔性复合导电膜的结构和制作方法进行说明。At present, most capacitive touch panels use ITO (Indium Tin Oxide) conductive film with mature manufacturing process, but ITO conductive film has defects such as high resistance value and fragility, so it is not suitable for making medium and large size touch panels and flexible panels. Metal mesh conductive film (Metal Mesh) has lower resistance than ITO conductive film, better light transmittance, and fast response speed, especially suitable for making medium and large size touch panels and flexible panels, making it a One of the very competitive alternatives to ITO conductive film. In addition, nano-silver wire conductive film has been widely used in the fields of touch screen, handwriting tablet, heating film and electromagnetic shielding due to its good photoelectric characteristics and flexural resistance, but it is not suitable for the weak conductivity. This limits its application in some devices with high conductivity requirements. With the development of science and technology, the demand for large-size touch panels and flexible panels has increased. However, good results have not been achieved in exploring the production of large-size touch panels and flexible panels. The invention innovatively combines the metal grid conductive structure and the nano-silver wire network conductive structure to obtain a flexible composite conductive film, on the premise that the flexible composite conductive film meets the light transmittance requirements in the application of large-size touch panels and flexible panels , through the combination of layer structure and the selection of layer thickness, the resistance of the composite transparent conductive film can be reduced as much as possible, and the conductive performance can be improved. The structure and manufacturing method of the flexible composite conductive film provided by the present invention will be described below.

本发明提供一种柔性复合导电膜,所述柔性复合导电膜包括衬底、金属纳米线层、金属网格层和第一锚定层,所述金属纳米线层和所述金属网格层均设置在所述衬底与所述第一锚定层之间,并且,所述金属纳米线层和所述金属网格层的排列顺序可调换;所述金属纳米线层和所述金属网格层之间形成导电通路;所述金属网格层包括多个金属线构成的网格状导电结构,相邻的多条金属线之间形成网格空隙,所述金属纳米线层包括由多个金属纳米线构成的网络状导电结构,相邻的多条金属纳米线之间形成网络空隙,所述网络空隙小于所述网格空隙。其中,第一锚定层覆盖金属网格层的至少一个表面或者金属纳米线层的至少一个表面,甚至包裹金属网格层或者金属纳米线层。该柔性复合导电膜集成了金属纳米线层和金属网格层的优点,具有优良的导电性能、柔性弯曲特性以及较好的透光率,并且,金属纳米线层的上下表面均被其他层结构包覆,使得金属纳米线层具有较好的耐氧化性能。The invention provides a flexible composite conductive film, the flexible composite conductive film includes a substrate, a metal nanowire layer, a metal grid layer and a first anchor layer, the metal nanowire layer and the metal grid layer are both It is arranged between the substrate and the first anchor layer, and the arrangement order of the metal nanowire layer and the metal grid layer can be exchanged; the metal nanowire layer and the metal grid layer A conductive path is formed between the layers; the metal grid layer includes a grid-like conductive structure composed of a plurality of metal wires, and grid gaps are formed between adjacent metal wires, and the metal nanowire layer includes a plurality of metal wires. In the network-shaped conductive structure composed of metal nanowires, network gaps are formed between a plurality of adjacent metal nanowires, and the network gaps are smaller than the grid gaps. Wherein, the first anchor layer covers at least one surface of the metal mesh layer or at least one surface of the metal nanowire layer, or even wraps the metal mesh layer or the metal nanowire layer. The flexible composite conductive film integrates the advantages of the metal nanowire layer and the metal grid layer, has excellent electrical conductivity, flexible bending characteristics and good light transmittance, and the upper and lower surfaces of the metal nanowire layer are covered by other layer structures. Coating makes the metal nanowire layer have better oxidation resistance.

具体的,由衬底、金属纳米线层、第一锚定层和金属网格层形成的柔性复合导电膜可以呈现如图1和图2所示的两种不同的层结构。Specifically, the flexible composite conductive film formed by the substrate, the metal nanowire layer, the first anchor layer and the metal grid layer can exhibit two different layer structures as shown in FIG. 1 and FIG. 2 .

请参见图1,其示出了柔性复合导电膜的一种结构,该柔性复合导电膜由下至上依次为衬底1、金属网格层3、金属纳米线层3和第一锚定层4,其中,金属纳米线层与金属网格层之间形成导电通路,第一锚定层覆盖金属纳米线层的至少一个表面,并填补或镶嵌于金属纳米线层的网络空隙。Please refer to Fig. 1, which shows a structure of a flexible composite conductive film, the flexible composite conductive film is a substrate 1, a metal mesh layer 3, a metal nanowire layer 3 and a first anchor layer 4 from bottom to top. , wherein a conductive path is formed between the metal nanowire layer and the metal grid layer, the first anchor layer covers at least one surface of the metal nanowire layer, and fills or inlays the network voids of the metal nanowire layer.

请参见图2,其示出了柔性复合导电膜的另一种结构,该柔性复合导电膜由下至上依次为衬底1、金属纳米线层2、金属网格层3和第一锚定层4,其中,金属纳米线层与金属网格层之间形成导电通路,第一锚定层覆盖金属网格层的至少一个表面,并填补或镶嵌于金属网格层的网格空隙。Please refer to Fig. 2, which shows another structure of the flexible composite conductive film, the flexible composite conductive film is a substrate 1, a metal nanowire layer 2, a metal grid layer 3 and a first anchor layer from bottom to top. 4. Wherein, a conductive path is formed between the metal nanowire layer and the metal grid layer, and the first anchor layer covers at least one surface of the metal grid layer, and fills or inlays grid gaps in the metal grid layer.

进一步的,柔性复合导电膜还可以包括平面导电层,平面导电层的设置使得柔性复合导电膜由网络导电变成平面导电,具体的,所述平面导电层可以设置在所述衬底、所述金属纳米线层、所述金属网层和所述第一锚定层中的任意两个层之间或者所述第一锚定层之上。由衬底、金属纳米线层、第一锚定层、金属网格层和平面导电层形成的柔性复合导电膜可以呈现如图3至图10所示的八种不同的层结构。Further, the flexible composite conductive film may also include a planar conductive layer. The arrangement of the planar conductive layer makes the flexible composite conductive film change from network conduction to planar conduction. Specifically, the planar conduction layer may be arranged on the substrate, the Between any two layers of the metal nanowire layer, the metal mesh layer and the first anchor layer or on the first anchor layer. The flexible composite conductive film formed by the substrate, the metal nanowire layer, the first anchor layer, the metal grid layer and the planar conductive layer can exhibit eight different layer structures as shown in FIGS. 3 to 10 .

请参见图3,其示出了柔性复合导电膜的一种结构,该柔性复合导电膜由下至上依次为衬底1、金属纳米线层2、金属网格层3、第一锚定层4和平面导电层5。其中,平面导电层、金属网格层和金属纳米线层形成导电通路。第一锚定层覆盖金属网格层的至少一个表面,并填补或镶嵌于金属网格层的网格空隙,提升柔性复合导电膜的抗氧化性能;平面导电层覆盖第一锚定层,以提升柔性复合导电膜的表面平整度。Please refer to FIG. 3 , which shows a structure of a flexible composite conductive film. The flexible composite conductive film includes a substrate 1, a metal nanowire layer 2, a metal grid layer 3, and a first anchor layer 4 from bottom to top. and a planar conductive layer 5 . Wherein, the plane conductive layer, the metal grid layer and the metal nanowire layer form a conductive path. The first anchor layer covers at least one surface of the metal grid layer, and fills or inlays the grid gaps in the metal grid layer to improve the oxidation resistance of the flexible composite conductive film; the planar conductive layer covers the first anchor layer, so as to Improve the surface flatness of the flexible composite conductive film.

请参见图4,其示出了柔性复合导电膜的一种结构,该柔性复合导电膜由下至上依次为衬底1、金属网格层3、金属纳米线层2、第一锚定层4和平面导电层5。其中,金属网格层、平面导电层和金属纳米线层形成导电通路。第一锚定层覆盖金属纳米线层的至少一个表面,并填补或镶嵌于金属纳米线层的网络空隙,提升柔性复合导电膜的抗氧化性能;平面导电层覆盖第一锚定层,以提升柔性复合导电膜的表面平整度。Please refer to FIG. 4, which shows a structure of a flexible composite conductive film, the flexible composite conductive film is a substrate 1, a metal grid layer 3, a metal nanowire layer 2, and a first anchor layer 4 in sequence from bottom to top. and a planar conductive layer 5 . Wherein, the metal mesh layer, the planar conductive layer and the metal nanowire layer form a conductive path. The first anchor layer covers at least one surface of the metal nanowire layer, and fills or inlays the network gap of the metal nanowire layer to improve the oxidation resistance of the flexible composite conductive film; the planar conductive layer covers the first anchor layer to improve Surface flatness of flexible composite conductive films.

请参见图5,其示出了柔性复合导电膜的一种结构,该柔性复合导电膜由下至上依次为衬底1、金属纳米线层2、金属网格层3、平面导电层5和第一锚定层4。其中,平面导电层、金属网格层和金属纳米线层形成导电通路。平面导电层覆盖金属网格层,第一锚定层覆盖平面导电层,以提升柔性复合导电膜的表面平整度及耐氧化性能。Please refer to FIG. 5 , which shows a structure of a flexible composite conductive film. The flexible composite conductive film includes a substrate 1, a metal nanowire layer 2, a metal grid layer 3, a plane conductive layer 5 and a first flexible conductive film from bottom to top. an anchor layer 4 . Wherein, the plane conductive layer, the metal grid layer and the metal nanowire layer form a conductive path. The plane conductive layer covers the metal grid layer, and the first anchor layer covers the plane conductive layer, so as to improve the surface smoothness and oxidation resistance of the flexible composite conductive film.

请参见图6,其示出了柔性复合导电膜的一种结构,该柔性复合导电膜由下至上依次为衬底1、金属纳米线层2、平面导电层5、金属网格层3和第一锚定层4。其中,平面导电层、金属网格层和金属纳米线层形成导电通路。平面导电层设置在金属纳米线层与金属网格层之间,用以提升柔性复合导电膜的表面平整度,第一锚定层覆盖金属网格层的表面,并填补或镶嵌于金属网格层的网格空隙,以提升柔性复合导电膜的表面平整度及耐氧化性能。Please refer to FIG. 6, which shows a structure of a flexible composite conductive film, which is a substrate 1, a metal nanowire layer 2, a plane conductive layer 5, a metal mesh layer 3 and a first flexible composite conductive film from bottom to top. an anchor layer 4 . Wherein, the plane conductive layer, the metal grid layer and the metal nanowire layer form a conductive path. The planar conductive layer is arranged between the metal nanowire layer and the metal grid layer to improve the surface smoothness of the flexible composite conductive film, and the first anchor layer covers the surface of the metal grid layer and fills or inlays the metal grid The grid gap of the layer is used to improve the surface flatness and oxidation resistance of the flexible composite conductive film.

请参见图7,其示出了柔性复合导电膜的一种结构,该柔性复合导电膜由下至上依次为衬底1、金属网格层3、平面导电层5、金属纳米线层2和第一锚定层4。其中,平面导电层、金属网格层和金属纳米线层形成导电通路。平面导电层设置在金属纳米线层与金属网格层之间,用以提升柔性复合导电膜的表面平整度,第一锚定层覆盖金属纳米线层的表面,并填补或镶嵌于金属纳米线层的网络空隙,以提升柔性复合导电膜的表面平整度及耐氧化性能。Please refer to FIG. 7 , which shows a structure of a flexible composite conductive film. The flexible composite conductive film includes a substrate 1, a metal grid layer 3, a plane conductive layer 5, a metal nanowire layer 2 and a first flexible conductive film from bottom to top. an anchor layer 4 . Wherein, the plane conductive layer, the metal grid layer and the metal nanowire layer form a conductive path. The planar conductive layer is arranged between the metal nanowire layer and the metal grid layer to improve the surface smoothness of the flexible composite conductive film, and the first anchor layer covers the surface of the metal nanowire layer and fills or inlays the metal nanowire In order to improve the surface flatness and oxidation resistance of the flexible composite conductive film.

请参见图8,其示出了柔性复合导电膜的一种结构,该柔性复合导电膜由下至上依次为衬底1、金属网格层3、金属纳米线层2、平面导电层5和第一锚定层4。其中,平面导电层、金属网格层和金属纳米线层形成导电通路。平面导电层设置在金属纳米线层上,用以提升柔性复合导电膜的表面平整度及抗氧化性能,第一锚定层覆盖平面导电层,能够进一步提升柔性复合导电膜的表面平整度。Please refer to FIG. 8 , which shows a structure of a flexible composite conductive film. The flexible composite conductive film includes a substrate 1, a metal grid layer 3, a metal nanowire layer 2, a planar conductive layer 5 and a first flexible conductive film from bottom to top. an anchor layer 4 . Wherein, the plane conductive layer, the metal grid layer and the metal nanowire layer form a conductive path. The planar conductive layer is arranged on the metal nanowire layer to improve the surface smoothness and oxidation resistance of the flexible composite conductive film. The first anchor layer covers the planar conductive layer, which can further improve the surface smoothness of the flexible composite conductive film.

请参见图9,其示出了柔性复合导电膜的一种结构,该柔性复合导电膜由下至上依次为衬底1、平面导电层5、金属纳米线层2、金属网格层3和第一锚定层4。其中,平面导电层、金属网格层和金属纳米线层形成导电通路。第一锚定层覆盖金属网格层的表面,并填补或镶嵌于金属网格层的网格空隙,从而提升柔性复合导电膜的抗氧化性能及表面平整度。Please refer to FIG. 9, which shows a structure of a flexible composite conductive film. The flexible composite conductive film is a substrate 1, a plane conductive layer 5, a metal nanowire layer 2, a metal mesh layer 3 and a first flexible conductive film from bottom to top. an anchor layer 4 . Wherein, the plane conductive layer, the metal grid layer and the metal nanowire layer form a conductive path. The first anchor layer covers the surface of the metal grid layer and fills or inlays the grid gaps of the metal grid layer, thereby improving the oxidation resistance and surface smoothness of the flexible composite conductive film.

请参见图10,其示出了柔性复合导电膜的一种结构,该柔性复合导电膜由下至上依次为衬底1、平面导电层5、金属网格层3、金属纳米线层2和第一锚定层4。其中,平面导电层、金属网格层和金属纳米线层形成导电通路。第一锚定层覆盖金属纳米线层的表面,并填补或镶嵌于金属纳米线层的网络空隙,提升柔性复合导电膜的抗氧化性能及表面平整度。Please refer to FIG. 10 , which shows a structure of a flexible composite conductive film. The flexible composite conductive film consists of a substrate 1, a plane conductive layer 5, a metal grid layer 3, a metal nanowire layer 2 and a first flexible composite conductive film from bottom to top. an anchor layer 4 . Wherein, the plane conductive layer, the metal grid layer and the metal nanowire layer form a conductive path. The first anchor layer covers the surface of the metal nanowire layer, and fills or inlays the network voids of the metal nanowire layer, thereby improving the oxidation resistance and surface smoothness of the flexible composite conductive film.

进一步的,所述柔性复合导电膜还可以包括第二锚定层,所述第二锚定层设置在所述金属纳米线层、所述金属网格层和所述平面导电层中的任意两个层之间。由衬底、金属纳米线层、第一锚定层、金属网格层、第二锚定层和平面导电层形成的柔性复合导电膜可以呈现如图11至图16所示的六种不同的层结构。Further, the flexible composite conductive film may also include a second anchor layer, and the second anchor layer is arranged on any two of the metal nanowire layer, the metal grid layer and the planar conductive layer. between layers. The flexible composite conductive film formed by the substrate, the metal nanowire layer, the first anchor layer, the metal mesh layer, the second anchor layer and the planar conductive layer can exhibit six different layer structure.

请参见图11,其示出了柔性复合导电膜的一种结构,该柔性复合导电膜由下至上依次为衬底1、金属纳米线层2、第二锚定层6、金属网格层3、平面导电层5和第一锚定层4。其中,平面导电层、金属网格层和金属纳米线层形成导电通路。第二锚定层覆盖金属纳米线层的表面,并填补或镶嵌于金属纳米线层的网络空隙,平面导电层覆盖金属网格层的表面,第一锚定层覆盖平面导电层的表面,此结构可以提高柔性复合导电膜的抗氧化性能和表面平整度。Please refer to FIG. 11 , which shows a structure of a flexible composite conductive film. The flexible composite conductive film is a substrate 1, a metal nanowire layer 2, a second anchor layer 6, and a metal mesh layer 3 from bottom to top. , a planar conductive layer 5 and a first anchor layer 4 . Wherein, the plane conductive layer, the metal grid layer and the metal nanowire layer form a conductive path. The second anchor layer covers the surface of the metal nanowire layer, and fills or inlays the network voids of the metal nanowire layer, the plane conductive layer covers the surface of the metal grid layer, and the first anchor layer covers the surface of the plane conductive layer. The structure can improve the oxidation resistance and surface smoothness of the flexible composite conductive film.

请参见图12,其示出了柔性复合导电膜的一种结构,该柔性复合导电膜由下至上依次为衬底1、金属纳米线层2、第二锚定层6、平面导电层5、金属网格层3和第一锚定层4。其中,平面导电层、金属网格层和金属纳米线层形成导电通路。第二锚定层覆盖金属纳米线层的表面,并填补或镶嵌于金属纳米线层的网络空隙,以提高金属纳米线层的抗氧化性能和表面平整度,第一锚定层覆盖金属网格层的表面,并填补或镶嵌于金属网格层的网格空隙,以提高金属网格层的抗氧化性能和表面平整度,平面导电层覆盖第二锚定层,可以进一步提高柔性复合导电膜的表面平整度。Please refer to FIG. 12 , which shows a structure of a flexible composite conductive film. The flexible composite conductive film includes substrate 1, metal nanowire layer 2, second anchor layer 6, planar conductive layer 5, Metal grid layer 3 and first anchor layer 4. Wherein, the plane conductive layer, the metal grid layer and the metal nanowire layer form a conductive path. The second anchor layer covers the surface of the metal nanowire layer and fills or inlays the network gaps in the metal nanowire layer to improve the oxidation resistance and surface smoothness of the metal nanowire layer. The first anchor layer covers the metal grid layer, and fill or inlay the grid gaps in the metal grid layer to improve the oxidation resistance and surface smoothness of the metal grid layer, and the flat conductive layer covers the second anchor layer, which can further improve the flexibility of the composite conductive film. surface flatness.

请参见图13,其示出了柔性复合导电膜的一种结构,该柔性复合导电膜由下至上依次为衬底1、金属网格层3、金属纳米线层2、第二锚定层6、平面导电层5和第一锚定层4。其中,平面导电层、金属网格层和金属纳米线层形成导电通路。第二锚定层覆盖金属纳米线层的表面,并填补或镶嵌于金属纳米线层的网络空隙,能够提高金属纳米线层的抗氧化性能和表面平整度,此外,平面导电层覆盖第二锚定层,第一锚定层覆盖平面导电层,进一步提高了柔性复合导电膜的表面平整度。Please refer to FIG. 13 , which shows a structure of a flexible composite conductive film. The flexible composite conductive film includes a substrate 1, a metal grid layer 3, a metal nanowire layer 2, and a second anchor layer 6 from bottom to top. , a planar conductive layer 5 and a first anchor layer 4 . Wherein, the plane conductive layer, the metal grid layer and the metal nanowire layer form a conductive path. The second anchor layer covers the surface of the metal nanowire layer and fills or inlays the network gaps in the metal nanowire layer, which can improve the oxidation resistance and surface smoothness of the metal nanowire layer. In addition, the planar conductive layer covers the second anchor layer. An anchor layer, the first anchor layer covers the plane conductive layer, further improving the surface flatness of the flexible composite conductive film.

请参见图14,其示出了柔性复合导电膜的一种结构,该柔性复合导电膜由下至上依次为衬底1、平面导电层5、金属纳米线层2、第二锚定层6、金属网格层3和第一锚定层4。其中,平面导电层、金属网格层和金属纳米线层形成导电通路。第二锚定层覆盖金属纳米线层的表面,并填补或镶嵌于金属纳米线层的网络空隙,能够提高金属纳米线层的抗氧化性能和表面平整度,第一锚定层覆盖金属网格层的表面,并填补或镶嵌于金属网格层的网格空隙,能够提高金属网格层的抗氧化性能和表面平整度。Please refer to FIG. 14 , which shows a structure of a flexible composite conductive film. The flexible composite conductive film includes substrate 1, planar conductive layer 5, metal nanowire layer 2, second anchor layer 6, Metal grid layer 3 and first anchor layer 4. Wherein, the plane conductive layer, the metal grid layer and the metal nanowire layer form a conductive path. The second anchor layer covers the surface of the metal nanowire layer and fills or inlays the network gaps in the metal nanowire layer, which can improve the oxidation resistance and surface smoothness of the metal nanowire layer. The first anchor layer covers the metal grid The surface of the metal mesh layer, and fill or inlay the mesh gaps in the metal mesh layer, which can improve the oxidation resistance and surface smoothness of the metal mesh layer.

请参见图15,其示出了柔性复合导电膜的一种结构,该柔性复合导电膜由下至上依次为衬底1、金属纳米线层2、金属网格层3、第二锚定层6、平面导电层5和第一锚定层4。其中,平面导电层、金属网格层和金属纳米线层形成导电通路。第二锚定层覆盖金属网格层的表面,并填补或镶嵌于金属网格层的网格空隙,能够提高金属网格层的抗氧化性能和表面平整度,此外,平面导电层覆盖第二锚定层,第一锚定层覆盖平面导电层,进一步提高了柔性复合导电膜的表面平整度。Please refer to FIG. 15 , which shows a structure of a flexible composite conductive film. The flexible composite conductive film includes a substrate 1, a metal nanowire layer 2, a metal grid layer 3, and a second anchor layer 6 from bottom to top. , a planar conductive layer 5 and a first anchor layer 4 . Wherein, the plane conductive layer, the metal grid layer and the metal nanowire layer form a conductive path. The second anchor layer covers the surface of the metal grid layer and fills or inlays the grid gaps in the metal grid layer, which can improve the oxidation resistance and surface smoothness of the metal grid layer. In addition, the planar conductive layer covers the second The anchor layer, the first anchor layer covers the planar conductive layer, further improving the surface smoothness of the flexible composite conductive film.

请参见图16,其示出了柔性复合导电膜的一种结构,该柔性复合导电膜由下至上依次为衬底1、金属网格层3、金属纳米线层2、第二锚定层6、平面导电层5和第一锚定层4。其中,平面导电层、金属网格层和金属纳米线层形成导电通路。第二锚定层覆盖金属纳米线层的表面,并填补或镶嵌于金属纳米线层的网络空隙,能够提高金属纳米线层的抗氧化性能和表面平整度,此外,平面导电层覆盖第二锚定层,第一锚定层覆盖平面导电层,进一步提高了柔性复合导电膜的表面平整度。Please refer to FIG. 16 , which shows a structure of a flexible composite conductive film. The flexible composite conductive film includes a substrate 1, a metal grid layer 3, a metal nanowire layer 2, and a second anchor layer 6 from bottom to top. , a planar conductive layer 5 and a first anchor layer 4 . Wherein, the plane conductive layer, the metal grid layer and the metal nanowire layer form a conductive path. The second anchor layer covers the surface of the metal nanowire layer and fills or inlays the network gaps in the metal nanowire layer, which can improve the oxidation resistance and surface smoothness of the metal nanowire layer. In addition, the planar conductive layer covers the second anchor layer. An anchor layer, the first anchor layer covers the plane conductive layer, further improving the surface flatness of the flexible composite conductive film.

以下对构成柔性复合导电膜的各个层进行说明。Each layer constituting the flexible composite conductive film will be described below.

(1)衬底(1) Substrate

衬底为柔性衬底,其材质可以是PET(Polyethylene terephthalate,涤纶树脂)、CPI(polyimide film;PI film,聚酰亚胺薄膜)、PI(polyimide,聚酰亚胺树脂)、PC(Polycarbonate,聚碳酸酯)、PMMA(聚甲基丙烯酸甲酯材料)、PP(polypropylene,聚丙烯)、PE(polyethylene,聚乙烯)和EVA(Ethylene Vinyl Acetate Copolymer,乙烯-醋酸乙烯共聚物)中的任意一种或者多种的组合。采用柔性衬底制备柔性复合导电膜,可以增强柔性复合导电膜的耐挠曲特性。The substrate is a flexible substrate, and its material can be PET (Polyethylene terephthalate, polyester resin), CPI (polyimide film; PI film, polyimide film), PI (polyimide, polyimide resin), PC (Polycarbonate, Polycarbonate), PMMA (polymethyl methacrylate material), PP (polypropylene, polypropylene), PE (polyethylene, polyethylene) and EVA (Ethylene Vinyl Acetate Copolymer, ethylene-vinyl acetate copolymer) one or a combination of several. The flexural resistance of the flexible composite conductive film can be enhanced by using a flexible substrate to prepare the flexible composite conductive film.

(2)金属纳米线层(2) Metal nanowire layer

金属纳米线层中的金属纳米线可以为纳米铜线、纳米金线和纳米银线中的任意一种或者多种的组合。由于金属纳米线的长度直接影响到复合透明导电膜接触电阻,线越长,接触点越少,薄膜方阻也就越小,但是金属纳米线太长,容易形成缠绕,影响涂层的均匀性,故,本实施例中,金属纳米线的直径优选为5nm~100nm、长径比为500~2500。特别的,金属纳米线直径优选为10~30nm,长径比为1000~1200,从而提高金属纳米线层的均匀性、降低方阻。考虑到大尺寸触控屏幕对透光性的要求,以及金属纳米线层与金属网格层叠加设置可能降低透光性,故,金属纳米线层的厚度可以根据其应用场景下的透光性需求来设定,优选为20nm~300nm。The metal nanowires in the metal nanowire layer may be any one or a combination of nano-copper wires, nano-gold wires and nano-silver wires. Since the length of the metal nanowire directly affects the contact resistance of the composite transparent conductive film, the longer the wire, the fewer the contact points and the smaller the square resistance of the film. However, if the metal nanowire is too long, it is easy to form entanglement and affect the uniformity of the coating. Therefore, in this embodiment, the metal nanowire preferably has a diameter of 5 nm˜100 nm and an aspect ratio of 500˜2500. In particular, the diameter of the metal nanowire is preferably 10-30 nm, and the aspect ratio is 1000-1200, so as to improve the uniformity of the metal nanowire layer and reduce the square resistance. Considering the light transmittance requirements of large-size touch screens, and the superposition of the metal nanowire layer and the metal grid layer may reduce the light transmittance, the thickness of the metal nanowire layer can be adjusted according to the light transmittance of the application scene. It is set according to requirements, preferably 20nm to 300nm.

(3)第一锚定层(3) The first anchor layer

当第一锚定层覆盖金属纳米线层或金属网格层时,第一锚定层主要对所覆盖的金属纳米线层或金属网格层起到保护作用,提高柔性复合导电膜的抗氧化性能。When the first anchor layer covers the metal nanowire layer or metal grid layer, the first anchor layer mainly protects the covered metal nanowire layer or metal grid layer, improving the oxidation resistance of the flexible composite conductive film performance.

当第一锚定层介于平面导电层与金属纳米线层或者金属网格层之间时,第一锚定层不仅起到保护作用,还具有电导通功能,使金属纳米线层与平面导电层或者金属网格层之间形成导电通路。When the first anchor layer is between the plane conductive layer and the metal nanowire layer or the metal grid layer, the first anchor layer not only plays a protective role, but also has an electrical conduction function, so that the metal nanowire layer and the plane conduct electricity. Conductive paths are formed between layers or metal mesh layers.

本发明实施例中,第一锚定层选择耐候性好、透明以及成膜后透光率好的材料制成,优选为丙烯酸树脂、聚吡咯、聚噻吩、聚乙炔、聚对苯、聚苯胺、苝系颜料、偶氮颜料、酞菁及酞菁化合物、并五苯的衍生物、苯并噻吩类的衍生物、红荧烯、C60、聚3-已基噻吩、聚对亚苯基亚乙烯基和聚苯酚中的任意一种或者多种的组合。第一锚定层可增强导电膜的多种性能,包括增大导电膜的透光率、降低光学雾度、增加电学稳定性、增加表面附着力和表面张力、提升导电膜的抗老化性能、阻止金属纳米线层中金属纳米线的氧化和离子迁移等。In the embodiment of the present invention, the first anchor layer is made of a material with good weather resistance, transparency and good light transmittance after film formation, preferably acrylic resin, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyaniline , perylene pigments, azo pigments, phthalocyanine and phthalocyanine compounds, derivatives of pentacene, derivatives of benzothiophene, rubrene, C60, poly 3-hexylthiophene, polyparaphenylene Any one or a combination of vinyl and polyphenol. The first anchor layer can enhance various properties of the conductive film, including increasing the light transmittance of the conductive film, reducing optical haze, increasing electrical stability, increasing surface adhesion and surface tension, improving the anti-aging performance of the conductive film, Prevent oxidation and ion migration of metal nanowires in the metal nanowire layer.

优选的,金属纳米线层与平面导电层或者金属网格层之间产生遂穿效应,实现电导通。与第一锚定层接触的两个导电层通过第一锚定层中的隧穿电子形成导电通路,为实现电子隧穿的效果,第一锚定层的厚度满足增强与其接触的两个层之间的附着力即可,优选的,可以将第一锚定层的厚度设为0.1nm~5nm。Preferably, a tunneling effect occurs between the metal nanowire layer and the planar conductive layer or the metal grid layer to realize electrical conduction. The two conductive layers in contact with the first anchoring layer form a conductive path through the tunneling electrons in the first anchoring layer. In order to achieve the effect of electron tunneling, the thickness of the first anchoring layer meets the requirements of strengthening the two layers in contact with it. Adhesion between them is sufficient. Preferably, the thickness of the first anchor layer can be set to 0.1 nm to 5 nm.

(4)金属网格层(4) Metal grid layer

金属网格层为网格状导电结构,具有阻值低、响应速度快的优点。金属网格层材质为铜和/或银。金属网格层的厚度为50nm~500nm,线宽为1um~30um,线距为30um~500um。The metal grid layer is a grid-like conductive structure, which has the advantages of low resistance and fast response. The metal grid layer is made of copper and/or silver. The thickness of the metal grid layer is 50nm-500nm, the line width is 1um-30um, and the line distance is 30um-500um.

(5)平面导电层(5) Plane conductive layer

平面导电层使得柔性复合导电膜由网状导电转化为整面导电,选择能够实现整面导电、耐候性好、成膜后透光率好的材质制备平面导电层,平面导电层的材质优选为透明氧化物膜、金属膜、石墨烯膜和透明有机导电薄膜中的任意一种或者多种的组合。平面导电层厚度越厚,其导电性能越好,平面导电层的厚度可以根据不同应用下对导电膜的导电需求来确定,优选为5nm~200nm。The planar conductive layer makes the flexible composite conductive film transform from mesh conduction to full-surface conduction. The planar conductive layer is prepared by selecting materials that can realize full-surface conduction, good weather resistance, and good light transmittance after film formation. The material of the planar conductive layer is preferably Any one or a combination of transparent oxide films, metal films, graphene films and transparent organic conductive films. The thicker the planar conductive layer is, the better its conductivity is. The thickness of the planar conductive layer can be determined according to the conductive requirements of the conductive film in different applications, and is preferably 5nm-200nm.

(6)第二锚定层(6) The second anchor layer

第二锚定层设置在金属纳米线层或者金属网格层上,一方面可以对所覆盖的金属纳米线层或金属网格层起到保护作用,提高柔性复合导电膜的抗氧化性能,另一方面,可以使金属纳米线层与平面导电层或者金属网格层之间形成导电通路。本发明实施例中,第二锚定层的材质与第一锚定层的材质相同,请参见上文,在此不赘述。The second anchor layer is arranged on the metal nanowire layer or the metal grid layer, on the one hand, it can protect the covered metal nanowire layer or metal grid layer, improve the oxidation resistance of the flexible composite conductive film, and on the other hand On the one hand, a conductive path can be formed between the metal nanowire layer and the planar conductive layer or the metal grid layer. In the embodiment of the present invention, the material of the second anchoring layer is the same as that of the first anchoring layer, please refer to the above, and details will not be described here.

在一种可能的实现方式中,衬底与金属纳米线层或者金属网格层之间还设有功能复合层,功能复合层为光学适配层、电学适配层、力学适配层、折射率适配层中的任意一种或者多种的组合。光学适配层是通过溅射、蒸镀、涂布等方式形成的金属层或陶瓷层,使衬底和光学适配层形成折射率补偿,减少蚀刻后导电区域和非导电区域的反射率差值,减少视觉反差。光学适配层材料包括金属、合金、氧化物纳米材料及其组合。力学适配层用于降低衬底与涂层、涂层与涂层之间的应力,提高衬底与涂层、涂层与涂层之间的附着力。折射率适配层可增强复合透明导电膜在可见光区域透光率的功能层,其原理是使透射光与反射光及其它方向的光重新分配,提高入射光比例。In a possible implementation, a functional composite layer is provided between the substrate and the metal nanowire layer or the metal grid layer, and the functional composite layer is an optical adaptation layer, an electrical adaptation layer, a mechanical adaptation layer, a refractive Any one or a combination of multiple rate adaptation layers. The optical adaptation layer is a metal layer or ceramic layer formed by sputtering, evaporation, coating, etc., so that the substrate and the optical adaptation layer form a refractive index compensation, and reduce the reflectivity difference between the conductive area and the non-conductive area after etching value to reduce visual contrast. Optical adaptation layer materials include metals, alloys, oxide nanomaterials and combinations thereof. The mechanical adaptation layer is used to reduce the stress between the substrate and the coating, between the coating and the coating, and improve the adhesion between the substrate and the coating, and between the coating and the coating. The refractive index adaptation layer is a functional layer that can enhance the light transmittance of the composite transparent conductive film in the visible light region. Its principle is to redistribute the transmitted light, reflected light and light in other directions to increase the proportion of incident light.

上述的柔性复合导电膜可以通过如下方法制备获得,该方法包括以下步骤:The above-mentioned flexible composite conductive film can be prepared by the following method, which includes the following steps:

S172:在衬底上形成导电复合层,所述导电复合层包括金属纳米线层和金属网格层,所述金属纳米线层和所述金属网格层的位置可调换,所述金属纳米线层和所述金属网格层之间形成导电通路。S172: Form a conductive composite layer on the substrate, the conductive composite layer includes a metal nanowire layer and a metal grid layer, the positions of the metal nanowire layer and the metal grid layer can be exchanged, and the metal nanowire layer A conductive path is formed between the layer and the metal mesh layer.

S174:在所述导电复合层上形成第一锚定层。S174: Form a first anchor layer on the conductive composite layer.

进一步的,所述方法还包括在所述衬底、所述金属纳米线层、所述金属网层和所述第一锚定层中的任意两个层之间或者所述第一锚定层之上形成平面导电层的步骤。所述金属纳米线层、所述金属网格层和所述平面导电层之间形成导电通路。Further, the method further includes between any two layers of the substrate, the metal nanowire layer, the metal mesh layer and the first anchor layer or the first anchor layer The step of forming a planar conductive layer on top. A conductive path is formed among the metal nanowire layer, the metal grid layer and the planar conductive layer.

更进一步的,所述方法还包括在所述金属纳米线层、所述金属网格层和所述平面导电层中的任意两个层之间形成第二锚定层的步骤。Furthermore, the method further includes the step of forming a second anchor layer between any two layers of the metal nanowire layer, the metal grid layer and the planar conductive layer.

具体的,在柔性复合导电膜包括衬底、金属纳米线层、金属网格层和第一锚定层的情况下,该柔性复合导电膜通过以下方法制备获得:Specifically, in the case where the flexible composite conductive film includes a substrate, a metal nanowire layer, a metal grid layer and a first anchor layer, the flexible composite conductive film is prepared by the following method:

在柔性衬底上分别制作如下三层结构:The following three-layer structures were fabricated on the flexible substrate:

(1)金属纳米线层,通过涂布金属纳米线墨水的方式制作;(1) The metal nanowire layer is made by coating the metal nanowire ink;

(2)金属网格层,通过纳米压印、喷墨打印、丝印或磁控溅射及正交蚀刻等方式制作;(2) The metal grid layer is made by nanoimprinting, inkjet printing, silk screen printing or magnetron sputtering and orthogonal etching;

(3)第一锚定层,通过涂布锚定层溶液的方式制作。具体的,可以在金属纳米线层上涂布锚定层溶液,使锚定层溶液填充所述金属纳米线层中相邻金属纳米线之间形成的网络空隙,然后干燥、固化;或者,在金属网格层上涂布锚定层溶液,使锚定层溶液填充所述金属网格层中相邻金属线之间形成的网格空隙,然后干燥、固化,以获得第一锚定层。(3) The first anchor layer is produced by coating the anchor layer solution. Specifically, the anchor layer solution can be coated on the metal nanowire layer, so that the anchor layer solution can fill the network gaps formed between adjacent metal nanowires in the metal nanowire layer, and then dry and solidify; or, An anchor layer solution is coated on the metal grid layer so that the anchor layer solution fills the grid gaps formed between adjacent metal wires in the metal grid layer, and then dried and cured to obtain a first anchor layer.

上述三层结构中,金属纳米线层和金属网格层的位置可以调换,只需确保金属纳米线层和金属网格层处于柔性衬底和第一锚定层之间即可。In the above-mentioned three-layer structure, the positions of the metal nanowire layer and the metal grid layer can be exchanged, as long as the metal nanowire layer and the metal grid layer are between the flexible substrate and the first anchoring layer.

在柔性复合导电膜包括衬底、金属纳米线层、金属网格层、平面导电层和第一锚定层的情况下,柔性复合导电膜可以通过以下方法制备获得:In the case where the flexible composite conductive film includes a substrate, a metal nanowire layer, a metal grid layer, a planar conductive layer and a first anchor layer, the flexible composite conductive film can be prepared by the following method:

在柔性衬底上分别制作如下四层结构:The following four-layer structures were fabricated on the flexible substrate:

(1)金属纳米线层,通过涂布金属纳米线墨水的方式制作;(1) The metal nanowire layer is made by coating the metal nanowire ink;

(2)金属网格层,通过纳米压印、喷墨打印、丝印或磁控溅射+正交蚀刻等方式制作;(2) The metal grid layer is made by nanoimprinting, inkjet printing, silk screen printing or magnetron sputtering + orthogonal etching;

(3)平面导电层,通过磁控溅射或涂布等方式制作;(3) The flat conductive layer is made by magnetron sputtering or coating;

(4)第一锚定层,通过涂布锚定层溶液的方式制作。具体的,可以在金属纳米线层上涂布锚定层溶液,使锚定层溶液填充所述金属纳米线层中相邻金属纳米线之间形成的网络空隙,然后干燥、固化;或者,在金属网格层上涂布锚定层溶液,使锚定层溶液填充所述金属网格层中相邻金属线之间形成的网格空隙,然后干燥、固化,以获得第一锚定层。(4) The first anchor layer is produced by coating the anchor layer solution. Specifically, the anchor layer solution can be coated on the metal nanowire layer, so that the anchor layer solution can fill the network gaps formed between adjacent metal nanowires in the metal nanowire layer, and then dry and solidify; or, An anchor layer solution is coated on the metal grid layer so that the anchor layer solution fills the grid gaps formed between adjacent metal wires in the metal grid layer, and then dried and cured to obtain a first anchor layer.

上述结构中,金属纳米线层和金属网格层须处于第一锚定层与衬底之间;平面导电层可以处于第一锚定层与衬底之间,或者作为柔性复合导电膜的最外层而处于第一锚定层之上。In the above structure, the metal nanowire layer and the metal grid layer must be between the first anchor layer and the substrate; the planar conductive layer can be between the first anchor layer and the substrate, or as the last layer of the flexible composite conductive film. The outer layer is on top of the first anchor layer.

在柔性复合导电膜包括衬底、金属纳米线层、金属网格层、平面导电层、第一锚定层和第二锚定层的情况下,柔性复合导电膜可以通过以下方法制备获得:In the case where the flexible composite conductive film includes a substrate, a metal nanowire layer, a metal grid layer, a planar conductive layer, a first anchor layer and a second anchor layer, the flexible composite conductive film can be prepared by the following method:

在柔性衬底上分别制作如下五层结构:Fabricate the following five-layer structures on the flexible substrate:

(1)金属纳米线层,通过涂布金属纳米线墨水的方式制作;(1) The metal nanowire layer is made by coating the metal nanowire ink;

(2)金属网格层,通过纳米压印、喷墨打印、丝印或磁控溅射及正交蚀刻等方式制作;(2) The metal grid layer is made by nanoimprinting, inkjet printing, silk screen printing or magnetron sputtering and orthogonal etching;

(3)平面导电层,通过磁控溅射和涂布等方式制作;(3) Plane conductive layer, made by magnetron sputtering and coating;

(4)第一锚定层,通过在金属网格层或者平面导电层之上涂布锚定层溶液的方式制作,当锚定层位于金属网格层上时,所述锚定层溶液填充所述金属网格层中相邻金属线之间形成的网格空隙;(4) The first anchor layer is made by coating the anchor layer solution on the metal grid layer or the plane conductive layer. When the anchor layer is located on the metal grid layer, the anchor layer solution is filled with grid gaps formed between adjacent metal lines in the metal grid layer;

(5)第二锚定层,通过在金属纳米线层或者金属网格层之上涂布锚定层溶液的方式制作,当第二锚定层位于金属纳米线层上时,所述锚定层溶液填充所述金属纳米线层中相邻金属纳米线之间形成的网络空隙,当第二锚定层位于金属网格层上时,所述锚定层溶液填充所述金属网格层中相邻金属线之间形成的网格空隙;(5) The second anchor layer is made by coating the anchor layer solution on the metal nanowire layer or the metal grid layer. When the second anchor layer is located on the metal nanowire layer, the anchor The layer solution fills the network gaps formed between adjacent metal nanowires in the metal nanowire layer, and when the second anchor layer is located on the metal grid layer, the anchor layer solution fills the metal grid layer Grid voids formed between adjacent metal lines;

上述五层结构中,金属纳米线层、第二锚定层、金属网格层和平面导电层均处于柔性衬底与第一锚定层之间,并且,金属纳米线层、第二锚定层、金属网格层和平面导电层之间的排列顺序可以任意调换。In the above five-layer structure, the metal nanowire layer, the second anchor layer, the metal grid layer and the planar conductive layer are all located between the flexible substrate and the first anchor layer, and the metal nanowire layer, the second anchor layer The arrangement order among layers, metal grid layer and plane conductive layer can be exchanged arbitrarily.

在一个可能的实现方式中,所述锚定层溶液包含丙烯酸单体、硅酮-环氧物、硅氧烷、酚醛树脂、聚氨酯预聚物和聚酰亚胺预聚物中的一种或几种的组合,进一步,锚定层中还可以包含聚吡咯、聚噻吩、聚乙炔、聚对苯、聚苯胺、苝系颜料、偶氮颜料、酞菁及酞菁化合物、并五苯的衍生物、苯并噻吩类的衍生物、红荧烯、C60、聚3-已基噻吩、聚对亚苯基亚乙烯基和聚苯酚中的任意一种或者多种的组合。所述锚定层以光固化或热固化的方式制作。所述金属纳米线层中的金属纳米线为纳米铜线、纳米金线、纳米银线、纳米钨线、纳米铂线、纳米钯线、纳米铁线、纳米钴线和纳米镍线中的任意一种或者几种的组合。所述平面导电层的材质为透明氧化物膜、金属膜、石墨烯膜和透明有机导电薄膜中的任意一种或者多种的组合。所述金属网格层的材质为银、铜、银合金和铜合金中的一种或几种的组合。所述金属网格层通过纳米压印、喷墨打印、丝印或磁控溅射及正交蚀刻等方式制作。In a possible implementation, the anchor layer solution includes one or more of acrylic monomers, silicone-epoxys, siloxanes, phenolic resins, polyurethane prepolymers, and polyimide prepolymers. Several combinations, further, the anchor layer can also contain polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyaniline, perylene pigments, azo pigments, phthalocyanine and phthalocyanine compounds, derivatives of pentacene Compounds, derivatives of benzothiophenes, rubrene, C60, poly-3-hexylthiophene, poly-p-phenylene vinylene and polyphenol, or any one or a combination of more. The anchor layer is made by photocuring or thermal curing. The metal nanowires in the metal nanowire layer are any of nano-copper wires, nano-gold wires, nano-silver wires, nano-tungsten wires, nano-platinum wires, nano-palladium wires, nano-iron wires, nano-cobalt wires and nano-nickel wires. one or a combination of several. The material of the planar conductive layer is any one or a combination of transparent oxide film, metal film, graphene film and transparent organic conductive film. The material of the metal mesh layer is one or a combination of silver, copper, silver alloy and copper alloy. The metal grid layer is made by nanoimprinting, inkjet printing, silk screen printing or magnetron sputtering and orthogonal etching.

其中,所述纳米压印制作金属网格层,是指将母模或模板压入载有保形材料的基材上,保形材料将按照模板凸起的形状发生变形,通过紫外曝光或者热处理的方法使保形材料固化,移除母模或模板后,就可以得到与模板高低位置相反的图形信息。通过在图形信息表面刮涂纳米导电油墨,使凹槽填充导电油墨,经过热固化后即可得到金属网格层;该方式适用于直接在柔性衬底上制作金属网格层。Wherein, the nanoimprinting to make a metal grid layer refers to pressing a master mold or a template into a substrate loaded with a conformal material. The conformal material is solidified by the method, and after removing the master mold or template, the graphic information opposite to the height and position of the template can be obtained. By scraping and coating nano-conductive ink on the surface of the graphic information, the groove is filled with conductive ink, and the metal grid layer can be obtained after thermal curing; this method is suitable for directly making the metal grid layer on the flexible substrate.

所述喷墨打印制作金属网格层,是利用喷墨打印技术将含有金属纳米颗粒的导电油墨直接打印在基底上,干燥和后续处理后形成金属网格层。The inkjet printing to make the metal grid layer is to use the inkjet printing technology to directly print the conductive ink containing metal nanoparticles on the substrate, and form the metal grid layer after drying and subsequent treatment.

所述丝印方式制作金属网格层,是通过刮板的挤压,使含有金属纳米颗粒导电油墨通过丝印网板网格的网孔转移到承印物上,形成金属网格层。The metal grid layer is made by the screen printing method, which is to transfer the conductive ink containing metal nanoparticles to the substrate through the mesh holes of the screen printing screen grid through the extrusion of the scraper to form the metal grid layer.

所述磁控溅射及正交蚀刻制作金属网格层,是指通过磁控溅射的方法在基体上制作金属层,然后在金属层表面涂覆光敏性物质(又称为光刻胶或光阻),经曝光、显影后留下的网格图案对底层起保护作用,最后采用正交蚀刻的方式将未保护金属层蚀刻掉,之后脱膜得到金属网格层。The metal grid layer is made by the magnetron sputtering and orthogonal etching, which means that the metal layer is made on the substrate by the method of magnetron sputtering, and then the surface of the metal layer is coated with a photosensitive substance (also known as photoresist or Photoresist), the grid pattern left after exposure and development protects the bottom layer, and finally the unprotected metal layer is etched away by orthogonal etching, and then the metal grid layer is obtained by stripping.

通过以上方法制备得到的柔性复合导电膜,能够满足大尺寸触摸器件的光学性能要求,具有耐氧化、柔韧性好、导电性能佳、稳定性高的优势,可广泛应用于触控屏、显示器、手机天线电路、红外光学成像元件、光电传感器、电磁屏蔽、智能窗、智能手写板和太阳能电池方面。The flexible composite conductive film prepared by the above method can meet the optical performance requirements of large-scale touch devices, has the advantages of oxidation resistance, good flexibility, good electrical conductivity, and high stability, and can be widely used in touch screens, displays, Mobile phone antenna circuits, infrared optical imaging components, photoelectric sensors, electromagnetic shielding, smart windows, smart tablet and solar cells.

以下,基于实施例来具体说明本发明,然而本发明不受其限定。Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these.

实施例1Example 1

本实施例提供的柔性复合导电膜如图1所示,依次包括衬底、金属纳米线层、金属网格层和第一锚定层。其中:As shown in FIG. 1 , the flexible composite conductive film provided in this embodiment sequentially includes a substrate, a metal nanowire layer, a metal mesh layer and a first anchor layer. in:

衬底为PET柔性衬底,厚度为125um。The substrate is a PET flexible substrate with a thickness of 125um.

金属纳米线层为由多个纳米银线构成的网络状导电结构,各纳米银线之间形成间隙,纳米银线直径为25nm、长度为30um;金属纳米线层的厚度为75nm。The metal nanowire layer is a network conductive structure composed of a plurality of silver nanowires, gaps are formed between the silver nanowires, the silver nanowires have a diameter of 25nm and a length of 30um; the thickness of the metal nanowire layer is 75nm.

金属网格层为由多条铜线构成的网格状导电结构,金属网格层中各铜线之间形成的间隙大于金属纳米线层中各纳米银线之间形成的间隙。其中,金属网格厚度为50nm,线宽为15um,线距为50um。The metal grid layer is a grid-shaped conductive structure composed of a plurality of copper wires, and the gaps formed between the copper wires in the metal grid layer are larger than the gaps formed between the nano silver wires in the metal nano wire layer. Among them, the thickness of the metal grid is 50nm, the line width is 15um, and the line spacing is 50um.

第一锚定层的材质为丙烯酸树脂,其厚度为1nm。第一锚定层覆盖金属纳米线的表面,并填补金属纳米线之间的间隙。The material of the first anchor layer is acrylic resin, and its thickness is 1 nm. The first anchor layer covers the surface of the metal nanowires and fills the gaps between the metal nanowires.

该柔性复合导电膜通过以下步骤制备:The flexible composite conductive film is prepared through the following steps:

S11、配置含量为0.09wt%的纳米银线墨水,其中纳米银线直径为25nm,长度为30微米;采用狭缝涂布的方式,将纳米银线墨水在PET衬底上涂布成网络状导电结构,得到金属纳米线层,其干膜厚度为75nm。S11. Configure silver nano wire ink with a content of 0.09wt%, wherein the silver nano wire has a diameter of 25nm and a length of 30 microns; the silver nano wire ink is coated in a network shape on a PET substrate by slit coating A conductive structure was obtained to obtain a metal nanowire layer with a dry film thickness of 75 nm.

S12、在步骤S11制作的纳米银线层上方磁控溅射铜层,然后在金属层表面涂覆光敏性物质(又称为光刻胶或光阻),经曝光、显影,最后采用正交蚀刻的方式蚀刻金属铜层,之后脱膜得到金属网格层。其中金属网格厚度为50nm,线宽为15um,线距为50um,其中,蚀刻金属网格的蚀刻液只蚀刻铜不蚀刻银。S12. Magnetron sputtering copper layer above the nano-silver wire layer made in step S11, then coating photosensitive material (also known as photoresist or photoresist) on the surface of the metal layer, through exposure, development, and finally using orthogonal The metal copper layer is etched by etching, and then the metal grid layer is obtained by stripping. The thickness of the metal grid is 50nm, the line width is 15um, and the line spacing is 50um. The etching solution for etching the metal grid only etches copper but not silver.

S13、采用狭缝涂布的方式,将固含为2.0wt%的锚定层溶液涂布在金属网格层上,使锚定层溶液填充金属网格线层中的间隙,然后经干燥、紫外固化得到第一锚定层,其固化后的涂层厚度为1nm。S13. Apply the anchor layer solution with a solid content of 2.0 wt% on the metal grid layer by slit coating, so that the anchor layer solution fills the gaps in the metal grid line layer, and then dry, The first anchor layer was obtained by ultraviolet curing, and the thickness of the cured coating was 1 nm.

实施例2Example 2

本实施例提供的柔性复合导电膜如图2所示,包括衬底、金属网格层、金属纳米线层和第一锚定层。其中:The flexible composite conductive film provided in this embodiment is shown in FIG. 2 , including a substrate, a metal mesh layer, a metal nanowire layer and a first anchor layer. in:

衬底为PET柔性衬底,厚度为150um。The substrate is a PET flexible substrate with a thickness of 150um.

金属网格层为由多条银线构成的网格状导电结构,金属网格层中各银线之间形成网格状间隙。The metal grid layer is a grid-like conductive structure composed of multiple silver wires, and grid-like gaps are formed between the silver wires in the metal grid layer.

金属纳米线层为由多个纳米铜线构成的网络状导电结构,各纳米铜线之间形成的间隙小于金属网格层中各银线之间的间隙,纳米铜线直径为100nm、长度为250um;金属纳米线层的厚度为300nm。The metal nanowire layer is a network-like conductive structure composed of a plurality of nano-copper wires. The gap formed between each nano-copper wire is smaller than the gap between each silver wire in the metal grid layer. The nano-copper wire has a diameter of 100nm and a length of 250um; the thickness of the metal nanowire layer is 300nm.

第一锚定层的材质为丙烯酸树脂,其厚度为3nm。第一锚定层覆盖金属纳米线的表面,并填补金属纳米线之间的间隙。The material of the first anchor layer is acrylic resin, and its thickness is 3nm. The first anchor layer covers the surface of the metal nanowires and fills the gaps between the metal nanowires.

该柔性复合导电膜通过以下步骤制备:The flexible composite conductive film is prepared through the following steps:

S21、在PET衬底上方真空蒸镀银层,然后在金属层表面涂覆光敏性物质(又称为光刻胶或光阻),经曝光、显影,最后采用正交蚀刻的方式蚀刻金属铜层,之后脱膜得到金属网格层。其中金属网格厚度为500nm,线宽为30um,线距为500um。S21. Vacuum-evaporate a silver layer above the PET substrate, then coat a photosensitive substance (also known as photoresist or photoresist) on the surface of the metal layer, expose and develop, and finally etch metal copper by orthogonal etching layer, and then the metal grid layer is obtained by stripping the film. The thickness of the metal grid is 500nm, the line width is 30um, and the line spacing is 500um.

S22、配置含量为0.09wt%的纳米铜线墨水,其中纳米铜线直径为100nm,长度为250微米;采用狭缝涂布的方式,将纳米铜线墨水在金属网格层上涂布成网络状导电结构,得到金属纳米线层,其干膜厚度为300nm。S22. Configure nano-copper wire ink with a content of 0.09wt%, wherein the nano-copper wire has a diameter of 100nm and a length of 250 microns; the nano-copper wire ink is coated on the metal grid layer to form a network by slit coating shape conductive structure to obtain a metal nanowire layer with a dry film thickness of 300 nm.

S23、采用狭缝涂布的方式,将固含为2.0wt%的锚定层溶液涂布在金属纳米线层上,使锚定层溶液填充金属纳米线层中的间隙,然后经干燥、紫外固化得到第一锚定层,其固化后的涂层厚度为3nm。S23, using the method of slit coating, coating the anchor layer solution with a solid content of 2.0wt% on the metal nanowire layer, so that the anchor layer solution fills the gaps in the metal nanowire layer, and then drying and ultraviolet ray After curing, the first anchor layer was obtained, and the thickness of the cured coating was 3 nm.

实施例3Example 3

本实施例提供的柔性复合导电膜如图5所示,包括衬底、金属纳米线层、金属网格层、平面导电层和第一锚定层。其中:The flexible composite conductive film provided in this embodiment is shown in FIG. 5 , including a substrate, a metal nanowire layer, a metal grid layer, a planar conductive layer and a first anchor layer. in:

衬底为PP柔性衬底,厚度为125um。The substrate is a PP flexible substrate with a thickness of 125um.

金属纳米线层为由多个纳米银线构成的网络状导电结构,各纳米银线之间形成间隙,纳米银线直径为15nm、长度为20um;金属纳米线层的厚度为60nm。The metal nanowire layer is a network conductive structure composed of a plurality of silver nanowires, gaps are formed between the silver nanowires, the silver nanowires have a diameter of 15nm and a length of 20um; the thickness of the metal nanowire layer is 60nm.

金属网格层为由多条铜线构成的网格状导电结构,金属网格层中各铜线之间形成的间隙大于金属纳米线层中各金属纳米线之间形成的间隙。The metal grid layer is a grid-shaped conductive structure composed of multiple copper wires, and the gaps formed between the copper wires in the metal grid layer are larger than the gaps formed between the metal nanowires in the metal nanowire layer.

第一锚定层的材质为丙烯酸树脂,其厚度为0.1nm。第一锚定层覆盖金属网格的表面,并填补金属网格层中各金属线之间的间隙。The material of the first anchor layer is acrylic resin, and its thickness is 0.1 nm. The first anchor layer covers the surface of the metal grid and fills the gaps between the metal lines in the metal grid layer.

该柔性复合导电膜通过以下步骤制备:The flexible composite conductive film is prepared through the following steps:

S31、配置含量为0.09wt%的纳米银线墨水,其中纳米银线直径为15nm,长度为20um;采用狭缝涂布的方式,将纳米银线墨水在PP衬底上涂布成网络状导电结构,得到金属纳米线层,其干膜厚度为60nm。S31. Configure silver nano wire ink with a content of 0.09wt%, wherein the silver nano wire has a diameter of 15nm and a length of 20um; the silver nano wire ink is coated on the PP substrate in a network-like conductive manner by slit coating structure to obtain a metal nanowire layer with a dry film thickness of 60 nm.

S32、在金属纳米线层上方真空蒸镀铜层,然后在金属铜层表面涂覆光敏性物质(又称为光刻胶或光阻),经曝光、显影,最后采用正交蚀刻的方式蚀刻金属铜层,之后脱膜得到金属网格层。其中金属网格层厚度为80nm,线宽为10um,线距为80um。其中,蚀刻金属网格的蚀刻液只蚀刻铜不蚀刻银。S32. Vacuum-deposit a copper layer above the metal nanowire layer, then coat a photosensitive substance (also known as photoresist or photoresist) on the surface of the metal copper layer, expose, develop, and finally etch by orthogonal etching The metal copper layer is then stripped to obtain the metal grid layer. The thickness of the metal grid layer is 80nm, the line width is 10um, and the line spacing is 80um. Wherein, the etchant for etching the metal grid only etches copper but not silver.

S33、在金属网格层上方磁控溅射ITO层,得到平面导电层,厚度为80nm。S33 , magnetron sputtering an ITO layer on the metal grid layer to obtain a planar conductive layer with a thickness of 80 nm.

S34、采用狭缝涂布的方式,将固含为2.0wt%的锚定层溶液涂布在金属网格层上,使锚定层溶液填充金属网格层中的间隙,然后经紫外固化得到第一锚定层,其固化后的涂层厚度为0.1nm。S34, using the method of slit coating, coating the anchor layer solution with a solid content of 2.0wt% on the metal grid layer, so that the anchor layer solution fills the gaps in the metal grid layer, and then cured by ultraviolet light to obtain The thickness of the first anchor layer after curing is 0.1 nm.

实施例4Example 4

本实施例提供的柔性复合导电膜如图11所示,依次包括衬底、金属纳米线层、第二锚定层、金属网格层、平面导电层、第一锚定层。其中:As shown in FIG. 11 , the flexible composite conductive film provided in this embodiment sequentially includes a substrate, a metal nanowire layer, a second anchor layer, a metal mesh layer, a planar conductive layer, and a first anchor layer. in:

衬底为PET柔性衬底,厚度为188um。The substrate is a PET flexible substrate with a thickness of 188um.

金属纳米线层为由多个纳米金线构成的网络状导电结构,各纳米金线之间形成间隙,纳米金线直径为5nm、长度为10um;金属纳米线层的厚度为30nm。The metal nanowire layer is a network-like conductive structure composed of a plurality of nano-gold wires, gaps are formed between each nano-gold wire, the diameter of the nano-gold wire is 5nm, and the length is 10um; the thickness of the metal nanowire layer is 30nm.

第二锚定层的材质为丙烯酸树脂。第二锚定层覆盖金属纳米线的表面,并填补金属纳米线之间的间隙。The second anchor layer is made of acrylic resin. The second anchor layer covers the surface of the metal nanowires and fills the gaps between the metal nanowires.

金属网格层为由多条铜线构成的网格状导电结构,金属网格层中各铜线之间形成的间隙大于金属纳米线层中各金属纳米线之间形成的间隙,金属网格层的厚度为200nm。The metal grid layer is a grid-like conductive structure composed of multiple copper wires. The gap formed between the copper wires in the metal grid layer is larger than the gap formed between the metal nanowires in the metal nanowire layer. The metal grid The thickness of the layer is 200 nm.

平面导电层为透明氧化物膜,厚度为100nm;The plane conductive layer is a transparent oxide film with a thickness of 100nm;

第一锚定层的材质为丙烯酸树脂,第一锚定层覆盖平面导电层。The material of the first anchor layer is acrylic resin, and the first anchor layer covers the plane conductive layer.

该柔性复合导电膜通过以下步骤制备:The flexible composite conductive film is prepared through the following steps:

S41、配置含量为0.09wt%的纳米金线墨水,其中纳米金线直径为5nm,长度为10um;采用狭缝涂布的方式,将纳米金线墨水在PET衬底上涂布成网络状导电结构,得到金属纳米线层,其干膜厚度为30nm。S41. Configure nano-gold wire ink with a content of 0.09wt%, wherein the diameter of the nano-gold wire is 5nm and the length is 10um; adopt the method of slit coating to coat the nano-gold wire ink on the PET substrate to form a conductive network structure to obtain a metal nanowire layer with a dry film thickness of 30 nm.

S42、采用狭缝涂布的方式,将固含为2.0wt%的锚定层溶液涂布在金属纳米线层上,使锚定层溶液填充金属纳米线层中的间隙,然后经紫外固化得到第二锚定层,其固化后的涂层厚度为4nm。S42. Using the method of slit coating, coating the anchor layer solution with a solid content of 2.0wt% on the metal nanowire layer, so that the anchor layer solution fills the gaps in the metal nanowire layer, and then cured by ultraviolet light to obtain The thickness of the second anchor layer after curing is 4nm.

S43,采用电晕处理方式,对固化后的第二锚定层进行表面处理。S43, using a corona treatment method to perform surface treatment on the cured second anchor layer.

S44、在步骤S43制作的第二锚定层上方真空蒸镀铜层,然后在金属铜层表面涂覆光敏性物质(又称为光刻胶或光阻),经曝光、显影,最后采用正交蚀刻的方式蚀刻金属铜层,之后脱膜得到金属网格层。其中金属网格层厚度为200nm,线宽为20um,线距为150um,其中,蚀刻金属网格的蚀刻液只蚀刻铜不蚀刻金。S44. Vacuum vapor-deposit a copper layer above the second anchor layer made in step S43, then coat a photosensitive substance (also known as photoresist or photoresist) on the surface of the metal copper layer, expose and develop, and finally use positive The metal copper layer is etched by cross-etching, and then the metal grid layer is obtained by stripping. The thickness of the metal grid layer is 200nm, the line width is 20um, and the line spacing is 150um. The etching solution for etching the metal grid only etches copper but not gold.

S45、在金属网格层上方磁控溅射ITO层,得到平面导电层,厚度为100nm。S45 , magnetron sputtering an ITO layer on the metal grid layer to obtain a plane conductive layer with a thickness of 100 nm.

S46、在步骤S45获得的平面导电层上制备第一锚定层,方法为:采用狭缝涂布的方式,将固含为2.0wt%的锚定层溶液涂布在平面导电层上,然后经干燥、紫外固化得到第一锚定层,其固化后的涂层厚度为5nm。S46. Prepare the first anchor layer on the planar conductive layer obtained in step S45. The method is: apply the anchor layer solution with a solid content of 2.0 wt% on the planar conductive layer by slit coating, and then The first anchor layer was obtained after drying and ultraviolet curing, and the thickness of the cured coating was 5 nm.

实施例5Example 5

本实施例提供的柔性复合导电膜如图12所示,依次包括衬底、金属纳米线层、第二锚定层、平面导电层、金属网格层和第一锚定层。其中:The flexible composite conductive film provided in this embodiment, as shown in FIG. 12 , sequentially includes a substrate, a metal nanowire layer, a second anchor layer, a planar conductive layer, a metal grid layer, and a first anchor layer. in:

衬底为EVA柔性衬底,厚度为150um。The substrate is an EVA flexible substrate with a thickness of 150um.

金属纳米线层为由多个纳米银线构成的网络状导电结构,各纳米银线之间形成间隙,纳米银线直径为30nm、长度为40um;金属纳米线层的厚度为90nm。The metal nanowire layer is a network conductive structure composed of a plurality of silver nanowires, gaps are formed between the silver nanowires, the silver nanowires have a diameter of 30nm and a length of 40um; the thickness of the metal nanowire layer is 90nm.

第二锚定层的材质为丙烯酸树脂,其厚度为2nm。第二锚定层覆盖金属纳米线层的表面,并填补金属纳米线之间的间隙。The material of the second anchor layer is acrylic resin, and its thickness is 2nm. The second anchor layer covers the surface of the metal nanowire layer and fills the gaps between the metal nanowires.

平面导电层为透明氧化物膜,厚度为120nm。The plane conductive layer is a transparent oxide film with a thickness of 120nm.

金属网格层为由多条银线构成的网格状导电结构,金属网格层中各银线之间形成的间隙大于金属纳米线层中各金属纳米线之间形成的间隙;The metal grid layer is a grid-like conductive structure composed of a plurality of silver wires, and the gaps formed between the silver wires in the metal grid layer are larger than the gaps formed between the metal nanowires in the metal nanowire layer;

第一锚定层的材质为丙烯酸树脂,其厚度为5nm。第一锚定层覆盖金属网格层的表面,并填补金属网格线之间的间隙。The material of the first anchor layer is acrylic resin, and its thickness is 5 nm. The first anchor layer covers the surface of the metal grid layer and fills the gaps between the metal grid lines.

该柔性复合导电膜通过以下步骤制备:The flexible composite conductive film is prepared through the following steps:

S51、配置含量为0.09wt%的纳米银线墨水,其中纳米银线直径为30nm,长度为40um;采用狭缝涂布的方式,将纳米金线墨水在EVA衬底上涂布成网络状导电结构,得到金属纳米线层,其干膜厚度为90nm。S51. Configure nano-silver ink with a content of 0.09wt%, wherein the diameter of the nano-silver is 30nm and the length is 40um; adopt the method of slit coating to coat the nano-gold ink on the EVA substrate to form a conductive network structure to obtain a metal nanowire layer with a dry film thickness of 90 nm.

S52、采用狭缝涂布的方式,将固含为2.0wt%的锚定层溶液涂布在金属纳米线层上,使锚定层溶液填充金属纳米线层中的间隙,然后经紫外固化得到第二锚定层,其固化后的涂层厚度为2nm。S52, using the method of slit coating, coating the anchor layer solution with a solid content of 2.0wt% on the metal nanowire layer, so that the anchor layer solution fills the gaps in the metal nanowire layer, and then cured by ultraviolet light to obtain The thickness of the second anchor layer after curing is 2nm.

S53,采用电晕处理方式,对固化后的第二锚定层进行表面处理。S53, using a corona treatment method to perform surface treatment on the cured second anchor layer.

S54、在金属网格层上方磁控溅射ITO层,得到平面导电层,厚度为120nm。S54 , magnetron sputtering an ITO layer on the metal grid layer to obtain a planar conductive layer with a thickness of 120 nm.

S55、在步骤S54制作的平面导电层上方磁控溅射铜层,采用黄光工艺将铜层蚀刻为网格状导电结构,得到金属网格层,厚度为150nm,线宽为5um,线距为100um,其中,蚀刻金属网格的蚀刻液只蚀刻铜不蚀刻银和ITO。S55, magnetron sputtering copper layer above the plane conductive layer made in step S54, adopt yellow light process to etch the copper layer into a grid-like conductive structure, and obtain a metal grid layer with a thickness of 150nm, a line width of 5um, and a line spacing It is 100um, wherein, the etchant for etching the metal grid only etches copper but not silver and ITO.

S56、在步骤S55获得的金属网格层上制备第一锚定层,方法为:采用狭缝涂布的方式,将固含为2.0wt%的锚定层溶液涂布在金属网格层上,然后经紫外固化得到第一锚定层,其固化后的涂层厚度为5nm。S56. Prepare the first anchor layer on the metal grid layer obtained in step S55, the method is: apply the anchor layer solution with a solid content of 2.0 wt% on the metal grid layer by means of slit coating , and then the first anchor layer was obtained by ultraviolet curing, and the thickness of the cured coating was 5 nm.

实施例6Example 6

本实施例提供的柔性复合导电膜如图3所示,依次包括衬底、金属网格层、金属纳米线层、第一锚定层和平面导电层。其中:The flexible composite conductive film provided in this embodiment, as shown in FIG. 3 , sequentially includes a substrate, a metal grid layer, a metal nanowire layer, a first anchor layer and a planar conductive layer. in:

衬底为CPI柔性衬底,厚度为25um。The substrate is a CPI flexible substrate with a thickness of 25um.

金属网格层为由多条铜线构成的网格状导电结构,金属网格层中各铜线之间形成间隙。The metal grid layer is a grid-shaped conductive structure composed of a plurality of copper wires, and gaps are formed between the copper wires in the metal grid layer.

金属纳米线层为由多个纳米银线构成的网络状导电结构,各纳米银线之间形成的间隙小于金属网格层中各铜线之间形成的间隙,纳米银线直径为20nm、长度为35um;金属纳米线层的厚度为80nm。The metal nanowire layer is a network-like conductive structure composed of a plurality of silver nanowires. The gaps formed between the silver nanowires are smaller than the gaps formed between the copper wires in the metal mesh layer. The silver nanowires have a diameter of 20nm and a length of is 35um; the thickness of the metal nanowire layer is 80nm.

第一锚定层的材质为丙烯酸树脂,其厚度为3nm。第一锚定层覆盖金属纳米线的表面,并填补金属纳米线之间的间隙。The material of the first anchor layer is acrylic resin, and its thickness is 3nm. The first anchor layer covers the surface of the metal nanowires and fills the gaps between the metal nanowires.

平面导电层为透明氧化物膜,厚度为5nm。The planar conductive layer is a transparent oxide film with a thickness of 5 nm.

该柔性复合导电膜通过以下步骤制备:The flexible composite conductive film is prepared through the following steps:

S61、在CPI衬底上方真空蒸镀铜层,采用黄光工艺将铜层蚀刻为网格状导电结构,得到金属网格层,厚度为100nm,线宽为1um,线距为30um。S61. A copper layer is vacuum evaporated on the CPI substrate, and the copper layer is etched into a grid-like conductive structure by using a yellow light process to obtain a metal grid layer with a thickness of 100nm, a line width of 1um, and a line spacing of 30um.

S62、配置含量为0.09wt%的纳米银线墨水,其中纳米银线直径为20nm,长度为35um;采用狭缝涂布的方式,将纳米银线墨水在金属网格层上涂布成网络状导电结构,得到金属纳米线层,其干膜厚度为80nm。S62. Configure silver nano wire ink with a content of 0.09wt%, wherein the silver nano wire has a diameter of 20nm and a length of 35um; the silver nano wire ink is coated in a network shape on the metal grid layer by slit coating A conductive structure was obtained to obtain a metal nanowire layer with a dry film thickness of 80 nm.

S63、用狭缝涂布的方式,将固含为2.0wt%的锚定层溶液涂布在金属纳米线层上,使锚定层溶液填充金属纳米线层中的间隙,然后经紫外固化得到第一锚定层,其固化后的涂层厚度为3nm。S63, using the slit coating method, coating the anchor layer solution with a solid content of 2.0 wt% on the metal nanowire layer, so that the anchor layer solution fills the gaps in the metal nanowire layer, and then cured by ultraviolet light to obtain The thickness of the first anchor layer after curing is 3nm.

S64、采用电晕处理方式,对固化后的第一锚定层进行表面处理。S64. Surface treatment is performed on the cured first anchor layer by means of corona treatment.

S65、在第一锚定层上方磁控溅射ITO层,得到平面导电层,厚度为5nm。S65 , magnetron sputtering an ITO layer above the first anchor layer to obtain a planar conductive layer with a thickness of 5 nm.

分别对实施例1-6的柔性复合导电膜进行透光率及电阻值等测试,获得如下膜材性能数据。The light transmittance and resistance values of the flexible composite conductive films of Examples 1-6 were tested respectively, and the following film performance data were obtained.

实施例Example 透光率(%)Transmittance(%) 方阻(Ω/□)Square resistance (Ω/□) 实施例1Example 1 84.984.9 ≤0.3≤0.3 实施例2Example 2 76.276.2 ≤0.1≤0.1 实施例3Example 3 81.781.7 ≤0.3≤0.3 实施例4Example 4 80.880.8 ≤0.2≤0.2 实施例5Example 5 81.381.3 ≤0.3≤0.3 实施例6Example 6 85.485.4 ≤0.5≤0.5

由上述可知,本发明提供的柔性复合导电膜在可见光范围400nm~800nm波段的平均透光率大于75%,能够满足大尺寸触控器件应用中对透光率的要求,同时具有比传统纳米银线导电膜和金属网格导电膜更低的电阻更好的导电性。It can be seen from the above that the average light transmittance of the flexible composite conductive film provided by the present invention in the visible light range of 400nm to 800nm is greater than 75%, which can meet the requirements for light transmittance in the application of large-scale touch devices, and has a higher than traditional silver nanometer. Line conductive film and metal grid conductive film have lower resistance and better conductivity.

以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments can be combined arbitrarily. To make the description concise, all possible combinations of the technical features in the above embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, they should be It is considered to be within the range described in this specification.

以上实施例仅表达了本公开的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干变形和改进,这些都属于本公开的保护范围。因此,本公开专利的保护范围应以所附权利要求为准。The above examples only express several implementations of the present disclosure, and the descriptions thereof are more specific and detailed, but should not be construed as limiting the scope of the patent for the invention. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present disclosure, and these all belong to the protection scope of the present disclosure. Therefore, the scope of protection of the disclosed patent should be based on the appended claims.

Claims (19)

1. A flexible composite conductive film, comprising a substrate, a metal nanowire layer, a metal mesh layer, a planar conductive layer, a first anchoring layer, and a second anchoring layer, wherein the metal nanowire layer and the metal mesh layer are disposed between the substrate and the first anchoring layer, and the arrangement order of the metal nanowire layer and the metal mesh layer is changeable, the planar conductive layer is a planar conductive structure, and the planar conductive layer is disposed between any two of the substrate, the metal nanowire layer, the metal mesh layer, and the first anchoring layer or on the first anchoring layer; the second anchoring layer is disposed between any two of the metal nanowire layer, the metal mesh layer, and the planar conductive layer;
a conductive path is formed among the metal nanowire layer, the metal grid layer and the planar conductive layer;
the metal grid layer comprises a grid-shaped conductive structure formed by a plurality of metal wires, grid gaps are formed between the adjacent metal wires, the metal nanowire layer comprises a grid-shaped conductive structure formed by a plurality of metal nanowires, and the grid gaps are smaller than the grid gaps;
the first anchoring layer has an electric conduction function when being arranged between the planar conducting layer and the metal nanowire layer or the metal grid layer, and the second anchoring layer enables the metal nanowire layer and the planar conducting layer or the metal grid layer to form an electric conduction path;
when the first anchoring layer is disposed on the metal nanowire layer, the first anchoring layer fills or is embedded in network voids in the metal nanowire layer;
when the first anchoring layer is arranged on the metal grid layer, the first anchoring layer is filled or embedded in grid gaps in the metal grid layer;
when the first anchoring layer is disposed on the planar conductive layer, the first anchoring layer covers a surface of the planar conductive layer.
2. The flexible composite conductive film of claim 1, wherein the first anchoring layer covers at least one surface of the metal mesh layer, at least one surface of the metal nanowire layer, or at least one surface of the planar conductive layer.
3. The flexible composite conductive film of claim 2, wherein the first anchor layer wraps around the metal mesh layer, the metal nanowire layer, or the planar conductive layer.
4. The flexible composite conductive film according to claim 1, wherein a functional composite layer is further disposed between the substrate and the metal nanowire layer or the metal mesh layer, and the functional composite layer is any one or a combination of more of an optical adaptation layer, an electrical adaptation layer, a mechanical adaptation layer, a planar conductive layer, and a refractive index adaptation layer.
5. The flexible composite conductive film according to claim 1, wherein the metal nanowire is any one or a combination of several of a nano copper wire, a nano gold wire, a nano silver wire, a nano tungsten wire, a nano platinum wire, a nano palladium wire, a nano iron wire, a nano cobalt wire and a nano nickel wire.
6. The flexible composite conductive film according to claim 1, wherein the metal nanowires have a diameter of 5nm to 100nm and an aspect ratio of 500 to 2500.
7. The flexible composite conductive film according to claim 1, wherein the thickness of the metal nanowire layer is 20nm to 300nm.
8. The flexible composite conductive film according to claim 1, wherein the first anchor layer comprises one or a combination of several of acrylic, silicone-epoxy, siloxane, phenolic, epoxy, polyurethane and polyimide, and further comprises any one or a combination of several of polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyaniline, perylene pigment, azo pigment, phthalocyanine and phthalocyanine compound, derivative of pentacene, derivative of benzothiophene, rubrene, C60, poly 3-hexylthiophene, polyparaphenylene vinylene and polyphenol.
9. The flexible composite conductive film according to claim 1, wherein the second anchor layer comprises one or a combination of several of acrylic, silicone-epoxy, siloxane, phenolic, epoxy, polyurethane and polyimide, and further comprises any one or a combination of several of polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyaniline, perylene pigment, azo pigment, phthalocyanine and phthalocyanine compound, derivative of pentacene, derivative of benzothiophene, rubrene, C60, poly 3-hexylthiophene, polyparaphenylene vinylene and polyphenol.
10. The flexible composite conductive film of claim 1, wherein the first anchoring layer is fabricated from a photo-or thermally-cured prepolymer.
11. The flexible composite conductive film according to claim 1, wherein the thickness of the first anchoring layer is 0.1nm to 5nm.
12. The flexible composite conductive film according to claim 1, wherein the planar conductive layer comprises any one or a combination of transparent oxide film, metal film, graphene film, and transparent organic conductive thin film.
13. The flexible composite conductive film according to claim 1, wherein the thickness of the planar conductive layer is 5nm to 200nm.
14. The flexible composite conductive film according to claim 1, wherein the metal wires in the metal mesh layer comprise one or more of silver, copper, silver alloy and copper alloy, the thickness of the metal mesh layer is 50nm to 500nm, the line width is 1um to 30um, and the line distance is 30um to 500um.
15. The flexible composite conductive film of claim 1, wherein the metal mesh layer is fabricated by nanoimprint, printing, screen printing, or magnetron sputtering and orthogonal etching.
16. The flexible composite conductive film according to claim 1, wherein the surface of the metal mesh layer is further provided with a passivation layer and/or a blackening layer, and the passivation layer and/or the blackening layer is used for preventing the metal mesh layer from being oxidized and failing.
17. A method for preparing a flexible composite conductive film is characterized by comprising the following steps:
forming a conductive composite layer on a substrate, wherein the conductive composite layer comprises a metal nanowire layer and a metal grid layer, the positions of the metal nanowire layer and the metal grid layer can be exchanged, and a conductive path is formed between the metal nanowire layer and the metal grid layer;
forming a first anchoring layer on the conductive composite layer;
further comprising:
forming a planar conductive layer between or over any two of the substrate, the metal nanowire layer, the metal mesh layer, and the first anchoring layer;
a conductive path is formed among the metal nanowire layer, the metal grid layer and the planar conductive layer;
forming a second anchoring layer between any two of the metal nanowire layer, the metal mesh layer, and the planar conductive layer;
the first anchoring layer has an electric conduction function when being arranged between the planar conducting layer and the metal nanowire layer or the metal grid layer, and the second anchoring layer enables the metal nanowire layer and the planar conducting layer or the metal grid layer to form an electric conduction path;
when the first anchoring layer is disposed on the metal nanowire layer, the first anchoring layer fills or is embedded in network voids in the metal nanowire layer;
when the first anchoring layer is arranged on the metal grid layer, the first anchoring layer is filled or embedded in grid gaps in the metal grid layer;
when the first anchoring layer is disposed on the planar conductive layer, the first anchoring layer covers a surface of the planar conductive layer.
18. The method of claim 17, wherein the first anchoring layer comprises one or a combination of acrylic monomers, silicone-epoxy, siloxane, phenolic resin, polyurethane prepolymer, and polyimide prepolymer, and further comprises any one or a combination of polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyaniline, perylene pigments, azo pigments, phthalocyanine and phthalocyanine compounds, pentacene derivatives, benzothiophene derivatives, rubrene, C60, poly 3-hexylthiophene, poly p-phenylene vinylene, and polyphenol;
the first anchoring layer is manufactured in a way of over-light curing or heat curing;
the metal nanowire in the metal nanowire layer is any one or a combination of several of a nano copper wire, a nano gold wire, a nano silver wire, a nano tungsten wire, a nano platinum wire, a nano palladium wire, a nano iron wire, a nano cobalt wire and a nano nickel wire;
the material of the planar conducting layer is any one or combination of a plurality of transparent oxide films, metal films, graphene films and transparent organic conducting thin films;
the material of the metal grid layer is one or a combination of more of silver, copper, silver alloy and copper alloy;
the metal grid layer is manufactured in a nano-imprinting mode, an ink-jet printing mode, a silk-screen printing mode or a magnetron sputtering mode and an orthogonal etching mode.
19. Use of a flexible composite conductive film according to any one of claims 1 to 16 in a touch panel, a display, a mobile phone antenna circuit, an infrared optical imaging element, a photosensor, an electromagnetic shield, a smart window, a smart tablet, and a solar cell.
CN202110679210.8A 2021-06-18 2021-06-18 Flexible composite conductive film and preparation method and application thereof Active CN113409991B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110679210.8A CN113409991B (en) 2021-06-18 2021-06-18 Flexible composite conductive film and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110679210.8A CN113409991B (en) 2021-06-18 2021-06-18 Flexible composite conductive film and preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN113409991A CN113409991A (en) 2021-09-17
CN113409991B true CN113409991B (en) 2022-12-02

Family

ID=77681531

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110679210.8A Active CN113409991B (en) 2021-06-18 2021-06-18 Flexible composite conductive film and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN113409991B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116496536B (en) * 2022-11-11 2025-04-01 江苏纳美达光电科技有限公司 A method for preparing a metal nanowire polarizer
CN115915744A (en) * 2022-12-05 2023-04-04 深圳市志凌伟业光电有限公司 A kind of preparation method of transparent electromagnetic shielding material with multi-layer structure
CN116631676B (en) * 2023-05-25 2024-04-26 江苏纳美达光电科技有限公司 Conductive film, preparation method thereof and touch functional sheet
WO2024250005A1 (en) * 2023-06-02 2024-12-05 USA Fortescue IP, Inc. Conductor integrated membrane electrode assembly

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106373664A (en) * 2015-07-23 2017-02-01 北京华纳高科科技有限公司 A preparation method of high-performance metal grid transparent conductive film and its products

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834014A (en) * 2009-03-13 2010-09-15 迎辉科技股份有限公司 transparent conductive film
TWI382429B (en) * 2010-11-29 2013-01-11 Efun Technology Co Ltd A transparent conductive film with copper wire
CN105280840B (en) * 2014-07-09 2018-05-08 Tcl集团股份有限公司 A kind of flexible transparent electrode and preparation method thereof
CN104318981A (en) * 2014-07-18 2015-01-28 江苏大学 Metal nanowire/carbon nanotube composite transparent conducting film and preparation method thereof
CN106611627A (en) * 2015-10-23 2017-05-03 苏州汉纳材料科技有限公司 High-quality carbon nanotube transparent conductive film, preparation method thereof and applications
CN108749244B (en) * 2018-06-07 2020-07-14 浙江欣麟新材料技术有限公司 Optical high-flexibility conductive glass film and preparation method thereof
CN109935423B (en) * 2019-01-30 2021-03-02 厦门纵横集团科技股份有限公司 Flexible transparent conductive film with hierarchical structure and preparation method thereof
CN113409992B (en) * 2021-06-18 2022-08-05 江苏纳美达光电科技有限公司 Flexible composite conductive film and preparation method and application thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106373664A (en) * 2015-07-23 2017-02-01 北京华纳高科科技有限公司 A preparation method of high-performance metal grid transparent conductive film and its products

Also Published As

Publication number Publication date
CN113409991A (en) 2021-09-17

Similar Documents

Publication Publication Date Title
CN113409991B (en) Flexible composite conductive film and preparation method and application thereof
TWI726322B (en) Touch sensing panel and manufacturing method thereof
TWI662563B (en) Manufacturing method for touch panels and manufacturing method for trace structures
US20200363886A1 (en) Touch window and touch device including the same
US9112166B2 (en) Conductive films
US10091917B2 (en) Transparent EMI shielding/absorbing film
KR101095097B1 (en) Transparent electrode film and manufacturing method thereof
KR102066075B1 (en) Substrate having transparent electrode for flexible display and method of fabricating the same
US20130251943A1 (en) Nanowire-polymer composite electrodes
JP5515828B2 (en) Low resistance transparent conductive film, method for producing the same, solar cell, and electronic device
KR20090023803A (en) Liquid crystal display panel and manufacturing method thereof
KR102375891B1 (en) Transparent electrodes and electronic decives including the same
US20170098490A1 (en) Base material with a transparent conductive film, method for manufacturing the same, touch panel, and solar cell
CN113409992B (en) Flexible composite conductive film and preparation method and application thereof
CN108885515A (en) There is the Nanowire contacts pad of enhancing adhesiveness to metal interconnection structure
TW201734732A (en) Touch sensor and method for preparing the same
CN113066604B (en) Conductive film and preparation method thereof
CN209728707U (en) Touch panel
US9600105B2 (en) Touch panel device and method for manufacturing the same
WO2015124027A1 (en) Orderly distributed conductive thin film, and device and nanometer conductor structure thereof
TWM603556U (en) Touch panel
TWI492356B (en) Conductive film and electrode layer of touch panel, manufacturing method thereof and touch panel thereof
KR102275704B1 (en) Touch panel and manufacturing method thereof
CN113936844B (en) Transparent conductive electrode, preparation method thereof and electronic device
US20200348775A1 (en) Weathering-resistant transparent thin film

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant