CN113337519B - Application of Different Copies of BrMYC2/3/4 Gene in Plant Growth - Google Patents
Application of Different Copies of BrMYC2/3/4 Gene in Plant Growth Download PDFInfo
- Publication number
- CN113337519B CN113337519B CN202110616932.9A CN202110616932A CN113337519B CN 113337519 B CN113337519 B CN 113337519B CN 202110616932 A CN202110616932 A CN 202110616932A CN 113337519 B CN113337519 B CN 113337519B
- Authority
- CN
- China
- Prior art keywords
- brmyc2
- brmyc4
- brmyc3
- arabidopsis
- plant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000008635 plant growth Effects 0.000 title abstract description 6
- 101150090724 3 gene Proteins 0.000 title description 4
- 101150033839 4 gene Proteins 0.000 title description 3
- 241000196324 Embryophyta Species 0.000 claims abstract description 59
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 14
- 244000053095 fungal pathogen Species 0.000 claims abstract description 13
- 241000221696 Sclerotinia sclerotiorum Species 0.000 claims description 15
- 241000219195 Arabidopsis thaliana Species 0.000 claims description 14
- 238000003208 gene overexpression Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 17
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 abstract description 16
- 240000007124 Brassica oleracea Species 0.000 abstract description 13
- 235000003899 Brassica oleracea var acephala Nutrition 0.000 abstract description 13
- 235000011301 Brassica oleracea var capitata Nutrition 0.000 abstract description 13
- 235000001169 Brassica oleracea var oleracea Nutrition 0.000 abstract description 13
- 230000001737 promoting effect Effects 0.000 abstract description 10
- 230000003111 delayed effect Effects 0.000 abstract description 5
- 238000009395 breeding Methods 0.000 abstract description 4
- 230000001488 breeding effect Effects 0.000 abstract description 4
- 230000002068 genetic effect Effects 0.000 abstract description 3
- 230000008569 process Effects 0.000 abstract description 3
- 206010034133 Pathogen resistance Diseases 0.000 abstract description 2
- 230000009261 transgenic effect Effects 0.000 description 45
- 241000219194 Arabidopsis Species 0.000 description 42
- 239000013598 vector Substances 0.000 description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- 125000004383 glucosinolate group Chemical group 0.000 description 16
- 239000007788 liquid Substances 0.000 description 16
- 230000002018 overexpression Effects 0.000 description 16
- 239000000243 solution Substances 0.000 description 16
- 230000012010 growth Effects 0.000 description 15
- 239000002609 medium Substances 0.000 description 15
- 239000013612 plasmid Substances 0.000 description 14
- 239000000047 product Substances 0.000 description 13
- 238000012163 sequencing technique Methods 0.000 description 13
- 108020004414 DNA Proteins 0.000 description 11
- 238000001514 detection method Methods 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- 239000013604 expression vector Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 230000003321 amplification Effects 0.000 description 8
- 230000001580 bacterial effect Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 238000003199 nucleic acid amplification method Methods 0.000 description 8
- 240000000220 Panda oleosa Species 0.000 description 7
- 235000016496 Panda oleosa Nutrition 0.000 description 7
- 238000000246 agarose gel electrophoresis Methods 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 239000006228 supernatant Substances 0.000 description 7
- 235000000536 Brassica rapa subsp pekinensis Nutrition 0.000 description 6
- 241000499436 Brassica rapa subsp. pekinensis Species 0.000 description 6
- RUQCCAGSFPUGSZ-OBWQKADXSA-N Glucoraphanin Natural products C[S@](=O)CCCCC(=NS(=O)(=O)O)S[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O RUQCCAGSFPUGSZ-OBWQKADXSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 238000010162 Tukey test Methods 0.000 description 6
- GMMLNKINDDUDCF-JRWRFYLSSA-N [(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (1e)-5-[(r)-methylsulfinyl]-n-sulfooxypentanimidothioate Chemical compound C[S@@](=O)CCCC\C(=N/OS(O)(=O)=O)S[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O GMMLNKINDDUDCF-JRWRFYLSSA-N 0.000 description 6
- PKKMITFKYRCCOL-JMZFCNQTSA-N [(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (1z)-2-(1-methoxyindol-3-yl)-n-sulfooxyethanimidothioate Chemical compound C12=CC=CC=C2N(OC)C=C1C\C(=N\OS(O)(=O)=O)S[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O PKKMITFKYRCCOL-JMZFCNQTSA-N 0.000 description 6
- 238000000540 analysis of variance Methods 0.000 description 6
- 238000001962 electrophoresis Methods 0.000 description 6
- OYYJOBIUXKENQW-USACIQFYSA-N neoglucobrassicin Natural products COn1cc(CC(=NS(=O)(=O)O)SC[C@H]2O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]2O)c3ccccc13 OYYJOBIUXKENQW-USACIQFYSA-N 0.000 description 6
- 239000001965 potato dextrose agar Substances 0.000 description 6
- 238000007619 statistical method Methods 0.000 description 6
- 229910001868 water Inorganic materials 0.000 description 6
- 241000589158 Agrobacterium Species 0.000 description 5
- 241000219198 Brassica Species 0.000 description 5
- 235000010149 Brassica rapa subsp chinensis Nutrition 0.000 description 5
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 5
- 101150062179 II gene Proteins 0.000 description 5
- 239000013599 cloning vector Substances 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 5
- DNDNWOWHUWNBCK-NMIPTCLMSA-N indolylmethylglucosinolate Chemical class O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1S\C(=N\OS(O)(=O)=O)CC1=CNC2=CC=CC=C12 DNDNWOWHUWNBCK-NMIPTCLMSA-N 0.000 description 5
- 208000015181 infectious disease Diseases 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- IIAGSABLXRZUSE-HOWGQALGSA-N 4-Methoxyglucobrassicin Natural products S(=O)(=O)(O/N=C(/S[C@H]1[C@@H](O)[C@@H](O)[C@H](O)[C@H](CO)O1)\Cc1c2c(OC)cccc2[nH]c1)O IIAGSABLXRZUSE-HOWGQALGSA-N 0.000 description 4
- HUCGRJSHMZWRQQ-CRDAZNLZSA-N 5-Methylsulfinylpentyl glucosinolate Natural products C[S@@](=O)CCCCC\C(S[C@H]1O[C@H](CO)[C@@H](O)[C@@H](O)[C@@H]1O)=N\OS(O)(=O)=O HUCGRJSHMZWRQQ-CRDAZNLZSA-N 0.000 description 4
- GPMDJOOLATZDQL-PIYTZKHRSA-N 8-Methylsulfinyloctyl glucosinolate Natural products C[S@@](=O)CCCCCCCC\C(S[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O)=N/OS(O)(=O)=O GPMDJOOLATZDQL-PIYTZKHRSA-N 0.000 description 4
- 235000011331 Brassica Nutrition 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- GPMDJOOLATZDQL-OTNWBXTQSA-N Glucohirsutin Chemical compound CS(=O)CCCCCCCC\C(S[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O)=N\OS(O)(=O)=O GPMDJOOLATZDQL-OTNWBXTQSA-N 0.000 description 4
- GPMDJOOLATZDQL-UHFFFAOYSA-N Glucohirsutin Natural products CS(=O)CCCCCCCCC(=NOS(O)(=O)=O)SC1OC(CO)C(O)C(O)C1O GPMDJOOLATZDQL-UHFFFAOYSA-N 0.000 description 4
- PHYYADMVYQURSX-GBDQSWGGSA-N Glucoiberin Natural products C[S@@](=O)CCC\C(S[C@H]1O[C@@H](CO)[C@H](O)[C@@H](O)[C@H]1O)=N/OS(O)(=O)=O PHYYADMVYQURSX-GBDQSWGGSA-N 0.000 description 4
- NCWFGOSXGPNCHQ-KAMPLNKDSA-N Gluconapin Natural products OC[C@H]1O[C@H](SC=NCCC=C)[C@H](O)[C@@H](O)[C@@H]1O NCWFGOSXGPNCHQ-KAMPLNKDSA-N 0.000 description 4
- IIAGSABLXRZUSE-KYKLFQSUSA-N [(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (1z)-2-(4-methoxy-1h-indol-3-yl)-n-sulfooxyethanimidothioate Chemical compound C1=2C(OC)=CC=CC=2NC=C1C\C(=N\OS(O)(=O)=O)S[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O IIAGSABLXRZUSE-KYKLFQSUSA-N 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- HUCGRJSHMZWRQQ-PWGYDFSISA-N glucoalyssin Chemical compound CS(=O)CCCCC\C(=N\OS(O)(=O)=O)S[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HUCGRJSHMZWRQQ-PWGYDFSISA-N 0.000 description 4
- HUCGRJSHMZWRQQ-ANKKHXCWSA-N glucoalyssin Natural products C[S@](=O)CCCCCC(=NOS(=O)(=O)O)S[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HUCGRJSHMZWRQQ-ANKKHXCWSA-N 0.000 description 4
- GKUMMDFLKGFCKH-AHMUMSBHSA-N glucoerucin Chemical compound CSCCCC\C(=N\OS(O)(=O)=O)S[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O GKUMMDFLKGFCKH-AHMUMSBHSA-N 0.000 description 4
- DJOJPSRRKWYLCC-URYVQPGZSA-N glucoerucin Natural products CSCCCCC(=N/S(=O)(=O)O)S[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O DJOJPSRRKWYLCC-URYVQPGZSA-N 0.000 description 4
- PLYQBXHVYUJNQB-IIPHORNXSA-N gluconapin Chemical compound OC[C@H]1O[C@@H](S\C(CCC=C)=N/OS(O)(=O)=O)[C@H](O)[C@@H](O)[C@@H]1O PLYQBXHVYUJNQB-IIPHORNXSA-N 0.000 description 4
- 230000006801 homologous recombination Effects 0.000 description 4
- 238000002744 homologous recombination Methods 0.000 description 4
- 239000008176 lyophilized powder Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 108020004707 nucleic acids Proteins 0.000 description 4
- 102000039446 nucleic acids Human genes 0.000 description 4
- 150000007523 nucleic acids Chemical class 0.000 description 4
- PJZYNAFZGIIKQD-LUFJGRCYSA-M potassium;[(e)-[4-methylsulfinyl-1-[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfanylbutylidene]amino] sulfate Chemical compound [K+].CS(=O)CCC\C(=N/OS([O-])(=O)=O)S[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O PJZYNAFZGIIKQD-LUFJGRCYSA-M 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 238000010839 reverse transcription Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 230000009105 vegetative growth Effects 0.000 description 4
- 229920001817 Agar Polymers 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 3
- 101100459261 Cyprinus carpio mycb gene Proteins 0.000 description 3
- 238000007400 DNA extraction Methods 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- 101100288095 Klebsiella pneumoniae neo gene Proteins 0.000 description 3
- 101150065635 MYC2 gene Proteins 0.000 description 3
- 238000012408 PCR amplification Methods 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 108091023040 Transcription factor Proteins 0.000 description 3
- 102000040945 Transcription factor Human genes 0.000 description 3
- 101100239644 Xenopus laevis myc-b gene Proteins 0.000 description 3
- DNDNWOWHUWNBCK-PIAXYHQTSA-N [(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (1z)-2-(1h-indol-3-yl)-n-sulfooxyethanimidothioate Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1S\C(=N/OS(O)(=O)=O)CC1=CNC2=CC=CC=C12 DNDNWOWHUWNBCK-PIAXYHQTSA-N 0.000 description 3
- 239000008272 agar Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- JRJLFQURIXLQJD-YCLXMMFGSA-N glucobrassicin Natural products OC[C@@H]1O[C@H](SC(=NOS(=O)(=O)O)[C@H](O)[C@H](O)Cc2c[nH]c3ccccc23)[C@@H](O)[C@H](O)[C@H]1O JRJLFQURIXLQJD-YCLXMMFGSA-N 0.000 description 3
- 210000004209 hair Anatomy 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 230000004060 metabolic process Effects 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- PHZOWSSBXJXFOR-UHFFFAOYSA-N 2-Propenyl glucosinolate Natural products OCC1OC(SC(CC=C)=NOS(O)(=O)=O)C(O)C(O)C1O PHZOWSSBXJXFOR-UHFFFAOYSA-N 0.000 description 2
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 2
- CSMYCLLHRFFFLG-ABVFHMHLSA-N 4-Hydroxyglucobrassicin Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1S\C(=N\OS(O)(=O)=O)CC1=CNC2=CC=CC(O)=C12 CSMYCLLHRFFFLG-ABVFHMHLSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- CSMYCLLHRFFFLG-IRHMCKRBSA-N DS-7-methylsulfanylheptylGL Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1SC(=NOS(O)(=O)=O)CC1=CNC2=CC=CC(O)=C12 CSMYCLLHRFFFLG-IRHMCKRBSA-N 0.000 description 2
- 229930182566 Gentamicin Natural products 0.000 description 2
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- 238000002123 RNA extraction Methods 0.000 description 2
- 241000221662 Sclerotinia Species 0.000 description 2
- 229920005654 Sephadex Polymers 0.000 description 2
- 239000012507 Sephadex™ Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- PHZOWSSBXJXFOR-MYMDCHNCSA-N Sinigrin Natural products S(=O)(=O)(O/N=C(\S[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@H](CO)O1)/CC=C)O PHZOWSSBXJXFOR-MYMDCHNCSA-N 0.000 description 2
- 102000005262 Sulfatase Human genes 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- CSMYCLLHRFFFLG-WVGMDVCISA-N [(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (1z)-2-(4-hydroxy-1h-indol-3-yl)-n-sulfooxyethanimidothioate Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1S\C(=N/OS(O)(=O)=O)CC1=CNC2=CC=CC(O)=C12 CSMYCLLHRFFFLG-WVGMDVCISA-N 0.000 description 2
- 230000001093 anti-cancer Effects 0.000 description 2
- 230000000843 anti-fungal effect Effects 0.000 description 2
- 238000010804 cDNA synthesis Methods 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- BKHZIBWEHPHYAI-UHFFFAOYSA-N chloroform;3-methylbutan-1-ol Chemical compound ClC(Cl)Cl.CC(C)CCO BKHZIBWEHPHYAI-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000012297 crystallization seed Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001976 enzyme digestion Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 229960002518 gentamicin Drugs 0.000 description 2
- ZCZCVJVUJGULMO-IIPHORNXSA-N glucoiberverin Chemical compound CSCCC\C(=N\OS(O)(=O)=O)S[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O ZCZCVJVUJGULMO-IIPHORNXSA-N 0.000 description 2
- ZCZCVJVUJGULMO-MOPFWBRRSA-N glucoiberverin Natural products S(=O)(=O)(O/N=C(\S[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@H](CO)O1)/CCCSC)O ZCZCVJVUJGULMO-MOPFWBRRSA-N 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 235000021384 green leafy vegetables Nutrition 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- ZNJFBWYDHIGLCU-HWKXXFMVSA-N jasmonic acid Chemical compound CC\C=C/C[C@@H]1[C@@H](CC(O)=O)CCC1=O ZNJFBWYDHIGLCU-HWKXXFMVSA-N 0.000 description 2
- 230000000366 juvenile effect Effects 0.000 description 2
- 229930027917 kanamycin Natural products 0.000 description 2
- 229960000318 kanamycin Drugs 0.000 description 2
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 2
- 229930182823 kanamycin A Natural products 0.000 description 2
- 230000002015 leaf growth Effects 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000007481 next generation sequencing Methods 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- QKFAFSGJTMHRRY-OCFLFPRFSA-M potassium;[(e)-1-[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfanylbut-3-enylideneamino] sulfate Chemical compound [K+].OC[C@H]1O[C@@H](S\C(CC=C)=N\OS([O-])(=O)=O)[C@H](O)[C@@H](O)[C@@H]1O QKFAFSGJTMHRRY-OCFLFPRFSA-M 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000001850 reproductive effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- JQXXHWHPUNPDRT-WLSIYKJHSA-N rifampicin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C([O-])=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CC[NH+](C)CC1 JQXXHWHPUNPDRT-WLSIYKJHSA-N 0.000 description 2
- 229960001225 rifampicin Drugs 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 235000017291 sinigrin Nutrition 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 108060007951 sulfatase Proteins 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 239000012137 tryptone Substances 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- 240000008027 Akebia quinata Species 0.000 description 1
- 235000007756 Akebia quinata Nutrition 0.000 description 1
- 108010027344 Basic Helix-Loop-Helix Transcription Factors Proteins 0.000 description 1
- 102000018720 Basic Helix-Loop-Helix Transcription Factors Human genes 0.000 description 1
- 235000003351 Brassica cretica Nutrition 0.000 description 1
- 235000003343 Brassica rupestris Nutrition 0.000 description 1
- 241000219193 Brassicaceae Species 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- SFSJZXMDTNDWIX-YFKPBYRVSA-N L-homomethionine Chemical compound CSCCC[C@H](N)C(O)=O SFSJZXMDTNDWIX-YFKPBYRVSA-N 0.000 description 1
- 102000011931 Nucleoproteins Human genes 0.000 description 1
- 108010061100 Nucleoproteins Proteins 0.000 description 1
- 241000576755 Sclerotia Species 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229960000583 acetic acid Drugs 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- QKSKPIVNLNLAAV-UHFFFAOYSA-N bis(2-chloroethyl) sulfide Chemical compound ClCCSCCCl QKSKPIVNLNLAAV-UHFFFAOYSA-N 0.000 description 1
- 238000010805 cDNA synthesis kit Methods 0.000 description 1
- 235000021466 carotenoid Nutrition 0.000 description 1
- 150000001747 carotenoids Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000034303 cell budding Effects 0.000 description 1
- 230000011748 cell maturation Effects 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- FBWIRBFZWNIGJC-UHFFFAOYSA-N dihomomethionine Chemical compound CSCCCCC([NH3+])C([O-])=O FBWIRBFZWNIGJC-UHFFFAOYSA-N 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000012154 double-distilled water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 238000012215 gene cloning Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- -1 grinding rod Substances 0.000 description 1
- 101150054900 gus gene Proteins 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- SFSJZXMDTNDWIX-UHFFFAOYSA-N homomethionine Natural products CSCCCC(N)C(O)=O SFSJZXMDTNDWIX-UHFFFAOYSA-N 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- ZNJFBWYDHIGLCU-UHFFFAOYSA-N jasmonic acid Natural products CCC=CCC1C(CC(O)=O)CCC1=O ZNJFBWYDHIGLCU-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 235000010460 mustard Nutrition 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000003415 peat Substances 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- 125000004817 pentamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000008121 plant development Effects 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229930000044 secondary metabolite Natural products 0.000 description 1
- 230000008117 seed development Effects 0.000 description 1
- 230000035040 seed growth Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000009331 sowing Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- UKDJCWUSWYBRDM-UHFFFAOYSA-N trihomomethionine Chemical compound CSCCCCCC([NH3+])C([O-])=O UKDJCWUSWYBRDM-UHFFFAOYSA-N 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8262—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
- C12N15/827—Flower development or morphology, e.g. flowering promoting factor [FPF]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8282—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/146—Genetically Modified [GMO] plants, e.g. transgenic plants
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Physiology (AREA)
- Botany (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明公开了BrMYC2/3/4基因不同拷贝在植物生长中的应用,BrMYC2和BrMYC4‑1在促使植物提前开花,增加植物种子产量,提高对真菌病原体抗性中的应用;BrMYC3‑1在促使植物提前开花,提高对真菌病原体抗性中的应用;BrMYC3‑2在促使植物延迟开花,增加植物种子产量,提高对真菌病原体抗性中的应用;BrMYC4‑2在促使植物延迟开花,提高对真菌病原体抗性中的应用。本发明为白菜改良育种提供了新的基因资源,从而推进白菜育种进程。
The invention discloses the application of different copies of BrMYC2/3/4 genes in plant growth, and the application of BrMYC2 and BrMYC4-1 in promoting early flowering of plants, increasing plant seed yield, and improving resistance to fungal pathogens; BrMYC3-1 in promoting The application of BrMYC3-2 in promoting plants to delay flowering, increasing plant seed yield and improving resistance to fungal pathogens; BrMYC4-2 in promoting delayed flowering and improving resistance to fungal pathogens Applications in pathogen resistance. The invention provides new genetic resources for improved breeding of cabbage, thereby promoting the breeding process of cabbage.
Description
技术领域technical field
本发明涉及植物基因工程技术领域,具体涉及BrMYC2/3/4基因不同拷贝在植物生长中的应用。The invention relates to the technical field of plant genetic engineering, in particular to the application of different copies of BrMYC2/3/4 genes in plant growth.
背景技术Background technique
白菜(Brassica rapa ssp.pekinensis)属十字花科(Cruciferae)芸薹属(Brassica)叶用蔬菜,又称‘结球白菜’、‘黄芽菜’,原产我国华北,有着悠久的栽培历史,现各地广泛栽培,是十字花科芸薹属栽培面积最大的叶用蔬菜。白菜不仅种类繁多,并且具有耐低温,口感脆嫩等特点,还含有丰富的矿物质、类胡萝卜素和硫苷。白菜中含有丰富的硫苷,因其独特的风味和重要次生代谢产物硫苷及其水解产物的抗病虫能力、防癌抗癌、抗氧化作用而引起植物学、医学、生物学、食品等众多学科研究人员的关注。Chinese cabbage (Brassica rapa ssp.pekinensis) belongs to Cruciferae and Brassica leaf vegetables, also known as 'heading cabbage' and 'yellow sprout'. It is native to North China and has a long history of cultivation. Now widely cultivated in various places, it is the leaf vegetable with the largest cultivation area of Brassica. Cabbage not only has a wide variety, but also has the characteristics of low temperature resistance, crisp taste, etc. It is also rich in minerals, carotenoids and glucosinolates. Chinese cabbage is rich in glucosinolates, which are caused by its unique flavor and important secondary metabolites glucosinolates and their hydrolyzed products' anti-disease and insect resistance, anti-cancer, anti-cancer, and anti-oxidation effects in botany, medicine, biology, food attention of researchers in many disciplines.
MYC2/3/4转录因子作为bHLH IIIe家族中的重要成员在茉莉酸介导的生物代谢调控活动中扮演重要角色,目前对MYC2/3/4转录因子功能的研究多以模式植物拟南芥为主。虽然白菜与拟南芥拥有共同祖先,但由于其异源三倍体基因组的复杂性,一定程度上影响了硫苷的防御功能在白菜中的应用,有必要深入了解BrMYC2/3/4在植物生长发育及吲哚族硫苷代谢中的功能分化。As an important member of the bHLH IIIe family, MYC2/3/4 transcription factors play an important role in the regulation of biological metabolism mediated by jasmonic acid. At present, most researches on the function of MYC2/3/4 transcription factors are based on the model plant Arabidopsis thaliana. host. Although Chinese cabbage shares a common ancestor with Arabidopsis, due to the complexity of its allotriploid genome, the application of glucosinolates defense function in Chinese cabbage is affected to a certain extent. It is necessary to deeply understand the role of BrMYC2/3/4 in plants Functional differentiation in growth and development and metabolism of indole glucosinolates.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供BrMYC2/3/4基因不同拷贝在植物生长中的应用,以解决现有技术的不足。The purpose of the present invention is to provide the application of different copies of BrMYC2/3/4 gene in plant growth, so as to solve the deficiencies of the prior art.
本发明采用以下技术方案:The present invention adopts following technical scheme:
BrMYC2/3/4基因不同拷贝在植物生长中的应用:BrMYC2和BrMYC4-1在促使植物提前开花,增加植物种子产量,提高对真菌病原体抗性中的应用;BrMYC3-1在促使植物提前开花,提高对真菌病原体抗性中的应用;BrMYC3-2在促使植物延迟开花,增加植物种子产量,提高对真菌病原体抗性中的应用;BrMYC4-2在促使植物延迟开花,提高对真菌病原体抗性中的应用。Application of different copies of BrMYC2/3/4 genes in plant growth: BrMYC2 and BrMYC4-1 are used in promoting early flowering, increasing plant seed yield, and improving resistance to fungal pathogens; BrMYC3-1 in promoting early flowering, Application of BrMYC3-2 in improving resistance to fungal pathogens; application of BrMYC3-2 in promoting plant delayed flowering, increasing plant seed yield, and improving resistance to fungal pathogens; BrMYC4-2 in promoting delayed flowering and improving resistance to fungal pathogens Applications.
进一步地,所述植物为拟南芥。Further, the plant is Arabidopsis.
进一步地,真菌病原体为核盘菌。Further, the fungal pathogen is Sclerotinia sclerotiorum.
本发明的有益效果:Beneficial effects of the present invention:
本发明发现了BrMYC2/3/4基因不同拷贝在植物生长中的不同应用,BrMYC2和BrMYC4-1可应用于促使植物提前开花,增加植物种子产量,提高对真菌病原体抗性;BrMYC3-1可应用于促使植物提前开花,提高对真菌病原体抗性;BrMYC3-2可应用于促使植物延迟开花,增加植物种子产量,提高对真菌病原体抗性;BrMYC4-2可应用于促使植物延迟开花,提高对真菌病原体抗性。The invention discovers different applications of different copies of BrMYC2/3/4 genes in plant growth. BrMYC2 and BrMYC4-1 can be applied to promote plants to bloom in advance, increase plant seed yield, and improve resistance to fungal pathogens; BrMYC3-1 can be applied To promote early flowering of plants and improve resistance to fungal pathogens; BrMYC3-2 can be used to promote delayed flowering of plants, increase plant seed yield, and improve resistance to fungal pathogens; BrMYC4-2 can be used to promote delayed flowering of plants and improve resistance to fungi Pathogen resistance.
本发明为白菜改良育种提供了新的基因资源,从而推进白菜育种进程。The invention provides new genetic resources for improved breeding of cabbage, thereby promoting the breeding process of cabbage.
附图说明Description of drawings
图1是植物表达载体pCAMBIA2302载体的构建过程。Figure 1 shows the construction process of the plant expression vector pCAMBIA2302 vector.
图2是植物表达载体pCAMBIA2301载体nptII扩增测序比对结果;(A)pCAMBIA2301载体nptII扩增测序DNA比对结果;(B)pCAMBIA2301载体nptII扩增测序氨基酸比对结果。Figure 2 shows the comparison results of the amplification and sequencing of the plant expression vector pCAMBIA2301 vector nptII; (A) the comparison results of DNA amplification and sequencing of the pCAMBIA2301 vector nptII; (B) the amino acid comparison results of the amplification and sequencing of the pCAMBIA2301 vector nptII.
图3是植物表达载体pCAMBIA2302酶切检测;缩写:Lane M,DNA marker;Lane H,ddH2O。Fig. 3 is the enzyme digestion detection of the plant expression vector pCAMBIA2302; Abbreviations: Lane M, DNA marker; Lane H, ddH 2 O.
图4是植物表达载体pCAMBIA2302载体质粒测序比对结果。Figure 4 shows the results of the sequencing and alignment of the plant expression vector pCAMBIA2302 vector plasmids.
图5是白菜总RNA电泳条带。Figure 5 shows the electrophoresis bands of total RNA in Chinese cabbage.
图6是过表达载体的PCR电泳结果分析;(A)p2302MYC4-1过表达载体;(B)从左至右的过表达载体是:p2302MYC3-2,p2302MYC4-2,p2302MYC3-1,p2302MYC2;缩写:Lane M,DNAmarker;Lane H,ddH2O。Figure 6 is the analysis of the results of PCR electrophoresis of overexpression vectors; (A) p2302MYC4-1 overexpression vector; (B) overexpression vectors from left to right are: p2302MYC3-2, p2302MYC4-2, p2302MYC3-1, p2302MYC2; abbreviations : Lane M, DNAmarker ; Lane H, ddH2O.
图7是p2302MYC2/3/4过表达载体转大肠杆菌菌液PCR产物测序比对结果。Figure 7 is the sequencing comparison result of the PCR products of the p2302MYC2/3/4 overexpression vector transfected into E. coli bacteria liquid.
图8是T3代BrMYC2/3/4转基因拟南芥株系的种子生长指标;(A)成熟种子的表型;(B)解剖的成熟角果的表型;(C)种子长度的对比;(D)种子宽度的对比;(E)千粒重的对比;(F)每个长角果种子数的对比;测试的转基因株系分别是Ctrl、BrMYC2OE、BrMYC3-1OE、BrMYC3-2OE、BrMYC4-1OE、BrMYC4-2OE;随机选择各基因型生长状态健康且较一致的种子和长角果,并在相同条件下拍照;数据显示为来自三个独立生物学重复的平均值±SD;使用方差分析进行统计分析,然后进行Tukey的多重比较检验(p<0.05);比例尺=500μm。Figure 8 is the seed growth index of T 3 generation BrMYC2/3/4 transgenic Arabidopsis lines; (A) phenotype of mature seeds; (B) phenotype of dissected mature siliques; (C) comparison of seed lengths ; (D) comparison of seed width; (E) comparison of thousand-grain weight; (F) comparison of the number of seeds per silique; tested transgenic lines are Ctrl, BrMYC2 OE , BrMYC3-1 OE , BrMYC3-2 OE , BrMYC4-1 OE , BrMYC4-2 OE ; seeds and siliques with healthy and consistent growth status of each genotype were randomly selected and photographed under the same conditions; data are shown as the mean ± from three independent biological replicates SD; Statistical analysis was performed using ANOVA followed by Tukey's multiple comparison test (p<0.05); scale bar = 500 μm.
图9是T3代BrMYC2/3/4转基因拟南芥株系的单株种子总重和千粒重。Figure 9 is the total seed weight per plant and thousand kernel weight of T 3 generation BrMYC2/3/4 transgenic Arabidopsis lines.
图10是T3代BrMYC2/3/4转基因拟南芥株系的根和下胚轴长度;(A)6天大的幼苗的表型;(B)根长度的对比;(C)下胚轴长度的对比;转基因株系分别是Ctrl、BrMYC2OE、BrMYC3-1OE、BrMYC3-2OE、BrMYC4-1OE、BrMYC4-2OE;数据显示为来自三个独立生物学重复的平均值±SD;使用方差分析进行统计分析,然后进行Tukey的多重比较检验(p<0.05);比例尺=1cm。Figure 10. Root and hypocotyl lengths of T 3 generation BrMYC2/3/4 transgenic Arabidopsis lines; (A) phenotype of 6-day-old seedlings; (B) comparison of root lengths; (C) hypocotyls Comparison of axis lengths; transgenic lines are Ctrl, BrMYC2 OE , BrMYC3-1 OE , BrMYC3-2 OE , BrMYC4-1 OE , BrMYC4-2 OE ; data are shown as mean ± SD from three independent biological replicates ; Statistical analysis was performed using ANOVA followed by Tukey's multiple comparison test (p<0.05); scale bar = 1 cm.
图11是T3代BrMYC2/3/4转基因拟南芥株系营养阶段转变时间差异;(A)28天大的转基因拟南芥表型;(B)叶片表型,数字显示的是出现表皮毛的第一片莲座叶叶位;(C)短时间内转基因拟南芥的叶片生长速率;种植后第12、16、20、24和28天对叶数进行统计;转基因株系分别是Ctrl、BrMYC2OE、BrMYC3-1OE、BrMYC3-2OE、BrMYC4-1OE、BrMYC4-2OE;数据显示为来自三个独立生物学重复的平均值±SD;使用方差分析进行统计分析,然后进行Tukey的多重比较检验(p<0.05);比例尺=1cm。Figure 11 is the difference in the vegetative stage transition time of T 3 generation BrMYC2/3/4 transgenic Arabidopsis lines; (A) 28-day-old transgenic Arabidopsis phenotype; (B) leaf phenotype, the numbers show the appearance The leaf position of the first rosette leaf of fur; (C) Leaf growth rate of transgenic Arabidopsis in a short time; the number of leaves was counted on the 12th, 16th, 20th, 24th and 28th days after planting; transgenic lines were Ctrl , BrMYC2 OE , BrMYC3-1 OE , BrMYC3-2 OE , BrMYC4-1 OE , BrMYC4-2 OE ; data shown as mean ± SD from three independent biological replicates; statistical analysis was performed using ANOVA followed by Tukey Multiple comparison test of (p<0.05); scale bar = 1 cm.
图12是T3代BrMYC2/3/4转基因拟南芥株系的株高和开花时间;(A)3周大拟南芥的表型;(B)抽薹时间;(C)抽薹时的莲座叶片数量;(D)7周大拟南芥的表型;(E)植株高度;(F)分枝数枝数量;转基因株系分别是Ctrl、BrMYC2OE、BrMYC3-1OE、BrMYC3-2OE、BrMYC4-1OE、BrMYC4-2OE;数据显示为来自三个独立生物学重复的平均值±SD;使用方差分析进行统计分析,然后进行Tukey的多重比较检验(p<0.05);比例尺=1cm。Figure 12 shows plant height and flowering time of T 3 generation BrMYC2/3/4 transgenic Arabidopsis lines; (A) phenotype of 3-week-old Arabidopsis; (B) bolting time; (C) rosette at bolting Number of leaves; (D) phenotype of 7-week-old Arabidopsis; (E) plant height; (F) number of branches; transgenic lines are Ctrl, BrMYC2 OE , BrMYC3-1 OE , BrMYC3-2 OE , BrMYC4-1 OE , BrMYC4-2 OE ; data are shown as mean ± SD from three independent biological replicates; statistical analysis was performed using ANOVA followed by Tukey's multiple comparison test (p<0.05); scale bar = 1 cm .
图13是T3代BrMYC2/3/4转基因拟南芥株系莲座叶的冻干粉在PDA上对核盘菌生长的抑制情况;从左到右分别是:ddH2O,Ctrl、BrMYC2OE、BrMYC3-1OE、BrMYC3-2OE、BrMYC4-1OE、BrMYC4-2OE;在每个培养皿的中央放置一个核盘菌;核盘菌菌丝为白色棉状菌丝体斑块;比例尺=1cm。Figure 13 is the inhibition of Sclerotinia sclerotiorum growth by lyophilized powder of rosette leaves of T 3 generation BrMYC2/3/4 transgenic Arabidopsis strain on PDA; from left to right: ddH 2 O, Ctrl, BrMYC2 OE , BrMYC3-1 OE , BrMYC3-2 OE , BrMYC4-1 OE , BrMYC4-2 OE ; a sclerotinia sclerotiorum was placed in the center of each petri dish; sclerotinia sclerotiorum mycelia were white cottony mycelial plaques; scale bar = 1 cm.
具体实施方式Detailed ways
下面结合实施例和附图对本发明做更进一步地解释。下列实施例仅用于说明本发明,但并不用来限定本发明的实施范围。The present invention will be further explained below with reference to the embodiments and the accompanying drawings. The following examples are only used to illustrate the present invention, but are not intended to limit the scope of implementation of the present invention.
1 BrMYC2/3/4过表达载体的构建1 Construction of BrMYC2/3/4 overexpression vector
1.1试验材料1.1 Test material
1.1.1植物材料1.1.1 Plant material
本研究所用的白菜为‘Chiifu’(浙江省农产品品质改良技术研究重点实验室品系,即本实验室品系)。植株种植于本实验室光照培养室,生长条件为光强600μmol·m-2·s-1、光周期16h光照/8h黑暗、湿度65%、温度16h 28℃/8h 20℃。The cabbage used in this study was 'Chiifu' (the strain of Zhejiang Provincial Key Laboratory of Agricultural Product Quality Improvement Technology Research, that is, the strain of this laboratory). Plants were planted in the light culture room of our laboratory under the conditions of light intensity of 600 μmol·m -2 ·s -1 , photoperiod of 16h light/8h darkness, 65% humidity, and
1.1.2载体与菌种1.1.2 Carriers and strains
本研究中用到的质粒载体有pCAMBIA2301、pCAMBIA1302、pCAMBIA2302。其中质粒pCAMBIA2301、pCAMBIA1302为构建pCAMBIA2302的载体,由本实验室保存。The plasmid vectors used in this study are pCAMBIA2301, pCAMBIA1302, and pCAMBIA2302. Among them, plasmids pCAMBIA2301 and pCAMBIA1302 are the vectors for constructing pCAMBIA2302, which are preserved by our laboratory.
核盘菌(Sclerotinia Sclerotiorum)菌种由浙江农林大学农业与食品科学学院时浩杰老师馈赠。The strain of Sclerotinia Sclerotiorum was gifted by Mr. Shi Haojie, School of Agriculture and Food Science, Zhejiang Agriculture and Forestry University.
1.1.3溶液及培养基配制1.1.3 Preparation of solution and medium
CTAB提取液:称取CTAB 20g(2%W/V)、PVP40 20g(2%W/V)、NaCl 55.84g(58.44g·mol-1),1M Tris-HCl 100mL(pH 8.0)、0.5M EDTA 40mL(pH 8.0),蒸馏水定容至1L。使用时每1mL提取液中加入1μLβ-巯基乙醇。CTAB extract: Weigh CTAB 20g (2%W/V), PVP40 20g (2%W/V), NaCl 55.84g (58.44g·mol -1 ), 1M Tris-HCl 100mL (pH 8.0), 0.5M EDTA 40mL (pH 8.0), distilled water to 1L. When using, add 1 μL of β-mercaptoethanol to every 1 mL of extract.
1L 1M Tris-HCl(pH 8.0):称取121.1g Tris于1L烧杯中,加入约800mL去离子水,充分搅拌。溶解后加入适量HCL至所需pH值,定容至1L。1L 1M Tris-HCl (pH 8.0): Weigh 121.1g Tris into a 1L beaker, add about 800mL deionized water, and stir well. After dissolving, add an appropriate amount of HCL to the desired pH value and make up to 1L.
100mL 0.5M EDTA(pH=8.0):称取18.612g EDTA,用去离子水溶解,边溶解边加入NaOH颗粒(约2.0g),完全溶解后定容至100mL,调节pH至8.0。100mL of 0.5M EDTA (pH=8.0): Weigh 18.612g of EDTA, dissolve it in deionized water, add NaOH particles (about 2.0g) while dissolving, and adjust the volume to 100mL after complete dissolution, and adjust the pH to 8.0.
100mL 50mg·mL-1卡那霉素(Kanamycin,kana):称取5g Kana溶于100mL ddH2O,完全溶解后过滤灭菌,-20℃分装保存。100 mL of 50 mg·mL -1 kanamycin (Kanamycin, kana): Weigh 5 g of Kana and dissolve it in 100 mL of ddH 2 O, completely dissolve it, filter sterilize it, and store it in aliquots at -20°C.
20mL 50mg·mL-1庆大霉素(Gentamicin,Gen):称取1g Gen溶于20mL ddH2O,完全溶解后过滤灭菌,-20℃分装保存。20 mL of 50 mg·mL -1 Gentamicin (Gentamicin, Gen): Weigh 1 g of Gen and dissolve it in 20 mL of ddH 2 O, completely dissolve it, filter sterilize it, and store it in aliquots at -20°C.
20mL 50mg·mL-1利福平(Rifampicin,Rif):称取1g Rif溶于20mL DMSO,完全溶解后过滤灭菌,-20℃分装保存。20 mL of 50 mg·mL -1 Rifampicin (Rifampicin, Rif): Weigh 1 g of Rif and dissolve it in 20 mL of DMSO, completely dissolve it, filter sterilize it, and store it in aliquots at -20°C.
LB固体培养基:蛋白胨(Tryptone)10g·L-1,NaCl 10g·L-1,酵母提取物(Yeastextract)5g·L-1,琼脂8g·L-1,pH 7.0,121℃高压蒸汽灭菌20min。LB solid medium: Tryptone 10g·L -1 , NaCl 10g·L -1 , Yeastextract 5g·L -1 , Agar 8g·L -1 , pH 7.0, autoclaved at 121°C 20min.
LB液体培养基:Tryptone 10g·L-1,NaCl 10g·L-1,Yeast extract 5g·L-1,pH7.0,121℃高压蒸汽灭菌20min。LB liquid medium: Tryptone 10g·L -1 , NaCl 10g·L -1 , Yeast extract 5g·L -1 , pH 7.0, autoclaved at 121°C for 20min.
1L 1×TAE电泳液:称取242g Tris Base,372g EDTA,57.1mL冰醋酸,定容至1L制成50×TAE电泳液,使用时稀释50倍。
20mL琼脂糖电泳凝胶:称取0.24g Agarose G-50加入20mL 1×TAE,微波炉高温煮沸后待冷却至不烫手背时加入1μl Gelstain染料。20mL agarose electrophoresis gel: Weigh 0.24g of Agarose G-50 and add 20mL of 1×TAE, boil at high temperature in microwave oven, and add 1μl of Gelstain dye when it cools down to not hot on the back of the hand.
1.1.4引物合成与测序分析1.1.4 Primer synthesis and sequencing analysis
引物合成与测序分析由浙江有康生物科技有限公司完成。Primer synthesis and sequencing analysis were performed by Zhejiang Youkang Biotechnology Co., Ltd.
1.1.5软件与数据分析1.1.5 Software and Data Analysis
引物设计软件为Primer Primier 5.0;序列分析软件为DNAMAN 6.0和SnapGenev5.0.5;图片处理软件为Photoshop CS6和Power Point 2019。Primer design software is Primer Primer 5.0; sequence analysis software is DNAMAN 6.0 and SnapGenev5.0.5; image processing software is Photoshop CS6 and Power Point 2019.
1.2试验方法1.2 Test method
1.2.1 BrMYC2/3/4基因序列及其编码序列的获取1.2.1 Acquisition of BrMYC2/3/4 gene sequence and its coding sequence
BrMYC3-1和BrMYC3-2,BrMYC4-1和BrMYC4-2为BrMYC2旁系同源基因。BrMYC2/3/4的基因编号BraA05g023030.3C(BrMYC2),BraA09g022310.3C(BrMYC3-1),BraA06g041690.3C(BrMYC3-2),BraA01g009460.3C(BrMYC4-1),BraA01g009470.3C(BrMYC4-2)and BraA08g000150.3C(BrMYC4-3),从Brassica database annotations(http://brassicadb.cn/#/Annotations/)数据库获得。其编码序列从Brassica databasegene sequence(http://brassicadb.cn/#/GeneSequence/)数据库获得。BrMYC3-1 and BrMYC3-2, BrMYC4-1 and BrMYC4-2 are BrMYC2 paralogous genes. Gene numbers of BrMYC2/3/4 BraA05g023030.3C(BrMYC2), BraA09g022310.3C(BrMYC3-1), BraA06g041690.3C(BrMYC3-2), BraA01g009460.3C(BrMYC4-1), BraA01g009470.3C(BrMYC4) and BraA08g000150.3C (BrMYC4-3), obtained from Brassica database annotations (http://brassicadb.cn/#/Annotations/). Its coding sequence was obtained from the Brassica database gene sequence (http://brassicadb.cn/#/GeneSequence/).
1.2.2重构pCAMBIA2302载体1.2.2 Reconstituted pCAMBIA2302 vector
分别提取pCAMBIA2301和PCAMBIA1302的质粒。用HS DNA Polymerasev201扩增pCAMBIA2301质粒npt II基因;npt II基因的扩增引物为p2301 npt II RC-f:TACAAATCTATCTCTCTCGAGATGGGGATTGAACAAGATG;p2301 npt II RC-r:ATTATTATGGAGAAACTCGAGCTTGTCGATCGACTCTAGC(Tm=47℃)。上述PCR反应程序为:98℃10s,47℃5s,72℃1min,共30cycles。用XhoI单酶切pCAMBIA1302质粒得到线性化克隆载体。插入片段扩增产物和线性化克隆载体各取2μL进行琼脂糖凝胶电泳以检验扩增产量和特异性,若PCR产物电泳条带单一且大小正确,按照TaKaRa MiniBEST Agarose Gel DNA Extraction Kit Ver.4.0提供的方法进行胶回收:紫外灯下切取含有插入片段扩增产物和线性化克隆载体的琼脂糖凝胶于1.5mL离心管中,加入4个凝胶体积量的Buffer GM,均匀混合后将离心管置于37℃金属浴令胶块充分溶解。将溶液转移至Spin Column,12,000pm离心1min,弃滤液;重复此步骤2次以提高DNA回收率。加入700μL DNA Buffer WB,室温12,000pm离心30s,弃滤液,并重复此步骤一次。空离2min,将Spin Column转移到新的1.5mL离心管中,加入30μL ddH20,室温静置2min后12,000pm离心1min,得到纯化产物(可保存于-20℃)。The plasmids of pCAMBIA2301 and PCAMBIA1302 were extracted, respectively. use HS DNA Polymerasev201 amplifies the npt II gene of the pCAMBIA2301 plasmid; the amplification primers of the npt II gene are p2301 npt II RC-f: TACAAATCTATCTCTCTCGAGATGGGGATTGAACAAGATG; p2301 npt II RC-r: ATTATTATGGAGAAACTCGAGCTTGTCGATCGACTCTAGC (Tm=47°C). The above PCR reaction program was: 98°C for 10s, 47°C for 5s, 72°C for 1 min, a total of 30 cycles. The pCAMBIA1302 plasmid was digested with XhoI to obtain a linearized cloning vector. Take 2 μL each of the amplified product of the insert and the linearized cloning vector for agarose gel electrophoresis to check the amplification yield and specificity. The provided method is used for gel recovery: cut the agarose gel containing the amplified product of the insert fragment and the linearized cloning vector into a 1.5 mL centrifuge tube under UV light, add 4 gel volumes of Buffer GM, mix evenly, and then centrifuge. Place the tube in a 37°C metal bath to fully dissolve the glue block. The solution was transferred to Spin Column, centrifuged at 12,000pm for 1 min, and the filtrate was discarded; this step was repeated twice to improve DNA recovery. Add 700μL DNA Buffer WB, centrifuge at 12,000pm for 30s at room temperature, discard the filtrate, and repeat this step once. Evacuate for 2 min, transfer the Spin Column to a new 1.5 mL centrifuge tube, add 30 μL of
然后采用II One Step Cloning Kit试剂盒进行同源重组,构建植物表达载体pCAMBIA2302(图1)。重组产物转化DH5α,转化方法如下:20μL冷却反应液加入到50μL冰上融化的感受态细胞中,轻弹管壁数下混匀,冰上静置30min。42℃金属浴热激45s,迅速转移至冰水浴孵育2min。向离心管中加入1mL不含抗生素的液体LB培养基,37℃200rpm复苏60min。取100μL复苏液均匀涂布于含有50mg·L-1kana的LB固体培养基上,37℃倒置培养12h。挑取重组产物转化平板上若干个单菌落于含有相同浓度kana的LB液体培养基中过夜培养,用于菌落PCR鉴定。pCAMBIA2302的鉴定通过扩增的npt II基因进行,测序及菌落PCR引物为p2302 npt II-f:CTTCGCAAGACCTTCCTCTA;p2302 npt II-r;CTGGGAACTACTCACACATT(Tm=50℃)。上述PCR反应程序为:94℃3min;94℃3min,50℃30s,72℃1min,共35cycles;72℃10min。同时设空白对照(未加模板DNA)。选择菌落PCR鉴定为阳性的菌落,将菌液进行一代测序。测序结果无误后,采用冻融法将质粒pCAMBIA2302导入GV3101感受态细胞中,具体转化步骤如下:then use The II One Step Cloning Kit was used for homologous recombination to construct the plant expression vector pCAMBIA2302 (Figure 1). The recombinant product was transformed into DH5α, and the transformation method was as follows: 20 μL of the cooling reaction solution was added to 50 μL of competent cells thawed on ice, and the tube wall was flicked for several times to mix, and let stand on ice for 30 min. Heat shock in a metal bath at 42°C for 45s, then quickly transfer to an ice-water bath and incubate for 2min. Add 1 mL of antibiotic-free liquid LB medium to the centrifuge tube, and recover at 37°C at 200 rpm for 60 min. Take 100 μL of the recovery solution and spread it evenly on LB solid medium containing 50 mg·L -1 kana, and invert at 37°C for 12 h. Pick several single colonies on the transformation plate of the recombinant product and cultivate overnight in LB liquid medium containing the same concentration of kana for colony PCR identification. The identification of pCAMBIA2302 was carried out by the amplified npt II gene, sequencing and colony PCR primers were p2302 npt II-f: CTTCGCAAGACCTTCCTCTA; p2302 npt II-r; CTGGGAACTACTCACACATT (Tm=50°C). The above PCR reaction program was: 94°C for 3 min; 94°C for 3 min, 50°C for 30 s, 72°C for 1 min, a total of 35 cycles; 72°C for 10 min. At the same time, a blank control (no template DNA was added) was set. The colonies identified as positive by colony PCR were selected, and the bacterial liquid was subjected to next-generation sequencing. After the sequencing results were correct, the plasmid pCAMBIA2302 was introduced into GV3101 competent cells by freeze-thaw method. The specific transformation steps were as follows:
(1)取-80℃保存的GV3101农杆菌感受态于冰上自然融化。(1) Take the competent Agrobacterium GV3101 stored at -80°C and thaw naturally on ice.
(2)每100μL感受态加入1μg重组质粒DNA(体积最好不应超过10μL),轻弹管壁,分别于冰上静置5min、液氮5min、37℃水浴5min、冰浴5min。(2) Add 1 μg of recombinant plasmid DNA per 100 μL of competent cells (preferably the volume should not exceed 10 μL), flick the tube wall, and let stand on ice for 5 minutes, liquid nitrogen for 5 minutes, 37°C water bath for 5 minutes, and ice bath for 5 minutes.
(4)加入1mL无抗生素的液体LB培养基,28℃200rpm摇床上振荡培养3h。(4) Add 1 mL of antibiotic-free liquid LB medium, and shake and culture on a shaker at 28°C and 200 rpm for 3 hours.
(5)6000rpm离心1min收集菌体,留取100μL上清液,用移液枪轻轻吹打,以令菌块重悬。将其涂布于含有kana的LB平板上倒置放于28℃培养箱培养48h。(5) Centrifuge at 6000 rpm for 1 min to collect bacterial cells, take 100 μL of supernatant, and gently pipette with a pipette to resuspend the bacterial mass. It was spread on the LB plate containing kana and placed upside down in a 28°C incubator for 48h.
(6)挑取单菌落接种于液体LB培养基中(含50mg·L-1Gen、50mg·L-1Rif和50mg·L-1Kana),28℃,200rpm振荡培养48h,将菌液用于菌液PCR鉴定,结果为阳性的菌种保藏于-20℃。随机挑取1个转化单菌落进行质粒测序分析。(6) Pick a single colony and inoculate it in liquid LB medium (containing 50mg·L -1 Gen, 50mg·L -1 Rif and 50mg·L -1 Kana), 28 ℃, 200rpm shaking culture for 48h, the bacterial liquid with The strains with positive results were identified by PCR of bacterial liquid and stored at -20°C. One transformed single colony was randomly selected for plasmid sequencing analysis.
1.2.3 BrMYC2/3/4转录因子编码区克隆1.2.3 BrMYC2/3/4 transcription factor coding region cloning
1.2.3.1白菜总RNA提取及cDNA合成1.2.3.1 Total RNA extraction and cDNA synthesis of cabbage
选取生长状态良好的‘Chiifu’野生型白菜幼苗,待幼苗长至五叶一心期时选取每个植株的第五片功能叶(从顶端向下数第五片)用作RNA提取材料。采用Trizol法抽提植物基因组RNA,具体方法如下:The 'Chiifu' wild-type cabbage seedlings in good growth condition were selected, and the fifth functional leaf (fifth from the top) of each plant was selected as the RNA extraction material when the seedlings grew to the five-leaf and one-heart stage. The plant genomic RNA was extracted by the Trizol method, and the specific method was as follows:
(1)准备试验材料。提前将研钵、研磨棒、药匙等用锡箔纸包裹高温灭菌,180℃烘干12h;大、中、小枪头和2mL离心管用DEPC水处理72℃过夜烘干;75%乙醇用DEPC去离子水配制,提前预冷氯仿、异丙醇和Total RNA Extractor。(1) Prepare test materials. The mortar, grinding rod, medicine spoon, etc. were wrapped in tin foil for high temperature sterilization in advance, and dried at 180°C for 12 hours; the large, medium and small pipette tips and 2mL centrifuge tubes were treated with DEPC water and dried at 72°C overnight; 75% ethanol was dried with DEPC Prepared in deionized water, pre-chilled with chloroform, isopropanol, and Total RNA Extractor.
(2)取100mg新鲜样品于液氮中充分研磨粒,至少三次液氮研磨以保证叶片细胞破碎。加入适量Total RNA Extractor后匀浆分装置2mL离心管中,将匀浆液室温静置5min,12,000rpm 4℃离心5min,使得核蛋白与核酸完全分离。(2) Take 100 mg of fresh samples and grind them in liquid nitrogen at least three times to ensure that the leaf cells are broken. After adding an appropriate amount of Total RNA Extractor, the homogenate was placed in a 2mL centrifuge tube, and the homogenate was allowed to stand at room temperature for 5 minutes, and then centrifuged at 12,000 rpm for 5 minutes at 4°C to completely separate nucleoproteins and nucleic acids.
(3)取上清液转置新的2mL离心管中。加入0.2mL氯仿,涡旋15s,室温放置3min。12,000rpm 4℃离心10min。(3) Transfer the supernatant to a new 2mL centrifuge tube. Add 0.2 mL of chloroform, vortex for 15 s, and leave at room temperature for 3 min. Centrifuge at 12,000rpm and 4°C for 10min.
(4)吸取上层水相转移至干净的离心管中,加入等体积异丙醇,混匀,室温放置20min。(4) Transfer the upper aqueous phase to a clean centrifuge tube, add an equal volume of isopropanol, mix well, and place at room temperature for 20 minutes.
(5)12,000rpm 4℃离心10min,弃上清。(5) Centrifuge at 12,000rpm at 4°C for 10min, and discard the supernatant.
(6)加入1mL用DEPC处理过的水配制的75%乙醇洗涤沉淀。12,000rpm 4℃离心3min,弃上清。室温干燥5min。(6) Add 1 mL of 75% ethanol prepared with DEPC-treated water to wash the precipitate. Centrifuge at 12,000 rpm at 4°C for 3 min, and discard the supernatant. Dry at room temperature for 5 min.
(7)加入30μL RNase-free ddH2O,充分溶解RNA。检测RNA的浓度及纯度,RNA纯度A260/A280的比值范围应在1.8~2.1之间。然后取2μL做琼脂糖凝胶电泳检测。检测无误后将所得到的RNA溶液置于-80℃保存或用于后续试验。DNA消化与cDNA合成采用PrimeScriptTM II 1st Strand cDNA Synthesis Kit试剂盒,反转录反应体系如表1所示:(7) Add 30 μL of RNase-free ddH 2 O to dissolve the RNA fully. To detect the concentration and purity of RNA, the ratio of RNA purity A260/A280 should be between 1.8 and 2.1. Then take 2 μL for agarose gel electrophoresis detection. After the detection is correct, the obtained RNA solution is stored at -80°C or used for subsequent experiments. PrimeScript TM II 1st Strand cDNA Synthesis Kit was used for DNA digestion and cDNA synthesis. The reverse transcription reaction system is shown in Table 1:
表1反转录反应体系Table 1 Reverse transcription reaction system
用移液枪混匀后,65℃温浴5min,冰上冷却2min,然后用上述反应液配制下列混合液(表2)。After mixing with a pipette, incubate at 65°C for 5 min, and cool on ice for 2 min, then use the above reaction solution to prepare the following mixture (Table 2).
表2Table 2
用移液枪缓慢混匀上述样品,进行PCR反转录。Mix the above samples slowly with a pipette and perform reverse transcription by PCR.
上述PCR反应程序为:45℃60min,95℃5min。反应结束后,立即置于冰上冷却,RT-PCR扩增得到的产物置于-20℃保存或用于后续试验。The above PCR reaction program was: 45°C for 60 min and 95°C for 5 min. After the reaction, it was immediately placed on ice to cool, and the product obtained by RT-PCR amplification was stored at -20°C or used for subsequent experiments.
1.2.3.2白菜DNA提取1.2.3.2 DNA extraction from cabbage
采用CTAB法抽提植物基因组DNA,DNA提取材料的选择同1.2.3.1。具体方法如下:Plant genomic DNA was extracted by CTAB method, and the selection of DNA extraction materials was the same as that in 1.2.3.1. The specific method is as follows:
(1)将叶片洗净晾干后,取0.2g放入1.5mL离心管中,液氮研磨后,加700μL65℃预热的2%CTAB混匀,65℃水浴1h,期间每隔10min轻摇一次。(1) After washing and drying the leaves, take 0.2 g of the leaf and put it into a 1.5 mL centrifuge tube. After grinding with liquid nitrogen, add 700 μL of 2% CTAB preheated at 65 °C to mix well, and then take a water bath at 65 °C for 1 hour. Shake gently every 10 minutes during this period. once.
(2)取出上述离心管冷却至室温,加入650μL 24:1氯仿异戊醇溶液,颠倒混匀,静置10min。(2) Take out the above centrifuge tube and cool to room temperature, add 650 μL of 24:1 chloroform isoamyl alcohol solution, invert and mix, and let stand for 10 min.
(3)13000rpm离心10min,取上清液继续加入550μL 24:1氯仿异戊醇溶液,颠倒混匀,静置10min。(3) Centrifuge at 13000 rpm for 10 min, take the supernatant and continue to add 550 μL of 24:1 chloroform isoamyl alcohol solution, invert and mix, and let stand for 10 min.
(4)13000rpm离心10min,取上清液加入400μL冰浴的异丙醇,-20℃中保存20min。(4) Centrifuge at 13,000 rpm for 10 min, take the supernatant, add 400 μL of isopropanol in an ice bath, and store at -20°C for 20 min.
(5)13000rpm离心10min,弃上清液,往剩余沉淀中加入500μL 80%乙醇清洗两次(吸打混匀),超净台吹干。(5) Centrifuge at 13,000 rpm for 10 min, discard the supernatant, add 500 μL of 80% ethanol to the remaining precipitate to wash twice (mix by suction and beating), and blow dry on an ultra-clean bench.
(6)使用前,往干透的沉淀物中加30μL ddH2O使其溶解,室温静置5min,用移液枪吸打混匀后,再静置5min。(6) Before use, add 30 μL of ddH 2 O to the dried precipitate to dissolve it, let it stand at room temperature for 5 minutes, mix it with a pipette, and let it stand for another 5 minutes.
(7)吸取1.5μL做DNA浓度、纯度检测,再取2μL做琼脂糖凝胶电泳检测。检测无误后将得到的DNA溶液置于-20℃保存用于后续试验。(7) Take 1.5 μL for DNA concentration and purity detection, and then take 2 μL for agarose gel electrophoresis detection. After the detection was correct, the obtained DNA solution was stored at -20°C for subsequent experiments.
1.2.3.3引物设计及合成1.2.3.3 Primer design and synthesis
引物设计采用Primer Primier 5.0。最后由浙江有康生物科技有限公司合成引物。引物设计如表3所示。Primers were designed using Primer Primer 5.0. Finally, primers were synthesized by Zhejiang Youkang Biotechnology Co., Ltd. Primer designs are shown in Table 3.
表3基因克隆引物设计Table 3 Gene cloning primer design
1.2.3.4插入片段PCR扩增与线性化载体的获取1.2.3.4 PCR amplification of inserts and acquisition of linearized vectors
以植物基因组DNA或反转录获得的cDNA为扩增模板,用高保真KOD酶扩增插入片段,PCR扩增反应体系如表4所示:Using plant genomic DNA or cDNA obtained by reverse transcription as the amplification template, the insert fragment was amplified with high-fidelity KOD enzyme, and the PCR amplification reaction system was shown in Table 4:
表4 PCR扩增反应体系Table 4 PCR amplification reaction system
PCR程序设定如下:94℃3min;98℃10s,52℃30s,68℃2min,共40cycles;68℃10min。用NcoI单酶切PCAMBIA2302质粒得到线性化克隆载体。对插入片段扩增产物和线性化克隆载体进行琼脂糖凝胶电泳以检验扩增产量和特异性,若PCR产物电泳条带单一且大小正确,按照TaKaRa MiniBEST Agarose Gel DNA Extraction Kit Ver.4.0提供的方法进行胶回收。The PCR program was set as follows: 94°C for 3 min; 98°C for 10 s, 52°C for 30 s, 68°C for 2 min, a total of 40 cycles; 68°C for 10 min. The PCAMBIA2302 plasmid was digested with NcoI to obtain a linearized cloning vector. Perform agarose gel electrophoresis on the amplified product of the insert and the linearized cloning vector to check the amplification yield and specificity. method for glue recovery.
1.2.4 p2302MYC过表达载体构建1.2.4 Construction of p2302MYC overexpression vector
过表达载体采用II One Step Cloning Kit同源重组方法,反应体系如表5所示:Overexpression vector using II One Step Cloning Kit homologous recombination method, the reaction system is shown in Table 5:
表5同源重组体系Table 5 Homologous recombination system
配制完体系后,吸打混匀各组分。37℃反应30min后,立即将反应管置于冰浴中冷却5min。采用热激法将各基因冷却反应液各20μL分别转化适量DH5α。37℃培养过夜,挑取阳性克隆进行菌落PCR验证和琼脂糖凝胶电泳检测。After the system is prepared, mix the components by suction. After reacting at 37°C for 30 min, the reaction tube was immediately placed in an ice bath to cool for 5 min. The heat shock method was used to transform 20 μL of each gene cooling reaction solution into an appropriate amount of DH5α. The cells were cultured at 37°C overnight, and positive clones were picked for colony PCR verification and agarose gel electrophoresis detection.
验证引物为p2302MYC-f:TCCCACTATCCTTCGCAAGA;p2302MYC-r:GAATTGGGACAACTCCAGTG(Tm=52℃)。PCR产物进行一代测序,若测序结果无误,提取各基因过表达载体质粒冻融法转化GV3101感受态。The verification primers are p2302MYC-f: TCCCACTATCCTTCGCAAGA; p2302MYC-r: GAATTGGGACAACTCCAGTG (Tm=52°C). PCR products were subjected to next-generation sequencing. If the sequencing results were correct, the overexpression vector plasmids of each gene were extracted and transformed into GV3101 competent cells by freeze-thaw method.
1.3结果与分析1.3 Results and Analysis
1.3.1 pCAMBIA2302植物表达载体的构建及鉴定1.3.1 Construction and identification of pCAMBIA2302 plant expression vector
扩增的pCAMBIA2301 npt II基因序列分析结果如图2所示。同源重组后,酶切检测质粒pCAMBIA2302转化大肠杆菌的产物,条带1-13为随机挑取的13个单菌落,在切时切下982bp大小片段,而对照(泳道H)加入ddH2O。凝胶电泳结果与预期相符(图3)。将pCMABIA2302质粒转化农杆菌,挑取单克隆活化,质粒测序比对结果如图4所示。说明pCAMBIA2302植物表达载体构建成功,该载体的GUS基因被GDP基因成功替换,且T-DNA区段只含有npt II基因。The sequence analysis results of the amplified pCAMBIA2301 npt II gene are shown in FIG. 2 . After homologous recombination, the product of E. coli transformed with plasmid pCAMBIA2302 was detected by enzyme digestion. Bands 1-13 were 13 single colonies picked randomly, and a 982bp fragment was cut during cutting, and ddH 2 O was added to the control (lane H). . The gel electrophoresis results were as expected (Figure 3). The pCMABIA2302 plasmid was transformed into Agrobacterium, and single clones were picked for activation. The results of plasmid sequencing and comparison are shown in Figure 4. This indicates that the pCAMBIA2302 plant expression vector was successfully constructed, the GUS gene of the vector was successfully replaced by the GDP gene, and the T-DNA segment only contained the npt II gene.
1.3.2白菜目的基因获取与目的基因的扩增1.3.2 Acquisition of the target gene in cabbage and amplification of the target gene
将Trizol法提取后的白菜RNA立刻做琼脂糖凝胶电泳检测,检测结果出现三个条带,从下往上依次为5s、18s以及28s条带,且18s条带亮度约为28s条带亮度的1/2倍,RNA条带明亮、清晰。核酸分子中含有碱基使核酸在260nm下有最大吸收,通过NanoDrop2000核酸分析仪测得本次提取的RNA平均浓度为2367.1ng·μL-1,A260/A280值为1.98,A260/A230值为2.21,说明样品纯度良好(图5)。依照测得的RNA浓度进行cDNA反转录,同时将CTAB法提取后的白菜基因组DNA和cDNA做琼脂糖凝胶电泳检测,条带大小无误,可将获得的BrMYC2/3/4基因片段与pCAMBIA2302线性载体重组。The cabbage RNA extracted by the Trizol method was immediately detected by agarose gel electrophoresis. The detection result showed three bands, 5s, 18s and 28s bands from bottom to top, and the brightness of the 18s band was about the brightness of the 28s band. 1/2 times of , the RNA bands are bright and clear. Nucleic acid molecules contain bases that make the nucleic acid have maximum absorption at 260nm. The average concentration of RNA extracted this time measured by NanoDrop2000 nucleic acid analyzer is 2367.1ng·μL -1 , the A260/A280 value is 1.98, and the A260/A230 value is 2.21 , indicating that the sample is of good purity (Figure 5). The cDNA was reverse transcribed according to the measured RNA concentration, and the cabbage genomic DNA and cDNA extracted by CTAB method were detected by agarose gel electrophoresis. Linear vector recombination.
1.3.3 p2302MYC过表达载体的构建及鉴定1.3.3 Construction and identification of p2302MYC overexpression vector
扩增产物构建到pCAMBIA2302载体后转入大肠杆菌并挑取单克隆进行菌落PCR鉴定,电泳条带与目的基因条带位置一致且亮度较高的可初步判定为阳性菌落。MYC2、MYC3-1、MYC3-2、MYC4-1和MYC4-2扩增的目的条带大小分别是1860bp、1734bp、1785bp、1317bp和936bp(图6)。而BrMYC4-3只有163bp,因此未对其进行扩增。随后将目的条带PCR产物送公司做序列比对。菌落PCR及测序结果与预期相符(图7),提取质粒转化农杆菌。The amplified product was constructed into the pCAMBIA2302 vector and then transferred into E. coli and single clones were picked for colony PCR identification. The electrophoresis band was consistent with the target gene band and had higher brightness, which could be preliminarily determined as positive colonies. The sizes of the target bands amplified by MYC2, MYC3-1, MYC3-2, MYC4-1 and MYC4-2 were 1860 bp, 1734 bp, 1785 bp, 1317 bp and 936 bp, respectively (Fig. 6). However, BrMYC4-3 has only 163 bp, so it was not amplified. Then send the PCR product of the target band to the company for sequence alignment. Colony PCR and sequencing results were in line with expectations (Figure 7), and the plasmid was extracted and transformed into Agrobacterium.
2 BrMYC2/3/4过表达转基因拟南芥的获得和功能验证2 Acquisition and functional verification of BrMYC2/3/4 overexpressing transgenic Arabidopsis
2.1试验材料2.1 Test material
2.1.1植物材料2.1.1 Plant material
本研究中异源表达载体遗传转化所采用的是Columbia生态型拟南芥。植株种植条件同1.1.1。In this study, the genetic transformation of the heterologous expression vector was the Columbia ecotype Arabidopsis thaliana. Plant planting conditions are the same as 1.1.1.
2.1.2试验菌株2.1.2 Test strains
使用1.2.4构建的p2302MYC2/3/4过表达载体转化的农杆菌。Agrobacterium transformed with the p2302MYC2/3/4 overexpression vector constructed in 1.2.4.
2.1.3溶液及培养基配制2.1.3 Preparation of solution and medium
MS悬浮液:1/4MS+6%蔗糖+ddH2O+0.02%silwet+L-77MS suspension: 1/4 MS + 6% sucrose + ddH 2 O + 0.02% silwet + L-77
100mL 1M甘露醇:18.217g甘露醇溶于100mL ddH2O,25℃加热溶解。100 mL of 1M mannitol: 18.217 g of mannitol was dissolved in 100 mL of ddH 2 O, and heated at 25°C to dissolve.
20mL 5mM Sinigrin:41.548mg溶于20mL超声后的水,-20℃分装保存。20mL of 5mM Sinigrin: Dissolve 41.548mg in 20mL of sonicated water, and store in aliquots at -20°C.
100mL DEAE Sephadex A25:2.5g DEAE Sephadex A25+200mL蒸馏水煮2h,4℃分装保存。100mL DEAE Sephadex A25: 2.5g DEAE Sephadex A25 + 200mL distilled water, boil for 2h, and store in aliquots at 4°C.
25mL SiO2:1g SiO2+25mL蒸馏水。25 mL SiO 2 : 1 g SiO 2 + 25 mL distilled water.
20mL 0.1%硫酸酯酶:0.02g硫酸酯酶+20mL蒸馏水,-20℃分装保存。20 mL of 0.1% sulfatase: 0.02 g of sulfatase + 20 mL of distilled water, and stored in aliquots at -20°C.
其余溶液及培养基配制同1.1.3。The rest of the solution and medium are prepared with the same method as 1.1.3.
2.2试验方法2.2 Test method
2.2.1拟南芥的浸花转化和筛选2.2.1 Transformation and screening of Arabidopsis thaliana
选取生长健壮的长出多个花序的5-w-old拟南芥单株进行花序侵染。过表达载体农杆菌需提前活化,离心带有目的菌株的液体LB获取菌块,利用MS悬浮液重悬后令溶液OD600≈0.8,将悬浮液倒入合适规格的量筒中准备拟南芥侵染。步骤如下:A 5-w-old single plant of Arabidopsis thaliana with robust growth and multiple inflorescences was selected for inflorescence infection. The overexpression vector Agrobacterium needs to be activated in advance, centrifuge the liquid LB with the target strain to obtain the bacterial block, and resuspend the solution with MS suspension to make the solution OD 600 ≈ 0.8, and pour the suspension into a suitable graduated cylinder to prepare Arabidopsis thaliana infection. dye. Proceed as follows:
(1)去除拟南芥种荚和完全开放的花蕾。(1) Remove Arabidopsis seed pods and fully opened flower buds.
(2)保鲜膜包住拟南芥穴盆,防止倒扣侵染时基质漏出。(2) Wrap the Arabidopsis cave pot with plastic wrap to prevent the matrix from leaking out during the upside down infection.
(3)将含苞待放的拟南芥花序插入菌液悬浮液中,侵染60s,所有花序必须浸没于悬浮液中。(3) Insert the budding Arabidopsis inflorescence into the bacterial suspension, infect for 60s, and all inflorescences must be immersed in the suspension.
(4)侵染完毕后,吸除拟南芥花薹上多余菌液,将拟南芥提前放入铺好报纸并湿润的干净穴盘中,盖上透明托盘盖和干报纸,置于黑暗阴凉处侵染24h。(4) After the infection is completed, absorb the excess bacterial liquid on the sprigs of Arabidopsis thaliana, put the Arabidopsis thaliana into a clean plug covered with newspaper and moisten in advance, cover the transparent tray cover and dry newspaper, and place it in the dark Infection in a cool place for 24h.
(5)次日去掉包裹的保鲜膜,扶正侵染完毕的拟南芥,置于人工气候箱或人工气候室中(不要将植株置于高温或强光照,避免烧死)。(5) Remove the wrapped plastic wrap the next day, straighten the infected Arabidopsis thaliana, and place it in an artificial climate box or an artificial climate chamber (do not place the plants in high temperature or strong light to avoid burning them).
(6)若拟南芥长势良好,一周后侵染第2次(重复以上步骤)。(6) If Arabidopsis grows well, infect the second time after one week (repeat the above steps).
(7)果夹成熟掉落之前保持土壤湿润,浇水保持见干见湿原则。(7) Keep the soil moist before the fruit clips mature and fall, and keep the watering to see the principle of dryness and wetness.
(8)单株收种,并做好标记。(8) Harvest seeds per plant and mark them well.
2.2.2转基因拟南芥植物的分子检测与筛选2.2.2 Molecular detection and screening of transgenic Arabidopsis plants
(1)转基因拟南芥的PCR检测。阳性植株p2302MYC2/3/4和pCAMBIA2302的莲座叶为材料,用于DNA的提取,利用pCAMBIA2302载体中标记基因npt II的检测引物p2302 npt II-f和p2302 npt II-r(同1.2.2)进行PCR阳性检测。(1) PCR detection of transgenic Arabidopsis. The rosette leaves of the positive plants p2302MYC2/3/4 and pCAMBIA2302 were used as materials for DNA extraction, using the detection primers p2302 npt II-f and p2302 npt II-r (same as 1.2.2) of the marker gene npt II in the pCAMBIA2302 vector. Positive PCR test.
(2)在存在Kana的情况下,根据T2系的3:1分离比例,在T3代选择具有单拷贝转基因插入片段的纯合植物。收获来自T3转基因植物的叶样品,在液氮中冷冻,并在-80℃下保存直至以后使用。每个试验使用三个独立的生物学重复。(2) In the presence of Kana, homozygous plants with a single copy of the transgenic insert were selected in the T 3 generation based on a 3:1 segregation ratio of the T 2 line. Leaf samples from T3 transgenic plants were harvested, frozen in liquid nitrogen, and stored at -80°C until later use. Three independent biological replicates were used for each experiment.
2.2.3过表达转基因拟南芥种子的产量评估2.2.3 Yield evaluation of overexpressed transgenic Arabidopsis seeds
为了确定种子产量,从每种基因型的T3株系中提取了三十株植物。角果成熟后,从主花序轴上除去了前五个不完全发育的角果。然后使用第一个完整的角果评估每个角果的种子数量。将成熟的角果铺在A4纸上,并用解剖针将心皮壁去除,然后用Leica立体显微镜(MZ16FA,Leica,Germany)拍照,以计算每个角果的种子数。使其余的角果成熟,并从位于主要花序基础上的角果中选择种子进行观察。使用Leica立体显微镜从p2302MYC2/3/4和pCAMBIA2302转基因株系中随机选择,观察和拍照大约2,000个成熟种子。使用ImageJ软件(ImageJ,1.47v,NIH,Bethesda,USA)估算种子的长度和宽度。使用电子秤测量种子重量。数据代表三个生物学重复的平均值。To determine seed yield, thirty plants were extracted from the T3 line of each genotype. After the siliques were ripe, the first five incompletely developed siliques were removed from the main inflorescence rachis. The number of seeds per silique was then assessed using the first whole silique. Ripe siliques were spread on A4 paper and the carpel walls were removed with a dissecting needle, and then photographed with a Leica stereo microscope (MZ16FA, Leica, Germany) to count the number of seeds per silique. The remaining siliques were allowed to ripen and the seeds were selected for observation from the siliques located at the base of the main inflorescence. Approximately 2,000 mature seeds were observed and photographed, randomly selected from p2302MYC2/3/4 and pCAMBIA2302 transgenic lines using a Leica stereo microscope. Seed length and width were estimated using ImageJ software (ImageJ, 1.47v, NIH, Bethesda, USA). Use an electronic scale to measure the seed weight. Data represent the mean of three biological replicates.
2.2.4过表达转基因拟南芥植株生长阶段的评估2.2.4 Evaluation of growth stages of overexpressed transgenic Arabidopsis plants
为了评估过表达拟南芥不同基因型之间生长阶段的转变差异,从每个T3系中随机选择了约30株幼苗,移栽至灭菌的草炭土和蛭石(1:1)基质中,置于温室中生长约2-3周。为了评估幼苗是否已达到成熟期,使用Leica立体显微镜观察叶片背面表皮毛,并将表皮毛的出现作为营养生长阶段转变时间的标志进行评分。为了进行叶片形状分析,将完全展开的叶片除去,用双面胶带粘贴在纸板上,用透明胶带压平,然后使用Epson V700Professional扫描仪(Epson,Suwa,Japan)进行扫描。记录抽薹时间和抽薹时的莲座叶数,以确定拟南芥的开花时间。开花后确定植株株高和分枝数数量。照片取自标尺附近的植物,该标尺用于校准ImageJ软件以精确测量距离。根据不同大小的拟南芥的轮廓估算最大高度(从生长点到最高的叶尖,如垂直线所示)。所有测量均进行三次独立的生物学重复。To assess the difference in growth stage transition between different genotypes of overexpressing Arabidopsis, approximately 30 seedlings were randomly selected from each T3 line and transplanted to sterilized peat and vermiculite (1:1) substrates in the greenhouse for about 2-3 weeks. To assess whether the seedlings had reached maturity, leaf abaxial epidermal hairs were observed using a Leica stereomicroscope and the appearance of epidermal hairs was scored as a marker for the time to transition to the vegetative growth stage. For leaf shape analysis, fully expanded leaves were removed, taped to cardboard with double-sided tape, flattened with scotch tape, and scanned using an Epson V700 Professional scanner (Epson, Suwa, Japan). The bolting time and the number of rosette leaves at the time of bolting were recorded to determine the flowering time of Arabidopsis. Plant height and number of branches were determined after flowering. Photographs were taken from plants near a ruler used to calibrate ImageJ software to accurately measure distances. Maximum height was estimated from the outlines of Arabidopsis thaliana of different sizes (from the growth point to the highest leaf tip, as indicated by the vertical line). All measurements were performed in three independent biological replicates.
2.2.5过表达转基因拟南芥硫苷含量测定2.2.5 Determination of glucosinolate content in overexpressed transgenic Arabidopsis
转基因拟南芥株系的纯合T3世代幼苗莲座叶用于测定硫苷含量。HPLC分析使用Agilent1200系统(Agilent Technologies,Inc.,Santa Clara,USA)和C18反相柱(250×4mm,5μm,Bischoff,Germany)进行。在60min内以1mL·min-1的流速按以下顺序进行色谱分析:100%H2O(2min),0%-20%ACN的线性梯度(32min),20%ACN(6min),然后注入20%-100%ACN(5min)和0%ACN,然后再注入下一个样品。用UV检测器在229nm下监测洗脱液。根据液相色谱图的出峰时间对测得的硫苷各组分进行鉴定,含量根据内标sinigrin量和相应响应因子进行计算,以每克干重中硫苷微摩尔数(μmol·g-1DW)为单位。试验进行了三次生物学重复和三次技术重复,数据采用SPSS软件进行分析。Homozygous T 3 generation seedling rosette leaves of transgenic Arabidopsis lines were used to determine glucosinolate content. HPLC analysis was performed using an Agilent 1200 system (Agilent Technologies, Inc., Santa Clara, USA) and a C18 reversed-phase column (250×4 mm, 5 μm, Bischoff, Germany). Chromatography was performed in the following sequence at a flow rate of 1 mL min -1 over 60 min: 100% H2O ( 2 min), a linear gradient of 0%-20% ACN (32 min), 20% ACN (6 min), then an injection of 20 %-100% ACN (5 min) and 0% ACN before injecting the next sample. The eluate was monitored with a UV detector at 229 nm. The measured glucosinolate components were identified according to the peak time of the liquid chromatogram, and the content was calculated according to the amount of internal standard sinigrin and the corresponding response factor. 1 DW) as a unit. The experiment was repeated three times biologically and three times technically, and the data were analyzed by SPSS software.
2.2.6过表达转基因拟南芥抗真菌活性生物测定2.2.6 Bioassay for antifungal activity of overexpressed transgenic Arabidopsis
每个转基因拟南芥株系的冻干叶粉被用于研究不同硫苷的组成和含量对核盘菌可见生长的影响。核盘菌(Sclerotinia sclerotiorum)保存于4℃,然后在含有马铃薯葡萄糖琼脂(PDA)培养基(Becton Dickinson,Columbia,MD)的培养皿中重新活化。用5mm打孔器将菌丝体接种到中心。然后将培养皿在22℃下孵育72h,以提供活跃生长的菌丝体用于后续试验。用打孔器切下培育72h PDA培养基中的菌丝边缘,得到直径5mm的带有生长均匀核盘菌的琼脂筛。将该琼脂筛置于新的PDA培养基表面的中心位置,然后将3个直径为10mm的滤纸圆片均匀放在PDA培养基的边缘。每个滤纸圆片仅接受25mg冻干粉和100μL ddH2O,以100μL ddH2O作为对照。将装有核盘菌和冻干粉的的培养皿在22℃下孵育72h后,通过观察可见的菌丝生长和每块培养皿的菌核数来评估核盘菌的生长。试验进行了三次生物学重复和三次技术重复。Freeze-dried leaf powder from each transgenic Arabidopsis line was used to study the effect of different glucosinolate compositions and contents on the visible growth of Sclerotinia sclerotiorum. Sclerotinia sclerotiorum was stored at 4°C and then reactivated in petri dishes containing potato dextrose agar (PDA) medium (Becton Dickinson, Columbia, MD). The mycelium was inoculated to the center with a 5mm hole punch. The dishes were then incubated at 22°C for 72h to provide actively growing mycelium for subsequent experiments. The edge of the mycelium in the PDA medium cultivated for 72h was cut with a hole punch to obtain an agar screen with a diameter of 5mm with a uniform growth of Sclerotinia sclerotiorum. The agar screen was placed in the center of the surface of the new PDA medium, and then 3 filter paper discs with a diameter of 10 mm were placed evenly on the edge of the PDA medium. Each filter disc received only 25 mg of lyophilized powder and 100 μL of ddH 2 O, with 100 μL of ddH 2 O as a control. After incubating the dishes containing Sclerotinia sclerotiorum and lyophilized powder for 72 h at 22°C, the growth of Sclerotinia sclerotiorum was assessed by observing visible mycelial growth and the number of sclerotia per dish. The experiment was performed with three biological replicates and three technical replicates.
2.3结果与分析2.3 Results and Analysis
2.3.1过表达BrMYC2/3/4对拟南芥种子产量的影响2.3.1 The effect of overexpression of BrMYC2/3/4 on Arabidopsis seed yield
分析了BrMYC2/3/4过表达转基因拟南芥(分别命名为BrMYC2OE、BrMYC3-1OE、BrMYC3-2OE、BrMYC4-1OE和BrMYC4-2OE)和空载体pCAMBIA2302作为对照的转基因拟南芥(命名为Ctrl)植株的种子产量,包括种子大小(长度和宽度),千粒重,每角果种子数和单株种子总重。为了最大程度地减少环境因素对种子发育的影响,将所有植物都保持在相同的生长条件下,包括温度,光照,水分和营养。如图8和9所示,不同转基因植物的种子产量存在显著差异。BrMYC2OE株系的种子长度最小;BrMYC2OE,BrMYC3-2OE和BrMYC4-1OE之间,BrMYC3-2OE,BrMYC4-1OE和BrMYC4-2OE之间,以及BrMYC4-1OE、BrMYC4-2OE和BrMYC3-1OE之间的种子长度没有显著差异,所有这些均显著小于对照(图8C)。BrMYC3-2OE和BrMYC4-1OE株系具有最小的种子宽度,其次为BrMYC4-2OE、BrMYC2OE、BrMYC3-1OE、Ctrl,BrMYC3-2OE、BrMYC4-1OE和BrMYC4-2OE之间以及BrMYC4-2OE、BrMYC2OE和BrMYC3-1OE之间以及BrMYC3-1OE和对照之间没有显著差异(图8D)。与对照相比,所有转基因株系的千粒重均显著降低(图8E)。BrMYC2OE株系的种子千粒重最小,其次是BrMYC3-2OE,BrMYC4-1OE,BrMYC4-2OE和BrMYC3-1OE。BrMYC3-1OE的种子千粒重稍高于BrMYC3-2OE和BrMYC4-1OE,而BrMYC3-2OE,BrMYC4-1OE和BrMYC4-2OE的种子千粒重以及BrMYC4-2OE和BrMYC3-1OE之间的种子千粒重没有显著差异。BrMYC2OE株系单个角果的种子数最少,而所有其他转基因株系单个角果种子数均显著高于对照(图8B和8F)。转基因的BrMYC4-1OE株系单个角果的种子数最多,其次是BrMYC3-2OE,BrMYC3-1OE,BrMYC4-2OE。如图9所示,BrMYC2OE株系的单株种子总重最高,其次为BrMYC3-2OE、BrMYC4-1OE。BrMYC2OE、BrMYC3-2OE、BrMYC4-1OE均高于对照。BrMYC4-2OE和对照没有显著差异,BrMYC3-1OE显著低于对照。BrMYC2/3/4-overexpressing transgenic Arabidopsis (named BrMYC2 OE , BrMYC3-1 OE , BrMYC3-2 OE , BrMYC4-1 OE and BrMYC4-2 OE , respectively) and the empty vector pCAMBIA2302 as control were analyzed. Seed yield of mustard (named Ctrl) plants, including seed size (length and width), thousand-kernel weight, number of seeds per silique and total seed weight per plant. To minimize the impact of environmental factors on seed development, keep all plants under the same growing conditions, including temperature, light, moisture and nutrients. As shown in Figures 8 and 9, there were significant differences in the seed yield of the different transgenic plants. BrMYC2 OE lines had the smallest seed lengths; BrMYC2 OE , between BrMYC3-2 OE and BrMYC4-1 OE , between BrMYC3-2 OE , BrMYC4-1 OE and BrMYC4-2 OE , and between BrMYC4-1 OE , BrMYC4-2 There were no significant differences in seed length between OE and BrMYC3-1 OE , all of which were significantly smaller than controls (Fig. 8C). BrMYC3-2 OE and BrMYC4-1 OE lines had the smallest seed width, followed by BrMYC4-2 OE , BrMYC2 OE , BrMYC3-1 OE , Ctrl, BrMYC3-2 OE , BrMYC4-1 OE , and BrMYC4-2 OE between And there were no significant differences between BrMYC4-2 OE , BrMYC2 OE and BrMYC3-1 OE and between BrMYC3-1 OE and control ( FIG. 8D ). Thousand kernel weights were significantly reduced in all transgenic lines compared to controls (Figure 8E). BrMYC2 OE line had the smallest seed weight, followed by BrMYC3-2 OE , BrMYC4-1 OE , BrMYC4-2 OE and BrMYC3-1 OE . The 1000-kernel weight of BrMYC3-1 OE was slightly higher than that of BrMYC3-2 OE and BrMYC4-1 OE , while the 1000-kernel weight of BrMYC3-2 OE , BrMYC4-1 OE and BrMYC4-2 OE and between BrMYC4-2 OE and BrMYC3-1 OE There was no significant difference in the 1000-kernel weight of the seeds. The BrMYC2 OE line had the least number of seeds per silique, while all other transgenic lines had significantly higher number of seeds per silique than the control (Figures 8B and 8F). The transgenic BrMYC4-1 OE line had the highest number of seeds per silique, followed by BrMYC3-2 OE , BrMYC3-1 OE , and BrMYC4-2 OE . As shown in Figure 9, the BrMYC2 OE line had the highest total seed weight per plant, followed by BrMYC3-2 OE and BrMYC4-1 OE . BrMYC2 OE , BrMYC3-2 OE , BrMYC4-1 OE were all higher than the control. There was no significant difference between BrMYC4-2 OE and control, and BrMYC3-1 OE was significantly lower than control.
2.3.2过表达BrMYC2/3/4对拟南芥植株发育的影响2.3.2 Effects of overexpression of BrMYC2/3/4 on Arabidopsis plant development
为了确定BrMYC2/3/4表达是否影响营养生长和生殖发育,在拟南芥幼苗和抽薹阶段观察并分析了BrMYC2/3/4过表达转基因拟南芥植株的表型(图10-12)。To determine whether BrMYC2/3/4 expression affects vegetative growth and reproductive development, the phenotype of BrMYC2/3/4-overexpressing transgenic Arabidopsis plants was observed and analyzed at the Arabidopsis seedling and bolting stages (Figures 10-12).
幼年营养生长期,我们研究了幼苗的根和下胚轴长度。对照和转基因植株之间的根和下胚轴长度均有显著差异(图10)。BrMYC2OE株系表现出最短的根长,其次是BrMYC3-1OE,BrMYC3-2OE,BrMYC4-1OE和BrMYC4-2OE(图10B)。BrMYC2OE和BrMYC3-1OE株系的根长短于对照。尽管BrMYC3-2OE,BrMYC4-1OE和BrMYC4-2OE系之间没有显著差异,但它们的根长比对照显著增加。转基因BrMYC2OE的下胚轴长度也最短,其次是BrMYC3-1OE,BrMYC4-2OE,BrMYC4-1OE和BrMYC3-2OE(图10C)。BrMYC2OE的下胚轴长度比对照短,而BrMYC3-1OE,BrMYC3-2OE,BrMYC4-1OE和BrMYC4-2OE的下胚轴长度比对照长。因此,BrMYC2OE和BrMYC3-1OE的表达抑制了拟南芥中的根伸长,BrMYC3-2OE、BrMYC4-1OE、BrMYC4-2OE的表达促进了拟南芥中的根伸长。BrMYC2OE的表达抑制了拟南芥的下胚轴伸长,BrMYC3-1OE、BrMYC3-2OE、BrMYC4-1OE、BrMYC4-2OE的表达促进了拟南芥的下胚轴伸长。During juvenile vegetative growth, we investigated the root and hypocotyl length of seedlings. Root and hypocotyl lengths were significantly different between control and transgenic plants (Figure 10). The BrMYC2 OE line exhibited the shortest root length, followed by BrMYC3-1 OE , BrMYC3-2 OE , BrMYC4-1 OE and BrMYC4-2 OE (Fig. 10B). Root lengths of BrMYC2 OE and BrMYC3-1 OE lines were shorter than controls. Although there was no significant difference between the BrMYC3-2 OE , BrMYC4-1 OE and BrMYC4-2 OE lines, their root lengths were significantly increased compared to controls. The transgenic BrMYC2 OE also had the shortest hypocotyl length, followed by BrMYC3-1 OE , BrMYC4-2 OE , BrMYC4-1 OE and BrMYC3-2 OE (Fig. 10C). The hypocotyl length of BrMYC2 OE was shorter than that of control, whereas the hypocotyl length of BrMYC3-1 OE , BrMYC3-2 OE , BrMYC4-1 OE and BrMYC4-2 OE was longer than that of control. Thus, the expression of BrMYC2 OE and BrMYC3-1 OE inhibited root elongation in Arabidopsis, and the expression of BrMYC3-2 OE , BrMYC4-1 OE , BrMYC4-2 OE promoted root elongation in Arabidopsis. The expression of BrMYC2 OE inhibited the hypocotyl elongation of Arabidopsis thaliana, and the expression of BrMYC3-1 OE , BrMYC3-2 OE , BrMYC4-1 OE and BrMYC4-2 OE promoted the hypocotyl elongation of Arabidopsis thaliana.
种子播种后约3-4周,拟南芥幼苗从幼年期过渡到成年营养生长期(图11)。转基因植物的叶片形状正常,与对照叶片没有区别。与对照相比,BrMYC2OE、BrMYC3-1OE、BrMYC3-2OE、BrMYC4-1OE过表达转基因植株产生具有表皮毛的第一片叶子的叶位低,而BrMYC4-2OE与对照没有显著差异(图11B)。对于叶片生长速率,BrMYC2OE、BrMYC3-1OE、BrMYC4-1OE、BrMYC4-2OE明显快于对照,但BrMYC3-2OE与对照相似(图11C)。About 3-4 weeks after seed sowing, Arabidopsis seedlings transition from juvenile to adult vegetative growth (Figure 11). The leaves of the transgenic plants were normal in shape and were indistinguishable from the control leaves. BrMYC2 OE , BrMYC3-1 OE , BrMYC3-2 OE , BrMYC4-1 OE overexpressing transgenic plants produced the first leaf with epidermal hairs with lower leaf position compared to the control, while BrMYC4-2 OE was not significantly different from the control (FIG. 11B). For leaf growth rates, BrMYC2 OE , BrMYC3-1 OE , BrMYC4-1 OE , BrMYC4-2 OE were significantly faster than the control, but BrMYC3-2 OE was similar to the control ( FIG. 11C ).
至于生殖生长期,我们研究了抽薹时间,抽薹期的莲座叶数,株高和分蘖数(图12)。BrMYC2OE的抽薹时间明显较快,而BrMYC3-2OE和BrMYC4-2OE的抽薹时间均比对照慢。BrMYC3-1OE和BrMYC4-1OE的抽薹时间均与对照相似(图12A和12B)。与对照相比,BrMYC2OE、BrMYC3-1OE、BrMYC4-1OE过表达转基因植株抽薹时莲座叶的数量显著减少,而BrMYC3-2OE、BrMYC4-2OE则增加(图12A和12C)。抽薹时莲座丛叶的数量可作为开花时间的判断依据,并且晚开花植物的莲座丛叶较多。因此,在拟南芥中,BrMYC2OE,BrMYC3-1OE和BrMYC4-1OE的异源过表达促使开花时间提前,而BrMYC3-2OE和BrMYC4-2OE的异源过表达促使拟南芥开花时间推迟。在株高方面,与对照相比,BrMYC2OE的株高显著增加,而BrMYC3-2OE,BrMYC4-1OE和BrMYC4-2OE显著降低。而且,BrMYC3-2OE和BrMYC4-2OE之间以及BrMYC3-1OE和对照之间没有显著差异(图12A和12E)。BrMYC2OE和BrMYC3-1OE的分枝数显著高于对照,而BrMYC3-2OE,BrMYC4-1OE,BrMYC4-2OE和对照之间没有显著差异(图12A和12F)。As for the reproductive growth period, we studied the bolting time, the number of rosette leaves, the plant height and the number of tillers at the bolting stage (Fig. 12). The bolting time of BrMYC2 OE was significantly faster, while the bolting time of BrMYC3-2 OE and BrMYC4-2 OE was slower than that of the control. Bolting times for both BrMYC3-1 OE and BrMYC4-1 OE were similar to controls (Figures 12A and 12B). Compared with the control, the number of rosette leaves was significantly decreased in BrMYC2 OE , BrMYC3-1 OE , and BrMYC4-1 OE overexpressing transgenic plants when bolted, while BrMYC3-2 OE , BrMYC4-2 OE increased (Figures 12A and 12C). The number of rosette leaves during bolting can be used as a basis for judging flowering time, and the rosette leaves of late-flowering plants are more. Thus, in Arabidopsis, heterologous overexpression of BrMYC2 OE , BrMYC3-1 OE and BrMYC4-1 OE promoted flowering time, whereas heterologous overexpression of BrMYC3-2 OE and BrMYC4-2 OE promoted flowering in Arabidopsis time delay. In terms of plant height, compared with the control, the plant height of BrMYC2 OE was significantly increased, while that of BrMYC3-2 OE , BrMYC4-1 OE and BrMYC4-2 OE was significantly decreased. Furthermore, there were no significant differences between BrMYC3-2 OE and BrMYC4-2 OE and between BrMYC3-1 OE and control (Figures 12A and 12E). The number of branches of BrMYC2 OE and BrMYC3-1 OE was significantly higher than that of control, while there was no significant difference between BrMYC3-2 OE , BrMYC4-1 OE , BrMYC4-2 OE and control ( FIGS. 12A and 12F ).
2.3.3过表达转基因拟南芥硫苷含量分析2.3.3 Analysis of glucosinolate content in overexpressed transgenic Arabidopsis
为了研究BrMYC2/3/4的异源过表达对硫苷代谢的影响,使用HPLC测定了T3株系叶片中硫苷的种类与含量。与对照相比,转基因株系的大多数短链和长链脂肪族硫苷和吲哚族硫苷的水平均显著增加(表6)。源自高甲硫氨酸的glucoiberin(GBR)在BrMYC2OE株系中增加了2.5倍。BrMYC2OE株系中,源自二高甲硫氨酸的脂肪族硫苷glucoerucin(GEC)和glucoraphanin(GRN)分别增加了3.0倍和2.1倍。来自三高甲硫氨酸的glucoalyssin(GAS)在BrMYC2OE株系中增加了2.2倍。衍生自五亚甲硫氨酸的glucohirsutin(GHT)在BrMYC2OE中增加3.9倍,在BrMYC3-1OE中增加1.9倍,在BrMYC4-1OE中增加1.8倍。BrMYC2OE吲哚族硫苷为主,例如GBC,4MeGBC和NeoGBC,分别增加了1.5倍,8.7倍和3倍。BrMYC3-1OE的4MeGBC增加了4.6倍。在BrMYC3-1OE、BrMYC3-2OE、BrMYC4-1OE、BrMYC4-2OE过表达转基因拟南芥中,NeoGBC分别增加了2.8倍,1.8倍,2.6倍和2.0倍。如表7所示,在BrMYC2OE、BrMYC3-1OE、BrMYC4-1OE过表达转基因拟南芥中,脂肪族硫苷分别增加了2.9,1.7和1.6倍。在BrMYC2OE、BrMYC3-1OE过表达转基因拟南芥中,吲哚族硫苷分别增加了4.6倍和2.9倍。在BrMYC2OE、BrMYC3-1OE、BrMYC4-1OE过表达转基因拟南芥中,总GS分别增加了3.0倍,1.7倍和1.6倍。因此,除BrMYC4-2OE外,所有株系中大多数脂肪族硫苷和吲哚族硫苷的水平均显著增加。In order to study the effect of heterologous overexpression of BrMYC2/ 3 /4 on glucosinolate metabolism, the types and contents of glucosinolates in leaves of T3 line were determined by HPLC. The levels of most short and long chain aliphatic glucosinolates and indole glucosinolates were significantly increased in the transgenic lines compared to controls (Table 6). Homomethionine-derived glucoiberin (GBR) was increased 2.5-fold in the BrMYC2 OE line. The aliphatic glucosinolates glucoerucin (GEC) and glucoraphanin (GRN) derived from dihomomethionine were increased by 3.0-fold and 2.1-fold, respectively, in the BrMYC2 OE strain. Glucoalyssin (GAS) from trihomomethionine was increased 2.2-fold in the BrMYC2 OE line. Pentamethylene-derived glucohirsutin (GHT) was increased 3.9-fold in BrMYC2 OE , 1.9-fold in BrMYC3-1 OE , and 1.8-fold in BrMYC4-1 OE . BrMYC2 OE indole glucosinolates dominated, such as GBC, 4MeGBC and NeoGBC, which were increased by 1.5-fold, 8.7-fold and 3-fold, respectively. The 4MeGBC of BrMYC3-1 OE was increased by a factor of 4.6. In BrMYC3-1 OE , BrMYC3-2 OE , BrMYC4-1 OE , BrMYC4-2 OE overexpressing transgenic Arabidopsis thaliana, NeoGBC increased 2.8-fold, 1.8-fold, 2.6-fold and 2.0-fold, respectively. As shown in Table 7, aliphatic glucosinolates were increased by 2.9, 1.7 and 1.6-fold in BrMYC2 OE , BrMYC3-1 OE , and BrMYC4-1 OE overexpressing transgenic Arabidopsis, respectively. In Arabidopsis thaliana overexpressing BrMYC2 OE and BrMYC3-1 OE , the indole glucosinolates were increased by 4.6-fold and 2.9-fold, respectively. In BrMYC2 OE , BrMYC3-1 OE , BrMYC4-1 OE overexpressing transgenic Arabidopsis, the total GS was increased by 3.0-fold, 1.7-fold and 1.6-fold, respectively. Therefore, the levels of most aliphatic glucosinolates and indole glucosinolates were significantly increased in all strains except BrMYC4-2 OE .
表6单个硫苷GS含量(μmol·g-1DW)Table 6 GS content of single glucosinolate (μmol·g -1 DW)
注:数据表示一式三份样品的平均值±标准偏差。使用ANOVA进行统计分析,然后进行Tukey的多重比较检验(p<0.05)。缩写:4MeGBC,4-methoxyglucobrassicin;4-OHGBC,4-hydroxyglucobrassicin;GAS,glucoalyssin;GBC,glucobrassicin;GB,gluconapin;GRN,glucoraphanin;NeoGBC,neoglucobrassicin;GBR,glucoiberin;GBV,glucoiberverin;GEC,glucoerucin;GHT,glucohirsutin;GNA,gluconapin;GRN,glucoraphanin;NeoGBC,neoglucobrassicin.Note: Data represent mean ± standard deviation of triplicate samples. Statistical analysis was performed using ANOVA followed by Tukey's multiple comparison test (p<0.05). Abbreviations: 4MeGBC, 4-methoxyglucobrassicin; 4-OHGBC, 4-hydroxyglucobrassicin; GAS, glucoalyssin; GBC, glucobrassicin; GB, gluconapin; GRN, glucoraphanin; NeoGBC, neoglucobrassicin; GBR, glucoiberin; GBV, glucoiberverin; GEC, glucoerucin; GHT, glucohirsutin; GNA, gluconapin; GRN, glucoraphanin; NeoGBC, neoglucobrassicin.
表7总硫苷GS含量(μmol·g-1DW)Table 7 Total glucosinolate GS content (μmol·g -1 DW)
注:数据表示一式三份样品的平均值±标准偏差。使用ANOVA进行统计分析,然后进行Tukey的多重比较检验(p<0.05)。缩写:AGS,aliphatic glucosinolate;IGS,indoleglucosinolate.Note: Data represent mean ± standard deviation of triplicate samples. Statistical analysis was performed using ANOVA followed by Tukey's multiple comparison test (p<0.05). Abbreviations: AGS, aliphatic glucosinolate; IGS, indoleglucosinolate.
2.3.4过表达转基因拟南芥体外抗真菌活性分析2.3.4 In vitro antifungal activity analysis of overexpressed transgenic Arabidopsis
为了研究转基因拟南芥对核盘菌的抵抗程度,取每种转基因植株莲座叶的冻干粉25mg×3均匀分布在菌丝周围。培养72小时后,斑块状棉质菌丝体以肉眼可见的变化生长(图13)。在BrMYC2OE中发现最薄的核盘菌菌斑,其次是BrMYC3-1OE,BrMYC4-1OE,BrMYC3-2OE和BrMYC4-2OE。对照株系表达载体对照显示出比ddH2O对照薄得多的核盘菌菌斑,表明Ctrl存在的内源基础硫苷水平在一定程度上抑制了核盘菌的生长。值得注意的是,对照显示出比BrMYC2/3/4过表达转基因株系更厚的核盘菌菌斑。这可能是由于BrMYC2/3/4过表达转基因株系中积累的更高含量的硫苷,进而抑制了核盘菌菌丝的生长。In order to study the resistance of transgenic Arabidopsis to Sclerotinia sclerotiorum, 25 mg×3 lyophilized powder of rosette leaves of each transgenic plant was taken and evenly distributed around the mycelium. After 72 hours of culture, patchy cotton mycelium grew with visible changes (Figure 13). The thinnest Sclerotinia plaques were found in BrMYC2 OE , followed by BrMYC3-1 OE , BrMYC4-1 OE , BrMYC3-2 OE and BrMYC4-2 OE . The control line expression vector control showed much thinner S. sclerotiorum plaques than the ddH 2 O control, indicating that the endogenous basal glucosinolate level in the presence of Ctrl inhibited the growth of S. sclerotiorum to some extent. Notably, the control showed thicker Sclerotinia plaques than the BrMYC2/3/4 overexpressing transgenic lines. This may be due to the accumulation of higher levels of glucosinolates in BrMYC2/3/4 overexpressing transgenic lines, which in turn inhibited the growth of Sclerotinia sclerotiorum hyphae.
Claims (1)
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210140106.6A CN114410656B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC3-2 gene overexpression in plant growth |
CN202110616932.9A CN113337519B (en) | 2021-06-03 | 2021-06-03 | Application of Different Copies of BrMYC2/3/4 Gene in Plant Growth |
CN202210140095.1A CN114517200B (en) | 2021-06-03 | 2021-06-03 | Use of BrMYC3-2 gene overexpression for increasing resistance of plants to fungal pathogens |
CN202210140093.2A CN114480423B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC3-1 Gene Overexpression in Improving Plant Resistance to Fungal Pathogens |
CN202210140105.1A CN114410655B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC4-2 Gene Overexpression in Plant Growth |
CN202210140101.3A CN114480424B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC2 Gene Overexpression in Plant Growth |
CN202210140108.5A CN114517201B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC4-1 Gene Overexpression in Improving Plant Resistance to Fungal Pathogens |
CN202210140112.1A CN114480425B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC4-2 Gene Overexpression in Improving Plant Resistance to Fungal Pathogens |
CN202210140113.6A CN114438098B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC4-1 Gene Overexpression in Plant Growth |
CN202210140102.8A CN114410654B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC3-1 Gene Overexpression in Plant Growth |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110616932.9A CN113337519B (en) | 2021-06-03 | 2021-06-03 | Application of Different Copies of BrMYC2/3/4 Gene in Plant Growth |
Related Child Applications (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210140093.2A Division CN114480423B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC3-1 Gene Overexpression in Improving Plant Resistance to Fungal Pathogens |
CN202210140112.1A Division CN114480425B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC4-2 Gene Overexpression in Improving Plant Resistance to Fungal Pathogens |
CN202210140101.3A Division CN114480424B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC2 Gene Overexpression in Plant Growth |
CN202210140102.8A Division CN114410654B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC3-1 Gene Overexpression in Plant Growth |
CN202210140095.1A Division CN114517200B (en) | 2021-06-03 | 2021-06-03 | Use of BrMYC3-2 gene overexpression for increasing resistance of plants to fungal pathogens |
CN202210140106.6A Division CN114410656B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC3-2 gene overexpression in plant growth |
CN202210140108.5A Division CN114517201B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC4-1 Gene Overexpression in Improving Plant Resistance to Fungal Pathogens |
CN202210140113.6A Division CN114438098B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC4-1 Gene Overexpression in Plant Growth |
CN202210140105.1A Division CN114410655B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC4-2 Gene Overexpression in Plant Growth |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113337519A CN113337519A (en) | 2021-09-03 |
CN113337519B true CN113337519B (en) | 2022-04-05 |
Family
ID=77472958
Family Applications (10)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210140101.3A Active CN114480424B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC2 Gene Overexpression in Plant Growth |
CN202210140113.6A Active CN114438098B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC4-1 Gene Overexpression in Plant Growth |
CN202210140106.6A Active CN114410656B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC3-2 gene overexpression in plant growth |
CN202210140112.1A Active CN114480425B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC4-2 Gene Overexpression in Improving Plant Resistance to Fungal Pathogens |
CN202210140095.1A Active CN114517200B (en) | 2021-06-03 | 2021-06-03 | Use of BrMYC3-2 gene overexpression for increasing resistance of plants to fungal pathogens |
CN202210140093.2A Active CN114480423B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC3-1 Gene Overexpression in Improving Plant Resistance to Fungal Pathogens |
CN202210140108.5A Active CN114517201B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC4-1 Gene Overexpression in Improving Plant Resistance to Fungal Pathogens |
CN202110616932.9A Active CN113337519B (en) | 2021-06-03 | 2021-06-03 | Application of Different Copies of BrMYC2/3/4 Gene in Plant Growth |
CN202210140105.1A Active CN114410655B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC4-2 Gene Overexpression in Plant Growth |
CN202210140102.8A Active CN114410654B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC3-1 Gene Overexpression in Plant Growth |
Family Applications Before (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210140101.3A Active CN114480424B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC2 Gene Overexpression in Plant Growth |
CN202210140113.6A Active CN114438098B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC4-1 Gene Overexpression in Plant Growth |
CN202210140106.6A Active CN114410656B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC3-2 gene overexpression in plant growth |
CN202210140112.1A Active CN114480425B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC4-2 Gene Overexpression in Improving Plant Resistance to Fungal Pathogens |
CN202210140095.1A Active CN114517200B (en) | 2021-06-03 | 2021-06-03 | Use of BrMYC3-2 gene overexpression for increasing resistance of plants to fungal pathogens |
CN202210140093.2A Active CN114480423B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC3-1 Gene Overexpression in Improving Plant Resistance to Fungal Pathogens |
CN202210140108.5A Active CN114517201B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC4-1 Gene Overexpression in Improving Plant Resistance to Fungal Pathogens |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210140105.1A Active CN114410655B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC4-2 Gene Overexpression in Plant Growth |
CN202210140102.8A Active CN114410654B (en) | 2021-06-03 | 2021-06-03 | Application of BrMYC3-1 Gene Overexpression in Plant Growth |
Country Status (1)
Country | Link |
---|---|
CN (10) | CN114480424B (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103602686A (en) * | 2013-09-11 | 2014-02-26 | 上海交通大学 | Sweet wormwood MYC2 transcription factor protein coding sequence and applications thereof |
CN104726485A (en) * | 2015-03-09 | 2015-06-24 | 上海师范大学 | Method for increasing contents of tanshinone and salvianolic acid in salvia miltiorrhiza hairy root by using transgene AtMYC2 |
CN107674874A (en) * | 2017-11-01 | 2018-02-09 | 中国农业大学 | Applications of the gene M YC2 in plant frigostabile ability is improved |
KR101845248B1 (en) * | 2016-10-28 | 2018-04-04 | 대한민국 | Transgenic plants for inhibiting senescence |
CN110317815A (en) * | 2019-07-11 | 2019-10-11 | 东北林业大学 | A kind of gene, detection primer, expression vector and application that regulation populus ussuriensis adventitious root occurs |
WO2019219933A1 (en) * | 2018-05-17 | 2019-11-21 | Vib Vzw | An engineered combinatorial module of transcription factors to boost production of monoterpenoid indole alkaloids |
CN110938126A (en) * | 2019-12-19 | 2020-03-31 | 西南大学 | Citrus FcMYC2 gene and application of coding protein thereof in regulation and control of citrus essential oil synthesis |
CN111363020A (en) * | 2020-04-22 | 2020-07-03 | 浙江省农业科学院 | MYC2 transcription factor of tea tree and application thereof |
CN111560058A (en) * | 2020-06-08 | 2020-08-21 | 华中农业大学 | Cold-resistant gene PtrMYC2 of poncirus trifoliata and application thereof in plant cold-resistant genetic improvement |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4685278B2 (en) * | 2001-06-20 | 2011-05-18 | 独立行政法人科学技術振興機構 | Flower control genes derived from Arabidopsis thaliana, proteins encoded by the same, and methods of use thereof |
KR100510959B1 (en) * | 2001-08-22 | 2005-08-30 | 제노마인(주) | Gene controlling flowering time and method for controlling flowering time in plants using the gene |
WO2008054890A1 (en) * | 2006-06-13 | 2008-05-08 | Agronomics Llc. | Generation of plants with improved pathogen resistance |
DE112008001730T5 (en) * | 2007-06-29 | 2010-06-02 | Basf Plant Science Gmbh | Plants with improved yield-related traits and methods for their production |
KR101126266B1 (en) * | 2008-11-07 | 2012-06-27 | 대한민국 | Method for controlling flowering time of plant by using N-terminus-deleted mutant of bZIP transcription factor |
WO2013057681A1 (en) * | 2011-10-18 | 2013-04-25 | University Of Manitoba | Drought-tolerant transgenic plants comprising decreased myc4 activity and methods for their use |
CN103589722B (en) * | 2012-08-16 | 2015-10-28 | 清华大学 | Application of arabidopsis JAV1 protein and coding gene thereof in regulation and control of disease resistance and insect resistance of plants |
CN102796762B (en) * | 2012-09-11 | 2013-06-12 | 山东大学 | Application of arabidopsis glycosyl transferase gene UGT 76C2 in improving plant drought resistance |
CN104164440B (en) * | 2014-08-08 | 2017-05-03 | 中国农业科学院生物技术研究所 | Plant stress reactive MYC (myelocytomatosis protein) transcription factors as well as coding genes and application thereof |
CN104178498B (en) * | 2014-08-08 | 2016-10-19 | 江苏艺萌城市农业发展有限公司 | Cotton GhMYC1 transcription factor and its coding gene and application |
CN104178497B (en) * | 2014-08-08 | 2017-06-27 | 中国农业科学院生物技术研究所 | Cotton-derived MYC transcription factors, their coding genes and their application in regulating plant stress resistance |
CA3035084A1 (en) * | 2016-08-26 | 2018-03-01 | Board Of Trustees Of Michigan State University | Transcription factors to improve resistance to environmental stress in plants |
EP3318638A1 (en) * | 2016-11-07 | 2018-05-09 | Consejo Superior De Investigaciones Cientificas | Nucleotide sequence for improving resistance against plant pathogens |
CN109536513B (en) * | 2018-12-29 | 2020-11-10 | 浙江大学 | Chinese cabbage pistil development related gene BrCRF11a and application thereof |
CN110699360B (en) * | 2019-08-23 | 2021-04-27 | 浙江大学 | Chinese cabbage disease-resistant related gene BrPGIP4 and application thereof |
CN110862442B (en) * | 2019-12-16 | 2022-02-18 | 中国科学院遗传与发育生物学研究所 | Application of Arabidopsis MYC3 and MYC4 genes in seed size regulation |
CN110904111B (en) * | 2019-12-19 | 2021-06-11 | 西南大学 | sgRNA sequence for targeted knockout of FcMYC2 gene, CRISPR/Cas9 vector and application thereof |
CN112522283B (en) * | 2020-12-22 | 2023-01-03 | 浙江大学 | Pollen development related gene and application thereof |
-
2021
- 2021-06-03 CN CN202210140101.3A patent/CN114480424B/en active Active
- 2021-06-03 CN CN202210140113.6A patent/CN114438098B/en active Active
- 2021-06-03 CN CN202210140106.6A patent/CN114410656B/en active Active
- 2021-06-03 CN CN202210140112.1A patent/CN114480425B/en active Active
- 2021-06-03 CN CN202210140095.1A patent/CN114517200B/en active Active
- 2021-06-03 CN CN202210140093.2A patent/CN114480423B/en active Active
- 2021-06-03 CN CN202210140108.5A patent/CN114517201B/en active Active
- 2021-06-03 CN CN202110616932.9A patent/CN113337519B/en active Active
- 2021-06-03 CN CN202210140105.1A patent/CN114410655B/en active Active
- 2021-06-03 CN CN202210140102.8A patent/CN114410654B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103602686A (en) * | 2013-09-11 | 2014-02-26 | 上海交通大学 | Sweet wormwood MYC2 transcription factor protein coding sequence and applications thereof |
CN104726485A (en) * | 2015-03-09 | 2015-06-24 | 上海师范大学 | Method for increasing contents of tanshinone and salvianolic acid in salvia miltiorrhiza hairy root by using transgene AtMYC2 |
KR101845248B1 (en) * | 2016-10-28 | 2018-04-04 | 대한민국 | Transgenic plants for inhibiting senescence |
CN107674874A (en) * | 2017-11-01 | 2018-02-09 | 中国农业大学 | Applications of the gene M YC2 in plant frigostabile ability is improved |
WO2019219933A1 (en) * | 2018-05-17 | 2019-11-21 | Vib Vzw | An engineered combinatorial module of transcription factors to boost production of monoterpenoid indole alkaloids |
CN110317815A (en) * | 2019-07-11 | 2019-10-11 | 东北林业大学 | A kind of gene, detection primer, expression vector and application that regulation populus ussuriensis adventitious root occurs |
CN110938126A (en) * | 2019-12-19 | 2020-03-31 | 西南大学 | Citrus FcMYC2 gene and application of coding protein thereof in regulation and control of citrus essential oil synthesis |
CN111363020A (en) * | 2020-04-22 | 2020-07-03 | 浙江省农业科学院 | MYC2 transcription factor of tea tree and application thereof |
CN111560058A (en) * | 2020-06-08 | 2020-08-21 | 华中农业大学 | Cold-resistant gene PtrMYC2 of poncirus trifoliata and application thereof in plant cold-resistant genetic improvement |
Non-Patent Citations (8)
Title |
---|
Arabidopsis Basic Helix-Loop-Helix Transcription Factors MYC2,MYC3, andMYC4 Regulate Glucosinolate Biosynthesis, Insect Performance, and Feeding Behavior;Fabian Schweizer等;《The Plant Cell》;20130831;第25卷;第3117–3132页 * |
BrMYC2/3/4在植物生长发育及吲哚族硫苷代谢中的功能初探;滕芝妍;《浙江农林大学硕士学位论文》;20211231;全文 * |
Effects of BrMYC2/3/4 on Plant Development, Glucosinolate Metabolism, and Sclerotinia sclerotiorum Resistance in Transgenic Arabidopsis thaliana;Zhiyan Teng等;《Frontiers in Plant Science》;20210903;第12卷;第1-15页 * |
Melatonin elevated Sclerotinia sclerotiorum resistance via modulation of ATP and glucosinolate biosynthesis in Brassica rapa ssp. Pekinensis;Zhiyan Teng等;《Journal of Proteomics》;20210514;第243卷;第1-14页 * |
MYC2 Differentially Modulates Diverse Jasmonate-Dependent Functions in Arabidopsis;Bruno Dombrecht等;《The Plant Cell》;20070731;第19卷;第2225-2245页 * |
Overexpression of Three Glucosinolate Biosynthesis Genes in Brassica napus Identifies Enhanced Resistance to Sclerotinia sclerotiorum and Botrytis cinerea;Yuanyuan Zhang等;《PLOS ONE》;20151014;第1-17页 * |
Proteomic identification of MYC2-dependent jasmonate-regulated proteins in Arabidopsis thaliana;Jing Guo等;《Proteome Science》;20121231;第10卷;第1-13页 * |
Sclerotinia sclerotiorum Response to Long Exposure to Glucosinolate Hydrolysis Products by Transcriptomic Approach;Pari Madloo等;《MicrobiolSpectrum》;20210714;第9卷(第1期);第e00180-21页 * |
Also Published As
Publication number | Publication date |
---|---|
CN114410655A (en) | 2022-04-29 |
CN114410654A (en) | 2022-04-29 |
CN114517200B (en) | 2023-06-23 |
CN114438098A (en) | 2022-05-06 |
CN114480425B (en) | 2023-06-23 |
CN114410655B (en) | 2023-06-23 |
CN113337519A (en) | 2021-09-03 |
CN114410656B (en) | 2023-12-01 |
CN114480424B (en) | 2023-07-21 |
CN114517201B (en) | 2023-06-23 |
CN114410654B (en) | 2023-07-21 |
CN114517201A (en) | 2022-05-20 |
CN114480423B (en) | 2023-06-23 |
CN114480423A (en) | 2022-05-13 |
CN114438098B (en) | 2023-06-23 |
CN114480424A (en) | 2022-05-13 |
CN114517200A (en) | 2022-05-20 |
CN114410656A (en) | 2022-04-29 |
CN114480425A (en) | 2022-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104829700A (en) | Corn CCCH-type zinc finger protein, and encoding gene ZmC3H54 and application thereof | |
CN116004656B (en) | Banana maturation associated gene MabHLH130 and application thereof | |
CN105624188A (en) | Application of SPL18 gene in enhancing plant yield | |
CN113604475B (en) | Application of cotton GH_D03G1517 gene in promoting drought resistance and salt tolerance | |
CN110734482A (en) | Lilium regale WRKY transcription factor gene LrWRKY4 and application thereof | |
CN115725605B (en) | Musa paradisiaca maturation-related gene MaMYC2-3 and application thereof | |
CN110358772B (en) | OsEBP89 gene for improving abiotic stress resistance of rice, and preparation method and application thereof | |
CN114686494A (en) | Application of SlERF.H2 gene and its encoded protein in regulating tomato salt tolerance | |
CN111909252B (en) | Ginseng PgbHLH149 transcription factor and application thereof | |
CN115976046B (en) | SlCAS gene and application of protein coded by SlCAS gene in regulation and control of gray mold resistance of tomatoes | |
CN113337519B (en) | Application of Different Copies of BrMYC2/3/4 Gene in Plant Growth | |
CN111321165A (en) | A method for promoting the growth and development of tomato | |
CN104628840A (en) | Plant stress tolerance related protein VrDREB2A and encoding gene and application thereof | |
CN109628468A (en) | A kind of Chunlan CgWRKY53 gene and its application | |
CN115851765A (en) | Musa tenera maturation related gene MaMYC2-10 and application thereof | |
Liu et al. | Saussurea involucrata SIDhn2 gene confers tolerance to drought stress in upland cotton | |
CN116622666A (en) | Methods for regulating plant drought resistance and application of TaMPK3 in regulating plant drought resistance | |
CN116640769B (en) | Peanut AhGATA11 gene and its application in improving plant stress resistance | |
CN117025624B (en) | Cucumber transcription factor CsERF4 and application thereof | |
CN119876174B (en) | A wheat TabZIP19-5B gene and its application in regulating wheat salt tolerance, virus resistance and thousand-grain weight | |
CN110499326B (en) | Application of RGGA in regulating crop agronomic characters | |
CN119799724A (en) | TaJDR1 gene and its application in improving plant resistance to scab and drought | |
CN118531011A (en) | Application of SlCRY1a gene in improving salt stress resistance of tomato | |
CN119220590A (en) | MsPYL9 gene in alfalfa and its application in regulating plant drought tolerance | |
CN119264233A (en) | MsRCAR1 gene of alfalfa and its application in plant drought tolerance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |