[go: up one dir, main page]

CN113363154B - Method for forming semiconductor structure - Google Patents

Method for forming semiconductor structure Download PDF

Info

Publication number
CN113363154B
CN113363154B CN202010146892.1A CN202010146892A CN113363154B CN 113363154 B CN113363154 B CN 113363154B CN 202010146892 A CN202010146892 A CN 202010146892A CN 113363154 B CN113363154 B CN 113363154B
Authority
CN
China
Prior art keywords
forming
layer
fin
film
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010146892.1A
Other languages
Chinese (zh)
Other versions
CN113363154A (en
Inventor
周飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp, Semiconductor Manufacturing International Beijing Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN202010146892.1A priority Critical patent/CN113363154B/en
Publication of CN113363154A publication Critical patent/CN113363154A/en
Application granted granted Critical
Publication of CN113363154B publication Critical patent/CN113363154B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/024Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/62Fin field-effect transistors [FinFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/791Arrangements for exerting mechanical stress on the crystal lattice of the channel regions
    • H10D30/797Arrangements for exerting mechanical stress on the crystal lattice of the channel regions being in source or drain regions, e.g. SiGe source or drain
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/01Manufacture or treatment
    • H10D64/017Manufacture or treatment using dummy gates in processes wherein at least parts of the final gates are self-aligned to the dummy gates, i.e. replacement gate processes

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A method for forming a semiconductor structure includes: providing a substrate, wherein the substrate is provided with a fin structure; forming a pseudo gate structure crossing the fin structure on the substrate, wherein the pseudo gate structure covers part of the top surface and the side wall surface of the fin structure; forming first grooves in fin structures on two sides of the pseudo gate structure; after forming the first groove, forming a first dielectric layer on the substrate, wherein the dummy gate structure is positioned in the first dielectric layer; removing the pseudo gate structure and the second fin portion layer covered by the pseudo gate structure, and forming gate openings in the first dielectric layer and between adjacent first fin portion layers; forming a gate structure in the gate opening, wherein the gate structure surrounds each first fin part layer; removing the first dielectric layer after forming the gate structure to expose the first groove; and after the first dielectric layer is removed, forming a source-drain doping layer in the first groove. The semiconductor structure formed by the method has better performance.

Description

半导体结构的形成方法Formation method of semiconductor structure

技术领域technical field

本发明涉及半导体制造技术领域,尤其涉及一种半导体结构的形成方法。The invention relates to the technical field of semiconductor manufacturing, in particular to a method for forming a semiconductor structure.

背景技术Background technique

随着半导体技术的发展,传统的平面式的金属-氧化物半导体场效应晶体管对沟道电流的控制能力变弱,造成严重的漏电流。鳍式场效应晶体管(FinFET)是一种新兴的多栅器件,它一般包括凸出于半导体衬底表面的鳍部,覆盖部分所述鳍部的顶部表面和侧壁的栅极结构,位于栅极结构两侧的鳍部中的源漏掺杂区。与平面式的金属-氧化物半导体场效应晶体管相比,鳍式场效应晶体管具有更强的短沟道抑制能力,具有更强的工作电流。With the development of semiconductor technology, the control ability of the traditional planar metal-oxide semiconductor field effect transistor on the channel current becomes weaker, resulting in serious leakage current. Fin Field Effect Transistor (FinFET) is an emerging multi-gate device, which generally includes a fin protruding from the surface of the semiconductor substrate, a gate structure covering part of the top surface and sidewall of the fin, located at the gate The source and drain doped regions in the fins on both sides of the pole structure. Compared with planar metal-oxide semiconductor field effect transistors, fin field effect transistors have stronger short-channel suppression capability and stronger operating current.

随着半导体技术的进一步发展,集成电路器件的尺寸越来越小,传统的鳍式场效应晶体管在进一步增大工作电流方面存在限制。具体的,由于鳍部中只有靠近顶部表面和侧壁的区域用来作为沟道区,使得鳍部中用于作为沟道区的体积较小,这对增大鳍式场效应晶体管的工作电流造成限制。因此,提出了一种沟道栅极环绕(gate-all-around,简称GAA)结构的鳍式场效应晶体管,使得用于作为沟道区的体积增加,进一步的增大了沟道栅极环绕结构鳍式场效应晶体管的工作电流。With the further development of semiconductor technology, the size of integrated circuit devices is getting smaller and smaller, and the traditional fin field effect transistor has limitations in further increasing the operating current. Specifically, since only the area close to the top surface and the sidewall of the fin is used as the channel region, the volume of the fin used as the channel region is relatively small, which is helpful for increasing the operating current of the fin field effect transistor. cause restrictions. Therefore, a fin field effect transistor with a gate-all-around (GAA) structure is proposed, which increases the volume used as the channel region and further increases the gate-all-around area of the channel. Structural FinFET operating current.

然而,现有技术中沟道栅极环绕结构鳍式场效应晶体管的性能有待提升。However, the performance of the fin field effect transistor with surrounding trench gate structure in the prior art needs to be improved.

发明内容Contents of the invention

本发明解决的技术问题是提供一种半导体结构的形成方法,改善所述源漏掺杂层的应力,从而提高所述半导体结构的性能。The technical problem solved by the present invention is to provide a method for forming a semiconductor structure, which improves the stress of the source-drain doped layer, thereby improving the performance of the semiconductor structure.

为解决上述技术问题,本发明技术方案提供一种半导体结构的形成方法,包括:提供基底,所述基底上具有鳍部结构,所述鳍部结构包括沿基底表面法线方向重叠的若干层复合鳍部层,各复合鳍部层均包括第二鳍部层以及位于第二鳍部层表面的第一鳍部层;在所述基底上成横跨所述鳍部结构的伪栅极结构,所述伪栅极结构覆盖鳍部结构的部分顶部表面和侧壁表面;在所述伪栅极结构两侧的鳍部结构内形成第一凹槽;形成所述第一凹槽之后,在所述基底上形成第一介质层,且所述伪栅极结构位于所述第一介质层内;去除所述伪栅极结构和所述伪栅极结构覆盖的第二鳍部层,在所述第一介质层内、以及相邻的第一鳍部层之间形成栅开口;在所述栅开口内形成栅极结构,所述栅极结构包围各第一鳍部层;形成所述栅极结构之后,去除所述第一介质层,暴露出所述第一凹槽;去除所述第一介质层之后,在所述第一凹槽内形成源漏掺杂层。In order to solve the above-mentioned technical problems, the technical solution of the present invention provides a method for forming a semiconductor structure, including: providing a substrate with a fin structure on the substrate, and the fin structure includes a plurality of composite layers overlapping along the normal direction of the surface of the substrate. Fin layers, each composite fin layer includes a second fin layer and a first fin layer located on the surface of the second fin layer; a dummy gate structure straddling the fin structure is formed on the base, The dummy gate structure covers part of the top surface and the sidewall surface of the fin structure; a first groove is formed in the fin structure on both sides of the dummy gate structure; after the first groove is formed, the Forming a first dielectric layer on the substrate, and the dummy gate structure is located in the first dielectric layer; removing the dummy gate structure and the second fin layer covered by the dummy gate structure, in the A gate opening is formed in the first dielectric layer and between adjacent first fin layers; a gate structure is formed in the gate opening, and the gate structure surrounds each first fin layer; the gate is formed After the structure, the first dielectric layer is removed to expose the first groove; after the first dielectric layer is removed, a source-drain doped layer is formed in the first groove.

可选的,所述第一凹槽的形成方法包括:以所述伪栅极结构为掩膜,刻蚀所述鳍部结构,直至暴露出基底表面,在所述伪栅极结构两侧的鳍部结构内形成所述第一凹槽。Optionally, the method for forming the first groove includes: using the dummy gate structure as a mask, etching the fin structure until the substrate surface is exposed, and the fins on both sides of the dummy gate structure The first groove is formed in the fin structure.

可选的,所述栅开口的形成方法包括:去除所述伪栅极结构,在所述第一介质层内形成初始栅开口;去除所述初始栅开口暴露出的第二鳍部层,使所述初始栅开口形成所述栅开口。Optionally, the method for forming the gate opening includes: removing the dummy gate structure, forming an initial gate opening in the first dielectric layer; removing the second fin layer exposed by the initial gate opening, so that The initial gate opening forms the gate opening.

可选的,所述鳍部结构的最底层为第一鳍部层;形成所述伪栅极结构之前,在所述基底上形成覆盖部分所述鳍部结构的隔离结构,且所述隔离结构的顶部表面低于所述最底层的第一鳍部层顶部表面。Optionally, the bottom layer of the fin structure is the first fin layer; before forming the dummy gate structure, an isolation structure covering part of the fin structure is formed on the substrate, and the isolation structure The top surface of the first fin layer is lower than the top surface of the bottommost first fin layer.

可选的,还包括:形成所述第一凹槽之后,形成所述第一介质层之前,去除所述第一凹槽侧壁暴露出的部分第二鳍部层,在相邻第一鳍部层之间形成第二凹槽;在所述第二凹槽内、隔离结构表面、以及伪栅极结构表面形成第一侧墙膜;形成所述第一侧墙膜之后,在基底上形成所述第一介质层,且所述第一介质层覆盖所述第一侧墙膜表面和隔离结构表面。Optionally, it further includes: after forming the first groove and before forming the first dielectric layer, removing part of the second fin layer exposed on the sidewall of the first groove, and A second groove is formed between the lower layers; a first sidewall film is formed in the second groove, on the surface of the isolation structure, and on the surface of the dummy gate structure; after the formation of the first sidewall film, a The first medium layer, and the first medium layer covers the surface of the first side wall membrane and the surface of the isolation structure.

可选的,还包括:去除所述第一介质层之后,形成所述源漏掺杂层之前,刻蚀所述第一侧墙膜,直至暴露出第一鳍部层侧壁表面和基底表面,在所述第二凹槽内形成第一侧墙;形成所述第一侧墙之后,形成所述源漏掺杂层,所述源漏掺杂层覆盖所述第一侧墙侧壁表面和第一鳍部层侧壁表面。Optionally, further comprising: after removing the first dielectric layer and before forming the source-drain doped layer, etching the first sidewall film until the sidewall surface of the first fin layer and the surface of the base are exposed , forming a first sidewall in the second groove; after forming the first sidewall, forming the source-drain doped layer, the source-drain doped layer covering the sidewall surface of the first sidewall and the first fin layer sidewall surface.

可选的,所述第一侧墙膜的材料和所述第一介质层的材料不同,所述第一侧墙膜的材料和所述隔离结构的材料不同;所述第一介质层的材料包括:氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅或碳氮氧化硅;所述第一侧墙膜的材料包括:氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅或碳氮氧化硅;所述隔离结构的材料包括:氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅或碳氮氧化硅。Optionally, the material of the first sidewall film is different from that of the first medium layer, and the material of the first sidewall film is different from that of the isolation structure; the material of the first medium layer Including: silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride or silicon oxycarbonitride; the material of the first sidewall film includes: silicon oxide, silicon nitride, silicon oxynitride, carbon Silicon oxide, silicon carbonitride or silicon carbonitride; the material of the isolation structure includes: silicon oxide, silicon nitride, silicon nitride oxide, silicon carbide, silicon carbonitride or silicon carbonitride.

可选的,所述第一侧墙膜的形成工艺包括:化学气相沉积工艺、物理气相沉积工艺或者原子层沉积工艺。Optionally, the forming process of the first sidewall film includes: a chemical vapor deposition process, a physical vapor deposition process or an atomic layer deposition process.

可选的,所述第一介质层的形成方法包括:在所述第一侧墙膜表面形成初始介质膜,所述初始介质膜覆盖所述伪栅极结构顶部表面和侧壁表面;刻蚀所述初始介质膜,直至暴露出伪栅极结构顶部表面,在所述基底上形成所述第一介质层。Optionally, the method for forming the first dielectric layer includes: forming an initial dielectric film on the surface of the first sidewall film, the initial dielectric film covering the top surface and the sidewall surface of the dummy gate structure; etching The initial dielectric film until the top surface of the dummy gate structure is exposed, and the first dielectric layer is formed on the substrate.

可选的,采用第一刻蚀工艺去除所述第一介质层,且所述第一刻蚀工艺对第一介质层的刻蚀速率大于对第一侧墙膜的刻蚀速率。Optionally, a first etching process is used to remove the first dielectric layer, and an etching rate of the first dielectric layer in the first etching process is greater than an etching rate of the first sidewall film.

可选的,采用第二刻蚀工艺刻蚀所述第一侧墙膜,且所述第二刻蚀工艺对所述第一侧墙膜的刻蚀速率大于对所述隔离结构的刻蚀速率。Optionally, the first sidewall film is etched using a second etching process, and the etching rate of the first sidewall film in the second etching process is greater than the etching rate of the isolation structure .

可选的,所述第一鳍部层的材料和第二鳍部层的材料不同;所述第一鳍部层的材料为单晶硅或单晶锗硅;所述第二鳍部层的材料为单晶硅或单晶锗硅。Optionally, the material of the first fin layer is different from that of the second fin layer; the material of the first fin layer is single crystal silicon or single crystal silicon germanium; the material of the second fin layer The material is single crystal silicon or single crystal silicon germanium.

可选的,所述伪栅极结构包括:伪栅介质层和位于所述伪栅介质层表面的伪栅极层;所述伪栅极结构的形成方法包括:在所述基底上形成覆盖所述鳍部结构的伪栅介质层膜;在所述伪栅介质膜上形成伪栅极膜;刻蚀所述伪栅介质膜和伪栅极膜直至暴露出鳍部结构的顶部表面,使所述伪栅介质膜形成伪栅介质层,使伪栅极膜形成伪栅极层,形成所述伪栅极结构。Optionally, the dummy gate structure includes: a dummy gate dielectric layer and a dummy gate layer located on the surface of the dummy gate dielectric layer; the method for forming the dummy gate structure includes: forming a dummy gate on the substrate The dummy gate dielectric layer film of the fin structure; the dummy gate film is formed on the dummy gate dielectric film; the dummy gate dielectric film and the dummy gate film are etched until the top surface of the fin structure is exposed, so that the The dummy gate dielectric film forms a dummy gate dielectric layer, and the dummy gate film forms a dummy gate layer to form the dummy gate structure.

可选的,所述伪栅极结构还包括:位于所述伪栅介质层和所述伪栅极层侧壁表面的第二侧墙。Optionally, the dummy gate structure further includes: second sidewalls located on the dummy gate dielectric layer and the sidewall surfaces of the dummy gate layer.

可选的,所述栅极结构包括:界面层、和位于所述界面层表面的栅介质层、以及位于所述栅介质层表面的栅电极层;所述栅极结构的形成方法包括:在所述栅开口表面和第一介质层表面形成界面膜;在所述界面膜表面形成栅介质膜;在所述栅介质膜表面形成栅电极膜,且所述栅电极膜填充满所述栅开口;平坦化所述栅电极膜、栅介质膜以及界面膜,形成所述栅极结构。Optionally, the gate structure includes: an interface layer, a gate dielectric layer located on the surface of the interface layer, and a gate electrode layer located on the surface of the gate dielectric layer; the method for forming the gate structure includes: An interface film is formed on the surface of the gate opening and the surface of the first dielectric layer; a gate dielectric film is formed on the surface of the interface film; a gate electrode film is formed on the surface of the gate dielectric film, and the gate electrode film fills the gate opening ; planarizing the gate electrode film, gate dielectric film and interface film to form the gate structure.

可选的,还包括:形成所述界面膜和栅介质膜之后,形成栅电极膜之前,进行热处理;所述热处理的参数包括:所述热处理的工艺包括:尖峰退火或者激光退火,所述热处理的温度范围为850摄氏度~1200摄氏度。Optionally, it also includes: performing heat treatment after forming the interface film and gate dielectric film and before forming the gate electrode film; the parameters of the heat treatment include: the heat treatment process includes: spike annealing or laser annealing, the heat treatment The temperature range is 850 degrees Celsius to 1200 degrees Celsius.

可选的,所述源漏掺杂层的形成工艺包括:外延生长工艺。Optionally, the forming process of the source-drain doped layer includes: an epitaxial growth process.

可选的,还包括:形成所述源漏掺杂层之后,在所述基底上形成第二介质层;在所述第二介质层内形成第一导电结构和第二导电结构,所述第一导电结构与所述栅极结构电连接,所述第二导电结构与所述源漏掺杂层电连接。Optionally, further comprising: after forming the source-drain doped layer, forming a second dielectric layer on the substrate; forming a first conductive structure and a second conductive structure in the second dielectric layer, the first A conductive structure is electrically connected to the gate structure, and the second conductive structure is electrically connected to the source-drain doped layer.

可选的,还包括:形成所述源漏掺杂层之后,形成所述第二介质层之前,在所述源漏掺杂层表面形成接触电阻层;形成所述接触电阻层之后,在所述接触电阻层表面形成所述第二介质层。Optionally, it also includes: after forming the source-drain doped layer and before forming the second dielectric layer, forming a contact resistance layer on the surface of the source-drain doped layer; after forming the contact resistance layer, forming The second dielectric layer is formed on the surface of the contact resistance layer.

与现有技术相比,本发明的技术方案具有以下有益效果:Compared with the prior art, the technical solution of the present invention has the following beneficial effects:

本发明技术方案提供的半导体结构的形成方法中,在形成所述栅极结构之后,去除所述第一介质层,暴露出第一凹槽;在所述第一凹槽内形成源漏掺杂层。所述源漏掺杂层的形成,发生在形成所述栅极结构的过程之后,能够避免形成所述栅极结构的高温热处理过程,从而减少高温情况下对所述源漏掺杂层的材料造成影响,有利于保证所述源漏掺杂层对沟道具有较大的应力,使得所述沟道具有较高的载流子迁移率,因此,有利于提高所述半导体结构的性能。In the method for forming a semiconductor structure provided by the technical solution of the present invention, after forming the gate structure, the first dielectric layer is removed to expose the first groove; layer. The formation of the source-drain doped layer occurs after the process of forming the gate structure, which can avoid the high-temperature heat treatment process for forming the gate structure, thereby reducing the material of the source-drain doped layer under high temperature conditions. The impact is beneficial to ensure that the source-drain doped layer has a greater stress on the channel, so that the channel has a higher carrier mobility, and thus is beneficial to improving the performance of the semiconductor structure.

进一步,刻蚀所述第一侧墙膜,在所述第二凹槽内形成第一侧墙的过程,是在去除第一介质层之后。由于所述第一侧墙膜在第二凹槽内、所述隔离结构表面以及伪栅极结构表面,且由于所述第一侧墙膜的材料和所述第一介质层的材料不同,使得在后续去除所述第一介质层的过程中,位于隔离结构表面的第一侧墙膜能够起到保护作用,避免对所述隔离结构造成刻蚀,从而保证所述隔离结构不受工艺的影响,以便所述隔离结构能够起到较好的隔离作用,提高形成的半导体结构的性能。Further, the process of etching the first sidewall film to form the first sidewall in the second groove is after removing the first dielectric layer. Because the first sidewall film is in the second groove, the surface of the isolation structure and the surface of the dummy gate structure, and because the material of the first sidewall film is different from that of the first dielectric layer, so that In the subsequent process of removing the first dielectric layer, the first sidewall film located on the surface of the isolation structure can protect the isolation structure from being etched, thereby ensuring that the isolation structure is not affected by the process , so that the isolation structure can play a better isolation effect and improve the performance of the formed semiconductor structure.

附图说明Description of drawings

图1至图3是一种半导体结构的形成方法各步骤的结构示意图;1 to 3 are structural schematic diagrams of each step of a method for forming a semiconductor structure;

图4至图15是本发明一实施例中的半导体结构的形成方法各步骤的结构示意图。4 to 15 are structural schematic diagrams of each step of a method for forming a semiconductor structure in an embodiment of the present invention.

具体实施方式Detailed ways

正如背景技术所述,现有半导体结构的性能较差。As mentioned in the background, existing semiconductor structures perform poorly.

以下结合附图进行详细说明,半导体结构的性能较差的原因,图1至图3是一种半导体结构形成方法各步骤的结构示意图。The reason for the poor performance of the semiconductor structure will be described in detail below in conjunction with the accompanying drawings. FIG. 1 to FIG. 3 are structural schematic diagrams of each step of a method for forming a semiconductor structure.

参考图1,提供半导体衬底100,半导体衬底100上具有鳍部110和隔离结构101,鳍部110包括若干层沿半导体衬底100表面法线方向重叠的第一鳍部层111、以及位于相邻两层第一鳍部层中的第二鳍部层112,隔离结构101覆盖鳍部110部分侧壁。Referring to FIG. 1 , a semiconductor substrate 100 is provided, and the semiconductor substrate 100 has a fin 110 and an isolation structure 101. The fin 110 includes a first fin layer 111 with several layers overlapping along the normal direction of the surface of the semiconductor substrate 100, and a fin layer 111 located at In the second fin layer 112 of the two adjacent first fin layers, the isolation structure 101 covers part of the sidewall of the fin 110 .

参考图2,形成横跨鳍部110的伪栅极结构120;以所述伪栅极结构120为掩膜,去除伪栅极结构120两侧的鳍部110,形成凹槽121。Referring to FIG. 2 , a dummy gate structure 120 across the fin 110 is formed; using the dummy gate structure 120 as a mask, the fins 110 on both sides of the dummy gate structure 120 are removed to form a groove 121 .

参考图3,在伪栅极结构120两侧的凹槽121中外延形成源漏掺杂层130;形成源漏掺杂层130之后,去除伪栅极结构120和第二鳍部层112,形成栅开口(图中未示出);在所述栅开口内形成栅极结构150,所述栅极结构150还位于相邻第一鳍部层111之间。Referring to FIG. 3 , the source-drain doped layer 130 is epitaxially formed in the grooves 121 on both sides of the dummy gate structure 120; after the source-drain doped layer 130 is formed, the dummy gate structure 120 and the second fin layer 112 are removed to form A gate opening (not shown in the figure); a gate structure 150 is formed in the gate opening, and the gate structure 150 is also located between adjacent first fin layers 111 .

上述方法中,所述栅开口用于形成栅极结构150。所述栅开口由去除伪栅极结构120和伪栅极结构120覆盖的第二鳍部层112而形成,因此栅极结构150能够环绕第一鳍部层111,栅极结构对沟道的控制能力增强。In the above method, the gate opening is used to form the gate structure 150 . The gate opening is formed by removing the dummy gate structure 120 and the second fin layer 112 covered by the dummy gate structure 120, so the gate structure 150 can surround the first fin layer 111, and the gate structure controls the channel Enhanced capabilities.

然而,形成所述源漏掺杂层130之后,形成所述栅开口;在所述栅开口内形成所述栅极结构150。所述栅极结构150的形成方法包括:在所述栅开口内形成界面膜(图中未示出);在所述界面膜表面形成栅介质膜(图中未示出);在所述栅介质膜表面形成栅电极膜(图中未示出),且所述栅电极膜填充满栅开口;平坦化所述栅电极膜、栅介质膜以及界面膜,在所述栅开口内形成栅极结构150。形成所述栅极结构150的过程中,需要采用高温热处理,由于所述高温热处理能够修复所述栅介质膜的缺陷,从而使得形成的栅介质层的缺陷较少,同时,还能够使界面膜致密化,从而有利于改善半导体器件的可靠性和开启电压。然而,所述高温热处理容易对已形成的源漏掺杂层130的材料造成高温影响,导致所述源漏掺杂层130对沟道的应力降低,影响所述沟道内的载流子迁移率,使得形成的半导体结构的性能较差。However, after the source-drain doped layer 130 is formed, the gate opening is formed; the gate structure 150 is formed in the gate opening. The forming method of the gate structure 150 includes: forming an interface film (not shown in the figure) in the gate opening; forming a gate dielectric film (not shown in the figure) on the surface of the interface film; A gate electrode film (not shown) is formed on the surface of the dielectric film, and the gate electrode film fills the gate opening; planarize the gate electrode film, gate dielectric film and interface film, and form a gate electrode in the gate opening. Structure 150. In the process of forming the gate structure 150, high-temperature heat treatment is required, because the high-temperature heat treatment can repair the defects of the gate dielectric film, so that the formed gate dielectric layer has fewer defects, and at the same time, it can also make the interface film Densification, which is conducive to improving the reliability and turn-on voltage of semiconductor devices. However, the high-temperature heat treatment is likely to cause a high-temperature impact on the material of the formed source-drain doped layer 130, resulting in a decrease in the stress of the source-drain doped layer 130 on the channel, affecting the carrier mobility in the channel. , making the performance of the formed semiconductor structure poor.

为解决所述技术问题,本发明实施例提供一种半导体结构的形成方法,包括:形成所述第一凹槽之后,在所述基底上形成第一介质层,且所述栅极结构位于所述第一介质层内;去除所述伪栅极结构和所述伪栅极结构覆盖的第二鳍部层,在所述第一介质层内、以及相邻的第一鳍部层之间形成栅开口;在所述栅开口内形成栅极结构,所述栅极结构包围各第一鳍部层;形成所述栅极结构之后,去除所述第一介质层,暴露出所述第一凹槽;去除所述第一介质层之后,在所述第一凹槽内形成源漏掺杂层。所述方法形成的半导体结构的性能较好。In order to solve the above technical problem, an embodiment of the present invention provides a method for forming a semiconductor structure, comprising: after forming the first groove, forming a first dielectric layer on the substrate, and the gate structure is located in the In the first dielectric layer; remove the dummy gate structure and the second fin layer covered by the dummy gate structure, and form in the first dielectric layer and between adjacent first fin layers A gate opening; a gate structure is formed in the gate opening, and the gate structure surrounds each first fin layer; after the gate structure is formed, the first dielectric layer is removed to expose the first concave Groove: after removing the first dielectric layer, a source-drain doped layer is formed in the first groove. The performance of the semiconductor structure formed by the method is better.

为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and beneficial effects of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.

图4至图15是本发明一实施例中的半导体结构的形成方法各步骤的结构示意图。4 to 15 are structural schematic diagrams of each step of a method for forming a semiconductor structure in an embodiment of the present invention.

请参考图4,提供基底200,所述基底200上具有鳍部结构,所述鳍部结构包括沿基底表面法线方向重叠的若干层复合鳍部层210,各复合鳍部层210均包括第二鳍部层212以及位于第二鳍部层表面的第一鳍部层211。Please refer to FIG. 4 , a substrate 200 is provided, and the substrate 200 has a fin structure, and the fin structure includes several layers of composite fin layers 210 overlapping along the normal direction of the substrate surface, and each composite fin layer 210 includes a first The second fin layer 212 and the first fin layer 211 located on the surface of the second fin layer.

所述基底200的材料为半导体材料。在本实施例中,所述基底200的材料为硅。在其他实施例中,所述基底的材料包括碳化硅、硅锗、Ⅲ-Ⅴ族元素构成的多元半导体材料、绝缘体上硅(SOI)或者绝缘体上锗。其中,Ⅲ-Ⅴ族元素构成的多元半导体材料包括InP、GaAs、GaP、InAs、InSb、InGaAs或者InGaAsP。The material of the base 200 is semiconductor material. In this embodiment, the material of the substrate 200 is silicon. In other embodiments, the material of the substrate includes silicon carbide, silicon germanium, multiple semiconductor materials composed of III-V group elements, silicon-on-insulator (SOI) or germanium-on-insulator. Wherein, the multiple semiconductor materials composed of III-V group elements include InP, GaAs, GaP, InAs, InSb, InGaAs or InGaAsP.

所述第一鳍部层211的材料和第二鳍部层212的材料不同;所述第一鳍部层211的材料为单晶硅或单晶锗硅;所述第二鳍部层212的材料为单晶硅或单晶锗硅。The material of the first fin layer 211 is different from that of the second fin layer 212; the material of the first fin layer 211 is single crystal silicon or single crystal silicon germanium; the material of the second fin layer 212 The material is single crystal silicon or single crystal silicon germanium.

在本实施例中,所述第一鳍部层211的材料为单晶硅,所述第二鳍部层212的材料为单晶锗硅。在其他实施例中,所述第一鳍部层的材料为单晶锗硅,所述第二鳍部层的材料为单晶硅。In this embodiment, the material of the first fin layer 211 is single crystal silicon, and the material of the second fin layer 212 is single crystal silicon germanium. In other embodiments, the material of the first fin layer is single crystal silicon germanium, and the material of the second fin layer is single crystal silicon.

需要说明的是,在本实施例中,所述鳍部结构的最底层为第一鳍部层211。It should be noted that, in this embodiment, the bottom layer of the fin structure is the first fin layer 211 .

请继续参考图4,在所述基底200上形成覆盖部分所述鳍部结构的隔离结构201,且所述隔离结构201的顶部表面低于所述最底层的第一鳍部层211顶部表面。Please continue to refer to FIG. 4 , an isolation structure 201 covering part of the fin structure is formed on the substrate 200 , and a top surface of the isolation structure 201 is lower than a top surface of the bottommost first fin layer 211 .

所述隔离结构201覆盖部分所述最底层的第一鳍部层111。The isolation structure 201 covers part of the bottommost first fin layer 111 .

形成所述隔离结构201的方法包括:在所述基底200上形成覆盖鳍部结构的隔离结构膜(未图示);回刻蚀所述隔离结构膜,形成所述隔离结构201。The method for forming the isolation structure 201 includes: forming an isolation structure film (not shown) covering the fin structure on the substrate 200 ; and etching back the isolation structure film to form the isolation structure 201 .

形成所述隔离结构膜的工艺为沉积工艺,如流体化学气相沉积工艺。采用流体化学气相沉积工艺形成隔离结构膜,使隔离结构膜的填充性能较好。The process for forming the isolation structure film is a deposition process, such as a fluid chemical vapor deposition process. The isolation structure film is formed by a fluid chemical vapor deposition process, so that the filling performance of the isolation structure film is better.

请参考图5,在所述基底200上形成横跨所述鳍部结构的伪栅极结构,所述伪栅极结构覆盖鳍部结构的部分顶部表面和侧壁表面。Referring to FIG. 5 , a dummy gate structure spanning the fin structure is formed on the substrate 200 , and the dummy gate structure covers part of the top surface and the sidewall surface of the fin structure.

具体的,在本实施例中,所述伪栅极结构位于隔离结构201表面,且横跨所述鳍部结构。Specifically, in this embodiment, the dummy gate structure is located on the surface of the isolation structure 201 and crosses the fin structure.

所述伪栅极结构的形成方法包括:在所述基底200上形成覆盖所述鳍部结构的伪栅介质层膜(图中未示出);在所述伪栅介质膜上形成伪栅极膜(图中未示出);刻蚀所述伪栅介质膜和伪栅极膜直至暴露出鳍部结构的顶部表面,使所述伪栅介质膜形成伪栅介质层,使伪栅极膜形成伪栅极层,形成所述伪栅极结构。The method for forming the dummy gate structure includes: forming a dummy gate dielectric layer film (not shown in the figure) covering the fin structure on the substrate 200; forming a dummy gate on the dummy gate dielectric film film (not shown in the figure); etch the dummy gate dielectric film and the dummy gate film until the top surface of the fin structure is exposed, so that the dummy gate dielectric film forms a dummy gate dielectric layer, and the dummy gate film A dummy gate layer is formed to form the dummy gate structure.

所述伪栅极结构包括:横跨所述鳍部结构的伪栅介质层202和位于所述伪栅介质层202表面的伪栅极层220。The dummy gate structure includes: a dummy gate dielectric layer 202 across the fin structure and a dummy gate layer 220 located on the surface of the dummy gate dielectric layer 202 .

所述伪栅介质层202的材料为氧化硅。所述伪栅极层220的材料为多晶硅。The material of the dummy gate dielectric layer 202 is silicon oxide. The material of the dummy gate layer 220 is polysilicon.

在本实施例中,所述伪栅极结构还包括:位于所述伪栅介质层202和所述伪栅极层220侧壁表面的第二侧墙204。In this embodiment, the dummy gate structure further includes: second sidewalls 204 located on the sidewall surfaces of the dummy gate dielectric layer 202 and the dummy gate layer 220 .

所述第二侧墙204的形成方法包括:在所述鳍部结构表面、伪栅介质层侧壁表面、以及伪栅极层顶部表面和侧壁表面形成第二侧墙材料膜(图中未实处);刻蚀所述第二侧墙材料膜,直至暴露出所述伪栅极层220顶部表面和鳍部结构表面,在所述鳍部结构上形成所述第二侧墙,且所述第二侧墙位于伪栅介质层202和伪栅极层220的侧壁表面。The forming method of the second spacer 204 includes: forming a second sidewall material film (not shown in the figure) on the surface of the fin structure, the sidewall surface of the dummy gate dielectric layer, and the top surface and sidewall surface of the dummy gate layer. practice); etch the second sidewall material film until the top surface of the dummy gate layer 220 and the surface of the fin structure are exposed, the second sidewall is formed on the fin structure, and the The second sidewall is located on the sidewall surfaces of the dummy gate dielectric layer 202 and the dummy gate layer 220 .

所述第二侧墙204用作保护所述伪栅极层220侧壁,避免后续形成的栅极层出现形貌缺陷,影响半导体结构的电学性能。The second sidewalls 204 are used to protect the sidewalls of the dummy gate layer 220 to prevent morphology defects in the subsequently formed gate layer from affecting the electrical properties of the semiconductor structure.

在本实施例中,所述伪栅极结构顶部表面还具有伪栅保护层203,所述伪栅保护层203作为平坦化的停止层。In this embodiment, the top surface of the dummy gate structure further has a dummy gate protection layer 203 , and the dummy gate protection layer 203 serves as a planarization stop layer.

所述伪栅保护层203的材料包括氧化硅或氮化硅。The material of the dummy gate protection layer 203 includes silicon oxide or silicon nitride.

请参考图6,在所述伪栅极结构两侧的鳍部结构内形成第一凹槽205。Referring to FIG. 6 , first grooves 205 are formed in the fin structures on both sides of the dummy gate structure.

所述第一凹槽205为后续形成源漏掺杂层提供空间。The first groove 205 provides a space for subsequent formation of source and drain doped layers.

所述第一凹槽205的形成方法包括:以所述伪栅极结构为掩膜,刻蚀所述鳍部结构,直至暴露出基底200表面,在所述伪栅极结构两侧的鳍部结构内形成所述第一凹槽205。The method for forming the first groove 205 includes: using the dummy gate structure as a mask, etching the fin structure until the surface of the substrate 200 is exposed, and the fins on both sides of the dummy gate structure The first groove 205 is formed in the structure.

去除伪栅极结构两侧的鳍部结构的工艺为各向异性的干法刻蚀。所述各项异性的干法刻蚀工艺有利于形成形貌较好的第一凹槽205,避免对伪栅极结构底部的鳍部结构造成刻蚀损伤,从而有利于形成的半导体结构的性能。The process of removing the fin structures on both sides of the dummy gate structure is anisotropic dry etching. The anisotropic dry etching process is conducive to the formation of the first groove 205 with a better shape, avoiding etching damage to the fin structure at the bottom of the dummy gate structure, thereby benefiting the performance of the formed semiconductor structure .

请参考图7,去除所述第一凹槽205侧壁暴露出的部分第二鳍部层212,在相邻第一鳍部层211之间形成第二凹槽206。Referring to FIG. 7 , part of the second fin layer 212 exposed on the sidewall of the first groove 205 is removed to form a second groove 206 between adjacent first fin layers 211 .

所述第二凹槽206位于相邻第一鳍部层211之间。The second groove 206 is located between adjacent first fin layers 211 .

所述第二凹槽206为后续形成第二侧墙提供空间。The second groove 206 provides a space for subsequent formation of the second sidewall.

去除部分所述第二鳍部层212的工艺为湿法刻蚀工艺。所述湿法刻蚀溶液对硅和硅锗有很好的选择比,能够保证在去除硅锗的同时,硅的形貌不受影响。本实施例中采用的湿法刻蚀溶液为:体积百分比为20%~90%的氯化氢气体,温度为25摄氏度~300摄氏度,。The process of removing part of the second fin layer 212 is a wet etching process. The wet etching solution has a good selection ratio for silicon and silicon germanium, which can ensure that the morphology of silicon is not affected while silicon germanium is removed. The wet etching solution used in this embodiment is: hydrogen chloride gas with a volume percentage of 20% to 90%, and a temperature of 25 to 300 degrees Celsius.

在其它实施例中,不去除部分第二鳍部层。In other embodiments, portions of the second fin layer are not removed.

请参考图8,形成所述第二凹槽206之后,在所述第二凹槽206内、隔离结构201表面、以及伪栅极结构表面形成第一侧墙膜230。Referring to FIG. 8 , after forming the second groove 206 , a first sidewall film 230 is formed in the second groove 206 , on the surface of the isolation structure 201 , and on the surface of the dummy gate structure.

所述第一侧墙膜230为后续形成第一侧墙提供材料层。The first side wall film 230 provides a material layer for subsequent formation of the first side wall.

所述第一侧墙膜230的材料和所述隔离结构201的材料不同,使得后续在刻蚀所述第一侧墙膜230形成第一侧墙的过程中,避免对隔离结构201造成刻蚀损伤,保证所述隔离结构201的隔离效果。The material of the first sidewall film 230 is different from the material of the isolation structure 201, so that the etching of the isolation structure 201 is avoided during the subsequent process of etching the first sidewall film 230 to form the first sidewall. damage, to ensure the isolation effect of the isolation structure 201.

所述第一侧墙膜230的材料包括:氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅或碳氮氧化硅;所述隔离结构201的材料包括:氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅或碳氮氧化硅。The material of the first sidewall film 230 includes: silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride or silicon oxycarbonitride; the material of the isolation structure 201 includes: silicon oxide, nitrogen silicon oxide, silicon oxynitride, silicon oxycarbide, silicon carbonitride or silicon oxycarbonitride.

在本实施例中,所述第一侧墙膜230的材料为氮化硅,所述隔离结构201的材料为氧化硅。In this embodiment, the material of the first sidewall film 230 is silicon nitride, and the material of the isolation structure 201 is silicon oxide.

所述第一侧墙膜230的形成工艺包括:化学气相沉积工艺、物理气相沉积工艺或者原子层沉积工艺。The forming process of the first sidewall film 230 includes: chemical vapor deposition process, physical vapor deposition process or atomic layer deposition process.

所述第一侧墙膜230的材料还和后续形成的第一介质层的材料不同。The material of the first side wall film 230 is also different from the material of the first dielectric layer formed subsequently.

请参考图9,形成所述第一侧墙膜230之后,在基底200上形成第一介质层240,且所述伪栅极结构位于所述第一介质层240内。Referring to FIG. 9 , after forming the first sidewall film 230 , a first dielectric layer 240 is formed on the substrate 200 , and the dummy gate structure is located in the first dielectric layer 240 .

所述第一介质层240为后续形成栅开口提供支撑,以便在栅开口内形成栅极结构。The first dielectric layer 240 provides support for subsequent formation of a gate opening, so as to form a gate structure in the gate opening.

需要说明的是,所述伪栅极结构位于所述第一介质层240内,所述第一介质层240覆盖所述伪栅极结构侧壁表面,使得后续去除伪栅极结构,能够在第一介质层240内形成栅开口。It should be noted that the dummy gate structure is located in the first dielectric layer 240, and the first dielectric layer 240 covers the sidewall surface of the dummy gate structure, so that subsequent removal of the dummy gate structure can A gate opening is formed in a dielectric layer 240 .

在本实施例中,所述第一介质层240覆盖所述第一侧墙膜230表面和隔离结构201表面。In this embodiment, the first dielectric layer 240 covers the surface of the first sidewall film 230 and the surface of the isolation structure 201 .

具体的,所述第一介质层240顶部表面齐平于所述伪栅极结构顶部表面。Specifically, the top surface of the first dielectric layer 240 is flush with the top surface of the dummy gate structure.

所述第一介质层240的形成方法包括:在所述第一侧墙膜230表面形成初始介质膜(图中未示出),所述初始介质膜覆盖所述伪栅极结构顶部表面和侧壁表面;刻蚀所述初始介质膜,直至暴露出伪栅极结构顶部表面,在所述基底200上形成所述第一介质层240。The method for forming the first dielectric layer 240 includes: forming an initial dielectric film (not shown in the figure) on the surface of the first side wall film 230, and the initial dielectric film covers the top surface and side of the dummy gate structure. wall surface; etching the initial dielectric film until the top surface of the dummy gate structure is exposed, and forming the first dielectric layer 240 on the substrate 200 .

形成所述初始介质膜的工艺为沉积工艺,如等离子体化学气相沉积工艺或流体化学气相沉积工艺。The process for forming the initial dielectric film is a deposition process, such as a plasma chemical vapor deposition process or a fluid chemical vapor deposition process.

刻蚀所述初始介质膜的工艺包括:化学机械研磨工艺。The process of etching the initial dielectric film includes: a chemical mechanical polishing process.

所述第一介质层240的材料和所述第一侧墙膜230的材料不同。The material of the first dielectric layer 240 is different from that of the first side wall film 230 .

所述第一介质层240的材料包括:氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅或碳氮氧化硅。The material of the first dielectric layer 240 includes: silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride or silicon oxycarbonitride.

由于所述第一侧墙膜230覆盖所述伪栅极结构侧壁表面和顶部表面,所述第一介质层240覆盖所述第一侧墙膜230表面,使得所述第一介质层240覆盖所述伪栅极结构侧壁表面,从而满足后续去除伪栅极结构形成栅开口的同时,所述第一介质层240为形成栅极结构提供支撑。Since the first sidewall film 230 covers the sidewall surface and the top surface of the dummy gate structure, the first dielectric layer 240 covers the surface of the first sidewall film 230, so that the first dielectric layer 240 covers The surface of the side wall of the dummy gate structure satisfies the need for subsequent removal of the dummy gate structure to form a gate opening, while the first dielectric layer 240 provides support for forming the gate structure.

请参考图10,去除所述伪栅极结构和所述伪栅极结构覆盖的第二鳍部层212,在所述第一介质层240内、以及相邻的第一鳍部层211之间形成栅开口250。Please refer to FIG. 10 , remove the dummy gate structure and the second fin layer 212 covered by the dummy gate structure, in the first dielectric layer 240 and between adjacent first fin layers 211 Gate openings 250 are formed.

所述栅开口250为后续形成栅极结构提供空间。The gate opening 250 provides a space for subsequent formation of a gate structure.

所述栅开口250的形成方法包括:去除所述伪栅极结构,在所述第一介质层240内形成初始栅开口(图中未示出);去除所述初始栅开口暴露出的第二鳍部层212,使所述初始栅开口形成所述栅开口250。The forming method of the gate opening 250 includes: removing the dummy gate structure, forming an initial gate opening (not shown in the figure) in the first dielectric layer 240; removing the second gate opening exposed by the initial gate opening. In the fin layer 212 , the initial gate opening forms the gate opening 250 .

本实施例中,去除初始栅开口暴露出的第二鳍部层212采用干法刻蚀工艺,所述干法刻蚀工艺对第二鳍部层212相对于对第一鳍部层211的刻蚀选择比值为50~200,从而减少对第一鳍部层211的刻蚀损伤,使得第一鳍部层211的形貌较好。In this embodiment, a dry etching process is used to remove the second fin layer 212 exposed by the initial gate opening. The etch selectivity ratio is 50-200, so as to reduce the etching damage to the first fin layer 211 and make the morphology of the first fin layer 211 better.

请参考图11,在所述栅开口250内形成栅极结构260,所述栅极结构260包围各第一鳍部层211。Referring to FIG. 11 , a gate structure 260 is formed in the gate opening 250 , and the gate structure 260 surrounds each first fin layer 211 .

具体的,在本实施例中,所述栅极结构260还位于相邻第一鳍部层211之间,这样,使所述栅极结构260能够环绕所述第一鳍部层211,增加了所述栅极结构260对沟道的控制能力。Specifically, in this embodiment, the gate structure 260 is also located between adjacent first fin layers 211, so that the gate structure 260 can surround the first fin layer 211, increasing the The ability of the gate structure 260 to control the channel.

所述栅极结构260包括:界面层(图中未示出)、和位于所述界面层表面的栅介质层(图中未示出)、以及位于所述栅介质层表面的栅电极层(图中未示出)。The gate structure 260 includes: an interface layer (not shown in the figure), a gate dielectric layer (not shown in the figure) located on the surface of the interface layer, and a gate electrode layer located on the surface of the gate dielectric layer ( not shown in the figure).

所述栅极结构260的形成方法包括:在所述栅开口250表面和第一介质层240表面形成界面膜(图中未示出);在所述界面膜表面形成栅介质膜(图中未示出);在所述栅介质膜表面形成栅电极膜(图中未示出),且所述栅电极膜填充满所述栅开口250;平坦化所述栅电极膜、栅介质膜以及界面膜,形成所述栅极结构。The forming method of the gate structure 260 includes: forming an interface film (not shown in the figure) on the surface of the gate opening 250 and the surface of the first dielectric layer 240; forming a gate dielectric film (not shown in the figure) on the surface of the interface film shown); form a gate electrode film (not shown in the figure) on the surface of the gate dielectric film, and the gate electrode film fills the gate opening 250; planarize the gate electrode film, gate dielectric film and interface film, forming the gate structure.

在本实施例中,形成所述界面膜和栅介质膜之后,形成所述栅电极膜之前,还包括:进行热处理;所述热处理的参数包括:所述热处理的工艺包括:尖峰退火或者激光退火,所述热处理的温度范围为850摄氏度~1200摄氏度。In this embodiment, after forming the interface film and the gate dielectric film, before forming the gate electrode film, it further includes: performing heat treatment; the parameters of the heat treatment include: the process of the heat treatment includes: spike annealing or laser annealing , the temperature range of the heat treatment is 850 degrees Celsius to 1200 degrees Celsius.

所述热处理的作用在于:一方面,修复所述栅介质膜的缺陷,从而使得形成的栅介质层的缺陷较少;另一方面,能够使界面膜致密化,有利于改善第一鳍部层211界面的可靠性,因此,所述热处理有利于改善半导体器件的可靠性和开启电压。The effect of the heat treatment is: on the one hand, it repairs the defects of the gate dielectric film, so that the formed gate dielectric layer has fewer defects; on the other hand, it can make the interface film denser, which is beneficial to improve the The reliability of the 211 interface, therefore, the heat treatment is beneficial to improve the reliability and turn-on voltage of the semiconductor device.

所述界面层的材料包括氧化硅。形成所述界面层的工艺包括氧化工艺。所述界面层的作用包括:修复所述栅开口250暴露出的第一鳍部层211的表面。The material of the interface layer includes silicon oxide. The process of forming the interface layer includes an oxidation process. The function of the interface layer includes: repairing the surface of the first fin layer 211 exposed by the gate opening 250 .

本实施例中所述栅介质层的材料为高k介质材料(介电系数大于3.9);所述高k介质材料包括氧化铪、氧化锆、氧化铪硅、氧化镧、氧化锆硅、氧化钛、氧化钽、氧化钡锶钛、氧化钡钛、氧化锶钛或氧化铝。The material of the gate dielectric layer in this embodiment is a high-k dielectric material (dielectric coefficient greater than 3.9); the high-k dielectric material includes hafnium oxide, zirconium oxide, hafnium silicon oxide, lanthanum oxide, zirconium silicon oxide, titanium oxide , tantalum oxide, barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide or aluminum oxide.

所述栅电极层的材料为金属,所述金属材料包括铜、钨、镍、铬、钛、钽和铝中的一种或多种组合。The material of the gate electrode layer is metal, and the metal material includes one or more combinations of copper, tungsten, nickel, chromium, titanium, tantalum and aluminum.

在本实施例,所述栅极结构顶部表面还具有栅保护层261,所述栅保护层261用于保护所述栅极结构的顶部表面,避免所述栅极结构受到后续工艺的影响,以提高形成的半导体结构的性能。In this embodiment, the top surface of the gate structure further has a gate protection layer 261, and the gate protection layer 261 is used to protect the top surface of the gate structure to prevent the gate structure from being affected by subsequent processes, so as to The performance of the formed semiconductor structure is enhanced.

所述栅保护层261和第一介质层240的材料不同,所述栅保护层261的材料包括:氧化硅或氮化硅。The materials of the gate protection layer 261 and the first dielectric layer 240 are different, and the materials of the gate protection layer 261 include: silicon oxide or silicon nitride.

在本实施例中,所述栅保护层261的材料为氮化硅。In this embodiment, the material of the gate protection layer 261 is silicon nitride.

请参考图12,形成所述栅极结构260之后,去除所述第一介质层240,暴露出所述第一凹槽205。Referring to FIG. 12 , after the gate structure 260 is formed, the first dielectric layer 240 is removed to expose the first groove 205 .

在本实施例中,去除所述第一介质层230,暴露出位于第一凹槽205底部表面的的第一侧墙膜230。In this embodiment, the first dielectric layer 230 is removed to expose the first side wall film 230 located on the bottom surface of the first groove 205 .

通过在形成所述栅极结构260之后,去除所述第一介质层240,暴露出第一凹槽205,后续将在所述第一凹槽205内形成源漏掺杂层,使得所述源漏掺杂层的形成,发生在形成所述栅极结构260的过程之后,能够避免形成所述栅极结构260的高温热处理过程,从而减少高温情况下对所述源漏掺杂层的材料造成影响,有利于保证所述源漏掺杂层对沟道具有较大的应力,使得所述沟道具有较高的载流子迁移率,因此,有利于提高所述半导体结构的性能。After the gate structure 260 is formed, the first dielectric layer 240 is removed to expose the first groove 205, and a source-drain doped layer will be formed in the first groove 205, so that the source The formation of the drain doped layer occurs after the process of forming the gate structure 260, which can avoid the high-temperature heat treatment process for forming the gate structure 260, thereby reducing the damage to the material of the source-drain doped layer under high temperature conditions. The impact is beneficial to ensure that the source-drain doped layer has a greater stress on the channel, so that the channel has a higher carrier mobility, and thus is beneficial to improving the performance of the semiconductor structure.

采用第一刻蚀工艺去除所述第一介质层240,且所述第一刻蚀工艺对第一介质层240的刻蚀速率大于对第一侧墙膜230的刻蚀速率。在本实施例中,所述第一刻蚀工艺为干法刻蚀工艺,工艺参数包括:采用的刻蚀气体包括NH3、NF3和He,其中NH3的流量为50标准毫升/分~800标准毫升/分,NF3的流量为30标准毫升/分~300标准毫升/分,He的流量为500标准毫升/分~3000标准毫升/分,压强为2托~30托。The first etching process is used to remove the first dielectric layer 240 , and the etching rate of the first dielectric layer 240 in the first etching process is greater than the etching rate of the first spacer film 230 . In this embodiment, the first etching process is a dry etching process, and the process parameters include: the etching gas used includes NH 3 , NF 3 and He, wherein the flow rate of NH 3 is 50 standard ml/min- 800 standard ml/min, the flow rate of NF 3 is 30 standard ml/min to 300 standard ml/min, the flow rate of He is 500 standard ml/min to 3000 standard ml/min, and the pressure is 2 Torr to 30 Torr.

由于所述第一介质层240的材料和所述第一侧墙膜230的材料不同,能够满足对所述第一介质层240和第一侧墙膜230具有较大的刻蚀选择比。同时,所述第一侧墙膜230在第二凹槽206(图7中所示)内、所述隔离结构201表面以及伪栅极结构表面,使得在后续去除所述第一介质层240的过程中,所述第一侧墙膜230能够对位于所述第一侧墙膜230底部的隔离结构201起到保护作用,避免对所述隔离结构201造成刻蚀,从而保证所述隔离结构201不受工艺的影响,以便所述隔离结构201能够起到较好的隔离作用,提高形成的半导体结构的性能。Since the materials of the first dielectric layer 240 and the first sidewall film 230 are different, a larger etching selectivity ratio for the first dielectric layer 240 and the first sidewall film 230 can be satisfied. At the same time, the first sidewall film 230 is in the second groove 206 (shown in FIG. 7 ), the surface of the isolation structure 201 and the surface of the dummy gate structure, so that the subsequent removal of the first dielectric layer 240 During the process, the first side wall film 230 can protect the isolation structure 201 at the bottom of the first side wall film 230 to avoid etching the isolation structure 201, thereby ensuring that the isolation structure 201 It is not affected by the process, so that the isolation structure 201 can play a better isolation role and improve the performance of the formed semiconductor structure.

请参考图13,刻蚀所述第一侧墙膜230,直至暴露出第一鳍部层211侧壁表面和基底200表面,在所述第二凹槽206内形成第一侧墙270。Referring to FIG. 13 , the first sidewall film 230 is etched until the sidewall surface of the first fin layer 211 and the surface of the substrate 200 are exposed, and a first sidewall 270 is formed in the second groove 206 .

所述第一侧墙270的作用在于,将位于栅开口250内的栅极结构260和后续形成的源漏掺杂层之间进行电学隔离,从而满足工艺需要。The function of the first spacer 270 is to electrically isolate the gate structure 260 located in the gate opening 250 from the subsequently formed source-drain doped layer, so as to meet process requirements.

刻蚀所述第一侧墙膜230的方法包括:以所述伪栅极结构为掩膜,刻蚀所述第一侧墙膜230,在所述第二凹槽206内形成所述第一侧墙270,所述第一侧墙270的侧壁与所述第二侧墙204的侧壁齐平。The method for etching the first sidewall film 230 includes: using the dummy gate structure as a mask, etching the first sidewall film 230, and forming the first sidewall film 230 in the second groove 206. The side wall 270 , the side wall of the first side wall 270 is flush with the side wall of the second side wall 204 .

采用第二刻蚀工艺刻蚀所述第一侧墙膜230,且所述第二刻蚀工艺对所述第一侧墙膜230的刻蚀速率大于对所述隔离结构201的刻蚀速率。在本实施例中,所述第二刻蚀工艺为干法刻蚀工艺,工艺参数包括:采用的刻蚀气体包括CH3F、N2和O2,其中CH3F的流量为10标准毫升/分~100标准毫升/分,NF3的流量为50标准毫升/分~500标准毫升/分,O2的流量为10标准毫升/分~200标准毫升/分。The first sidewall film 230 is etched by a second etching process, and the etching rate of the first sidewall film 230 by the second etching process is greater than the etching rate of the isolation structure 201 . In this embodiment, the second etching process is a dry etching process, and the process parameters include: the etching gas used includes CH 3 F, N 2 and O 2 , wherein the flow rate of CH 3 F is 10 standard milliliters /min to 100 standard ml/min, the flow rate of NF 3 is 50 standard ml/min to 500 standard ml/min, and the flow rate of O 2 is 10 standard ml/min to 200 standard ml/min.

请参考图14,去除所述第一介质层240之后,在所述第一凹槽205内形成源漏掺杂层280。Please refer to FIG. 14 , after removing the first dielectric layer 240 , a source-drain doped layer 280 is formed in the first groove 205 .

在本实施例中,刻蚀所述第一侧墙膜230形成所述第一侧墙270之后,在所述第一凹槽205内形成源漏掺杂层280。In this embodiment, after the first spacer film 230 is etched to form the first spacer 270 , a source-drain doped layer 280 is formed in the first groove 205 .

所述源漏掺杂层280的形成工艺包括:外延生长工艺。The formation process of the source-drain doped layer 280 includes: an epitaxial growth process.

所述源漏掺杂层280内具有掺杂离子。在本实施例,在形成所述源漏掺杂层280的过程中,采用原位掺杂工艺掺杂离子。The source-drain doping layer 280 contains doping ions. In this embodiment, during the process of forming the source-drain doped layer 280 , an in-situ doping process is used to dope ions.

当所述半导体器件为P型器件时,所述源漏掺杂层280的材料包括:硅、锗或硅锗;所述掺杂离子为P型离子,包括硼离子、BF2-离子或铟离子;当所述半导体器件为N型器件时,所述源漏掺杂层280的材料包括:硅、砷化镓或铟镓砷;所述掺杂离子为N型离子,包括磷离子或砷离子。When the semiconductor device is a P-type device, the material of the source-drain doped layer 280 includes: silicon, germanium or silicon germanium; the dopant ions are P-type ions, including boron ions, BF 2- ions or indium Ions; when the semiconductor device is an N-type device, the material of the source-drain doped layer 280 includes: silicon, gallium arsenide or indium gallium arsenide; the dopant ions are N-type ions, including phosphorus ions or arsenic ion.

请参考图15,在所述源漏掺杂层280表面形成接触电阻层281。Referring to FIG. 15 , a contact resistance layer 281 is formed on the surface of the source-drain doped layer 280 .

所述接触电阻层281用于减少源漏掺杂层280和后续形成的第一导电结构之间的接触电阻,从而提高形成的半导体结构的性能。The contact resistance layer 281 is used to reduce the contact resistance between the source-drain doped layer 280 and the subsequently formed first conductive structure, thereby improving the performance of the formed semiconductor structure.

所述接触电阻层281的形成方法包括:在所述源漏掺杂层280表面和栅极结构260、以及隔离结构201表面形成金属层(图中未示出);进行退火处理,使金属层和所述源漏掺杂层280表面反应,形成所述接触电阻层281;形成所述接触电阻层281之后,去除未发生反应的金属层.The method for forming the contact resistance layer 281 includes: forming a metal layer (not shown in the figure) on the surface of the source-drain doped layer 280, the gate structure 260, and the surface of the isolation structure 201; performing annealing treatment to make the metal layer React with the surface of the source-drain doped layer 280 to form the contact resistance layer 281; after forming the contact resistance layer 281, remove the unreacted metal layer.

所述接触电阻层281的材料包括:钛硅化合物。The material of the contact resistance layer 281 includes: titanium silicon compound.

请继续参考图15,形成所述源漏掺杂层280之后,在所述基底200上形成第二介质层290。Please continue to refer to FIG. 15 , after the source-drain doped layer 280 is formed, a second dielectric layer 290 is formed on the substrate 200 .

在本实施例中,形成所述接触电阻层281之后,在所述接触电阻层281表面形成第二介质层290。In this embodiment, after the contact resistance layer 281 is formed, a second dielectric layer 290 is formed on the surface of the contact resistance layer 281 .

所述第二介质层290用于为形成第一导电结构和第二导电结构提供支撑。The second dielectric layer 290 is used to provide support for forming the first conductive structure and the second conductive structure.

所述第二介质层290的材料包括:氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅或碳氮氧化硅。The material of the second dielectric layer 290 includes: silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride or silicon oxycarbonitride.

在本实施例中,所述第二介质层290的材料为氧化硅。In this embodiment, the material of the second dielectric layer 290 is silicon oxide.

请继续参考图15,在所述第二介质层290内形成第一导电结构291和第二导电结构291,所述第一导电结构291与所述栅极结构260电连接,所述第二导电结构292与所述源漏掺杂层280电连接。Please continue to refer to FIG. 15 , a first conductive structure 291 and a second conductive structure 291 are formed in the second dielectric layer 290 , the first conductive structure 291 is electrically connected to the gate structure 260 , and the second conductive The structure 292 is electrically connected to the source-drain doped layer 280 .

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.

Claims (16)

1.一种半导体结构的形成方法,其特征在于,包括:1. A method for forming a semiconductor structure, comprising: 提供基底,所述基底上具有鳍部结构,所述鳍部结构包括沿基底表面法线方向重叠的若干层复合鳍部层,各复合鳍部层均包括第二鳍部层以及位于第二鳍部层表面的第一鳍部层;A substrate is provided, on which there is a fin structure, the fin structure includes several layers of composite fin layers overlapping along the normal direction of the surface of the substrate, each composite fin layer includes a second fin layer and a a first fin layer on the surface of the lower layer; 在所述基底上成横跨所述鳍部结构的伪栅极结构,所述伪栅极结构覆盖鳍部结构的部分顶部表面和侧壁表面;forming a dummy gate structure across the fin structure on the substrate, the dummy gate structure covering part of the top surface and sidewall surface of the fin structure; 在所述伪栅极结构两侧的鳍部结构内形成第一凹槽;forming first grooves in the fin structures on both sides of the dummy gate structure; 形成所述第一凹槽之后,在所述基底上形成第一介质层,且所述伪栅极结构位于所述第一介质层内;After forming the first groove, forming a first dielectric layer on the substrate, and the dummy gate structure is located in the first dielectric layer; 去除所述伪栅极结构和所述伪栅极结构覆盖的第二鳍部层,在所述第一介质层内、以及相邻的第一鳍部层之间形成栅开口;removing the dummy gate structure and the second fin layer covered by the dummy gate structure, and forming gate openings in the first dielectric layer and between adjacent first fin layers; 在所述栅开口内形成栅极结构,所述栅极结构包围各第一鳍部层;forming a gate structure within the gate opening, the gate structure surrounding each first fin layer; 形成所述栅极结构之后,去除所述第一介质层,暴露出所述第一凹槽;After forming the gate structure, removing the first dielectric layer to expose the first groove; 去除所述第一介质层之后,在所述第一凹槽内形成源漏掺杂层;After removing the first dielectric layer, forming a source-drain doped layer in the first groove; 所述鳍部结构的最底层为第一鳍部层;形成所述伪栅极结构之前,在所述基底上形成覆盖部分所述鳍部结构的隔离结构,且所述隔离结构的顶部表面低于所述最底层的第一鳍部层顶部表面;The bottom layer of the fin structure is the first fin layer; before forming the dummy gate structure, an isolation structure covering part of the fin structure is formed on the substrate, and the top surface of the isolation structure is low on the bottommost first fin layer top surface; 形成所述第一凹槽之后,形成所述第一介质层之前,去除所述第一凹槽侧壁暴露出的部分第二鳍部层,在相邻第一鳍部层之间形成第二凹槽;在所述第二凹槽内、隔离结构表面、以及伪栅极结构表面形成第一侧墙膜;形成所述第一侧墙膜之后,在基底上形成所述第一介质层,且所述第一介质层覆盖所述第一侧墙膜表面和隔离结构表面;After forming the first groove and before forming the first dielectric layer, part of the second fin layer exposed by the sidewall of the first groove is removed, and a second fin layer is formed between adjacent first fin layers. a groove; forming a first sidewall film in the second groove, on the surface of the isolation structure, and on the surface of the dummy gate structure; after forming the first sidewall film, forming the first dielectric layer on the substrate, And the first dielectric layer covers the surface of the first side wall membrane and the surface of the isolation structure; 去除所述第一介质层之后,形成所述源漏掺杂层之前,刻蚀所述第一侧墙膜,直至暴露出第一鳍部层侧壁表面和基底表面,在所述第二凹槽内形成第一侧墙;形成所述第一侧墙之后,形成所述源漏掺杂层,所述源漏掺杂层覆盖所述第一侧墙侧壁表面和第一鳍部层侧壁表面。After removing the first dielectric layer and before forming the source-drain doped layer, etch the first sidewall film until the sidewall surface of the first fin layer and the surface of the base are exposed. A first sidewall is formed in the groove; after the first sidewall is formed, the source-drain doped layer is formed, and the source-drain doped layer covers the sidewall surface of the first sidewall and the side of the first fin layer wall surface. 2.如权利要求1所述的半导体结构的形成方法,其特征在于,所述第一凹槽的形成方法包括:以所述伪栅极结构为掩膜,刻蚀所述鳍部结构,直至暴露出基底表面,在所述伪栅极结构两侧的鳍部结构内形成所述第一凹槽。2. The method for forming a semiconductor structure according to claim 1, wherein the method for forming the first groove comprises: using the dummy gate structure as a mask, etching the fin structure until The substrate surface is exposed, and the first groove is formed in the fin structure on both sides of the dummy gate structure. 3.如权利要求1所述的半导体结构的形成方法,其特征在于,所述栅开口的形成方法包括:去除所述伪栅极结构,在所述第一介质层内形成初始栅开口;去除所述初始栅开口暴露出的第二鳍部层,使所述初始栅开口形成所述栅开口。3. The method for forming a semiconductor structure according to claim 1, wherein the method for forming the gate opening comprises: removing the dummy gate structure, forming an initial gate opening in the first dielectric layer; removing The second fin layer exposed by the initial gate opening makes the initial gate opening form the gate opening. 4.如权利要求1所述的半导体结构的形成方法,其特征在于,所述第一侧墙膜的材料和所述第一介质层的材料不同,所述第一侧墙膜的材料和所述隔离结构的材料不同;所述第一介质层的材料包括:氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅或碳氮氧化硅;所述第一侧墙膜的材料包括:氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅或碳氮氧化硅;所述隔离结构的材料包括:氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅或碳氮氧化硅。4. The method for forming a semiconductor structure according to claim 1, wherein the material of the first sidewall film is different from that of the first dielectric layer, and the material of the first sidewall film is different from that of the first dielectric layer. The materials of the isolation structure are different; the materials of the first dielectric layer include: silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride or silicon carbonitride; the first sidewall film The material includes: silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride or silicon oxycarbonitride; the material of the isolation structure includes: silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide , silicon carbonitride or silicon carbonitride. 5.如权利要求1所述的半导体结构的形成方法,其特征在于,所述第一侧墙膜的形成工艺包括:化学气相沉积工艺、物理气相沉积工艺或者原子层沉积工艺。5. The method for forming a semiconductor structure according to claim 1, wherein the forming process of the first sidewall film comprises: a chemical vapor deposition process, a physical vapor deposition process or an atomic layer deposition process. 6.如权利要求1所述的半导体结构的形成方法,其特征在于,所述第一介质层的形成方法包括:在所述第一侧墙膜表面形成初始介质膜,所述初始介质膜覆盖所述伪栅极结构顶部表面和侧壁表面;刻蚀所述初始介质膜,直至暴露出伪栅极结构顶部表面,在所述基底上形成所述第一介质层。6. The method for forming a semiconductor structure according to claim 1, wherein the method for forming the first dielectric layer comprises: forming an initial dielectric film on the surface of the first sidewall film, and the initial dielectric film covers The top surface and the sidewall surface of the dummy gate structure; etching the initial dielectric film until the top surface of the dummy gate structure is exposed, and forming the first dielectric layer on the substrate. 7.如权利要求1所述的半导体结构的形成方法,其特征在于,采用第一刻蚀工艺去除所述第一介质层,且所述第一刻蚀工艺对第一介质层的刻蚀速率大于对第一侧墙膜的刻蚀速率。7. The formation method of semiconductor structure as claimed in claim 1, is characterized in that, adopts first etching process to remove described first dielectric layer, and the etching rate of described first etching process to first dielectric layer Greater than the etch rate of the first sidewall film. 8.如权利要求1所述的半导体结构的形成方法,其特征在于,采用第二刻蚀工艺刻蚀所述第一侧墙膜,且所述第二刻蚀工艺对所述第一侧墙膜的刻蚀速率大于对所述隔离结构的刻蚀速率。8. The method for forming a semiconductor structure according to claim 1, wherein the first sidewall film is etched by a second etching process, and the first sidewall film is etched by the second etching process. The etch rate of the film is greater than the etch rate of the isolation structure. 9.如权利要求1所述的半导体结构的形成方法,其特征在于,所述第一鳍部层的材料和第二鳍部层的材料不同;所述第一鳍部层的材料为单晶硅或单晶锗硅;所述第二鳍部层的材料为单晶硅或单晶锗硅。9. The method for forming a semiconductor structure according to claim 1, wherein the material of the first fin layer is different from that of the second fin layer; the material of the first fin layer is a single crystal Silicon or single crystal silicon germanium; the material of the second fin layer is single crystal silicon or single crystal silicon germanium. 10.如权利要求1所述的半导体结构的形成方法,其特征在于,所述伪栅极结构包括:伪栅介质层和位于所述伪栅介质层表面的伪栅极层;所述伪栅极结构的形成方法包括:在所述基底上形成覆盖所述鳍部结构的伪栅介质膜;在所述伪栅介质膜上形成伪栅极膜;刻蚀所述伪栅介质膜和伪栅极膜直至暴露出鳍部结构的顶部表面,使所述伪栅介质膜形成伪栅介质层,使伪栅极膜形成伪栅极层,形成所述伪栅极结构。10. The method for forming a semiconductor structure according to claim 1, wherein the dummy gate structure comprises: a dummy gate dielectric layer and a dummy gate layer positioned on the surface of the dummy gate dielectric layer; The forming method of the electrode structure includes: forming a dummy gate dielectric film covering the fin structure on the substrate; forming a dummy gate film on the dummy gate dielectric film; etching the dummy gate dielectric film and the dummy gate The pole film until the top surface of the fin structure is exposed, the dummy gate dielectric film forms a dummy gate dielectric layer, the dummy gate film forms a dummy gate layer, and the dummy gate structure is formed. 11.如权利要求10所述的半导体结构的形成方法,其特征在于,所述伪栅极结构还包括:位于所述伪栅介质层和所述伪栅极层侧壁表面的第二侧墙。11. The method for forming a semiconductor structure according to claim 10, wherein the dummy gate structure further comprises: a second spacer located on the sidewall surface of the dummy gate dielectric layer and the dummy gate layer . 12.如权利要求1所述的半导体结构的形成方法,其特征在于,所述栅极结构包括:界面层、和位于所述界面层表面的栅介质层、以及位于所述栅介质层表面的栅电极层;所述栅极结构的形成方法包括:在所述栅开口表面和第一介质层表面形成界面膜;在所述界面膜表面形成栅介质膜;在所述栅介质膜表面形成栅电极膜,且所述栅电极膜填充满所述栅开口;平坦化所述栅电极膜、栅介质膜以及界面膜,形成所述栅极结构。12. The method for forming a semiconductor structure according to claim 1, wherein the gate structure comprises: an interface layer, a gate dielectric layer located on the surface of the interface layer, and a gate dielectric layer located on the surface of the gate dielectric layer Gate electrode layer; the forming method of the gate structure includes: forming an interface film on the surface of the gate opening and the surface of the first dielectric layer; forming a gate dielectric film on the surface of the interface film; forming a gate dielectric film on the surface of the gate dielectric film. electrode film, and the gate electrode film fills the gate opening; planarize the gate electrode film, gate dielectric film and interface film to form the gate structure. 13.如权利要求12所述的半导体结构的形成方法,其特征在于,还包括:形成所述界面膜和栅介质膜之后,形成栅电极膜之前,进行热处理;所述热处理的工艺包括:尖峰退火或者激光退火,所述热处理的温度范围为850摄氏度~1200摄氏度。13. The method for forming a semiconductor structure according to claim 12, further comprising: performing heat treatment after forming the interface film and gate dielectric film and before forming the gate electrode film; the heat treatment process includes: Annealing or laser annealing, the temperature range of the heat treatment is 850°C-1200°C. 14.如权利要求1所述的半导体结构的形成方法,其特征在于,所述源漏掺杂层的形成工艺包括:外延生长工艺。14 . The method for forming a semiconductor structure according to claim 1 , wherein the forming process of the source-drain doped layer comprises: an epitaxial growth process. 15.如权利要求1所述的半导体结构的形成方法,其特征在于,还包括:形成所述源漏掺杂层之后,在所述基底上形成第二介质层;在所述第二介质层内形成第一导电结构和第二导电结构,所述第一导电结构与所述栅极结构电连接,所述第二导电结构与所述源漏掺杂层电连接。15. The method for forming a semiconductor structure according to claim 1, further comprising: after forming the source-drain doped layer, forming a second dielectric layer on the substrate; A first conductive structure and a second conductive structure are formed therein, the first conductive structure is electrically connected to the gate structure, and the second conductive structure is electrically connected to the source-drain doped layer. 16.如权利要求15所述的半导体结构的形成方法,其特征在于,还包括:形成所述源漏掺杂层之后,形成所述第二介质层之前,在所述源漏掺杂层表面形成接触电阻层;形成所述接触电阻层之后,在所述接触电阻层表面形成所述第二介质层。16. The method for forming a semiconductor structure according to claim 15, further comprising: after forming the source-drain doped layer and before forming the second dielectric layer, forming a layer on the surface of the source-drain doped layer forming a contact resistance layer; after forming the contact resistance layer, forming the second dielectric layer on the surface of the contact resistance layer.
CN202010146892.1A 2020-03-05 2020-03-05 Method for forming semiconductor structure Active CN113363154B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010146892.1A CN113363154B (en) 2020-03-05 2020-03-05 Method for forming semiconductor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010146892.1A CN113363154B (en) 2020-03-05 2020-03-05 Method for forming semiconductor structure

Publications (2)

Publication Number Publication Date
CN113363154A CN113363154A (en) 2021-09-07
CN113363154B true CN113363154B (en) 2023-08-18

Family

ID=77523696

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010146892.1A Active CN113363154B (en) 2020-03-05 2020-03-05 Method for forming semiconductor structure

Country Status (1)

Country Link
CN (1) CN113363154B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103137685A (en) * 2011-11-24 2013-06-05 中芯国际集成电路制造(北京)有限公司 Semiconductor device and manufacturing method thereof
CN109427582A (en) * 2017-08-22 2019-03-05 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof
CN109994547A (en) * 2017-12-29 2019-07-09 中芯国际集成电路制造(上海)有限公司 Semiconductor device and method of forming the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9786782B2 (en) * 2015-10-23 2017-10-10 International Business Machines Corporation Source/drain FinFET channel stressor structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103137685A (en) * 2011-11-24 2013-06-05 中芯国际集成电路制造(北京)有限公司 Semiconductor device and manufacturing method thereof
CN109427582A (en) * 2017-08-22 2019-03-05 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof
CN109994547A (en) * 2017-12-29 2019-07-09 中芯国际集成电路制造(上海)有限公司 Semiconductor device and method of forming the same

Also Published As

Publication number Publication date
CN113363154A (en) 2021-09-07

Similar Documents

Publication Publication Date Title
CN112309860B (en) Semiconductor structures and methods of forming them
US20200295051A1 (en) Mechanisms for forming finfet device
CN110277316B (en) Semiconductor structures and methods of forming them
US11588051B2 (en) Semiconductor device and fabrication method thereof
CN104124174A (en) Semiconductor structure and forming method thereof
US20220328642A1 (en) Semiconductor structure and forming method thereof
CN106952815A (en) Method for forming fin transistors
CN113363154B (en) Method for forming semiconductor structure
CN113363321B (en) Semiconductor structure and method of forming the same
CN113903666B (en) Semiconductor structure and method of forming the same
CN113838803B (en) Semiconductor structure and method for forming the same
KR102434615B1 (en) Self-aligned contact structures
CN112309862B (en) Semiconductor structure and method for forming the same
CN112151449B (en) Semiconductor structure and forming method thereof
CN112928025B (en) Semiconductor structures and methods of forming them
CN112309858B (en) Semiconductor structures and methods of forming them
CN110875255B (en) Semiconductor device and method of forming the same
WO2022193085A1 (en) Semiconductor structure and method for forming same
CN115763371A (en) Semiconductor structure and forming method thereof
CN113363256A (en) Semiconductor structure and forming method thereof
CN106409765A (en) Semiconductor structure and forming method thereof
CN112713088A (en) Semiconductor structure and forming method thereof
CN113764280B (en) Semiconductor structure and forming method thereof
CN113745214B (en) Semiconductor structures and methods of forming them
CN113937163B (en) Semiconductor device and method of forming the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant