CN113388766B - A kind of manganese-based nanocrystalline/amorphous composite structure alloy and preparation method thereof - Google Patents
A kind of manganese-based nanocrystalline/amorphous composite structure alloy and preparation method thereof Download PDFInfo
- Publication number
- CN113388766B CN113388766B CN202110661600.2A CN202110661600A CN113388766B CN 113388766 B CN113388766 B CN 113388766B CN 202110661600 A CN202110661600 A CN 202110661600A CN 113388766 B CN113388766 B CN 113388766B
- Authority
- CN
- China
- Prior art keywords
- amorphous
- alloy
- manganese
- based nanocrystalline
- equal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011572 manganese Substances 0.000 title claims abstract description 179
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 101
- 239000000956 alloy Substances 0.000 title claims abstract description 101
- 229910052748 manganese Inorganic materials 0.000 title claims abstract description 71
- 239000002131 composite material Substances 0.000 title claims abstract description 69
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 title claims abstract description 56
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- 229910052802 copper Inorganic materials 0.000 claims abstract description 30
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 19
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 19
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 16
- 229910052742 iron Inorganic materials 0.000 claims abstract description 8
- 229910052709 silver Inorganic materials 0.000 claims abstract description 7
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 5
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 4
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 3
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 3
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 3
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 3
- 229910000808 amorphous metal alloy Inorganic materials 0.000 claims description 78
- 238000010438 heat treatment Methods 0.000 claims description 33
- 238000002441 X-ray diffraction Methods 0.000 claims description 32
- 238000010791 quenching Methods 0.000 claims description 26
- 230000000171 quenching effect Effects 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 20
- 238000000137 annealing Methods 0.000 claims description 19
- 238000002844 melting Methods 0.000 claims description 14
- 230000008018 melting Effects 0.000 claims description 14
- 239000002994 raw material Substances 0.000 claims description 14
- 238000000113 differential scanning calorimetry Methods 0.000 claims description 8
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims 1
- 230000005291 magnetic effect Effects 0.000 abstract description 35
- 239000000463 material Substances 0.000 abstract description 15
- 238000011160 research Methods 0.000 abstract description 3
- 230000009466 transformation Effects 0.000 abstract 1
- 238000002425 crystallisation Methods 0.000 description 43
- 230000008025 crystallization Effects 0.000 description 43
- 239000010949 copper Substances 0.000 description 37
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 24
- 239000010453 quartz Substances 0.000 description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 18
- 238000001228 spectrum Methods 0.000 description 16
- 230000006399 behavior Effects 0.000 description 13
- 230000006698 induction Effects 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 230000007704 transition Effects 0.000 description 10
- 239000011159 matrix material Substances 0.000 description 9
- 239000007921 spray Substances 0.000 description 9
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000002076 thermal analysis method Methods 0.000 description 8
- 238000003723 Smelting Methods 0.000 description 7
- 239000002105 nanoparticle Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000001556 precipitation Methods 0.000 description 6
- 229910052796 boron Inorganic materials 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- PYLLWONICXJARP-UHFFFAOYSA-N manganese silicon Chemical compound [Si].[Mn] PYLLWONICXJARP-UHFFFAOYSA-N 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000005328 spin glass Effects 0.000 description 5
- 235000008429 bread Nutrition 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000005415 magnetization Effects 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 230000005298 paramagnetic effect Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000002195 synergetic effect Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910008423 Si—B Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000000498 ball milling Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 238000007578 melt-quenching technique Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- 229910018643 Mn—Si Inorganic materials 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000005303 antiferromagnetism Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005308 ferrimagnetism Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002697 manganese compounds Chemical class 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000005543 nano-size silicon particle Substances 0.000 description 1
- 239000002707 nanocrystalline material Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910021652 non-ferrous alloy Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C22/00—Alloys based on manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C45/00—Amorphous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Soft Magnetic Materials (AREA)
- Continuous Casting (AREA)
Abstract
Description
技术领域technical field
本申请属于复合结构合金技术领域,尤其涉及一种锰基纳米晶/非晶复合结构合金及其制备方法。The application belongs to the technical field of composite structure alloys, and in particular relates to a manganese-based nanocrystalline/amorphous composite structure alloy and a preparation method thereof.
背景技术Background technique
在合金或复合材料中,组分之一出现一维、二维或三维尺度上的纳米化,往往表现出更为优异的结构与性能。Fe-基、Co-基,Mg-基、Al-基等合金的纳米晶/非晶双相复合结构材料的制备,显示特别突出的性能。Mn在过渡族金属元素中是一种具有奇特结构与磁性的金属元素。然而,现有锰基非晶合金的文献报道,而且主要是利用磁控溅射法和机械球磨法制备二元体系(如Mn-Si、Mn-Ge、Mn-C、Mn-B、Mn-Zr、Mn-Y等)的锰基非晶合金薄膜或粉末,并在这些锰基非晶态样品中发现自旋玻璃转变行为,但是并未涉及锰基非晶/纳米晶材料颗粒的探究。In alloys or composite materials, one of the components is nanosized on one-dimensional, two-dimensional or three-dimensional scales, often showing more excellent structure and properties. The preparation of nanocrystalline/amorphous dual-phase composite materials of Fe-based, Co-based, Mg-based, Al-based alloys, etc., shows particularly outstanding properties. Mn is a metal element with peculiar structure and magnetism among the transition metal elements. However, there are existing literature reports on manganese-based amorphous alloys, and mainly use magnetron sputtering and mechanical ball milling to prepare binary systems (such as Mn-Si, Mn-Ge, Mn-C, Mn-B, Mn- Zr, Mn-Y, etc.) manganese-based amorphous alloy films or powders, and found spin glass transition behavior in these manganese-based amorphous samples, but did not involve the exploration of manganese-based amorphous/nanocrystalline material particles.
磁斯格明子是一种具有拓扑保护特性的涡旋状的磁结构。这种磁结构因为具有非平庸的拓扑保护性质、局域的粒子特性(尺寸最小可达3nm)、灵活的动力学特性(可被磁场、电场、电流等调控)等,有望作为新一代磁存储基本单元实现高密度、低能耗、非易失性信息存储。除了磁储存,还可以利用斯格明子丰富而新奇的物理特性实现逻辑运算、类晶体管结构、纳米振荡器等,在电子学领域可实现同时利用电子电荷和自旋双重属性,设计出功能更为高效的微电子学器件。Magnetic skyrmions are vortex-like magnetic structures with topologically protective properties. This magnetic structure is expected to be used as a new generation of magnetic storage due to its non-trivial topological protection properties, local particle properties (minimum size up to 3 nm), and flexible dynamic properties (which can be regulated by magnetic fields, electric fields, currents, etc.). The basic unit realizes high-density, low-power, non-volatile information storage. In addition to magnetic storage, the rich and novel physical properties of skyrmions can also be used to realize logical operations, transistor-like structures, nano-oscillators, etc. In the field of electronics, the dual properties of electron charge and spin can be used at the same time to design more functional Efficient Microelectronics.
然而,目前发现的磁斯格明子材料,大多数材料中的斯格明子拓扑磁结构需要在低温和外磁场的双重作用下才可以稳定,只有极少数材料达到室温以上,但还需一定的外磁场加以稳定,可见,在室温下零磁场能稳定的磁斯格明子的材料极稀少。因此,寻找一种具有宽温域零磁场稳定的斯格明子磁结构材料是本领域技术人员亟待解决的技术问题。However, the topological magnetic structure of skyrmions in most of the magnetic skyrmion materials discovered so far needs to be stabilized under the dual action of low temperature and external magnetic field. The magnetic field is stabilized, and it can be seen that the material of magnetic skyrmions that can be stable at zero magnetic field at room temperature is extremely rare. Therefore, it is a technical problem to be solved urgently by those skilled in the art to find a skyrmion magnetic structure material with stable zero magnetic field in a wide temperature range.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本申请提供了一种锰基纳米晶/非晶复合结构合金及其制备方法,该复合结构合金具有优异的磁性转变特性和丰富的磁结构,提供了一种宽温域零磁场稳定的斯格明子磁结构材料的可能性,在自旋电子学领域具备的学术研究价值和潜在的实际应用价值。In view of this, the present application provides a manganese-based nanocrystalline/amorphous composite structure alloy and a preparation method thereof, the composite structure alloy has excellent magnetic transition characteristics and rich magnetic structure, and provides a wide temperature range zero magnetic field The possibility of stable skyrmion magnetic structural materials has academic research value and potential practical application value in the field of spintronics.
本申请第一方面提供了一种锰基纳米晶/非晶复合结构合金,其通式如下:A first aspect of the present application provides a manganese-based nanocrystalline/amorphous composite structure alloy, the general formula of which is as follows:
MnbalSiaBbMcRdTe;Mn bal Si a B b M c R d T e ;
所述通式中,Mnbal表示以Mn为主要组元的合金体系,其原子摩尔数bal≥55;Si元素的摩尔数a满足10≤a<30;B元素的摩尔数b满足5<b≤12;M选自Fe、Co、Ni或Cr元素中的一种或几种,且原子摩尔数c为0≤c≤25;R选自Ag、Mg和Cu元素中的一种或几种,且其原子摩尔数d为0≤d≤5;T选自Zr、Ti、V、Nb、Hf和Ta中的一种或几种,且满足原子数e满足0≤e≤8;bal+a+b+c+d+e之和的原子摩尔数为100。In the general formula, Mn bal represents an alloy system with Mn as the main component, and its atomic mole number bal≥55; the mole number a of Si element satisfies 10≤a<30; the mole number b of B element satisfies 5<b ≤12; M is selected from one or more of Fe, Co, Ni or Cr elements, and the number of atomic moles c is 0≤c≤25; R is selected from one or more of Ag, Mg and Cu elements , and its atomic mole number d is 0≤d≤5; T is selected from one or more of Zr, Ti, V, Nb, Hf and Ta, and the atomic number e satisfies 0≤e≤8; bal+ The sum of a+b+c+d+e has 100 atomic moles.
另一实施例中,所述M元素和所述T元素同时存在;所述M元素和所述T元素同时不存在;所述R元素和所述T元素同时存在。In another embodiment, the M element and the T element exist simultaneously; the M element and the T element do not exist simultaneously; the R element and the T element exist simultaneously.
另一实施例中,所述M选自Fe。In another embodiment, the M is selected from Fe.
另一实施例中,所述R选自Ag或Cu。In another embodiment, the R is selected from Ag or Cu.
另一实施例中,所述T选自Nb、Zr或V中的一种。In another embodiment, the T is selected from one of Nb, Zr or V.
具体的,所述M和所述T元素同时存在,二者的协同作用可以有效促进锰或锰硅的成核析出,使非晶合金由单级晶化转变为双级晶化。Specifically, the M and the T elements exist at the same time, and the synergistic effect of the two can effectively promote the nucleation and precipitation of manganese or manganese-silicon, so that the amorphous alloy is transformed from single-level crystallization to double-level crystallization.
另一实施例中,所述锰基纳米晶/非晶复合结构合金的化学式为:Mn68Si25B7、Mn64Si25B7Ag1Nb3、Mn64Si25B7Cu1Nb3或Mn55Fe15Si20B7EM3;其中,EM为Nb、Zr和V中的一种或多种。In another embodiment, the chemical formula of the manganese-based nanocrystalline/amorphous composite structure alloy is: Mn 68 Si 25 B 7 , Mn 64 Si 25 B 7 Ag 1 Nb 3 , Mn 64 Si 25 B 7 Cu 1 Nb 3 or Mn 55 Fe 15 Si 20 B 7 EM 3 ; wherein, EM is one or more of Nb, Zr and V.
具体的,所述Mn55Fe15Si20B7EM3,EM为Nb、Zr和V中的一种或多种,包括Mn55Fe15Si20B7Nb3、Mn55Fe15Si20B7Zr3或Mn55Fe15Si20B7V3、Mn55Fe15Si20B7Nb1Zr1V1、Mn55Fe15Si20B7Nb2Zr1、Mn55Fe15Si20B7Nb1Zr2、Mn55Fe15Si20B7Zr2V1、Mn55Fe15Si20B7Zr1V2、Mn55Fe15Si20B7Nb2V1、Mn55Fe15Si20B7Nb1V2。Specifically, the Mn 55 Fe 15 Si 20 B 7 EM 3 , where EM is one or more of Nb, Zr and V, including Mn 55 Fe 15 Si 20 B 7 Nb 3 , Mn 55 Fe 15 Si 20 B 7 Zr 3 or Mn 55 Fe 15 Si 20 B 7 V 3 , Mn 55 Fe 15 Si 20 B 7 Nb 1 Zr 1 V 1 , Mn 55 Fe 15 Si 20 B 7 Nb 2 Zr 1 , Mn 55 Fe 15 Si 20 B 7 Nb 1 Zr 2 , Mn 55 Fe 15 Si 20 B 7 Zr 2 V 1 , Mn 55 Fe 15 Si 20 B 7 Zr 1 V 2 , Mn 55 Fe 15 Si 20 B 7 Nb 2 V 1 , Mn 55 Fe 15 Si 20 B 7 Nb 1 V 2 .
本申请第二方面提供了一种锰基纳米晶/非晶复合结构合金的制备方法,包括:A second aspect of the present application provides a method for preparing a manganese-based nanocrystalline/amorphous composite structure alloy, including:
步骤1、根据所述锰基纳米晶/非晶复合结构合金的配比,将所述锰基纳米晶/非晶复合结构合金的原料混合处理,然后进行熔体快淬后得到非晶态合金带材;Step 1. According to the ratio of the manganese-based nanocrystalline/amorphous composite structure alloy, the raw materials of the manganese-based nanocrystalline/amorphous composite structure alloy are mixed and processed, and then the amorphous alloy is obtained after rapid melt quenching Strip;
步骤2、根据所述非晶态合金带材的热特征温度值,对所述非晶态合金带材进行退火热处理,制得锰基纳米晶/非晶复合结构合金。Step 2, according to the thermal characteristic temperature value of the amorphous alloy strip, perform annealing heat treatment on the amorphous alloy strip to obtain a manganese-based nanocrystalline/amorphous composite structure alloy.
另一实施例中,步骤1中,所述处理为电弧熔炼处理或磁控溅射处理。In another embodiment, in step 1, the treatment is arc melting treatment or magnetron sputtering treatment.
具体的,所述电弧熔炼处理包括:根据所述锰基纳米晶/非晶复合结构合金的各元素原子百分配比,计算转换成原子的重量百分配比,再乘以10g获得每个单质元素所需的重量,利用表1所给的原材料进行配料。每个原材料按原子百分比例配料完成后,使用WK-IIA型非自耗真空电弧熔炼炉进行电弧熔炼。为保证非晶态合金带材母合金的质量,在熔炼前对炉体抽真空,使其真空度达3.0×10-4Pa以下,然后通入高纯氩气(纯度99.99%),此处氩气除了作为保护外,还充当引弧和热源的作用。每批样品在熔炼时,预留一个熔炼锅盛放钛锭,并在熔炼时首先熔炼钛锭,以吸收熔炼炉内的残余氧气,然后再利用电弧对样品进行熔炼,每个样品都要翻转反复熔炼3~4次,以确保合金成分的均匀,减少合金元素的成分偏析,获得高质量非晶态合金带材。Specifically, the arc smelting treatment includes: according to the atomic percentage ratio of each element of the manganese-based nanocrystalline/amorphous composite structure alloy, calculating the weight percentage ratio converted into atoms, and then multiplying by 10g to obtain each elemental element The required weights were prepared using the raw materials given in Table 1. After each raw material is batched according to the atomic percentage, it is arc smelted using a WK-IIA non-consumable vacuum arc smelting furnace. In order to ensure the quality of the master alloy of the amorphous alloy strip, the furnace body is evacuated before smelting to make the vacuum degree below 3.0×10 -4 Pa, and then high-purity argon gas (purity 99.99%) is introduced here. In addition to being a protection, argon also acts as an arc ignition and heat source. When each batch of samples is smelted, a smelting pot is reserved to hold the titanium ingots, and the titanium ingots are first smelted during smelting to absorb the residual oxygen in the smelting furnace, and then the samples are smelted by electric arc, and each sample must be turned over Repeated smelting 3 to 4 times to ensure the uniformity of alloy composition, reduce the composition segregation of alloy elements, and obtain high-quality amorphous alloy strips.
具体的,所述熔体快淬为现有常规的铜辊快淬法。Specifically, the rapid quenching of the melt is a conventional copper roll rapid quenching method.
表1Table 1
另一实施例中,所述非晶态合金带材的厚度为22~25mm;所述非晶态合金带材的宽度为1.2~1.5mm。In another embodiment, the thickness of the amorphous alloy strip is 22-25 mm; the width of the amorphous alloy strip is 1.2-1.5 mm.
具体的,本申请的步骤1中熔体快淬为铜辊快淬法,铜辊快淬法制备非晶合金带材使用的是NMS-II型感应式溶体快淬甩带机。在甩带前,将铜辊以小于15m/s的线速度转起,用大于2000目以上的砂纸轻微打磨掉铜辊表面的氧化层,用蘸有丙酮的纱布清理铜辊表面。将母合金打碎成直径约为5~8mm的小块状,放入石英管中,再将石英管固定于铜辊上方的加热感应线圈里。所用圆孔石英管喷嘴孔径为0.35~0.45mm,并灵活调控喷嘴距离铜辊高度为0.25~0.30mm,铜辊的线速度45~60m/s、喷带压力差0.03~0.08MPa等工艺参数。关闭炉门,对炉体进行抽真空至低于6×10-3Pa,此时关闭抽真空阀门,向炉腔内充入高纯氩气作为保护气体,同时也要向连接试管的气压腔充气,且要注意调整气压腔的气压大于炉体腔的气压,利用高频感应加热对母合金进行加热,待合金熔化后,注意观察溶液颜色由橘黄色忽然变为黄白色时,可按压接通压力腔的开关,利用压力差将高温熔体喷射快速转动的铜辊上,获得厚度约为22~25mm、宽度为1.2~1.5mm的非晶态合金带材样品。Specifically, in step 1 of the present application, the rapid quenching of the melt is a copper roll rapid quenching method, and the copper roll rapid quenching method uses an NMS-II induction type solution rapid quenching strip machine for preparing the amorphous alloy strip. Before stripping, turn the copper roll up at a linear speed of less than 15m/s, lightly polish off the oxide layer on the surface of the copper roll with sandpaper greater than 2000 mesh, and clean the surface of the copper roll with gauze dipped in acetone. The master alloy is broken into small pieces with a diameter of about 5-8mm, put into a quartz tube, and then the quartz tube is fixed in the heating induction coil above the copper roller. The diameter of the round-hole quartz tube nozzle used is 0.35-0.45mm, and the process parameters such as the height of the nozzle from the copper roller to 0.25-0.30mm, the line speed of the copper roller to 45-60m/s, and the pressure difference of the spray belt to be 0.03-0.08MPa are flexibly adjusted. Close the furnace door, and vacuum the furnace body to less than 6×10 -3 Pa. At this time, close the vacuum valve and fill the furnace chamber with high-purity argon as a protective gas. Inflate, and pay attention to adjusting the air pressure of the air pressure cavity to be greater than the air pressure of the furnace body cavity. Use high-frequency induction heating to heat the master alloy. After the alloy is melted, pay attention to observe that the color of the solution suddenly changes from orange to yellow-white. Press to connect The pressure chamber is switched on and off, and the high-temperature melt is sprayed onto the rapidly rotating copper roller by the pressure difference to obtain an amorphous alloy strip sample with a thickness of about 22-25 mm and a width of 1.2-1.5 mm.
另一实施例中,步骤2中,所述非晶态合金带材的热特征温度值通过所述非晶态合金带材的X射线衍射分析(XRD)和差示扫描量热分析(DSC)确定。In another embodiment, in step 2, the thermal characteristic temperature value of the amorphous alloy strip is analyzed by X-ray diffraction (XRD) and differential scanning calorimetry (DSC) of the amorphous alloy strip. Sure.
具体的,所述热特征温度值包括起始晶化温度(Tx)和晶化峰值温度(Tp)。Specifically, the thermal characteristic temperature value includes the initial crystallization temperature (Tx) and the crystallization peak temperature (Tp).
具体的,X射线衍射分析(XRD)和差示扫描量热(DSC)分析包括:采用X射线衍射分析(XRD)考察所述非晶态合金带材样品是否为完全的非晶结构。XRD相关测试条件及参数为:X射线波长石墨单色器滤波,管电压为40kV,管电流为30mA,测试范围为20~100°,步长0.02°,扫描速度10°/min。若非晶态合金带材XRD衍射谱有且只有一个宽泛的衍射峰(即“馒头峰”),可确定合金薄带为完全非晶态结构。Specifically, X-ray diffraction analysis (XRD) and differential scanning calorimetry (DSC) analysis include: using X-ray diffraction analysis (XRD) to investigate whether the amorphous alloy strip sample has a complete amorphous structure. XRD related test conditions and parameters are: X-ray wavelength Filtered by a graphite monochromator, the tube voltage is 40kV, the tube current is 30mA, the test range is 20-100°, the step size is 0.02°, and the scanning speed is 10°/min. If the XRD diffraction spectrum of the amorphous alloy ribbon has one and only one broad diffraction peak (ie "steamed bread peak"), it can be determined that the alloy ribbon has a completely amorphous structure.
采用差示扫描量热仪(DSC)对所述非晶态合金带材样品进行晶化行为的热分析,考察合金带材连续升温的晶化特性。测试时,将合金带材样品剪成面积约小于1mmx1mm的小片状,称重约5~10mg后放入氧化铝坩埚,在N2氛围的保护下升温对样品进行加热,升温速率为20℃/min,加热范围为50~900℃。依据DSC曲线,获得所述非晶态合金带材样品的起始晶化温度(Tx)、晶化峰值温度(Tp)等热特征温度值。A differential scanning calorimeter (DSC) was used to conduct thermal analysis on the crystallization behavior of the amorphous alloy strip samples, and the crystallization characteristics of the alloy strips with continuous heating were investigated. During the test, the alloy strip sample was cut into small pieces with an area of less than 1mmx1mm, weighed about 5-10mg, and put into an alumina crucible. The sample was heated under the protection of N2 atmosphere, and the heating rate was 20℃/ min, the heating range is 50~900℃. According to the DSC curve, the thermal characteristic temperature values such as the initial crystallization temperature (Tx) and the crystallization peak temperature (Tp) of the amorphous alloy strip sample are obtained.
另一实施例中,步骤2中,所述退火热处理的时间为3~30min。In another embodiment, in step 2, the time of the annealing heat treatment is 3-30 min.
本申请第三方面公开了所述的锰基纳米晶/非晶复合结构合金或所述制备方法制得的锰基纳米晶/非晶复合结构合金在制备磁斯格明子材料中的应用。The third aspect of the present application discloses the application of the manganese-based nanocrystalline/amorphous composite structure alloy or the manganese-based nanocrystalline/amorphous composite structure alloy prepared by the preparation method in the preparation of magnetic skyrmion materials.
具体的,Mn在过渡族金属元素中是一种具有奇特结构与磁性的金属元素。其固态有四种同素异形体。依据洪德定则,Mn原子磁矩可高达5μB,在合金中根据相邻原子的距离能够形成铁磁性、反铁磁性或者亚铁磁性的多种磁相互作用形式,展现出丰富、多变的物理性质。锰基纳米晶/非晶复合结构材料可作为宽温域零磁场稳定的斯格明子磁结构材料。Specifically, Mn is a metal element with peculiar structure and magnetism among the transition metal elements. There are four allotropes in its solid state. According to Hund's rule, the magnetic moment of Mn atoms can be as high as 5μB , and in the alloy, various magnetic interaction forms of ferromagnetism, antiferromagnetism or ferrimagnetism can be formed according to the distance between adjacent atoms, showing rich and varied physical properties. nature. Manganese-based nanocrystalline/amorphous composite structural materials can be used as skyrmion magnetic structural materials that are stable in a wide temperature range and zero magnetic field.
具体的,所述非晶态合金带材样品放进热处理炉进行晶化退火热处理,热处理设备是诺巴迪材料科技有限公司生产的可编程控制单真空管事高温烧结炉,该炉的型号是NBD-O1200-60IT。在热处理时,以20℃/min的升温速率加热至晶化退火温度Ta,保温时间为10min,采用随炉冷却至室温,为避免氧化,整个热处理在真空中进行处理。Specifically, the amorphous alloy strip samples are put into a heat treatment furnace for crystallization annealing heat treatment. The heat treatment equipment is a programmable control single vacuum tube high temperature sintering furnace produced by Nobadi Material Technology Co., Ltd. The model of the furnace is NBD -O1200-60IT. During the heat treatment, heat to the crystallization annealing temperature Ta at a heating rate of 20 °C/min, the holding time is 10 min, and the furnace is cooled to room temperature. In order to avoid oxidation, the entire heat treatment is carried out in a vacuum.
本申请通过多种特定的元素配比,通过特定处理制备非晶态合金带材,然后使非晶态合金带材在加热晶化时出现多级晶化行为,进一步通过热处理退火晶化,使非晶合金基体上析出锰的纳米晶颗粒,形成锰基纳米晶/非晶复合结构合金;本申请的锰基纳米晶/非晶复合结构合金需要一定元素配比,或是多种元素的协同作用才得以实现。In this application, amorphous alloy strips are prepared by specific treatment through a variety of specific element ratios, and then the amorphous alloy strips appear multi-level crystallization behavior during heating and crystallization, and are further crystallized by heat treatment and annealing to make The nanocrystalline particles of manganese are precipitated on the amorphous alloy matrix to form a manganese-based nanocrystalline/amorphous composite structure alloy; the manganese-based nanocrystalline/amorphous composite structure alloy of the present application requires a certain ratio of elements, or the synergy of multiple elements effect is realized.
本申请的制备方法是将混合均匀的母合金锭感应加热通过铜辊快淬法制备的非晶态合金带材,需要熔融合金液体具有一定的流动性要求,成分设计上要求Si含量大于10at.%,进一步通过晶化退火处理,使非晶基体上析出锰纳米晶颗粒,形成锰基纳米晶/非晶复合组织结构合金,本申请的锰基纳米晶/非晶复合结构合金具有以下突出优点:利用工业上较为成熟的熔体快淬法制备非晶合金带材,具有灵活、生产效率高等突出优势。相比于磁控溅射法和机械球磨法制备的非晶合金薄膜或粉末,熔体快淬法制备的非晶合金带材工艺简单,生产效率高,绿色无污染。The preparation method of the present application is an amorphous alloy strip prepared by induction heating a uniformly mixed master alloy ingot by a copper roll rapid quenching method, the molten alloy liquid needs to have certain fluidity requirements, and the Si content is required to be greater than 10at. %, and further through crystallization annealing treatment, manganese nanocrystalline particles are precipitated on the amorphous matrix to form a manganese-based nanocrystalline/amorphous composite structure alloy. The manganese-based nanocrystalline/amorphous composite structure alloy of the present application has the following outstanding advantages : Using the industrially mature melt quick quenching method to prepare amorphous alloy strips, it has the outstanding advantages of flexibility and high production efficiency. Compared with the amorphous alloy films or powders prepared by the magnetron sputtering method and the mechanical ball milling method, the amorphous alloy strip prepared by the melt rapid quenching method has a simple process, high production efficiency, and is green and pollution-free.
附图说明Description of drawings
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。In order to more clearly illustrate the embodiments of the present application or the technical solutions in the prior art, the following briefly introduces the accompanying drawings that are required to be used in the description of the embodiments or the prior art.
图1为本申请实施例提供的Mn68Si25B7的非晶态合金带材的XRD谱;Fig. 1 is the XRD spectrum of the amorphous alloy strip of Mn 68 Si 25 B 7 provided by the embodiment of the application;
图2为本申请实施例提供的Mn68Si25B7的非晶态合金带材的DSC曲线;Fig. 2 is the DSC curve of the amorphous alloy strip of Mn 68 Si 25 B 7 provided in the embodiment of the present application;
图3为本申请实施例提供的Mn68Si25B7的非晶态合金带材的退火处理后的XRD谱;Fig. 3 is the XRD spectrum after annealing treatment of the amorphous alloy strip of Mn 68 Si 25 B 7 provided in the embodiment of the application;
图4为本申请实施例提供的Mn68Si25B7非晶合金带材快淬态(非晶结构)和退火态(Mn5Si3纳米晶/非晶复合结构)下温度与磁化强度的关系曲线;Fig. 4 is the temperature and magnetization of the Mn 68 Si 25 B 7 amorphous alloy strips provided in the embodiments of the present application in the fast quenched state (amorphous structure) and the annealed state (Mn 5 Si 3 nanocrystalline/amorphous composite structure) Relationship lines;
图5为本申请实施例提供的快淬下Mn64Si25B7Ag1Nb3和Mn64Si25B7Cu1Nb3非晶态合金带材样品的XRD谱;Fig. 5 is the XRD spectrum of the Mn 64 Si 25 B 7 Ag 1 Nb 3 and Mn 64 Si 25 B 7 Cu 1 Nb 3 amorphous alloy strip samples provided by the embodiments of the application under rapid quenching;
图6为本申请实施例提供的快淬下Mn64Si25B7Ag1Nb3和Mn64Si25B7Cu1Nb3非晶态合金带材样品的DSC曲线;FIG. 6 is the DSC curve of the Mn 64 Si 25 B 7 Ag 1 Nb 3 and Mn 64 Si 25 B 7 Cu 1 Nb 3 amorphous alloy strip samples under rapid quenching provided in the embodiment of the present application;
图7为本申请实施例提供的退火态下Mn64Si25B7Ag1Nb3和Mn64Si25B7Cu1Nb3纳米晶/非晶复合组织结构的退火样品XRD谱;FIG. 7 is the XRD spectrum of the annealed sample of the nanocrystalline/amorphous composite structure of Mn 64 Si 25 B 7 Ag 1 Nb 3 and Mn 64 Si 25 B 7 Cu 1 Nb 3 in the annealed state provided by the embodiment of the present application;
图8为本申请实施例提供的快淬下Mn55Fe15Si20B7EM3(EM为Nb,Zr或V中的一种)非晶态合金带材样品的XRD谱;Fig. 8 is the XRD spectrum of the Mn 55 Fe 15 Si 20 B 7 EM 3 (EM is one of Nb, Zr or V) amorphous alloy strip sample under rapid quenching provided by the embodiment of the application;
图9为本申请实施例提供的快淬下Mn55Fe15Si20B7EM3(EM为Nb,Zr或V中的一种)非晶态合金带材的DSC曲线;9 is a DSC curve of an amorphous alloy strip of Mn 55 Fe 15 Si 20 B 7 EM 3 (EM is one of Nb, Zr or V) under rapid quenching provided by the embodiment of the application;
图10为本申请实施例提供的退火态下Mn55Fe15Si20B7EM3(EM=Nb,Zr)纳米晶/非晶复合组织结构的XRD谱;FIG. 10 is the XRD spectrum of the nanocrystalline/amorphous composite structure of Mn 55 Fe 15 Si 20 B 7 EM 3 (EM=Nb, Zr) in the annealed state provided by the embodiment of the application;
图11为本申请对比例提供的Si原子摩尔百分比小于10at.%快淬合金带材样品的XRD谱;FIG. 11 is the XRD spectrum of the rapidly quenched alloy strip sample with Si atomic molar percentage less than 10 at. % provided by the comparative example of the application;
图12为本申请对比例提供的Si原子摩尔百分比大于等于30at.%快淬合金带材样品的XRD谱。FIG. 12 is the XRD spectrum of the rapidly quenched alloy strip sample with Si atomic molar percentage greater than or equal to 30 at. % provided for the comparative example of the present application.
具体实施方式Detailed ways
本申请提供了一种锰基纳米晶/非晶复合结构合金及其制备方法,提供了一种宽温域零磁场稳定的斯格明子磁结构材料的可能性。The present application provides a manganese-based nanocrystalline/amorphous composite structure alloy and a preparation method thereof, and provides the possibility of a stable skyrmion magnetic structure material in a wide temperature range and a zero magnetic field.
下面将对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The technical solutions in the embodiments of the present application will be clearly and completely described below. Obviously, the described embodiments are only a part of the embodiments of the present application, rather than all the embodiments. Based on the embodiments in the present application, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present application.
其中,以下实施例所用试剂或原料均为市售或自制。Wherein, the reagents or raw materials used in the following examples are commercially available or homemade.
实施例1Example 1
本申请实施例提供了Mn68Si25B7纳米晶/非晶复合组织结构,具体步骤包括:The embodiments of the present application provide a nanocrystalline/amorphous composite structure of Mn 68 Si 25 B 7 , and the specific steps include:
1、将Mn68Si25B7成分的各元素原子摩尔百分配比,计算转换成原子的重量百分配比,制备成10g的母合金锭所需的原料:Mn为8.2767g,Si为1.5556g,B为0.1676g。1. Calculate the atomic molar distribution ratio of each element of the Mn 68 Si 25 B 7 component, calculate the weight percent distribution ratio of conversion into atoms, and prepare the raw materials required for a 10g master alloy ingot: Mn is 8.2767g, Si is 1.5556g , B is 0.1676g.
2、把以上原料放入真空电弧熔炼炉进行电弧熔炼,熔炼电流优选为80A,反复翻转合金锭进行4次熔炼,以确保母合金锭成分均匀。2. Put the above raw materials into a vacuum arc melting furnace for arc melting, the melting current is preferably 80A, and the alloy ingot is repeatedly turned over for 4 times of melting to ensure that the composition of the mother alloy ingot is uniform.
3、将母合金打碎成直径约为5至8mm的小合金块,放入石英管利用感应式熔体快淬甩带机制备Mn68Si25B7非晶态合金带材。制备非晶态合金带材工艺为:石英喷嘴距离铜辊高度为0.30mm,铜辊转动的线速度50m/s,喷带压力差为0.04MPa。甩带时,利用超音速高频感应加热电源,频率为20kHz,对置于石英管中母合金块进行感应加热,加热电流为20A,待加热保持时间约为60s,此时合金块已经完全熔化成流动良好的液体,此时按下喷带按钮,利用石英管与炉体的压力差将合金液体按压出石英管喷嘴,喷射到快速转动的铜辊上,利用铜辊的快速冷却凝固成非晶态合金带材。3. Break the master alloy into small alloy blocks with a diameter of about 5 to 8 mm, put them into a quartz tube, and use an induction melt rapid quenching strip machine to prepare Mn 68 Si 25 B 7 amorphous alloy strips. The process of preparing the amorphous alloy strip is as follows: the height of the quartz nozzle from the copper roller is 0.30mm, the line speed of the copper roller is 50m/s, and the pressure difference of the spray strip is 0.04MPa. When stripping, use supersonic high-frequency induction heating power supply with a frequency of 20kHz to conduct induction heating on the mother alloy block placed in a quartz tube, the heating current is 20A, and the holding time to be heated is about 60s. At this time, the alloy block has been completely melted. Then press the spray button, use the pressure difference between the quartz tube and the furnace body to press the alloy liquid out of the quartz tube nozzle, spray it onto the rapidly rotating copper roller, and use the rapid cooling of the copper roller to solidify into a non-ferrous alloy. Crystalline alloy strip.
4、将步骤3制备的非晶态合金带材进行XRD表征,如图1所示,其XRD图谱只是在衍射角2θ=45°处出现一个宽泛的衍射峰,即“馒头峰”,表明该样品在快淬下为非晶态结构的非晶合金带材样品。4. The amorphous alloy strip prepared in step 3 is characterized by XRD. As shown in Figure 1, its XRD pattern only has a broad diffraction peak at the diffraction angle 2θ=45°, that is, the "steamed bread peak", indicating that the The sample is an amorphous alloy strip sample with an amorphous structure under rapid quenching.
5、对步骤3制备的非晶态合金带材进行DSC热分析,如图2所示,该样品的DSC曲线上有两个明显的放热峰,说明本实施例的非晶态合金带材的晶化特征为双级晶化行为,结合XRD物相分析可知,第一级晶化峰对应析出的物相是Mn5Si3,第二级晶化峰对应析出的物相是Mn2B。5. Perform DSC thermal analysis on the amorphous alloy strip prepared in step 3. As shown in Figure 2, there are two obvious exothermic peaks on the DSC curve of this sample, indicating that the amorphous alloy strip of this embodiment is The crystallization characteristic of the crystallization is double-level crystallization behavior. Combined with XRD phase analysis, it can be seen that the phase corresponding to the first-level crystallization peak is Mn 5 Si 3 , and the phase corresponding to the second-level crystallization peak is Mn 2 B .
6、基于步骤5的热分析获得的晶化特征温度,可以指导进行热处理退火工艺的制定,将步骤3的非晶态合金带材分别在540℃和550℃在真空管式炉中退火10min,制得Mn68Si25B7。6. Based on the crystallization characteristic temperature obtained by the thermal analysis in step 5, it can guide the formulation of the heat treatment annealing process. Obtain Mn 68 Si 25 B 7 .
步骤3的非晶态合金带材在退火处理后的XRD谱如图3所示,在XRD谱上只探测到Mn5Si3的衍射峰,表明该样品经退火后,在非晶相(非晶相:指的是Mn、Si和B无序混乱而均匀分布的基体母相)基体上仅析出的是单一的Mn5Si3纳米晶颗粒,成功地实现了锰基纳米晶/非晶复合结构合金—Mn5Si3纳米晶/非晶双相复合组织结构(即为Mn68Si25B7)。The XRD spectrum of the amorphous alloy strip in step 3 after annealing is shown in Figure 3. Only the diffraction peak of Mn 5 Si 3 is detected on the XRD spectrum, indicating that after annealing, the sample is in the amorphous phase (non-crystalline phase). Crystal phase: refers to the disordered and uniformly distributed matrix parent phase of Mn, Si and B) only a single Mn 5 Si 3 nanocrystalline particle is precipitated on the matrix, and the manganese-based nanocrystalline/amorphous composite has been successfully realized Structural alloy—Mn 5 Si 3 nanocrystalline/amorphous dual-phase composite structure (ie, Mn 68 Si 25 B 7 ).
图4是本申请实施例的非晶态合金带材在快淬态(非晶态结构)和退火态(Mn5Si3纳米晶/非晶复合结构)下温度与磁化强度的关系曲线。对磁化曲线的分析可知,步骤3的非晶态合金带材在快淬态(非晶态结构)和退火态(Mn5Si3纳米晶/非晶复合结构)下均出现自旋玻璃转变行为,对应的自旋玻璃转变温度(Tf)分别为23K和15K。不同的是,非晶态结构的样品在自旋玻璃转变后进入顺磁态,而Mn5Si3纳米晶/非晶复合结构样品(Mn68Si25B7)在自旋玻璃转变后,先进入铁磁态(15K至100K温度区间),然后再进入顺磁态,可见,这种Mn5Si3纳米晶/非晶双相复合组织结构(Mn68Si25B7)具有更明显的自旋玻璃转变特性,更丰富的磁性转变行为。FIG. 4 is a graph showing the relationship between temperature and magnetization of amorphous alloy strips in a rapidly quenched state (amorphous structure) and an annealed state (Mn 5 Si 3 nanocrystalline/amorphous composite structure). The analysis of the magnetization curve shows that the amorphous alloy strip in step 3 exhibits spin-glass transition behavior in both the fast quenched state (amorphous structure) and the annealed state (Mn 5 Si 3 nanocrystalline/amorphous composite structure). , the corresponding spin glass transition temperatures (Tf) are 23K and 15K, respectively. The difference is that the amorphous structure sample enters the paramagnetic state after spin glass transition, while the Mn 5 Si 3 nanocrystalline/amorphous composite structure sample (Mn 68 Si 25 B 7 ) first enters the paramagnetic state after spin glass transition. Entering the ferromagnetic state (temperature range from 15K to 100K), and then entering the paramagnetic state, it can be seen that this Mn 5 Si 3 nanocrystalline/amorphous dual-phase composite structure (Mn 68 Si 25 B 7 ) has more obvious self- Gyroscopic glass transition properties, richer magnetic transition behavior.
实施例2Example 2
本申请实施例提供了Mn64Si25B7Ag1Nb3和Mn64Si25B7Cu1Nb3纳米晶/非晶复合组织结构,具体步骤包括:The embodiments of the present application provide nanocrystalline/amorphous composite structures of Mn 64 Si 25 B 7 Ag 1 Nb 3 and Mn 64 Si 25 B 7 Cu 1 Nb 3 , and the specific steps include:
1、分别将Mn64Si25B7Ag1Nb3和Mn64Si25B7Cu1Nb3成分中各元素原子摩尔百分配比,计算转换成原子的重量百分配比,制备10g的Mn64Si25B7Ag1Nb3母合金锭所需的原料:Mn为7.6237g,Si为1.4328g,B为0.1544g,Ag为0.2201g,Nb为0.5687g。制备10g的Mn64Si25B7Cu1Nb3母合金锭所需的原料:Mn为7.6933g,Si为1.4459g,B为0.1558g,Cu为0.1308g,Nb为0.5687g。1. Calculate the atomic molar ratio of each element in the components of Mn 64 Si 25 B 7 Ag 1 Nb 3 and Mn 64 Si 25 B 7 Cu 1 Nb 3 and convert them into atomic weight percent ratios to prepare 10g of Mn 64 Raw materials required for the Si 25 B 7 Ag 1 Nb 3 master alloy ingot: Mn 7.6237 g, Si 1.4328 g, B 0.1544 g, Ag 0.2201 g, and Nb 0.5687 g. Raw materials required to prepare 10 g of Mn64Si25B7Cu1Nb3 master alloy ingot: Mn 7.6933 g, Si 1.4459 g, B 0.1558 g, Cu 0.1308 g, Nb 0.5687 g.
2、把以上原料放入真空电弧熔炼炉进行电弧熔炼,熔炼电流优选为80A,反复翻转合金锭进行4次熔炼,以确保母合金锭成分均匀。2. Put the above raw materials into a vacuum arc melting furnace for arc melting, the melting current is preferably 80A, and the alloy ingot is repeatedly turned over for 4 times of melting to ensure that the composition of the mother alloy ingot is uniform.
3、将母合金打碎成直径约为5至8mm的小合金块,放入石英管利用感应式熔体快淬甩带机制备Mn64Si25B7Ag1Nb3和Mn64Si25B7Cu1Nb3非晶态合金带材。制备非晶态合金带材工艺为:石英喷嘴距离铜辊高度为0.25mm,铜辊转动的线速度55m/s,喷带压力差为0.06MPa。甩带时,利用超音速高频感应加热电源,频率为20kHz,对至于石英管中母合金块进行感应加热,加热电流为30A,待加热保持时间约为100s,此时合金块已经完全熔化成流动良好的液体,此时按下喷带按钮,利用石英管与炉体的压力差将合金液体按压出石英管喷嘴,喷射到快速转动的铜辊上,利用铜辊的快速冷却凝固成两个非晶态合金带材。3. Break the master alloy into small alloy blocks with a diameter of about 5 to 8 mm, put them into a quartz tube, and use an induction melt fast quenching strip machine to prepare Mn 64 Si 25 B 7 Ag 1 Nb 3 and Mn 64 Si 25 B 7 Cu 1 Nb 3 amorphous alloy strip. The process of preparing the amorphous alloy strip is as follows: the height of the quartz nozzle from the copper roller is 0.25mm, the linear speed of the copper roller is 55m/s, and the pressure difference of the spraying strip is 0.06MPa. When the belt is spun, a supersonic high-frequency induction heating power supply with a frequency of 20kHz is used to inductively heat the mother alloy ingot in the quartz tube. The heating current is 30A, and the heating holding time is about 100s. When the liquid flows well, press the spray button at this time, use the pressure difference between the quartz tube and the furnace body to press the alloy liquid out of the quartz tube nozzle, spray it onto the rapidly rotating copper roller, and use the rapid cooling of the copper roller to solidify into two Amorphous alloy strip.
4、将步骤3制备的两个在快淬下非晶态合金带材样品进行XRD表征,如图5所示,它们的XRD图谱只是在衍射角2θ=45°处出现一个宽泛的衍射峰,即“馒头峰”,表明两个非晶态合金带材样品在快淬下均为非晶态结构。4. The two samples of amorphous alloy strips prepared in step 3 under rapid quenching were characterized by XRD. As shown in Figure 5, their XRD patterns only showed a broad diffraction peak at the diffraction angle 2θ=45°. That is, the "steamed bread peak", which indicates that the two amorphous alloy strip samples are both amorphous structures under rapid quenching.
5、分别对两个非晶态合金带材样品进行DSC热分析,如图6所示,两个快淬下非晶态合金带材样品的DSC曲线上有三个放热峰,说明两个非晶态合金带材样品晶化特征为多级晶化行为,结合XRD物相分析可知,紧邻部分重合的第一、二级晶化峰对应析出的物相是Mn3Si和Mn5Si3,第三级晶化峰对应析出的物相是Mn2B。5. Perform DSC thermal analysis on two amorphous alloy strip samples respectively. As shown in Figure 6, there are three exothermic peaks on the DSC curves of the two amorphous alloy strip samples under rapid quenching, indicating that the two The crystallization characteristics of the crystalline alloy strip samples are multi-level crystallization behavior. Combined with the phase analysis of XRD, it can be seen that the first and second-order crystallization peaks that overlap in the adjacent parts correspond to the precipitated phases of Mn 3 Si and Mn 5 Si 3 . The precipitated phase corresponding to the third-order crystallization peak is Mn 2 B.
6、基于步骤5的热分析分别获得的两个非晶态合金带材样品的晶化特征温度,分别将两个非晶态合金带材样品置于真空管式炉在580℃中退火保温10min,制得Mn64Si25B7Ag1Nb3和Mn64Si25B7Cu1Nb3纳米晶/非晶复合组织结构。6. Based on the crystallization characteristic temperatures of the two amorphous alloy strip samples obtained respectively by the thermal analysis in step 5, the two amorphous alloy strip samples were placed in a vacuum tube furnace for annealing and heat preservation at 580° C. for 10 minutes, respectively. Mn 64 Si 25 B 7 Ag 1 Nb 3 and Mn 64 Si 25 B 7 Cu 1 Nb 3 nanocrystalline/amorphous composite structure were obtained.
图7为上述退火态下Mn64Si25B7Ag1Nb3和Mn64Si25B7Cu1Nb3纳米晶/非晶复合组织结构的XRD谱,对谱图进行物相分析确定为Mn3Si和Mn5Si3,表明退后晶化处理后,两个样品在非晶相(非晶相:指的是Mn、Si、B、Ag和Nb无序混乱而均匀分布的基体母相)基体上析出两种锰硅化合物,即Mn3Si和Mn5Si3纳米晶颗粒,成功地实现Mn3Si和Mn5Si3双相纳米晶/非晶复合结构型的锰基纳米晶/非晶多相复合组织结构的制备。Fig. 7 is the XRD spectrum of the nanocrystalline/amorphous composite structure of Mn 64 Si 25 B 7 Ag 1 Nb 3 and Mn 64 Si 25 B 7 Cu 1 Nb 3 in the above annealed state. 3 Si and Mn 5 Si 3 , indicating that after the retrograde crystallization treatment, the two samples are in the amorphous phase (amorphous phase: refers to the disordered and uniformly distributed matrix parent phase of Mn, Si, B, Ag and Nb) ) two kinds of manganese-silicon compounds, namely Mn 3 Si and Mn 5 Si 3 nanocrystalline particles, were precipitated on the matrix, and the manganese-based nanocrystalline/amorphous composite structure of Mn 3 Si and Mn 5 Si 3 dual-phase nanocrystalline/amorphous composite structure was successfully realized. Preparation of Amorphous Multiphase Composite Microstructures.
实施例3Example 3
本申请实施例提供了Mn55Fe15Si20B7Nb3、Mn55Fe15Si20B7Zr3或Mn55Fe15Si20B7V3纳米晶/非晶复合组织结构,具体步骤包括:The embodiments of the present application provide a nanocrystalline/amorphous composite structure of Mn 55 Fe 15 Si 20 B 7 Nb 3 , Mn 55 Fe 15 Si 20 B 7 Zr 3 or Mn 55 Fe 15 Si 20 B 7 V 3 , and the specific steps include: :
1、配方成分为Mn55Fe15Si20B7EM3(EM=Nb,Zr,V)。将Mn55Fe15Si20B7Nb3成分的各元素原子摩尔百分配比,计算转换成原子的重量百分配比,制备成10g的母合金锭所需的原料:Mn为6.3274g,Fe为1.7542g,B为0.1584g,Nb为0.5836g;同理,对EM=Zr,V的纳米晶/非晶复合组织结构样品按相对应原子百分比计算原料用量。1. The formula component is Mn 55 Fe 15 Si 20 B 7 EM 3 (EM=Nb, Zr, V). The atomic molar ratio of each element of Mn 55 Fe 15 Si 20 B 7 Nb 3 is calculated and converted into the atomic weight percentage ratio, and the raw materials required to prepare a 10g master alloy ingot: Mn is 6.3274g, Fe is 1.7542g, B is 0.1584g, Nb is 0.5836g; similarly, for the nanocrystalline/amorphous composite structure sample with EM=Zr, V, the raw material dosage is calculated according to the corresponding atomic percentage.
2、把以上原料放入真空电弧熔炼炉进行电弧熔炼,熔炼电流优选为100A,反复翻转合金锭进行4次熔炼,以确保母合金锭成分均匀。2. Put the above raw materials into the vacuum arc melting furnace for arc melting, the melting current is preferably 100A, and the alloy ingot is repeatedly turned over for 4 times of melting to ensure that the composition of the mother alloy ingot is uniform.
3、分别将母合金打碎成直径约为5至8mm的小合金块,放入石英管利用感应式熔体快淬甩带机制备Mn55Fe15Si20B7EM3(EM=Nb,Zr,V)非晶态合金带材。制备带材工艺为:石英喷嘴距离铜辊高度为0.25mm,铜辊转动的线速度55m/s,喷带压力差为0.06MPa。甩带时,利用超音速高频感应加热电源,频率为20kHz,对至于石英管中母合金块进行感应加热,加热电流为30A,待加热保持时间约为100s,此时合金块已经完全熔化成流动良好的液体,此时按下喷带按钮,利用石英管与炉体的压力差将合金液体按压出石英管喷嘴,喷射到快速转动的铜辊上,利用铜辊的快速冷却凝固成非晶态合金带材样品。3. Break the master alloy into small alloy blocks with a diameter of about 5 to 8 mm respectively, put them into a quartz tube and prepare Mn 55 Fe 15 Si 20 B 7 EM 3 (EM=Nb, Zr,V) amorphous alloy strip. The strip preparation process is as follows: the height of the quartz nozzle from the copper roll is 0.25mm, the line speed of the copper roll is 55m/s, and the pressure difference of the spray strip is 0.06MPa. When the belt is spun, a supersonic high-frequency induction heating power supply with a frequency of 20kHz is used to inductively heat the mother alloy ingot in the quartz tube. The heating current is 30A, and the heating holding time is about 100s. When the liquid flows well, press the spray button at this time, use the pressure difference between the quartz tube and the furnace body to press the alloy liquid out of the quartz tube nozzle, spray it onto the rapidly rotating copper roller, and use the rapid cooling of the copper roller to solidify into amorphous Alloy strip samples.
4、将步骤3制备的快淬下Mn55Fe15Si20B7EM3(EM=Nb,Zr,V)非晶态合金带材样品进行XRD表征,如图8所示,它们的XRD图谱在衍射角2θ=45°处均只出现一个宽泛的衍射峰,即“馒头峰”,表明样品在快淬下为非晶态结构的非晶合金带材样品。4. The Mn 55 Fe 15 Si 20 B 7 EM 3 (EM=Nb, Zr, V) amorphous alloy strip samples prepared in step 3 under rapid quenching were characterized by XRD, as shown in FIG. 8 , their XRD patterns There is only one broad diffraction peak at the diffraction angle 2θ=45°, that is, the "steamed bread peak", which indicates that the sample is an amorphous alloy strip sample with an amorphous structure under rapid quenching.
5、分别步骤3的Mn55Fe15Si20B7EM3(EM=Nb,Zr,V)非晶态合金带材样品进行DSC热分析,其曲线见图9,所有样品的DSC曲线上有两个明显的放热峰,说明非晶样品晶化特征为二级晶化行为,结合XRD物相分析可知,第一级晶化峰对应析出的物相是α-Mn和Mn6Si,第二级晶化峰对应析出的物相是Mn2B。5. Perform DSC thermal analysis on the Mn 55 Fe 15 Si 20 B 7 EM 3 (EM=Nb, Zr, V) amorphous alloy strip samples in step 3 respectively, and the curves are shown in Figure 9. The DSC curves of all samples have Two obvious exothermic peaks indicate that the crystallization of the amorphous sample is characterized by secondary crystallization behavior. Combined with the XRD phase analysis, it can be seen that the first-order crystallization peaks correspond to the precipitated phases of α-Mn and Mn 6 Si, and the first-order crystallization peaks correspond to the precipitated phases. The secondary crystallization peak corresponds to the precipitated phase of Mn 2 B.
6、基于步骤5的热分析获得的晶化特征温度,对Mn55Fe15Si20B7Zr3非晶态合金带材样品进行600℃保温10min的退火处理,对Mn55Fe15Si20B7Nb3非晶态合金带材样品进行620℃保温10min的退火处理,制得Mn55Fe15Si20B7Zr3和Mn55Fe15Si20B7Nb3纳米晶/非晶复合组织结构。6. Based on the crystallization characteristic temperature obtained by the thermal analysis in step 5, the Mn 55 Fe 15 Si 20 B 7 Zr 3 amorphous alloy strip sample is subjected to annealing treatment at 600° C. for 10 minutes, and the Mn 55 Fe 15 Si 20 B 7 Nb 3 amorphous alloy strip samples were annealed at 620 ℃ for 10 min to obtain Mn 55 Fe 15 Si 20 B 7 Zr 3 and Mn 55 Fe 15 Si 20 B 7 Nb 3 nanocrystalline/amorphous composite microstructures .
图10为本申请实施例上述退火态下Mn55Fe15Si20B7Zr3和Mn55Fe15Si20B7Nb3纳米晶/非晶复合组织结构的XRD谱,对谱图的分析可知,非晶态合金带材样品在退火后,在非晶相(非晶相:指的是Mn、Fe、Si、B和Nb无序混乱而均匀分布的基体母相)基体上析出两种锰硅化合物,即α-Mn和Mn6Si纳米晶颗粒,成功地制备了α-Mn和Mn6Si双相纳米晶/非晶复合组织结构类型的锰基纳米晶/非晶复合结构合金。10 is the XRD spectrum of the nanocrystalline/amorphous composite structure of Mn 55 Fe 15 Si 20 B 7 Zr 3 and Mn 55 Fe 15 Si 20 B 7 Nb 3 in the annealed state of the embodiment of the present application, and it can be seen from the analysis of the spectrum , after the annealing of the amorphous alloy strip sample, two kinds of manganese are precipitated on the matrix of the amorphous phase (amorphous phase: refers to the disordered and uniformly distributed matrix parent phase of Mn, Fe, Si, B and Nb) Silicon compounds, namely α-Mn and Mn 6 Si nanocrystalline particles, successfully prepared a manganese-based nanocrystalline/amorphous composite structure alloy of α-Mn and Mn 6 Si dual-phase nanocrystalline/amorphous composite structure type.
对比例1Comparative Example 1
本申请对比例提供了不同Si含量的锰基合金,具体方法包括:The comparative examples of the present application provide manganese-based alloys with different Si contents, and the specific methods include:
参照实施例1的方法,本对比例区别在于Si的原子摩尔数小于10,Si的摩尔数大于等于30,即根据Mn83Si4B13、Mn82Si6B12、Mn82Si8B10、Mn45Si45B10、Mn63Si30B7的各元素原子摩尔百分配比,参照实施例1的步骤2和步骤3的方法,制得不同Si含量的锰基合金带材,即得Mn83Si4B13合金带材、Mn82Si6B12合金带材、Mn82Si8B10合金带材、Mn45Si45B10合金带材、Mn63Si30B7合金带材,以上合金带材不进行退火热处理,仅进行熔体快淬处理。Referring to the method of Example 1, the difference in this comparative example is that the atomic mole number of Si is less than 10, and the mole number of Si is greater than or equal to 30, that is, according to Mn 83 Si 4 B 13 , Mn 82 Si 6 B 12 , Mn 82 Si 8 B 10 , Mn 45 Si 45 B 10 , Mn 63 Si 30 B 7 atomic molar ratio of each element, with reference to the method of step 2 and step 3 of Example 1, to prepare manganese-based alloy strips with different Si contents, that is, to obtain Mn 83 Si 4 B 13 alloy strip, Mn 82 Si 6 B 12 alloy strip, Mn 82 Si 8 B 10 alloy strip, Mn 45 Si 45 B 10 alloy strip, Mn 63 Si 30 B 7 alloy strip, The above alloy strips are not subjected to annealing heat treatment, but only to rapid melt quenching treatment.
将上述快淬态下的合金带材进行XRD谱分析,结果如图11~图12所示。图11为Si原子摩尔百分比小于10at.%快淬合金带材样品的XRD谱,由图可知,快淬态下的合金带材已经出现了较为严重的晶化峰,现有的条件下难以制备出非晶态结构的非晶合金带材;图2为Si原子摩尔百分比大于等于30at.%快淬合金带材样品的XRD谱,快淬态下的样品同样发生了严重晶化。可见,通过铜辊快淬法无法获得非晶态结构的非晶带材。The XRD spectrum analysis of the alloy strip in the above-mentioned rapid quenching state is carried out, and the results are shown in FIGS. 11 to 12 . Figure 11 shows the XRD spectrum of the rapidly quenched alloy strip with Si atomic molar percentage less than 10 at.%. It can be seen from the figure that the alloy strip in the rapidly quenched state has appeared serious crystallization peaks, and it is difficult to prepare under the existing conditions. The amorphous alloy strip with amorphous structure is obtained; Figure 2 shows the XRD spectrum of the rapidly quenched alloy strip with Si atomic molar percentage greater than or equal to 30 at.%. The sample in the rapid quench state also undergoes severe crystallization. It can be seen that an amorphous ribbon with an amorphous structure cannot be obtained by the copper roll rapid quenching method.
综上所述,本申请实施例通过非晶合金前驱体的退火晶化,使非晶合金基体上析出一种或两种α-Mn、Mn5Si3、Mn3Si、Mn6Si的单质或锰硅化合物纳米颗粒,形成锰基纳米晶/非晶复合结构材料。其重要是通过锰基纳米晶/非晶复合结构合金的成分设计,使非晶合金在晶化热分析时出现多级晶化,并且第一级晶化对应析出的是锰单质或锰硅的化合物,这能通过热处理控制析出纳米晶颗粒,实现对锰基纳米晶/非晶复合结构合金的可控制备。对于Mn-Si-B三元非晶合金,在Si原子摩尔比百分含量为10~20at.%,Mn-Si-B为单级晶化(DSC曲线上只有一个放热峰)。要适度调控Si/B,Si/Mn比例,非晶样品才会出现多级晶化行为,如实施例1的样品Si为25at.%,DSC出现两个放热峰,对应析出Mn5Si3和Mn2B相。此外,通过引入Cu、Ag等与Mn不固溶的元素促进Mn或锰化合物的形核,同时添加Nb等大原子推延Mn2B相的析出,扩大晶化峰的温度间隔,更利于热处理析出锰硅纳米颗粒(实施例2)。还有可以引入适量的Fe、Co、Ni做成核中心和Zr、Nb等大原子的协同作用,实现对非晶合金晶化行为析出物相的控制。如实施例3成分配方中Fe和Zr、Nb或V的协同作用,使非晶合金出现双级晶化行为。使得非晶合金的多级晶化行为实现可控性制备锰基纳米晶/非晶复合结构材料。To sum up, in the embodiments of the present application, one or two elements of α-Mn, Mn 5 Si 3 , Mn 3 Si and Mn 6 Si are precipitated on the amorphous alloy matrix by annealing and crystallization of the amorphous alloy precursor. Or manganese-silicon compound nanoparticles to form manganese-based nanocrystalline/amorphous composite structural materials. The important thing is that through the composition design of the manganese-based nanocrystalline/amorphous composite structure alloy, the amorphous alloy has multi-level crystallization in the thermal analysis of crystallization, and the first-level crystallization corresponds to the precipitation of manganese element or manganese silicon. compound, which can control the precipitation of nanocrystalline particles through heat treatment, and realize the controllable preparation of manganese-based nanocrystalline/amorphous composite structure alloys. For the Mn-Si-B ternary amorphous alloy, when the Si atomic molar percentage is 10-20 at.%, Mn-Si-B is single-stage crystallization (there is only one exothermic peak on the DSC curve). To moderately adjust the ratio of Si/B and Si/Mn, the amorphous sample will exhibit multi-level crystallization behavior. For example, the sample of Example 1 has 25 at.% Si, and DSC has two exothermic peaks, corresponding to the precipitation of Mn 5 Si 3 and Mn 2 B phase. In addition, the nucleation of Mn or manganese compounds is promoted by introducing elements that are insoluble in Mn, such as Cu and Ag, and the precipitation of Mn 2 B phase is delayed by the addition of large atoms such as Nb, and the temperature interval of crystallization peaks is enlarged, which is more conducive to the precipitation of heat treatment. Manganese silicon nanoparticles (Example 2). In addition, an appropriate amount of Fe, Co, and Ni can be introduced to form the synergistic effect of nucleation centers and large atoms such as Zr and Nb, so as to control the crystallization behavior of amorphous alloys and precipitate phases. For example, the synergistic effect of Fe and Zr, Nb or V in the composition formula of Example 3 makes the amorphous alloy appear bi-level crystallization behavior. The multi-level crystallization behavior of amorphous alloys can be controlled to prepare manganese-based nanocrystalline/amorphous composite structural materials.
此外,本申请实施例制得的锰基纳米晶/非晶复合结构合金赋予材料更加优异的特性和更为丰富的磁性转变现象。实施例1的材料中,图4公开了本实施例的锰基纳米晶/非晶复合结构合金样品与非晶态样品的磁性表现,显然本实施例的锰基纳米晶/非晶复合结构合金样品具有异乎寻常非晶态合金磁转变特性和更丰富的磁转变行为。本申请的锰基纳米晶/非晶复合结构合金对开发具有宽温域零磁场稳定的斯格明子磁结构材料提供了可能性,在自旋电子学领域具备的学术研究价值和潜在的实际应用价值。In addition, the manganese-based nanocrystalline/amorphous composite structure alloys prepared in the examples of the present application endow the materials with more excellent properties and richer magnetic transition phenomena. Among the materials of Example 1, Figure 4 discloses the magnetic performance of the manganese-based nanocrystalline/amorphous composite structure alloy sample and the amorphous sample of this embodiment. Obviously, the manganese-based nanocrystalline/amorphous composite structure alloy of this embodiment is The samples have unusual amorphous alloy magnetic transition properties and richer magnetic transition behaviors. The manganese-based nanocrystalline/amorphous composite structure alloy of the present application provides the possibility to develop skyrmion magnetic structure materials with wide temperature range and zero magnetic field stability, and has academic research value and potential practical application in the field of spintronics value.
以上所述仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。The above are only the preferred embodiments of the present application. It should be pointed out that for those skilled in the art, without departing from the principles of the present application, several improvements and modifications can also be made. It should be regarded as the protection scope of this application.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110661600.2A CN113388766B (en) | 2021-06-15 | 2021-06-15 | A kind of manganese-based nanocrystalline/amorphous composite structure alloy and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110661600.2A CN113388766B (en) | 2021-06-15 | 2021-06-15 | A kind of manganese-based nanocrystalline/amorphous composite structure alloy and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113388766A CN113388766A (en) | 2021-09-14 |
CN113388766B true CN113388766B (en) | 2022-09-13 |
Family
ID=77621523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110661600.2A Active CN113388766B (en) | 2021-06-15 | 2021-06-15 | A kind of manganese-based nanocrystalline/amorphous composite structure alloy and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113388766B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115125428B (en) * | 2022-08-09 | 2023-03-10 | 杭州电子科技大学 | Wide-temperature-zone trans-room-temperature Magnetitum material and preparation method and application thereof |
CN117840422B (en) * | 2024-03-08 | 2024-06-14 | 朗峰新材料启东有限公司 | Manganese-based amorphous nanocrystalline composite powder and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110670000A (en) * | 2019-09-24 | 2020-01-10 | 全球能源互联网研究院有限公司 | Nanocrystalline magnetically soft alloy, amorphous magnetically soft alloy and preparation method thereof |
CN112899586A (en) * | 2021-01-15 | 2021-06-04 | 广东工业大学 | Manganese-based amorphous alloy and preparation method and application thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101255536A (en) * | 2008-03-13 | 2008-09-03 | 江苏波瑞电气有限公司 | Production of high-squareness-ratio amorphous nanocrystalline strip and iron core |
CN102181808B (en) * | 2011-04-08 | 2013-01-02 | 郭莉 | Method for producing high-permeability amorphous nanocrystalline alloy |
CN106756644B (en) * | 2016-12-28 | 2019-03-12 | 广东工业大学 | A kind of iron-based amorphous and nanocrystalline soft magnetic alloy and preparation method thereof based on element silicon |
CN110993239A (en) * | 2019-04-19 | 2020-04-10 | 东南大学 | A kind of iron-cobalt-based amorphous soft magnetic alloy and preparation method thereof |
-
2021
- 2021-06-15 CN CN202110661600.2A patent/CN113388766B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110670000A (en) * | 2019-09-24 | 2020-01-10 | 全球能源互联网研究院有限公司 | Nanocrystalline magnetically soft alloy, amorphous magnetically soft alloy and preparation method thereof |
CN112899586A (en) * | 2021-01-15 | 2021-06-04 | 广东工业大学 | Manganese-based amorphous alloy and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN113388766A (en) | 2021-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7387008B2 (en) | Iron-based amorphous alloy containing sub-nanoscale ordered clusters, method for preparing the same, and nanocrystalline alloy derivatives using the same | |
CN101834046B (en) | High saturation magnetization intensity Fe-based nanocrystalline magnetically soft alloy material and preparation method thereof | |
CN110387500B (en) | High-magnetic-induction high-frequency iron-based nanocrystalline magnetically soft alloy and preparation method thereof | |
CN110257735B (en) | Amorphous nanocrystalline soft magnetic material, preparation method and application thereof, amorphous strip, amorphous nanocrystalline strip and amorphous nanocrystalline magnetic sheet | |
CN101215679A (en) | A kind of non-magnetic iron-based bulk amorphous alloy and preparation method thereof | |
CN109930080B (en) | Copper-free nanocrystalline magnetically soft alloy and preparation method thereof | |
CN113388766B (en) | A kind of manganese-based nanocrystalline/amorphous composite structure alloy and preparation method thereof | |
CN106636982B (en) | A kind of Fe-based amorphous alloy and preparation method thereof | |
CN104264080B (en) | Preparation process for improving forming ability of Fe-base amorphous alloys | |
CN110257736B (en) | Amorphous nanocrystalline soft magnetic material, preparation method and application thereof, amorphous strip, amorphous nanocrystalline strip and amorphous nanocrystalline magnetic sheet | |
CN106834930B (en) | Iron-base nanometer crystal alloy with the high impurity compatibility of high magnetic flux density and the method for preparing the alloy using the raw material of industry | |
CN110284082B (en) | Amorphous nanocrystalline soft magnetic material and preparation method and application thereof | |
CN107103976A (en) | A kind of iron cobalt-based toughness nano-crystal soft magnetic alloy and preparation method thereof | |
CN105671460B (en) | Preparation method of low-cost FeNbB ternary amorphous alloy soft magnetic material | |
CN107419199B (en) | A kind of tin-containing soft magnetic iron-based nanocrystalline-amorphous alloy and preparation method thereof | |
WO2021149590A1 (en) | Alloy and molded body | |
JP7326777B2 (en) | Soft magnetic alloys and magnetic parts | |
KR101562830B1 (en) | composition comprising Fe based nanocrystalline phase and method for preparing the same | |
CN113278897B (en) | Iron-based nanocrystalline magnetically soft alloy and preparation method thereof | |
JP6744238B2 (en) | Soft magnetic powder, magnetic parts and dust core | |
CN112962024B (en) | Finemet-like Fe-based nanocrystalline magnetically soft alloy and preparation method thereof | |
CN116313356A (en) | Iron-based amorphous-nanocrystalline magnetically soft alloy, strip and preparation method thereof | |
CN107419200B (en) | A kind of manganese-containing soft magnetic iron-based nanocrystalline-amorphous alloy and preparation method thereof | |
CN104451216B (en) | A kind of preparation method of resistant to elevated temperatures nickel cobalt base soft magnetic materials | |
JPS6057686B2 (en) | Permanent magnetic ribbon and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |