[go: up one dir, main page]

CN113299553A - 一种氮化物高电子迁移率晶体管外延材料的生长方法 - Google Patents

一种氮化物高电子迁移率晶体管外延材料的生长方法 Download PDF

Info

Publication number
CN113299553A
CN113299553A CN202110333421.6A CN202110333421A CN113299553A CN 113299553 A CN113299553 A CN 113299553A CN 202110333421 A CN202110333421 A CN 202110333421A CN 113299553 A CN113299553 A CN 113299553A
Authority
CN
China
Prior art keywords
flow
barrier layer
source
algan barrier
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110333421.6A
Other languages
English (en)
Other versions
CN113299553B (zh
Inventor
彭大青
李忠辉
李传皓
陈韬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 55 Research Institute
Original Assignee
CETC 55 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 55 Research Institute filed Critical CETC 55 Research Institute
Priority to CN202110333421.6A priority Critical patent/CN113299553B/zh
Publication of CN113299553A publication Critical patent/CN113299553A/zh
Application granted granted Critical
Publication of CN113299553B publication Critical patent/CN113299553B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/015Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了一种氮化物高电子迁移率晶体管外延材料的生长方法,在衬底上依次生长缓冲层、GaN沟道层和AlGaN势垒层,AlGaN势垒层采用两步法生长,第一步采用至少一种III族源流量渐变工艺生长第一层AlGaN势垒层,第二步采用III族源流量恒定工艺生长第二层AlGaN势垒层,第一层AlGaN势垒层的厚度为0~4nm。本发明采用这种两步生长法,克服了Ga原子扩散带来的AlGaN势垒层靠近异质结界面处Al组分降低问题,改善了Al组分沿生长方向的一致性,实现了陡峭的AlGaN/GaN异质结界面,从而提高了沟道二维电子气迁移率。

Description

一种氮化物高电子迁移率晶体管外延材料的生长方法
技术领域
本发明属于半导体材料技术领域,特别涉及了氮化物高电子迁移率晶体管外延材料的生长方法。
背景技术
氮化镓(GaN)基高电子迁移率场效应晶体管(HEMT)是一种基于氮化物异质结构的新型电子器件,采用铝镓氮(AlGaN)作势垒形成的AlGaN/GaN HEMT材料是当前较为常用的材料体系,得益于AlGaN/GaN异质结较强的极化特性和带隙差,异质结量子阱中的二维电子气(2DEG)面密度达1012量级,通过肖特基栅压控制沟道电子实现工作。器件具有高频、大功率的优异特性,广泛应用于无线通信基站、电力电子器件等信息收发、能量转换等领域,符合当前节能环保、绿色低碳的发展理念。
AlGaN/GaN异质结二维电子气迁移率是影响HEMT器件功率特性的关键因素之一,较高的载流子迁移率有利于提高器件的工作电流。AlGaN/GaN异质结中二维电子气迁移率受多种散射机制的制约,主要包括:晶格散射、界面散射以及合金无序散射等。室温下,AlGaN/GaN异质结2DEG迁移率一般在1400-1600 cm2/Vs。
研究表明, AlGaN/GaN HEMT材料2DEG迁移率与异质结界面组分陡峭程度密切相关,异质结界面AlGaN一侧Al组分越高,形成的势阱越深,2DEG限域性越强,透过势垒进入AlGaN层的几率就越小,从而降低合金无序散射,提高2DEG迁移率。然而,在生长AlGaN势垒层的初期,由于生长表面温度较高,达到1000度以上,GaN缓冲层分解的Ga原子可能会扩散至异质结界面附近AlGaN势垒层中,降低Al组分。随着AlGaN厚度的增加,Ga扩散减少,Al组分逐渐升高至设计值并稳定。由于Ga原子的扩散,使得AlGaN势垒层靠近沟道处的Al组分低于设计值,异质结势阱深度降低,造成沟道电子溢出程度增加,合金散射增大,2DEG迁移率下降。
通过在AlGaN/GaN异质结之间插入一层1-2nm的AlN,2DEG迁移率可提高至2000cm2/Vs以上。然而,AlN插入层的引入,显著抬高了AlGaN/GaN异质结表面的势垒高度,增加了HEMT器件制作过程中姆接触工艺的难度。欧姆接触电阻是HEMT器件最主要的寄生电阻,是影响器件频率特性的关键因素之一。
因此,对于GaN高频功率器件用HEMT材料,如何有效提高沟道二维电子气迁移率,同时不影响AlGaN/GaN异质结表面的势垒高度是材料设计和外延工艺的一个重要课题。
发明内容
为了解决上述背景技术提到的技术问题,即AlGaN/GaN HEMT外延材料异质结界面Al组分低于设计值,越接近界面偏差越大的问题,本发明提出了一种氮化物高电子迁移率晶体管外延材料的生长方法,克服AlGaN/GaN异质结界面Al组分降低的问题,显著改善AlGaN势垒层Al组分沿生长方向的一致性。
为了实现上述技术目的,本发明的技术方案为:
一种氮化物高电子迁移率晶体管外延材料的生长方法,在衬底上依次生长缓冲层、GaN沟道层和AlGaN势垒层,所述AlGaN势垒层采用两步法生长,第一步采用至少一种III族源流量渐变工艺生长第一层AlGaN势垒层,第二步采用III族源流量恒定工艺生长第二层AlGaN势垒层,所述第一层AlGaN势垒层的厚度为0~4nm。
基于上述技术方案的优选方案,所述第二步采用的III族源流量恒定工艺的流量与所述第一步采用的至少一种III族源流量渐变工艺的流量终了值相等。
基于上述技术方案的优选方案,所述第一步采用的至少一种III族源流量渐变工艺包括三种组合方式:第一种为铝源流量渐变,镓源流量恒定;第二种为铝源流量恒定,镓源流量渐变;第三种为铝源和镓源流量同时渐变。
基于上述技术方案的优选方案,所述第一步采用的至少一种III族源流量渐变工艺,对于铝源,采用流量渐变减小的工艺,初始值是终了值的1-5倍;对于镓源,采用流量渐变增大的工艺,初始值是终了值的0.2-1倍。
基于上述技术方案的优选方案,所述第一步采用的至少一种III族源流量渐变工艺,渐变方式包括线性变化和非线性变化。
基于上述技术方案的优选方案,所述衬底的材质为蓝宝石、Si或SiC。
基于上述技术方案的优选方案,所述缓冲层的材质为AlN、GaN或AlGaN。
采用上述技术方案带来的有益效果:
本发明采用这种两步法生长AlGaN势垒,能最大程度克服Ga原子扩散带来的AlGaN/GaN异质结Al组分降低问题,提高异质结界面组分陡峭度,降低2DEG合金无序散射,从而提高2DEG迁移率。通过优化第一层AlGaN势垒工艺,包括III族源渐变方式、初始值,以及第一层AlGaN厚度等参数,改善势垒层Al组分沿生长方向的一致性,沟道二维电子气迁移率提高至1800-2000cm2/Vs。
附图说明
图1是本发明中氮化物高电子迁移率晶体管外延材料结构示意图;
图1中的标号说明:1、衬底层;2、缓冲层;3、沟道层;4、第一层AlGaN势垒层;5、第二层AlGaN势垒层;
图2-图4是本发明中AlGaN势垒层生长中镓源、铝源流量变化曲线图。
具体实施方式
以下将结合附图,对本发明的技术方案进行详细说明。
本发明设计了一种氮化物高电子迁移率晶体管外延材料的生长方法,如图1所示,在衬底层1上通过MBE或MOCVD技术依次生长缓冲层2、GaN沟道层3、第一层AlGaN势垒层4和第二层AlGaN势垒层5。
所述AlGaN势垒层采用两步法生长,第一步采用至少一种III族源流量渐变工艺生长第一层AlGaN势垒层,第二步采用III族源流量恒定工艺生长第二层AlGaN势垒层,所述第一层AlGaN势垒层的厚度为0~4nm。
优选地,所述第二步采用的III族源流量恒定工艺的流量与所述第一步采用的至少一种III族源流量渐变工艺的流量终了值相等。所述第一步采用的至少一种III族源流量渐变工艺包括三种组合方式:第一种为铝源流量渐变,镓源流量恒定;第二种为铝源流量恒定,镓源流量渐变;第三种为铝源和镓源流量同时渐变。所述第一步采用的至少一种III族源流量渐变工艺,对于铝源,采用流量渐变减小的工艺,初始值是终了值的1-5倍;对于镓源,采用流量渐变增大的工艺,初始值是终了值的0.2-1倍。所述第一步采用的至少一种III族源流量渐变工艺,渐变方式包括线性变化和非线性变化。
优选地,所述衬底的材质为蓝宝石、Si或SiC。所述缓冲层的材质为AlN、GaN或AlGaN。
实施例1
1)选择SiC衬底,利用MOCVD技术生长;
2)1100℃和100Torr,氢气气氛烘烤10分钟;
3)1100℃,通入氨气和铝源,在衬底表面生长100nm厚AlN成核层;
4)降温至1000℃,关闭铝源,通入镓源,生长1.5um厚GaN缓冲层;
5)升温至1050℃,生长0.5um厚GaN沟道层;
6)打开铝源,生长第一层AlGaN势垒层,厚度为2nm,铝源流量从150ml/min指数渐变至50ml/min,镓源流量为10 ml/min恒定;
7)保持铝源流量50ml/min、镓源流量10 ml/min不变,生长第二层AlGaN势垒层,厚度为18nm;
8)关闭铝源、镓源,降至室温。
实施例2
1)选择蓝宝石衬底,利用MOCVD技术生长;
2)1050℃和100Torr,氢气气氛烘烤5分钟;
3)1050℃和100Torr,通入氨气氮化10分钟;
4)降温至550℃,通入氨气和镓源,在衬底表面生长20nm厚GaN成核层;
5)升温至1000℃,生长1.5um厚GaN缓冲层;
6)升温至1050℃,生长0.5um厚GaN沟道层;
7)打开铝源,生长第一层AlGaN势垒层,厚度为2nm,铝源流量为50ml/min恒定,镓源流量从5 ml/min线性渐变至10ml/min;
8)保持铝源流量50ml/min、镓源流量10 ml/min不变,生长第二层AlGaN势垒层,厚度为18nm;
9)关闭铝源、镓源,降至室温。
实施例3
1)选择Si衬底,利用MOCVD技术生长;
2)1100℃和100Torr,氢气气氛烘烤10分钟;
3)1100℃,通入铝源,在衬底表面预淀积铝10秒钟;
4)1100℃,通入氨气,在衬底表面生长300nm厚AlN成核层;
5)通入镓源,生长1.2um厚AlGaN缓冲层;
6)关闭铝源,生长0.5um厚GaN沟道层;
7)打开铝源,生长第一层AlGaN势垒层,厚度为2nm,铝源流量从150ml/min指数渐变至50ml/min,镓源流量为10 ml/min恒定;
8)保持铝源流量50ml/min、镓源流量10 ml/min不变,生长第二层AlGaN势垒层,厚度为18nm;
9)关闭铝源、镓源,降至室温。
在工艺控制上,通过设定铝源及镓源流量的初始值、终了值、渐变模式三个参数,实现III族源流量的渐变,如图2-图4所示。图2中的(a)为保持镓源流量不变,铝源流量线性渐变;图2中的(b)为保持镓源流量不变,铝源流量非线性渐变;图3中的(a)为保持铝源流量不变,镓源流量线性渐变;图3中的(b)为保持铝源流量不变,镓源流量非线性渐变;图4中的(a)-(d)为铝源流量、镓源流量同时渐变。
本发明采用两步法生长AlGaN势垒层,目的是改善势垒层Al组分沿生长方向的一致性。第一层AlGaN的渐变方式和初始值需要根据不同类型的外延设备、生长工艺来优化制定,以AlGaN势垒层Al组分沿生长方向的一致性作为评价标准。
实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (7)

1.一种氮化物高电子迁移率晶体管外延材料的生长方法,在衬底上依次生长缓冲层、GaN沟道层和AlGaN势垒层,其特在于于:所述AlGaN势垒层采用两步法生长,第一步采用至少一种III族源流量渐变工艺生长第一层AlGaN势垒层,第二步采用III族源流量恒定工艺生长第二层AlGaN势垒层,所述第一层AlGaN势垒层的厚度为0~4nm。
2.根据权利要求1所述氮化物高电子迁移率晶体管外延材料的生长方法,其特征在于:所述第二步采用的III族源流量恒定工艺的流量与所述第一步采用的至少一种III族源流量渐变工艺的流量终了值相等。
3.根据权利要求1所述氮化物高电子迁移率晶体管外延材料的生长方法,其特征在于:所述第一步采用的至少一种III族源流量渐变工艺包括三种组合方式:第一种为铝源流量渐变,镓源流量恒定;第二种为铝源流量恒定,镓源流量渐变;第三种为铝源和镓源流量同时渐变。
4.根据权利要求1-3中任一项所述氮化物高电子迁移率晶体管外延材料的生长方法,其特征在于:所述第一步采用的至少一种III族源流量渐变工艺,对于铝源,采用流量渐变减小的工艺,初始值是终了值的1-5倍;对于镓源,采用流量渐变增大的工艺,初始值是终了值的0.2-1倍。
5.根据权利要求1-3中任意一项所述氮化物高电子迁移率晶体管外延材料的生长方法,其特征在于:所述第一步采用的至少一种III族源流量渐变工艺,渐变方式包括线性变化和非线性变化。
6.根据权利要求1所述氮化物高电子迁移率晶体管外延材料的生长方法,其特征在于:所述衬底的材质为蓝宝石、Si或SiC。
7.根据权利要求1所述氮化物高电子迁移率晶体管外延材料的生长方法,其特征在于:所述缓冲层的材质为AlN、GaN或AlGaN。
CN202110333421.6A 2021-03-29 2021-03-29 一种氮化物高电子迁移率晶体管外延材料的生长方法 Active CN113299553B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110333421.6A CN113299553B (zh) 2021-03-29 2021-03-29 一种氮化物高电子迁移率晶体管外延材料的生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110333421.6A CN113299553B (zh) 2021-03-29 2021-03-29 一种氮化物高电子迁移率晶体管外延材料的生长方法

Publications (2)

Publication Number Publication Date
CN113299553A true CN113299553A (zh) 2021-08-24
CN113299553B CN113299553B (zh) 2022-09-02

Family

ID=77319297

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110333421.6A Active CN113299553B (zh) 2021-03-29 2021-03-29 一种氮化物高电子迁移率晶体管外延材料的生长方法

Country Status (1)

Country Link
CN (1) CN113299553B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113502460A (zh) * 2021-09-09 2021-10-15 苏州长光华芯光电技术股份有限公司 一种半导体结构的制备方法、半导体生长设备
WO2023184199A1 (en) * 2022-03-30 2023-10-05 Innoscience (suzhou) Semiconductor Co., Ltd. Nitride-based semiconductor device and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020167023A1 (en) * 2001-05-11 2002-11-14 Cree Lighting Company And Regents Of The University Of California Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer
CN102365745A (zh) * 2009-04-08 2012-02-29 宜普电源转换公司 反向扩散抑制结构
CN105789296A (zh) * 2015-12-29 2016-07-20 中国电子科技集团公司第五十五研究所 一种铝镓氮化合物/氮化镓高电子迁移率晶体管
CN212542443U (zh) * 2020-07-13 2021-02-12 厦门市三安集成电路有限公司 一种氮化镓晶体管结构及氮化镓基外延结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020167023A1 (en) * 2001-05-11 2002-11-14 Cree Lighting Company And Regents Of The University Of California Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer
CN102365745A (zh) * 2009-04-08 2012-02-29 宜普电源转换公司 反向扩散抑制结构
CN105789296A (zh) * 2015-12-29 2016-07-20 中国电子科技集团公司第五十五研究所 一种铝镓氮化合物/氮化镓高电子迁移率晶体管
CN212542443U (zh) * 2020-07-13 2021-02-12 厦门市三安集成电路有限公司 一种氮化镓晶体管结构及氮化镓基外延结构

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113502460A (zh) * 2021-09-09 2021-10-15 苏州长光华芯光电技术股份有限公司 一种半导体结构的制备方法、半导体生长设备
CN113502460B (zh) * 2021-09-09 2021-12-03 苏州长光华芯光电技术股份有限公司 一种半导体结构的制备方法、半导体生长设备
WO2023184199A1 (en) * 2022-03-30 2023-10-05 Innoscience (suzhou) Semiconductor Co., Ltd. Nitride-based semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
CN113299553B (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
US7709859B2 (en) Cap layers including aluminum nitride for nitride-based transistors
JP3836697B2 (ja) 半導体素子
US7456443B2 (en) Transistors having buried n-type and p-type regions beneath the source region
KR940006711B1 (ko) 델타도핑 양자 우물전계 효과 트랜지스터의 제조방법
CN100576467C (zh) 利用铟掺杂提高氮化镓基晶体管材料与器件性能的方法
CN101399284B (zh) 氮化镓基高电子迁移率晶体管结构
CN102881715B (zh) 一种高频低噪声氮化镓基高电子迁移率晶体管结构
WO2006096249A2 (en) High electron mobility transistor
CN103594509A (zh) 一种氮化镓高电子迁移率晶体管及其制备方法
CN111009468A (zh) 一种半导体异质结构制备方法及其用途
CN105931999A (zh) 薄势垒增强型AlGaN/GaN高电子迁移率晶体管及其制作方法
CN102646700A (zh) 复合缓冲层的氮化物高电子迁移率晶体管外延结构
CN218039219U (zh) 一种高迁移率晶体管的外延结构
CN113889402A (zh) 一种用于制备GaN基电子器件的方法
CN109638074A (zh) 具有n-p-n结构背势垒的高电子迁移率晶体管及其制作方法
CN111009579A (zh) 半导体异质结构及半导体器件
CN106024881A (zh) 双异质氮化镓基场效应晶体管结构及制作方法
CN113299553A (zh) 一种氮化物高电子迁移率晶体管外延材料的生长方法
CN106972058A (zh) 一种半导体器件及其制备方法
CN106549040A (zh) 一种背势垒高电子迁移率晶体管以及制备方法
CN101005034A (zh) 碳化硅衬底氮化镓高电子迁移率晶体管及制作方法
CN109638066A (zh) 含有组分渐变高阻缓冲层的双异质结hemt及其制作方法
CN111799326A (zh) 一种新型二维电子气浓度调控的晶体管结构及制作方法
CN113555431B (zh) 基于P型GaN漏电隔离层的同质外延氮化镓高电子迁移率晶体管及制作方法
CN112750691A (zh) 氮极性面GaN材料及同质外延生长方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant