[go: up one dir, main page]

CN116004656B - Banana maturation associated gene MabHLH130 and application thereof - Google Patents

Banana maturation associated gene MabHLH130 and application thereof Download PDF

Info

Publication number
CN116004656B
CN116004656B CN202211494537.9A CN202211494537A CN116004656B CN 116004656 B CN116004656 B CN 116004656B CN 202211494537 A CN202211494537 A CN 202211494537A CN 116004656 B CN116004656 B CN 116004656B
Authority
CN
China
Prior art keywords
mabhlh130
gene
ripening
expression vector
banana
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211494537.9A
Other languages
Chinese (zh)
Other versions
CN116004656A (en
Inventor
李美英
胡伟
谢郑楠
王雨
叶晓雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Tropical Bioscience and Biotechnology Chinese Academy of Tropical Agricultural Sciences
Original Assignee
Institute of Tropical Bioscience and Biotechnology Chinese Academy of Tropical Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Tropical Bioscience and Biotechnology Chinese Academy of Tropical Agricultural Sciences filed Critical Institute of Tropical Bioscience and Biotechnology Chinese Academy of Tropical Agricultural Sciences
Priority to CN202211494537.9A priority Critical patent/CN116004656B/en
Publication of CN116004656A publication Critical patent/CN116004656A/en
Application granted granted Critical
Publication of CN116004656B publication Critical patent/CN116004656B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了一种香蕉成熟相关基因MabHLH130及其应用,所述基因MabHLH130CDS的核苷酸序列为SEQ ID NO:1所示;基因MabHLH130编码的蛋白MabHLH130,其氨基酸序列为如SEQ IDNO:2所示。本发明通过实时定量PCR技术筛选出来的对粉蕉果实采后成熟起着重要调控作用的一个功能基因MabHLH130;本发明构建了植物表达载体pCAMBIA1304_MabHLH130,转入农杆菌GV3101,通过农杆菌侵染技术将粉蕉的MabHLH130整合到番茄基因组中,在获得的独立的转基因株系中,通过实验证明MabHLH130通过调控乙烯生物合成关键酶基因的表达,参与乙烯的生物合成,实现调控果实成熟,促进番茄果实的采后成熟,为香蕉的遗传改良提供基因资源。The invention discloses a banana ripening related gene MabHLH130 and its application. The nucleotide sequence of the CDS of the gene MabHLH130 is shown in SEQ ID NO: 1; the protein MabHLH130 encoded by the gene MabHLH130 has an amino acid sequence shown in SEQ ID NO: 2. Show. The present invention screened out a functional gene MabHLH130 that plays an important role in regulating post-harvest ripening of pink banana fruits through real-time quantitative PCR technology; the present invention constructed a plant expression vector pCAMBIA1304_MabHLH130, transferred it into Agrobacterium GV3101, and used Agrobacterium infection technology to MabHLH130 from Pink Banana was integrated into the tomato genome. In the independent transgenic lines obtained, experiments have shown that MabHLH130 participates in the biosynthesis of ethylene by regulating the expression of key enzyme genes for ethylene biosynthesis, thereby regulating fruit ripening and promoting the growth of tomato fruits. Postharvest ripening provides genetic resources for genetic improvement of bananas.

Description

香蕉成熟相关基因MabHLH130及其应用Banana ripening related gene MabHLH130 and its application

技术领域Technical field

本发明涉及生物技术领域,具体涉及一种香蕉成熟相关基因MabHLH130及其应用。The invention relates to the field of biotechnology, specifically to a banana ripening-related gene MabHLH130 and its application.

背景技术Background technique

香蕉是重要的热带水果,在世界经济贸易中占有重要的地位。其中粉蕉(Musa ABBPisang Awak,FJ)属于芭蕉属香蕉杂交品种,与巴西蕉(Musa acuminate L.AAA groupcv.Cavendish,BX)相比风味和口感明显不同,营养丰富,酸甜可口,其成熟过程比巴西蕉快,在国际国内市场上受到普遍欢迎,应用前景广阔。Banana is an important tropical fruit and plays an important role in world economy and trade. Among them, pink banana (Musa ABBPisang Awak, FJ) belongs to the Musa banana hybrid variety. Compared with Musa acuminate L.AAA groupcv.Cavendish (BX), the flavor and taste are significantly different. It is rich in nutrients, sweet and sour, and its ripening process Faster than Brazilian banana, it is widely welcomed in the international and domestic markets and has broad application prospects.

因此深入研究粉蕉果实采后成熟的分子调控机制,挖掘调控粉蕉果实快速成熟的关键基因,通过生物技术对香蕉进行遗传改良,能进一步提高粉蕉产业商品价值,拓展香蕉产业的可持续性发展,是发展热带特色高效农业的国家战略需求之一。Therefore, in-depth research on the molecular regulatory mechanism of postharvest ripening of pink banana fruits, excavating the key genes that regulate the rapid ripening of pink banana fruits, and genetic improvement of bananas through biotechnology can further increase the commodity value of the pink banana industry and expand the sustainability of the banana industry. Development is one of the national strategic needs for developing efficient agriculture with tropical characteristics.

目前,香蕉基因组中还没有找到与果实采后成熟相关基因,因此,迫切希望找到一个调控香蕉果实成熟的有意义基因,从而促进香蕉的采后成熟,实现香蕉的遗传改良。At present, no genes related to postharvest ripening of bananas have been found in the banana genome. Therefore, it is urgent to find a meaningful gene that regulates banana fruit ripening, thereby promoting postharvest ripening of bananas and achieving genetic improvement of bananas.

发明内容Contents of the invention

本发明的目的在于克服现有技术的不足,提供了一种香蕉成熟相关基因MabHLH130及其应用。本发明为香蕉成熟相关基因的挖掘做贡献,也为果实早熟基因的开发与应用的生产问题提供基因资源。The purpose of the present invention is to overcome the shortcomings of the existing technology and provide a banana ripening related gene MabHLH130 and its application. The present invention contributes to the excavation of genes related to banana ripening, and also provides genetic resources for production issues related to the development and application of early ripening genes of fruits.

为实现上述目的,本发明所设计一种香蕉成熟相关基因MabHLH130,所述基因MabHLH130 CDS的核苷酸序列为SEQ IDNO:1所示。In order to achieve the above object, the present invention designs a banana ripening related gene MabHLH130. The nucleotide sequence of the CDS of the gene MabHLH130 is shown in SEQ ID NO: 1.

本发明还提供了一种上述基因MabHLH130编码的蛋白MabHLH130,其氨基酸序列为如SEQ ID NO:2所示。The present invention also provides a protein MabHLH130 encoded by the above-mentioned gene MabHLH130, the amino acid sequence of which is shown in SEQ ID NO: 2.

本发明还提供了一种用于获得上述成熟相关基因MabHLH130的引物对,所述引物对为:The present invention also provides a primer pair for obtaining the above-mentioned maturity-related gene MabHLH130, and the primer pair is:

正向引物F:5′-ATGTACGGGTCTCCTTCGGGACGGC-3′,如SEQ ID NO:3所示;Forward primer F: 5′-ATGTACGGTCTCCTTCGGGACGGC-3′, as shown in SEQ ID NO: 3;

反向引物R:5′-GTAGGGCTTCTGCCTGCCAGCTGAAC-3′,如SEQ ID NO:4所示。Reverse primer R: 5′-GTAGGGCTTCTGCCTGCCAGCTGAAC-3′, as shown in SEQ ID NO: 4.

本发明还提供了一种利用上述引物对获得成熟相关基因MabHLH130的方法,包括以下步骤:The invention also provides a method for obtaining the maturity-related gene MabHLH130 using the above primer pair, which includes the following steps:

以巴西蕉果实的cDNA为模板和上述成熟相关基因MabHLH130的引物对,进行PCR扩增,纯化得到成熟相关基因MabHLH130。Using the cDNA of Brazilian banana fruit as a template and the primer pair of the above-mentioned ripening-related gene MabHLH130, PCR amplification was performed, and the ripening-related gene MabHLH130 was purified.

本发明还提供了一种重组表达载体,所述重组表达载体含有上述成熟相关基因MabHLH130的植物表达载体,其中,所述植物表达载体为pCAMBIA-1304。The present invention also provides a recombinant expression vector, which contains a plant expression vector of the above-mentioned maturity-related gene MabHLH130, wherein the plant expression vector is pCAMBIA-1304.

上述表达载体可以采用基因重组领域中的常用载体,例如病毒、质粒等;本发明对此不设限定。The above-mentioned expression vector can use commonly used vectors in the field of gene recombination, such as viruses, plasmids, etc.; the present invention is not limited to this.

本发明还提供了一种上述重组表达载体的构建方法,包括以下步骤:The invention also provides a method for constructing the above-mentioned recombinant expression vector, which includes the following steps:

将目的片段导入克隆载体18T中,然后进行将含目的基因的克隆载体MabHLH130-/>18T和pCAMBIA-1304用NcoⅠ和SpeⅠ双酶切进行酶切,再将得到的目的片段连接到酶切过的pCAMBIA-1304载体上即得到重组表达载体pCAMBIA-1304-MabHLH130。Introduce the target fragment into the cloning vector 18T, and then clone the cloning vector MabHLH130-/> containing the target gene. 18T and pCAMBIA-1304 were digested with NcoⅠ and SpeⅠ double enzyme digestion, and then the obtained target fragment was connected to the digested pCAMBIA-1304 vector to obtain the recombinant expression vector pCAMBIA-1304-MabHLH130.

本发明还提供了一种含有上述重组表达载体的宿主细胞,所述宿主细胞为农杆菌GV3101。The invention also provides a host cell containing the above recombinant expression vector, and the host cell is Agrobacterium GV3101.

下述各项之一在调控果实成熟乙烯生物合成中的应用,其中,它包括:The application of one of the following items in regulating ethylene biosynthesis in fruit ripening, including:

(1)上述的成熟相关基因MabHLH130;(1) The above-mentioned maturation-related gene MabHLH130;

(2)上述的重组表达载体;(2) The above-mentioned recombinant expression vector;

(3)上述的宿主细胞。(3) The above-mentioned host cell.

作为优选方案,所述植物为番茄或香蕉。As a preferred version, the plant is tomato or banana.

下述各项之一在培育果实易成熟新品种中的应用,其中,它包括:The application of one of the following items in cultivating new varieties with easy-to-ripe fruits, including:

(1)上述的成熟相关基因MabHLH130;(1) The above-mentioned maturation-related gene MabHLH130;

(2)上述的重组表达载体;(2) The above-mentioned recombinant expression vector;

(3)上述的宿主细胞。(3) The above-mentioned host cell.

上述新品种为番茄或香蕉;The above new varieties are tomatoes or bananas;

以番茄为例;将含有香蕉成熟相关基因MabHLH130的pCAMBIA-1304载体质粒(pCAMBIA-1304-MabHLH130)的农杆菌菌液活化,侵染番茄叶片,进行共培养后的外植体置于芽诱导培养基中进行继代培养,之后进行生根培养,获得转MabHLH130基因番茄植株。Take tomato as an example; the Agrobacterium bacterial liquid of the pCAMBIA-1304 vector plasmid (pCAMBIA-1304-MabHLH130) containing the banana ripening related gene MabHLH130 is activated, infects the tomato leaves, and the explants after co-culture are placed in bud induction culture Subculture was carried out in the base, and then rooting culture was carried out to obtain transgenic tomato plants with MabHLH130 gene.

本发明的原理:Principle of the invention:

本发明通过实时定量PCR技术筛选出来的对粉蕉果实采后成熟起着重要调控作用的一个功能基因MabHLH130,属于bHLH蛋白基因家族成员。The present invention screened out a functional gene MabHLH130 through real-time quantitative PCR technology, which plays an important role in regulating the post-harvest ripening of pink banana fruits, and belongs to the bHLH protein gene family member.

碱性螺旋-环-螺旋蛋白(basic/Helix-Loop-Helix,bHLH)是真核生物中最广泛的一类转录因子,通过与靶基因中特定基序的相互作用调控基因表达。bHLH转录因子不仅参与植物的生长和代谢、光形态发生、光信号转导及对干旱、盐和冷胁迫的反应,而且在植物生殖器官的发育以及次级代谢等生命过程中起着重要的调控作用。Basic helix-loop-helix (bHLH) proteins are the most widespread type of transcription factors in eukaryotes and regulate gene expression through interactions with specific motifs in target genes. bHLH transcription factors are not only involved in plant growth and metabolism, photomorphogenesis, light signal transduction and response to drought, salt and cold stress, but also play an important role in the regulation of life processes such as the development of plant reproductive organs and secondary metabolism. effect.

bHLH转录因子含有保守性较高的碱性/螺旋-环-螺旋结构域,由功能上完全不同的碱性氨基酸区和螺旋-环-螺旋区域组成,碱性氨基酸区与DNA顺式元件结合,可调控基因的转录,螺旋-环-螺旋可形成同源或异源二聚体进而与其它蛋白相互作用。模式植物拟南芥和水稻及其它植物的最新研究表明,bHLH在植物的生殖器官发育(开花的调控、雌雄蕊、花粉、种子发育)和代谢产物花色苷的生物合成过程中起着重要的调控作用。这些含有bHLH结构域的蛋白质通常作为同源或异源二聚体调节其靶基因的表达。The bHLH transcription factor contains a highly conserved basic/helix-loop-helix domain, which is composed of functionally completely different basic amino acid regions and helix-loop-helix regions. The basic amino acid region binds to DNA cis elements. It can regulate gene transcription, and helix-loop-helix can form homo- or heterodimers and interact with other proteins. The latest research on model plants Arabidopsis, rice and other plants shows that bHLH plays an important role in the regulation of plant reproductive organ development (regulation of flowering, stamens, pollen, seed development) and the biosynthesis of metabolite anthocyanins. effect. These bHLH domain-containing proteins typically regulate the expression of their target genes as homo- or heterodimers.

MabHLH130序列在拟南芥基因组(https://www.arabidopsis.org/cgi-bin/Blast/TAIRblast.pl)中进行Blast分析,发现它与拟南芥的AT1G51140.1(AKS1、CFLAP1、FBH3)、AT2G42280.1(FBH4和AKS3)、AT2G42280.3(FBH4和AKS3)、AT4G09180.1(FBH2)有较高的同源性。FLOWERING BHLH1(FBH1)、FBH2、FBH3和FBH4最早被发现为CONSTANS(CO)基因的转录激活因子,通过与CO启动子中的E-box顺式元件结合激活CO的转录表达,导致早期开花。SnRK1激酶可直接磷酸化FBH4,拟南芥JMJ28通过与FBH转录因子相互作用以从CO基因座中去除H3K9me2对CO转录抑制作用,从而起到激活CO转录表达的作用。甘蔗中的拟南芥FBH(FLOWERING BHLH)的同源物ScFBH1、ScFBH2和ScFBH3与ScACS2(Sugacane ACS2)启动子结合激活其转录,调控乙烯的生物合成。The MabHLH130 sequence was Blast analyzed in the Arabidopsis genome (https://www.arabidopsis.org/cgi-bin/Blast/TAIRblast.pl) and found that it is consistent with AT1G51140.1 (AKS1, CFLAP1, FBH3) of Arabidopsis thaliana. , AT2G42280.1 (FBH4 and AKS3), AT2G42280.3 (FBH4 and AKS3), AT4G09180.1 (FBH2) have high homology. FLOWERING BHLH1 (FBH1), FBH2, FBH3 and FBH4 were first discovered as transcriptional activators of the CONSTANS (CO) gene. They activate the transcriptional expression of CO by binding to the E-box cis element in the CO promoter, leading to early flowering. SnRK1 kinase can directly phosphorylate FBH4, and Arabidopsis JMJ28 interacts with FBH transcription factors to remove the inhibitory effect of H3K9me2 from the CO locus on CO transcription, thereby activating CO transcription expression. The homologues of Arabidopsis FBH (FLOWERING BHLH) in sugarcane, ScFBH1, ScFBH2 and ScFBH3, bind to the ScACS2 (Sugacane ACS2) promoter to activate its transcription and regulate ethylene biosynthesis.

本发明验证了基因MabHLH130在转MabHLH130基因番茄植株果实发育不同时期的表达量逐渐升高。进一步的验证了乙烯合成关键基因SIACS2、SIACS4、SIACO1和SIACO3在转MabHLH130基因的不同株系中果实发育成熟不同时期的表达量与野生型对照相比较明显增加,甚至显著增高,同时发现乙烯在转MabHLH130基因的番茄果实采后成熟不同时期的释放量显著高于非转基因(野生型)番茄果实的。表明MabHLH130通过调控番茄果实发育过程中乙烯生物合成相关基因的表达来调控番茄果实中乙烯的生物合成。The present invention verifies that the expression level of gene MabHLH130 gradually increases at different stages of fruit development of transgenic tomato plants with MabHLH130 gene. It was further verified that the expression levels of the key genes for ethylene synthesis SIACS2, SIACS4, SIACO1 and SIACO3 in different lines transfected with the MabHLH130 gene at different stages of fruit development and maturity were significantly increased or even significantly higher compared with the wild-type control. At the same time, it was found that ethylene was The release amount of tomato fruits with MabHLH130 gene at different stages of postharvest ripening was significantly higher than that of non-transgenic (wild-type) tomato fruits. This indicates that MabHLH130 regulates ethylene biosynthesis in tomato fruits by regulating the expression of ethylene biosynthesis-related genes during tomato fruit development.

本发明的有益效果:Beneficial effects of the present invention:

本发明通过实时定量PCR技术筛选出来的对粉蕉果实采后成熟起着重要调控作用的一个功能基因MabHLH130;本发明构建了植物表达载体pCAMBIA1304_MabHLH130,转入农杆菌GV3101,通过农杆菌侵染技术将粉蕉的14-3-3蛋白基因MabHLH130整合到番茄基因组中,实现调控香蕉果实成熟,促进香蕉的采后成熟,实现香蕉的遗传改良。The present invention screened out a functional gene MabHLH130 that plays an important role in regulating post-harvest ripening of pink banana fruits through real-time quantitative PCR technology; the present invention constructed a plant expression vector pCAMBIA1304_MabHLH130, transferred it into Agrobacterium GV3101, and used Agrobacterium infection technology to The 14-3-3 protein gene MabHLH130 of pink banana is integrated into the tomato genome to regulate banana fruit ripening, promote banana post-harvest ripening, and achieve genetic improvement of bananas.

附图说明Description of the drawings

图1为基因MabHLH130扩增电泳结果图;Figure 1 shows the results of amplification electrophoresis of gene MabHLH130;

图中,M为DL2000 DNA Marker,泳道1为基因MabHLH130PCR产物;In the figure, M is DL2000 DNA Marker, and lane 1 is the gene MabHLH130 PCR product;

图2为pCAMBIA-1304-MabHLH130载体鉴定图谱;Figure 2 shows the identification map of pCAMBIA-1304-MabHLH130 vector;

图中,M为DL2000 DNA Marker,泳道1为pCAMBIA-1304-MabHLH130载体酶切鉴定电泳图,泳道2为基因MabHLH130 PCR鉴定图谱;In the figure, M is DL2000 DNA Marker, lane 1 is the pCAMBIA-1304-MabHLH130 vector enzyme digestion identification electrophoresis pattern, and lane 2 is the gene MabHLH130 PCR identification pattern;

图3为基因MabHLH130在粉蕉果实采后0、2、3、4、5和6天中的表达量;Figure 3 shows the expression of gene MabHLH130 in pink banana fruits at 0, 2, 3, 4, 5 and 6 days after harvest;

图4为本发明中叶盘法转化观赏番茄品种“Micro-Tom”的遗传转化过程图,Figure 4 is a diagram of the genetic transformation process of the ornamental tomato variety "Micro-Tom" transformed by the leaf disk method in the present invention.

图中,从左至右A、B和C依次分别是愈伤组织的诱导、有效愈伤的筛选和愈伤的分化;In the figure, A, B and C from left to right are the induction of callus, the screening of effective callus and the differentiation of callus respectively;

图5为过表达MabHLH130基因的番茄植株的不同株系PCR检测结果图;Figure 5 shows the PCR detection results of different strains of tomato plants overexpressing the MabHLH130 gene;

图中,1-11分别为OE1-11的叶片DNA的PCR扩增结果,12为阳性对照,14、15、16为分别阴性对照、DNA提取空白对照和ddH2O的对照。In the figure, 1-11 are the PCR amplification results of leaf DNA of OE1-11 respectively, 12 is the positive control, and 14, 15 and 16 are the negative control, DNA extraction blank control and ddH 2 O control respectively.

图6为外源基因MabHLH130在MabHLH130过表达植株不同株系的相对表达量图,Figure 6 is a graph showing the relative expression levels of exogenous gene MabHLH130 in different lines of MabHLH130 overexpressing plants.

图中,OE1、OE3和OE6分别是所筛选的三个独立的转基因株系。In the figure, OE1, OE3 and OE6 are three independent transgenic lines selected.

图7为外源基因MabHLH130在过表达MabHLH130基因株系OE1、OE3和OE6中,发育成熟度分别为开花后25天、绿熟期、转色期和红熟期果实中的相对表达量图;Figure 7 shows the relative expression levels of the exogenous gene MabHLH130 in the over-expressing MabHLH130 gene lines OE1, OE3 and OE6. The development and maturity stages are 25 days after flowering, green ripening stage, color change stage and red ripening stage fruits respectively;

图8为内源基因SIACS2在过表达MabHLH130基因OE1、OE3、OE6和WT株系中,发育成熟度分别为开花后25天、绿熟期、转色期和红熟期果实中的相对表达量图;Figure 8 shows the relative expression level of the endogenous gene SIACS2 in the overexpressing MabHLH130 gene OE1, OE3, OE6 and WT lines, and the development and maturity stages are 25 days after flowering, green ripening stage, color turning stage and red ripening stage fruits respectively. picture;

图9为内源基因SIACS4在过表达MabHLH130基因OE1、OE3、OE6和WT株系中,发育成熟度分别为开花后25天、绿熟期、转色期和红熟期果实中的相对表达量图;Figure 9 shows the relative expression level of the endogenous gene SIACS4 in the overexpressing MabHLH130 gene OE1, OE3, OE6 and WT lines, and the development and maturity stages are 25 days after flowering, green ripening stage, color change stage and red ripening stage fruits respectively. picture;

图10为内源基因SIACO1在过表达MabHLH130基因OE1、OE3、OE6和WT株系中,发育成熟度分别为开花后25天、绿熟期、转色期和红熟期果实中的相对表达量图;Figure 10 shows the relative expression level of the endogenous gene SIACO1 in the overexpressing MabHLH130 gene OE1, OE3, OE6 and WT lines, and the developmental maturity is 25 days after flowering, green maturity stage, color change stage and red maturity stage fruits respectively. picture;

图11为内源基因SIACO3在过表达MabHLH130基因OE1、OE3、OE6和WT株系中,发育成熟度分别为开花后25天、绿熟期、转色期和红熟期果实中的相对表达量图;Figure 11 shows the relative expression of the endogenous gene SIACO3 in the overexpressing MabHLH130 gene OE1, OE3, OE6 and WT lines, and the developmental maturity is 25 days after flowering, green maturity stage, color change stage and red maturity stage fruits respectively. picture;

图12为在过表达MabHLH130基因OE1、OE3、OE6和WT株系的绿熟期果实在采后不同时期的乙烯释放量。Figure 12 shows the ethylene release in green-ripened fruits of the overexpressing MabHLH130 gene OE1, OE3, OE6 and WT lines at different postharvest stages.

具体实施方式Detailed ways

下面结合具体实施例对本发明作进一步的详细描述,以便本领域技术人员理解。The present invention will be described in further detail below in conjunction with specific embodiments to facilitate understanding by those skilled in the art.

实施例1香蕉成熟相关基因MabHLH130Example 1 Banana ripening related gene MabHLH130

以粉蕉果实cDNA为模板,以下述有引物对:Using pink banana fruit cDNA as a template, use the following primer pairs:

5′-ATGTACGGGTCTCCTTCGGGACGGC-3′,5′-ATGTACGGTCTCCTTCGGGACGGC-3′,

5′-GTAGGGCTTCTGCCTGCCAGCTGAAC-3′,通过PCR方法扩增获得核苷酸序列为1278bp的片段(图1),经测序分析:得到粉蕉成熟相关基因MabHLH130 CDS的核苷酸序列和蛋白MabHLH130氨基酸序列分别如SEQ ID NO:1和SEQ ID NO:2所示:5′-GTAGGGCTTCTGCCTGCCAGCTGAAC-3′ was amplified by PCR to obtain a fragment with a nucleotide sequence of 1278 bp (Figure 1). After sequencing analysis, the nucleotide sequence of the pink banana ripening-related gene MabHLH130 CDS and the protein MabHLH130 amino acid sequence were obtained, respectively. As shown in SEQ ID NO:1 and SEQ ID NO:2:

ATGTACGGGTCTCCTTCGGGACGGCCGTCGGAAGATCTCAACCTTCCTTACCCTCCCGCCGGTCCGTTCAGTGGACAACGAACAGCGGAAGCCGAATCCGATCTCCTCCGCCGCCAGCATCAGCATCAGCAGCAGCAGATGAGCTCCGGCCTCCTCCGGTATCGGTCAGCCCCGAGCTCGCTGCTCGGCGAAGTCTGCGAGGACTTCCTTTCCGTTAGAGCCTCCAGCCCCGAGACCGAGACCATGCTCGCCCGGTTCTTGGCGCCGGATCTCCGCGACGAGACCCAGGACGGTCCTTCCGGTGGCGCCGCCACCGCTAGCGGCCAGAGCAGCCCTCACTTTCCACCCCCGCAGCTGCCGCCTTCTGCACAGGAGGTCAAAGAACAGCAGAGCAGAGGATTTACCTCTGCCCCGCAGATGATATTCCGTCCTCAGCAGCAGCAGCGGCAGATGCCGAACCATAGCTCATCGGAGAGCCCGTTCCGGGCCGTCATGGGATCATTGACGATGGAGGCGGCACAACTCAAGCACGGAGACTTCGGCAGCTCCTCTAATCTCATCAGGCACAGTAGCTCTCCTGCTGGCCTGTTTTCTCACTTGAACGTGGACGAAGGTTATGGTATGAGGAGAGGGACGAGTGGCTTCATGATGGATGCAACAGATAGATCAAAGGGTCAGATAAGCTTCTCGCCGAGGCAAAACTCCGTGATGTCGCAGATCTCCGAGATGGAAAGCGACGACATGGATGGGAGTAGCAGCCCCAAAGACGGCGGAGGCGGCGGCCGGAGTTACATACCGGGATTCCCGGTTGGCTCTTGGGACGATTCCTCTCCCTTCAACAACAACAGCTTGTCAGGTCTAAAGGGAAGCAGAGACGGCGAGGAGAAGATGGTCACAGGTCTCAGTCCACTGGAGCTGCCACAGAATGGAGAGGTGAGGAACCATGGGTTGGGTCTGTTTAGCTTGCCGAGGTCTACGTCGGAGATAGCCACGATAGAAAAGTTCCTACAGTTCCATGACGCAGTCCCCTGCAAGATCAGAGCTAAACGAGGCTGCGCCACTCACCCGCGAAGCATAGCCGAGAGGGTAAGGAGGACTAGAATTAGCGAGAGGATGAAGAAGCTCCAGGAGCTTGTTCCTAACATGGATAAGCAAACCAACACAGCAGACATGCTAGATTTGGCAGTGGATTATATCAAGGATCTCCAGAAACAGGTGAAGGCATTATCGGAATGTACGGGTCTCCTTCGGGACGGCCGTCGGAAGATCTCAACCTTCCTTACCCTCCCGCCGGTCCGTTCAGTGGACAACGAACAGCGGAAGCCGAATCCGATCTCCTCCGCCGCCAGCATCAGCATCAGCAGCAGCAGATGAGCTCCGGCCTCCTCCGGTATCGGTCAGCCCCGAGCTCGCTGCTCGGCGAAGTCTGCGAGGACTTCCTTTCCGTTAGAGCCTCCAGCCCCGAGACCGAGACATGCTCCGCCCGG TTCTTGGCGCCGGATCTCCGACGAGACCCAGGACGGTCCTTCCGGTGGCGCCGCCACCGCTAGCGGCCAGAGCAGCCCTCACTTTCCACCCCCGCAGCTGCCGCCTTCTGCACAGGAGGTCAAAGAACAGCAGAGCAGAGGATTTACCTCTGCCCCGCAGATGATATTCCGTCCTCAGCAGCAGCAGCGGCAGATGCCGAACCATAGCTCATCGGAGAGCCCGTTCCGGGCCGTCATGGGATCATTGACGATGGAGGCGGC ACAACTCAAGCACGGAGACTTCGGCAGTCCCTCTAATCTCATCAGGCACAGTAGCTCTCCTGCTGGCCTGTTTTCTCACTTGAACGTGGACGAAGGTTATGGTATGAGGAGAGGGACGAGTGGCTTCATGATGGATGCAACAGATAGATCAAAGGGTCAGATAAGCTTCTCGCCGAGGCAAAACTCCGTGATGTCGCAGATCTCCGAGATGGAAAGCGACGACATGGATGGGAGTAGCAGCCCCGGGACGGCGGAGGC CGGCCGGAGTTACATACCGGGATTCCCGGTTGGCTCTTGGGACGATTCCTCTCCCTTCAACAACAACAGCTTGTCAGGTCTAAAGGGAAGCAGAGACGGCGAGGAGAAGATGGTCACAGGTCTCAGTCCACTGGAGCTGCCACAGAATGGAGAGGTGAGGAACCATGGGTTGGGTCTGTTTAGCTTGCCGAGGTCTACGTCGGAGATAGCCACGATAGAAAAGTTCCTACAGTTCCATGACGGCAGTCCCCTGCAAGATCAG AGCTAAACGAGGCTGCGCCACTCACCCGCGAAGCATAGCCGAGAGGGTAAGGAGGACTAGAATTAGCGAGAGGATGAAGAAGCTCCAGGAGCTTGTTCCTAACATGGATAAGCAAACCAACACAGCAGACATGCTAGATTTGGCAGTGGATTATATCAAGGATCTCCAGAAACAGGTGAAGGCATTATCGGA

AAGCCGGGCGAGCTGCAGCTGTTCAGCTGGCAGGCAGAAGCCCTACAAGCCGGGCGAGCTGCAGCTGTTCAGCTGGCAGGCAGAAGCCCTAC

MYGSPSGRPSEDLNLPYPPAGPFSGQRTAEAESDLLRRQHQHQQQQMSSGLLRYRSAPSSLLGEVCEDFLSVRASSPETETMLARFLAPDLRDETQDGPSGGAATASGQSSPHFPPPQLPPSAQEVKEQQSRGFTSAPQMIFRPQQQQRQMPNHSSSESPFRAVMGSLTMEAAQLKHGDFGSSSNLIRHSSSPAGLFSHLNVDEGYGMRRGTSGFMMDATDRSKGQISFSPRQNSVMSQISEMESDDMDGSSSPKDGGGGGRSYIPGFPVGSWDDSSPFNNNSLSGLKGSRDGEEKMVTGLSPLELPQNGEVRNHGLGLFSLPRSTSEIATIEKFLQFHDAVPCKIRAKRGCATHPRSIAERVRRTRISERMKKLQELVPNMDKQTNTADMLDLAVDYIKDLQKQVKALSESRASCSCSAGRQKPYMYGSPSGRPSEDLNLPYPPAGPFSGQRTAEAESDLLRRQHQHQQQQMSSGLLRYRSAPSSLLGEVCEDFLSVRASSPETETMLARFLAPDLRDETQDGPSGGAATASGQSSPHFPPPQLPPSAQEVKEQQSRGFTSAPQMIFRPQQQQRQMPNHSSSESPFRAVMGSLTMEAAQLKHGDFGSSSNLIRHSSSPAGLFSHLNVDEGYGMRRGTSGFMMDATDRSK GQISFSPRQNSVMSQISEMESDDMDGSSSPKDGGGGRSYIPGFPVGSWDDSPFNNNSLSGLKGSRDGEEKMVTGLSPLELPQNGEVRNHGLGLFSLPRSTSEIATIEKFLQFHDAVPCKIRAKRGCATHPRSIAERVRRTRISERMKKLQELVPNMDKQTNTADMLDLAVDYIKDLQKQVKALSESRASCSCSAGRQKPY

实施例2香蕉成熟相关基因MabHLH130在粉蕉果实采后不同时期的相对表达量分析Example 2 Relative expression analysis of banana ripening-related gene MabHLH130 at different postharvest stages of pink banana fruits

八成熟粉蕉果实(Musa ABB group,cv Pisang Awak,FJ)从实验基地成串采回,回到实验室落梳,同时用自来水冲洗干净,晾干,晚上用0.1%的次氯酸纳溶液浸泡进行表面消毒10分钟,放在通风良好的25℃培养房(200μmol·m-2·s-1光照条件、16h光照/8h黑暗、70%相对湿度和25℃)晾干,无处理,取0、2、3、4、5和6天果实于液氮中速冻,储存于-80℃冰箱中备用。Eight-ripe pink banana fruits (Musa ABB group, cv Pisang Awak, FJ) were collected in bunches from the experimental base, returned to the laboratory and combed, rinsed with tap water, dried, and treated with 0.1% sodium hypochlorite solution at night. Soak for surface disinfection for 10 minutes, then place in a well-ventilated 25°C culture room (200 μmol·m-2·s-1 light conditions, 16h light/8h dark, 70% relative humidity and 25°C) to dry, without treatment, take Fruits on days 0, 2, 3, 4, 5 and 6 were quick-frozen in liquid nitrogen and stored in a -80°C refrigerator for later use.

按照RNAprep Pure Plant Kit(DP441,天根,中国)试剂盒的说明书提取粉蕉采后不同时期的总RNA。将提取后的总RNA通过1.2%的琼脂糖凝胶电泳检测条带清晰完整度,并使用Agilent2100Bioanalyzer(Agilent RNA 6000Nano Kit)检测总RNA的浓度、RIN值、28S/18S和片断大小,样本的纯度使用紫外分光光度计NanoDropTM进行检测。cDNA合成参照Promega的M-MLV Transcriptase反转录试剂盒说明书进行。以正常果实采后0、2、3、4、5和6天的cDNA第一链为模板进行qRT-PCR分析。引物序列:Total RNA from pink bananas at different postharvest periods was extracted according to the instructions of the RNAprep Pure Plant Kit (DP441, Tiangen, China). The extracted total RNA was tested for band clarity and integrity through 1.2% agarose gel electrophoresis, and Agilent2100Bioanalyzer (Agilent RNA 6000Nano Kit) was used to detect the concentration, RIN value, 28S/18S and fragment size of the total RNA, and the purity of the sample. Use UV spectrophotometer NanoDropTM for detection. cDNA synthesis was performed according to the instructions of Promega's M-MLV Transcriptase reverse transcription kit. qRT-PCR analysis was performed using the first strand of cDNA from normal fruits at 0, 2, 3, 4, 5 and 6 days after harvest as a template. Primer sequence:

MabHLH130-F为5′-TAGCCGAGAGGGTAAGGAGG-3′,MabHLH130-R为5′-CCGGCTTTCCGATAATGCCT-3′。MabHLH130-F is 5′-TAGCCGAGAGGGTAAGGAGG-3′, and MabHLH130-R is 5′-CCGGCTTCCGATAATGCCT-3′.

qRT-PCR反应体系为:SYBR Premix Ex Taq(2×)(Takara)12.5μL、Rox referenceDyeⅡ(50×)(TAKARA)0.5μL、10μmol/L的引物0.75μL,cDNA模板1μL,然后用水补足至20μL。每个样品重复3次。The qRT-PCR reaction system is: SYBR Premix Ex Taq (2×) (Takara) 12.5 μL, Rox referenceDyeⅡ (50×) (TAKARA) 0.5 μL, 10 μmol/L primer 0.75 μL, cDNA template 1 μL, and then make up to 20 μL with water . Each sample was repeated 3 times.

反应程序为:94℃预变性3min;94℃变性5s,60℃退火15s,72℃延伸20s,共40个循环,循环数结束后在94~56℃进行融解曲线分析。The reaction program was: pre-denaturation at 94°C for 3 min; denaturation at 94°C for 5 s, annealing at 60°C for 15 s, and extension at 72°C for 20 s, a total of 40 cycles. After the number of cycles, melting curve analysis was performed at 94-56°C.

采用2-ΔΔΔCT相对定量方法分析基因表达量的差异。MabHLH130在粉蕉采后成熟的1-4天表达量逐渐升高,4天达到最高,以后表达量逐渐下降。这与粉蕉果实采后乙烯的释放量密切相关,初步表明MabHLH130可能参与了对粉蕉果实的成熟调控过程,结果如图3。The 2-ΔΔΔCT relative quantification method was used to analyze the differences in gene expression. The expression level of MabHLH130 gradually increased from 1 to 4 days after banana harvest, reaching the highest level on day 4, and then gradually decreased. This is closely related to the postharvest ethylene release of pink banana fruits. It initially indicates that MabHLH130 may be involved in the ripening regulation process of pink banana fruits. The results are shown in Figure 3.

实施例3重组表达载体pCAMBIA-1304-MabHLH130构建Example 3 Construction of recombinant expression vector pCAMBIA-1304-MabHLH130

将上述克隆所获得的1278bpMabHLH130的核苷酸利用同源重组的方法连接到pCAMBIA-1304载体上,所用的克隆引物为:The 1278bp MabHLH130 nucleotide obtained from the above cloning was connected to the pCAMBIA-1304 vector using homologous recombination. The cloning primers used were:

5′-ATGTACGGGTCTCCTTCGGGACGGC-3′,5′-ATGTACGGTCTCCTTCGGGACGGC-3′,

5′-GTAGGGCTTCTGCCTGCCAGCTGAAC-3′,5′-GTAGGGCTTCTGCCTGCCAGCTGAAC-3′,

PCR验证正确的克隆经测序进一步验证确认(图2),获得重组表达载体pCAMBIA-1304-MabHLH130。The correct clone verified by PCR was further verified and confirmed by sequencing (Figure 2), and the recombinant expression vector pCAMBIA-1304-MabHLH130 was obtained.

实施例4重组表达载体pCAMBIA-1304-MabHLH130转化番茄Example 4 Transformation of tomatoes with recombinant expression vector pCAMBIA-1304-MabHLH130

1、pCAMBIA-1304-MabHLH130表达载体转化农杆菌1. Transformation of Agrobacterium with pCAMBIA-1304-MabHLH130 expression vector

取100μl的GV3101农杆菌感受态细胞,置于冰上融化,加入100ng的pCAMBIA-1304-MabHLH130的重组质粒,冰上放置30min,液氮冷冻5min,37℃水浴5min,加入700μl YEB液体培养基,28℃,180rpm预培养2-3小时,吸取100μl涂布于含有50mg/L利福平和卡那霉素的YEB固体培养基平板上,28℃培养2-3天,挑选单菌落,经PCR验证正确的菌株进行下一步的实验。并保存于-80℃超低温冰箱中备用。其中培养农杆菌常用的YEB培养基配方为胰蛋白胨10克/L,酵母提取物1克/L,MgSO4·7H2O 0.4g/L,pH7.0。分装后121℃高压灭菌20分钟。Take 100 μl of GV3101 Agrobacterium competent cells, thaw them on ice, add 100 ng of pCAMBIA-1304-MabHLH130 recombinant plasmid, place on ice for 30 minutes, freeze in liquid nitrogen for 5 minutes, bathe in 37°C water for 5 minutes, add 700 μl of YEB liquid medium, Pre-incubate at 28°C, 180rpm for 2-3 hours, pipet 100μl and spread on YEB solid medium plate containing 50mg/L rifampin and kanamycin, incubate at 28°C for 2-3 days, select single colonies, and verify by PCR The correct strain was used for the next experiment. And stored in -80℃ ultra-low temperature refrigerator for later use. The commonly used YEB medium formula for culturing Agrobacterium is 10 g/L tryptone, 1 g/L yeast extract, 0.4 g/L MgSO 4 ·7H 2 O, pH 7.0. After dispensing, autoclave at 121°C for 20 minutes.

2、农杆菌介导的番茄遗传转化2. Agrobacterium-mediated genetic transformation of tomatoes

(1)取一定量的“Micro-Tom”的番茄种子,用75%的乙醇浸泡消毒30秒,迅速倒掉。再用2%的次氯酸钠浸泡消毒10分钟,消毒后用无菌水洗涤8-9次,每次充分洗涤,彻底去掉残留的消毒剂。种子洗涤干净后,将种子播在1/2MS培养基上。黑暗培养2-3天,种子发芽后移至25℃,光周期16h/8h(光照/黑暗)的条件下培养。待刚长出子叶,未长真叶前用于转化。(1) Take a certain amount of "Micro-Tom" tomato seeds, soak them in 75% ethanol for 30 seconds, and then pour them out quickly. Then soak and disinfect with 2% sodium hypochlorite for 10 minutes. After disinfection, wash with sterile water 8-9 times, washing thoroughly each time to completely remove residual disinfectant. After the seeds are washed, they are sown on 1/2MS medium. Cultivate in the dark for 2-3 days. After the seeds germinate, move to 25°C and cultivate under a photoperiod of 16h/8h (light/dark). The cotyledons will be used for transformation before they grow into true leaves.

(2)取上述(1)中未长出真叶的无菌子叶,剪去叶尖及叶柄部,将剩余子叶剪成10mm2的方块,置于无抗生素的MS固体培养基上,28℃预培养2天。(2) Take the sterile cotyledons that have not grown true leaves in the above (1), cut off the leaf tips and petioles, cut the remaining cotyledons into 10mm2 squares, place them on antibiotic-free MS solid medium, 28°C Pre-culture for 2 days.

(3)将保存于-80℃超低温冰箱中的pCANBIA1304-MabHLH130-GV3101菌株在YEB培养基中进行活化和扩大培养。活化后的菌液用5000rpm离心6分钟,沉淀用无菌水稀释至OD600为0.6左右,加入0.1%的乙酰丁香酮,制备成侵染番茄外植体的农杆菌侵染液。用制备的农杆菌侵染液侵染用上述(2)中番茄子叶外植体,侵染10分钟。将侵染后的外植体置于无抗生素的MS固体培养基上,28℃暗培养2天。共培养培养基为MS+2mg/LZT+0.2mg/L IAA+10mg/L潮霉素。(3) Activate and expand the pCANBIA1304-MabHLH130-GV3101 strain stored in a -80°C ultra-low temperature refrigerator in YEB medium. The activated bacterial solution was centrifuged at 5000 rpm for 6 minutes, and the precipitate was diluted with sterile water until the OD600 was about 0.6. 0.1% acetosyringone was added to prepare an Agrobacterium infection solution for infecting tomato explants. Use the prepared Agrobacterium infection solution to infect the tomato cotyledon explants in (2) above for 10 minutes. The infected explants were placed on MS solid medium without antibiotics and cultured in the dark at 28°C for 2 days. The co-culture medium is MS+2mg/LZT+0.2mg/L IAA+10mg/L hygromycin.

(4)将共培养2天后的外植体取出,置于芽诱导培养基,在光下培养7天后转入新的培养基中进行继代培养。每隔两周换一次培养基,直至外植体发育完全。芽诱导培养基的成分为MS+2mg/LZT+0.2mg/L IAA。(4) Take out the explants after 2 days of co-culture, place them in a bud induction medium, culture them under light for 7 days, and then transfer them to a new medium for subculture. The medium was changed every two weeks until the explants were fully developed. The composition of shoot induction medium is MS+2mg/LZT+0.2mg/L IAA.

(5)经过芽诱导期后,待外植体发芽芽长约为2-3cm时转入芽伸长培养基中,培养3-4周。芽伸长培养基成分是MS+0.5mg/LZT+0.2mg/L IAA+10mg/L潮霉素。(5) After the bud induction period, when the explant sprouts are about 2-3cm long, they are transferred to the bud elongation medium and cultured for 3-4 weeks. The composition of shoot elongation medium is MS+0.5mg/LZT+0.2mg/L IAA+10mg/L hygromycin.

(6)芽长约为4-5cm时,剪掉愈伤组织后将芽转入到生根培养基中,培养3-4周。其中生根培养基成分为1/2MS+2mg/LIBA+10mg/L潮霉素。(6) When the bud length is about 4-5cm, cut off the callus and transfer the buds to the rooting medium and culture them for 3-4 weeks. The rooting medium composition is 1/2MS+2mg/LIBA+10mg/L hygromycin.

(7)将生根旺盛,生长到一定高度的小苗转入水中培养,培养一周左右,待长出新根后,再放入土盆中继续培养。转化过程如图4所示。(7) Transfer the seedlings that have vigorous roots and grown to a certain height into water and culture them for about a week. After new roots grow, put them into soil pots and continue culturing. The conversion process is shown in Figure 4.

2、MabHLH130转基因番茄的筛选和纯化2. Screening and purification of MabHLH130 transgenic tomatoes

(1)提取土培阶段正常生长的番茄叶片DNA,用基因特异性引物进行PCR鉴定,PCR鉴定结果如图5所示。(1) Extract DNA from tomato leaves that grow normally during the soil culture stage, and use gene-specific primers for PCR identification. The PCR identification results are shown in Figure 5.

检测得到的阳性植株进行正常培养,并标记为T1代。检测MabHLH130所用的PCR引物为:The positive plants tested were cultured normally and labeled as T1 generation. The PCR primers used to detect MabHLH130 are:

MabHLH130-F为5′-TAGCCGAGAGGGTAAGGAGG-3′,MabHLH130-F is 5′-TAGCCGAGAGGGTAAGGAGG-3′,

MabHLH130-R为5′-CCGGCTTTCCGATAATGCCT-3′。MabHLH130-R is 5′-CCGGCTTCCGATAATGCCT-3′.

(2)为得到纯合的转基因株系,单株收获T1代种子并播种,得到T2代转基因幼苗。(2) To obtain homozygous transgenic lines, harvest T1 generation seeds from a single plant and sow them to obtain T2 generation transgenic seedlings.

(3)提取T2代转基因番茄叶片DNA,取出产生基因分离植株,收获T2代种子,种植收获的种子,得到T3代转基因番茄幼苗。(3) Extract T2 generation transgenic tomato leaf DNA, take out the gene-isolating plants, harvest T2 generation seeds, and plant the harvested seeds to obtain T3 generation transgenic tomato seedlings.

(4)PCR检测T3代转基因番茄群体的分离情况。在T3代不出现基因分离的株系即为纯合的转基因株系。检测引物序列:(4) PCR detection of the isolation of T3 generation transgenic tomato populations. Lines with no genetic segregation in the T3 generation are homozygous transgenic lines. Detection primer sequence:

MabHLH130-F为5′-TAGCCGAGAGGGTAAGGAGG-3′,MabHLH130-F is 5′-TAGCCGAGAGGGTAAGGAGG-3′,

MabHLH130-R为5′-CCGGCTTTCCGATAATGCCT-3′。MabHLH130-R is 5′-CCGGCTTCCGATAATGCCT-3′.

(5)采用qRT-PCR技术检测转基因株系中MabHLH130基因的相对表达量,检测结果表明外源基因MabHLH130在MabHLH130OE1-6中的叶片中均有表达,其中在MabHLH130OE1、OE3和MabHLH130OE6三个株系中的表达量较高如图6所示。(5) qRT-PCR technology was used to detect the relative expression of the MabHLH130 gene in the transgenic lines. The test results showed that the exogenous gene MabHLH130 was expressed in the leaves of MabHLH130OE1-6, among which three lines: MabHLH130OE1, OE3 and MabHLH130OE6 The expression level in is higher as shown in Figure 6.

qRT-PCR的引物序列为:The primer sequence of qRT-PCR is:

MabHLH130-FP为5′-TAGCCGAGAGGGTAAGGAGG-3′,MabHLH130-FP is 5′-TAGCCGAGAGGGTAAGGAGG-3′,

MabHLH130-RP为5′-CCGGCTTTCCGATAATGCCT-3′。MabHLH130-RP is 5′-CCGGCTTCCGATAATGCCT-3′.

(6)收集纯合的转基因番茄株系的种子,用于后续试验。(6) Collect seeds of homozygous transgenic tomato lines for subsequent experiments.

3、野生型和MabHLH130过表达番茄植株同时播种于4:1的营养土和蛭石中,放置于25℃,光周期16h/8h(光照/黑暗)的培养室中,每周浇一次霍格兰营养液。3. Wild-type and MabHLH130 overexpressing tomato plants were sown at the same time in 4:1 nutrient soil and vermiculite, placed in a culture room at 25°C, with a photoperiod of 16h/8h (light/dark), and watered with Hog once a week. Orchid nutrient solution.

4、外源基因MabHLH130在转基因不同株系中的表达量分析4. Analysis of expression levels of exogenous gene MabHLH130 in different transgenic lines

选取生长发育一致的野生型和MabHLH130过表达番茄植株的绿熟期、转色期和红熟期的果各3-4个。测定外源基因MabHLH130在过表达番茄植株的发育不同时期的表达量,结果表明外源基因MabHLH130在MabHLH130OE1、OE3和OE6三个株系中发育期为开花后25天、绿熟期、转色期和红熟期果中表达量逐渐升高,其中在MabHLH130OE1株系中的表达量较高如图7所示。Select 3-4 fruits each in the green ripening stage, color changing stage and red ripening stage of wild type and MabHLH130 overexpressing tomato plants with consistent growth and development. The expression level of the exogenous gene MabHLH130 was measured at different stages of development of overexpressed tomato plants. The results showed that the development stages of the exogenous gene MabHLH130 in the three lines MabHLH130OE1, OE3 and OE6 were 25 days after flowering, the green maturity stage and the color change stage. The expression level gradually increased in fruits at the and red ripening stages, among which the expression level in the MabHLH130OE1 strain was higher, as shown in Figure 7.

MabHLH130的检测引物为:The detection primers for MabHLH130 are:

MabHLH130-FP为5′-TAGCCGAGAGGGTAAGGAGG-3′,MabHLH130-FP is 5′-TAGCCGAGAGGGTAAGGAGG-3′,

MabHLH130-RP为5′-CCGGCTTTCCGATAATGCCT-3′。MabHLH130-RP is 5′-CCGGCTTCCGATAATGCCT-3′.

5、乙烯合成关键酶基因在MabHLH130过表达番茄株系番茄果实发育不同时期的表达分析5. Expression analysis of key enzyme genes for ethylene synthesis in different stages of tomato fruit development in MabHLH130 overexpression tomato lines

在乙烯生物合成途径中,ACC合成酶与ACC氧化酶为限速酶和关键酶。限速酶和关键酶基因的表达决定着乙烯的生成量。选取生长发育一致的野生型和MabHLH130过表达番茄植株的开花后25天、绿熟期果、转色期和红熟期的果各3-4个。测定乙烯合成途径相关基因在野生型和MabHLH130过表达番茄发育成熟不同时期的表达量。In the ethylene biosynthetic pathway, ACC synthase and ACC oxidase are rate-limiting enzymes and key enzymes. The expression of rate-limiting enzymes and key enzyme genes determines the amount of ethylene produced. Select 3-4 fruits each of wild type and MabHLH130 overexpression tomato plants with consistent growth and development 25 days after flowering, green ripening stage, color change stage and red ripening stage. The expression levels of genes related to the ethylene synthesis pathway were measured at different stages of development and maturity of wild-type and MabHLH130-overexpressing tomatoes.

检测结果如图8、图9、图10和图11所示,SIACS2、SIACS4、SIACO1和SIACO3在转基因番茄株系果实发育不同时期的表达量明显或者显著高于野生型果实中的表达量,尤其是在转色期中果实的表达量显著高于野生型的。表明MabHLH130基因影响了番茄果实发育过程中乙烯合成酶基因的表达,进而影响了番茄的乙烯生物合成。The test results are shown in Figures 8, 9, 10 and 11. The expression levels of SIACS2, SIACS4, SIACO1 and SIACO3 at different stages of fruit development of the transgenic tomato lines were significantly or significantly higher than those in wild-type fruits, especially The expression level of the fruit during the veraison period is significantly higher than that of the wild type. It shows that the MabHLH130 gene affects the expression of ethylene synthase gene during tomato fruit development, thereby affecting the ethylene biosynthesis of tomato.

检测SIACO1、SIACO3、SIACS2和SIACS4基因表达量所用的qRT-PCR的引物序列为:The primer sequences of qRT-PCR used to detect the expression of SIACO1, SIACO3, SIACS2 and SIACS4 genes are:

SlACS2-F:5-TGTTAGCGTATGTATTGACAACTGG-3;SlACS2-F: 5-TGTTAGCGTATGTATTGACAACTGG-3;

SlACS2-R:5-TCATAACATAACTTCACTTTTGCATTC-3;SlACS2-R: 5-TCATAACATAACTTCACTTTTGCATTC-3;

SlACS4-F:5-CTCCTCAAATGGGGAGTACG-3;SlACS4-F: 5-CTCCTCAAATGGGGAGTACG-3;

SlACS4-R:5-TTTTGTTTGCTCGCACTACG-3;SlACS4-R: 5-TTTTGTTTGCTCGCACTACG-3;

SlACO3-F:5-CTCCCATGCGCCACTCTATT-3;SlACO3-F: 5-CTCCCATGCGCCACTCTATT-3;

SlACO3-R:5-AGATCACCGCGTCATTTCCT-3;SlACO3-R: 5-AGATCACCGCGTCATTTCCT-3;

SlACO1-F:5-GCCAAAGAGCCAAGATTTGA-3;SlACO1-F: 5-GCCAAAGAGCCAAGATTTGA-3;

SlACO1-R:5-TTTTTAATTGAATTGGGATCTAAGC-3;SlACO1-R: 5-TTTTTAATTGAATTGGGATCTAAGC-3;

6、MabHLH130过表达番茄植株不同株系和野生型对照中,果实采后不同时期的乙烯释放量分析6. Analysis of ethylene release in different postharvest periods of different lines of MabHLH130 overexpressing tomato plants and wild-type controls

采用气相色谱直接进样的方法对过表达MabHLH130的转基因和野生型番茄果实采后不同时期的乙烯含量进行测定:同一株系的番茄果实为一组,选取绿熟期的果实同时摘下,进行称重和测量体积。每组份选取标准为:果数25-30个;总果量90-100g;总果实体积100-110ml。番茄果实采后于25℃;16h光照/8h黑暗;相对湿度70%的人工培养室通风放置。在采后0d、2d、4d、6d、8d、12d和14d等不同时期测定乙烯释放量。乙烯测定前,不同组的果实分别放在350毫升的闷罐瓶中,盖子出口用橡胶软管封闭,密闭三个小时,采用气相色谱仪(Agilent,美国)测定乙烯释放量,采集气样前,轻摇密闭罐,将取样气密针(安捷伦1mL气密针)推到底部,将针杆反复推拉4次,将针头插入橡胶软管,深入罐中采样。色谱条件为安捷伦7890B型气相色谱仪。色谱柱型号为:HP-5(毛细管柱)30.0m×0.32mm×0.25μm。测定条件为进样口230.0℃、柱温60℃,持续5min;氢离子火焰检测器(FID)温度250℃;载气N2,流速1.6mL/min;燃气H2,流速30mL/min;空气流速400mL/min;流量:1.6mL/min;分流比2:1;尾吹气N2流速10mL/min;出峰时间:3.38min。The ethylene content of transgenic and wild-type tomato fruits overexpressing MabHLH130 were measured at different postharvest periods using gas chromatography direct injection method: Tomato fruits of the same strain were grouped, and the fruits in the green ripening stage were picked at the same time. Weighing and measuring volumes. The selection criteria for each component are: 25-30 fruits; 90-100g total fruit volume; 100-110ml total fruit volume. After harvest, tomato fruits are placed in an artificial culture room with ventilation at 25°C; 16 hours of light/8 hours of darkness; and a relative humidity of 70%. Ethylene release was measured at different periods including 0d, 2d, 4d, 6d, 8d, 12d and 14d after harvest. Before ethylene measurement, fruits from different groups were placed in 350 ml stuffy bottles, and the lid outlet was closed with a rubber hose for three hours. A gas chromatograph (Agilent, USA) was used to measure ethylene release. Before collecting gas samples , shake the sealed tank gently, push the sampling air-tight needle (Agilent 1mL air-tight needle) to the bottom, push and pull the needle bar 4 times repeatedly, insert the needle into the rubber hose, and take samples deep into the tank. The chromatographic conditions were Agilent 7890B gas chromatograph. The chromatographic column model is: HP-5 (capillary column) 30.0m×0.32mm×0.25μm. The measurement conditions are as follows: injection port 230.0℃, column temperature 60℃, lasting 5min; hydrogen ion flame detector (FID) temperature 250℃; carrier gas N 2 , flow rate 1.6mL/min; gas H 2 , flow rate 30mL/min; air Flow rate 400mL/min; flow rate: 1.6mL/min; split ratio 2:1; makeup gas N2 flow rate 10mL/min; peak time: 3.38min.

采用外标法,以标准样品的出峰时间定性,峰面积大小定量制备标准曲线,利用气相色谱法测定不同浓度的乙烯标准样,利用峰面积与进样量的比值绘制乙烯标准曲线图。通过乙烯标准曲线及样品峰面积大小,求出采后不同时期果实的乙烯释放量。MabHLH130过表达和野生型对照的番茄果实在采后不同时期的释放量图12所示。The external standard method is used to qualitatively prepare the standard curve based on the peak time of the standard sample and the quantitative peak area. Gas chromatography is used to measure ethylene standard samples of different concentrations. The ratio of the peak area to the injection volume is used to draw the ethylene standard curve. Through the ethylene standard curve and the size of the sample peak area, the ethylene release amount of the fruits at different postharvest periods was calculated. The release amounts of MabHLH130 overexpressed and wild-type control tomato fruits at different postharvest periods are shown in Figure 12.

结果表明:在MabHLH130OE1、OE3、OE6和野生型对照组中,果实采后不同时期的乙烯释放量高于野生型对照组的,尤其是MabHLH130OE1和MabHLH130OE3株系的果实采后各个时期的乙烯释放量高于或者极显著高于对照组野生型的。表明MabHLH130能通过影响果实中乙烯的生物合成进而促进了果实的成熟。The results show that in MabHLH130OE1, OE3, OE6 and the wild-type control group, the ethylene release amount of the fruits at different stages after harvest is higher than that of the wild-type control group, especially the ethylene release amount of the fruits of MabHLH130OE1 and MabHLH130OE3 lines at various stages after harvest. Higher or extremely significantly higher than the wild type in the control group. It shows that MabHLH130 can promote fruit ripening by affecting the biosynthesis of ethylene in fruits.

其它未详细说明的部分均为现有技术。尽管上述实施例对本发明做出了详尽的描述,但它仅仅是本发明一部分实施例,而不是全部实施例,人们还可以根据本实施例在不经创造性前提下获得其他实施例,这些实施例都属于本发明保护范围。Other parts not described in detail are existing technologies. Although the above embodiments describe the present invention in detail, they are only part of the embodiments of the present invention, not all embodiments. People can also obtain other embodiments based on this embodiment without any inventive step. These embodiments All belong to the protection scope of the present invention.

Claims (7)

1. A banana maturation associated gene MabHLH130, characterized in that: the nucleotide sequence of the gene MabHLH130CDS is shown as SEQ ID NO. 1.
2. A protein MabHLH130 encoded by the gene MabHLH130 as claimed in claim 1, wherein the amino acid sequence is shown in SEQ ID NO. 2.
3. A recombinant expression vector, characterized in that: the recombinant expression vector contains the plant expression vector of the maturation associated gene MabHLH130 of claim 1, wherein the plant expression vector is pCAMBIA-1304.
4. A method of constructing the recombinant expression vector of claim 3, wherein: the method comprises the following steps:
introduction of the fragment of interest into cloning vectorThen, cloning vector containing target gene is carried outAnd pCAMBIA-1304 is digested with NcoI and SpeI, and the obtained target fragment is connected to the digested pCAMBIA-1304 vector to obtain recombinant expression vector pCAMBIA-1304-MabHLH130.
5. A host cell comprising the recombinant expression vector of claim 4, wherein: the host cell is Agrobacterium GV3101.
6. The use of one of the following in regulating the biosynthesis of mature ethylene in tomato fruits, characterized by: it comprises the following steps:
(1) The maturation associated gene MabHLH130 of claim 1;
(2) The recombinant expression vector of claim 3;
(3) The host cell of claim 5.
7. The application of one of the following in cultivating new variety of tomato fruits easy to mature is characterized in that: it comprises the following steps:
(1) The maturation associated gene MabHLH130 of claim 1;
(2) The recombinant expression vector of claim 3;
(3) The host cell of claim 5.
CN202211494537.9A 2022-11-25 2022-11-25 Banana maturation associated gene MabHLH130 and application thereof Active CN116004656B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211494537.9A CN116004656B (en) 2022-11-25 2022-11-25 Banana maturation associated gene MabHLH130 and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211494537.9A CN116004656B (en) 2022-11-25 2022-11-25 Banana maturation associated gene MabHLH130 and application thereof

Publications (2)

Publication Number Publication Date
CN116004656A CN116004656A (en) 2023-04-25
CN116004656B true CN116004656B (en) 2024-01-12

Family

ID=86034290

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211494537.9A Active CN116004656B (en) 2022-11-25 2022-11-25 Banana maturation associated gene MabHLH130 and application thereof

Country Status (1)

Country Link
CN (1) CN116004656B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116004657B (en) * 2022-11-25 2024-01-12 中国热带农业科学院热带生物技术研究所 Musa paradisiaca maturation-related gene MbGRF1 and application thereof
CN117487821B (en) * 2023-12-29 2024-04-05 中国热带农业科学院三亚研究院 MaEIL6 gene of ethylene signal transduction in banana and its application
CN117511966B (en) * 2024-01-05 2024-04-12 中国热带农业科学院三亚研究院 MaEIL4 gene of ethylene signal transduction in banana and its application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102186877A (en) * 2008-08-20 2011-09-14 巴斯夫植物科学有限公司 Plants having enhanced yield-related traits and a method for making the same
CN104611362A (en) * 2015-01-05 2015-05-13 北京农学院 In-vivo expression method of woody plant
AU2015203792A1 (en) * 2008-08-20 2015-08-13 Basf Plant Science Gmbh Plants having enhanced yield-related traits and a method for making the same
CN116004657A (en) * 2022-11-25 2023-04-25 中国热带农业科学院热带生物技术研究所 Ripening-related gene MbGRF1 in Banana and its application

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102186877A (en) * 2008-08-20 2011-09-14 巴斯夫植物科学有限公司 Plants having enhanced yield-related traits and a method for making the same
CN104531751A (en) * 2008-08-20 2015-04-22 巴斯夫植物科学有限公司 Plants having enhanced yield-related traits and a method for making the same
AU2015203792A1 (en) * 2008-08-20 2015-08-13 Basf Plant Science Gmbh Plants having enhanced yield-related traits and a method for making the same
CN104611362A (en) * 2015-01-05 2015-05-13 北京农学院 In-vivo expression method of woody plant
CN116004657A (en) * 2022-11-25 2023-04-25 中国热带农业科学院热带生物技术研究所 Ripening-related gene MbGRF1 in Banana and its application

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Banana (Musa acuminata) transcriptome profiling in response to rhizobacteria: Bacillus amyloliquefaciens Bs006 and Pseudomonas fluorescens Ps006;Gamez RM等;BMC Genomics;第20卷(第1期);378 *
Genome-wide identification and characterization of long non-coding RNAs involved in fruit ripening and the climacteric in Cucumis melo;Tian Y等;BMC Plant Biol;第19卷;369 *
Identification of candidate genes influencing anthocyanin biosynthesis during the development and ripening of red and white strawberry fruits via comparative transcriptome analysis;Zhao F等;PeerJ;第9卷;e10739 *
PREDICTED: Musa acuminata subsp. malaccensis transcription factor bHLH130 (LOC103985511), mRNA;GenBank Database;GenBank Database;Accession No.XM_009403234.2 *
甜瓜CmbHLH93和CmbHLH130基因在果实发育中的作用;覃超;中国学位论文全文数据库;全文 *
苹果梨bHLH130基因的克隆与生物信息学分析;孟义淳等;分子植物育种;第19卷;80-87 *
香蕉苯丙氨酸解氨酶基因家族的全基因组鉴定及表达分析;杨会晓等;热带作物学报;第40卷(第10期);1949-1957 *

Also Published As

Publication number Publication date
CN116004656A (en) 2023-04-25

Similar Documents

Publication Publication Date Title
CN116004656B (en) Banana maturation associated gene MabHLH130 and application thereof
CN116004657B (en) Musa paradisiaca maturation-related gene MbGRF1 and application thereof
CN116179573B (en) Application of Carrot Gibberellin Oxidase Gene DcGA2ox1 in Regulating Plant Growth and Development
CN115725605B (en) Musa paradisiaca maturation-related gene MaMYC2-3 and application thereof
CN106868019A (en) Control rice tillering gene OsHT1 and its application
WO2020221029A1 (en) Zea mays receptor-like kinase gene zmrlk7 and use thereof
CN102604976A (en) Application of arabidopsis thaliana glycosyltransferase gene UGT87A2 to improvement of plant drought tolerance
CN115851765B (en) Musa paradisiaca maturation-related gene MaMYC2-10 and application thereof
CN108715852B (en) Tomato fruit mature gene Sl0658 and application thereof
CN110004165A (en) Peach auxin amidohydrolase gene PpIAAH1 and its application
CN116589545B (en) Application of ONAC096 gene in controlling drought resistance of rice
CN110042109B (en) Genes related to tomato leaf senescence and their applications
US20230313151A1 (en) Use of Gene Encoding Gibberellin 3Beta-Hydroxylase of Glycine Max, GmGA3ox1
CN110396510A (en) A drought-resistant protein, its coding gene and its application
Zhang et al. GhWRKY207 improves drought tolerance through promoting the expression of GhCSD3 and GhFSD2 in Gossypium hirsutum
CN118127050B (en) Application of CrUGT73C5 gene in regulating plant resistance
CN118374513B (en) Application of aquaporin gene OsPIP-1 in regulation and control of germination vigor of seed of direct-seeding rice and seedling establishment
LU507759B1 (en) LOW-TEMPERATURE RESPONSE GENE NtSAP9 OF NICOTIANA TABACUM L. AND APPLICATION THEREOF
CN109628468A (en) A kind of Chunlan CgWRKY53 gene and its application
CN116004672B (en) Phosphoglycerate kinase gene for improving plant biomass and yield and application thereof
CN118879707B (en) Cabbage flower development related gene module N-miR172-BraNPY and application thereof
CN118086332A (en) Wheat seed dormancy gene TaPer-3A and application thereof
CN115948454A (en) Application of a Grape VvDREB2c Gene in Improving Heat Resistance of Plants
KR102052758B1 (en) A composition and a method promoting plant growth and reducing lignin content
CN118666983A (en) Application of grape VvAGL gene in shortening plant fruit growth period

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant