CN113299553A - 一种氮化物高电子迁移率晶体管外延材料的生长方法 - Google Patents
一种氮化物高电子迁移率晶体管外延材料的生长方法 Download PDFInfo
- Publication number
- CN113299553A CN113299553A CN202110333421.6A CN202110333421A CN113299553A CN 113299553 A CN113299553 A CN 113299553A CN 202110333421 A CN202110333421 A CN 202110333421A CN 113299553 A CN113299553 A CN 113299553A
- Authority
- CN
- China
- Prior art keywords
- flow
- barrier layer
- source
- algan barrier
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 55
- 239000000463 material Substances 0.000 title claims abstract description 21
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 15
- 230000004888 barrier function Effects 0.000 claims abstract description 42
- 230000008569 process Effects 0.000 claims abstract description 29
- 239000000758 substrate Substances 0.000 claims abstract description 15
- 229910002704 AlGaN Inorganic materials 0.000 claims abstract 13
- 229910052782 aluminium Inorganic materials 0.000 claims description 36
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 36
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 31
- 229910052733 gallium Inorganic materials 0.000 claims description 31
- 230000008859 change Effects 0.000 claims description 24
- 229910052594 sapphire Inorganic materials 0.000 claims description 4
- 239000010980 sapphire Substances 0.000 claims description 4
- 230000005533 two-dimensional electron gas Effects 0.000 abstract description 6
- 238000009792 diffusion process Methods 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 4
- 230000009467 reduction Effects 0.000 abstract description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 25
- 229910002601 GaN Inorganic materials 0.000 description 24
- 238000001816 cooling Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000005036 potential barrier Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/301—AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C23C16/303—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/52—Controlling or regulating the coating process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
本发明公开了一种氮化物高电子迁移率晶体管外延材料的生长方法,在衬底上依次生长缓冲层、GaN沟道层和AlGaN势垒层,AlGaN势垒层采用两步法生长,第一步采用至少一种III族源流量渐变工艺生长第一层AlGaN势垒层,第二步采用III族源流量恒定工艺生长第二层AlGaN势垒层,第一层AlGaN势垒层的厚度为0~4nm。本发明采用这种两步生长法,克服了Ga原子扩散带来的AlGaN势垒层靠近异质结界面处Al组分降低问题,改善了Al组分沿生长方向的一致性,实现了陡峭的AlGaN/GaN异质结界面,从而提高了沟道二维电子气迁移率。
Description
技术领域
本发明属于半导体材料技术领域,特别涉及了氮化物高电子迁移率晶体管外延材料的生长方法。
背景技术
氮化镓(GaN)基高电子迁移率场效应晶体管(HEMT)是一种基于氮化物异质结构的新型电子器件,采用铝镓氮(AlGaN)作势垒形成的AlGaN/GaN HEMT材料是当前较为常用的材料体系,得益于AlGaN/GaN异质结较强的极化特性和带隙差,异质结量子阱中的二维电子气(2DEG)面密度达1012量级,通过肖特基栅压控制沟道电子实现工作。器件具有高频、大功率的优异特性,广泛应用于无线通信基站、电力电子器件等信息收发、能量转换等领域,符合当前节能环保、绿色低碳的发展理念。
AlGaN/GaN异质结二维电子气迁移率是影响HEMT器件功率特性的关键因素之一,较高的载流子迁移率有利于提高器件的工作电流。AlGaN/GaN异质结中二维电子气迁移率受多种散射机制的制约,主要包括:晶格散射、界面散射以及合金无序散射等。室温下,AlGaN/GaN异质结2DEG迁移率一般在1400-1600 cm2/Vs。
研究表明, AlGaN/GaN HEMT材料2DEG迁移率与异质结界面组分陡峭程度密切相关,异质结界面AlGaN一侧Al组分越高,形成的势阱越深,2DEG限域性越强,透过势垒进入AlGaN层的几率就越小,从而降低合金无序散射,提高2DEG迁移率。然而,在生长AlGaN势垒层的初期,由于生长表面温度较高,达到1000度以上,GaN缓冲层分解的Ga原子可能会扩散至异质结界面附近AlGaN势垒层中,降低Al组分。随着AlGaN厚度的增加,Ga扩散减少,Al组分逐渐升高至设计值并稳定。由于Ga原子的扩散,使得AlGaN势垒层靠近沟道处的Al组分低于设计值,异质结势阱深度降低,造成沟道电子溢出程度增加,合金散射增大,2DEG迁移率下降。
通过在AlGaN/GaN异质结之间插入一层1-2nm的AlN,2DEG迁移率可提高至2000cm2/Vs以上。然而,AlN插入层的引入,显著抬高了AlGaN/GaN异质结表面的势垒高度,增加了HEMT器件制作过程中姆接触工艺的难度。欧姆接触电阻是HEMT器件最主要的寄生电阻,是影响器件频率特性的关键因素之一。
因此,对于GaN高频功率器件用HEMT材料,如何有效提高沟道二维电子气迁移率,同时不影响AlGaN/GaN异质结表面的势垒高度是材料设计和外延工艺的一个重要课题。
发明内容
为了解决上述背景技术提到的技术问题,即AlGaN/GaN HEMT外延材料异质结界面Al组分低于设计值,越接近界面偏差越大的问题,本发明提出了一种氮化物高电子迁移率晶体管外延材料的生长方法,克服AlGaN/GaN异质结界面Al组分降低的问题,显著改善AlGaN势垒层Al组分沿生长方向的一致性。
为了实现上述技术目的,本发明的技术方案为:
一种氮化物高电子迁移率晶体管外延材料的生长方法,在衬底上依次生长缓冲层、GaN沟道层和AlGaN势垒层,所述AlGaN势垒层采用两步法生长,第一步采用至少一种III族源流量渐变工艺生长第一层AlGaN势垒层,第二步采用III族源流量恒定工艺生长第二层AlGaN势垒层,所述第一层AlGaN势垒层的厚度为0~4nm。
基于上述技术方案的优选方案,所述第二步采用的III族源流量恒定工艺的流量与所述第一步采用的至少一种III族源流量渐变工艺的流量终了值相等。
基于上述技术方案的优选方案,所述第一步采用的至少一种III族源流量渐变工艺包括三种组合方式:第一种为铝源流量渐变,镓源流量恒定;第二种为铝源流量恒定,镓源流量渐变;第三种为铝源和镓源流量同时渐变。
基于上述技术方案的优选方案,所述第一步采用的至少一种III族源流量渐变工艺,对于铝源,采用流量渐变减小的工艺,初始值是终了值的1-5倍;对于镓源,采用流量渐变增大的工艺,初始值是终了值的0.2-1倍。
基于上述技术方案的优选方案,所述第一步采用的至少一种III族源流量渐变工艺,渐变方式包括线性变化和非线性变化。
基于上述技术方案的优选方案,所述衬底的材质为蓝宝石、Si或SiC。
基于上述技术方案的优选方案,所述缓冲层的材质为AlN、GaN或AlGaN。
采用上述技术方案带来的有益效果:
本发明采用这种两步法生长AlGaN势垒,能最大程度克服Ga原子扩散带来的AlGaN/GaN异质结Al组分降低问题,提高异质结界面组分陡峭度,降低2DEG合金无序散射,从而提高2DEG迁移率。通过优化第一层AlGaN势垒工艺,包括III族源渐变方式、初始值,以及第一层AlGaN厚度等参数,改善势垒层Al组分沿生长方向的一致性,沟道二维电子气迁移率提高至1800-2000cm2/Vs。
附图说明
图1是本发明中氮化物高电子迁移率晶体管外延材料结构示意图;
图1中的标号说明:1、衬底层;2、缓冲层;3、沟道层;4、第一层AlGaN势垒层;5、第二层AlGaN势垒层;
图2-图4是本发明中AlGaN势垒层生长中镓源、铝源流量变化曲线图。
具体实施方式
以下将结合附图,对本发明的技术方案进行详细说明。
本发明设计了一种氮化物高电子迁移率晶体管外延材料的生长方法,如图1所示,在衬底层1上通过MBE或MOCVD技术依次生长缓冲层2、GaN沟道层3、第一层AlGaN势垒层4和第二层AlGaN势垒层5。
所述AlGaN势垒层采用两步法生长,第一步采用至少一种III族源流量渐变工艺生长第一层AlGaN势垒层,第二步采用III族源流量恒定工艺生长第二层AlGaN势垒层,所述第一层AlGaN势垒层的厚度为0~4nm。
优选地,所述第二步采用的III族源流量恒定工艺的流量与所述第一步采用的至少一种III族源流量渐变工艺的流量终了值相等。所述第一步采用的至少一种III族源流量渐变工艺包括三种组合方式:第一种为铝源流量渐变,镓源流量恒定;第二种为铝源流量恒定,镓源流量渐变;第三种为铝源和镓源流量同时渐变。所述第一步采用的至少一种III族源流量渐变工艺,对于铝源,采用流量渐变减小的工艺,初始值是终了值的1-5倍;对于镓源,采用流量渐变增大的工艺,初始值是终了值的0.2-1倍。所述第一步采用的至少一种III族源流量渐变工艺,渐变方式包括线性变化和非线性变化。
优选地,所述衬底的材质为蓝宝石、Si或SiC。所述缓冲层的材质为AlN、GaN或AlGaN。
实施例1
1)选择SiC衬底,利用MOCVD技术生长;
2)1100℃和100Torr,氢气气氛烘烤10分钟;
3)1100℃,通入氨气和铝源,在衬底表面生长100nm厚AlN成核层;
4)降温至1000℃,关闭铝源,通入镓源,生长1.5um厚GaN缓冲层;
5)升温至1050℃,生长0.5um厚GaN沟道层;
6)打开铝源,生长第一层AlGaN势垒层,厚度为2nm,铝源流量从150ml/min指数渐变至50ml/min,镓源流量为10 ml/min恒定;
7)保持铝源流量50ml/min、镓源流量10 ml/min不变,生长第二层AlGaN势垒层,厚度为18nm;
8)关闭铝源、镓源,降至室温。
实施例2
1)选择蓝宝石衬底,利用MOCVD技术生长;
2)1050℃和100Torr,氢气气氛烘烤5分钟;
3)1050℃和100Torr,通入氨气氮化10分钟;
4)降温至550℃,通入氨气和镓源,在衬底表面生长20nm厚GaN成核层;
5)升温至1000℃,生长1.5um厚GaN缓冲层;
6)升温至1050℃,生长0.5um厚GaN沟道层;
7)打开铝源,生长第一层AlGaN势垒层,厚度为2nm,铝源流量为50ml/min恒定,镓源流量从5 ml/min线性渐变至10ml/min;
8)保持铝源流量50ml/min、镓源流量10 ml/min不变,生长第二层AlGaN势垒层,厚度为18nm;
9)关闭铝源、镓源,降至室温。
实施例3
1)选择Si衬底,利用MOCVD技术生长;
2)1100℃和100Torr,氢气气氛烘烤10分钟;
3)1100℃,通入铝源,在衬底表面预淀积铝10秒钟;
4)1100℃,通入氨气,在衬底表面生长300nm厚AlN成核层;
5)通入镓源,生长1.2um厚AlGaN缓冲层;
6)关闭铝源,生长0.5um厚GaN沟道层;
7)打开铝源,生长第一层AlGaN势垒层,厚度为2nm,铝源流量从150ml/min指数渐变至50ml/min,镓源流量为10 ml/min恒定;
8)保持铝源流量50ml/min、镓源流量10 ml/min不变,生长第二层AlGaN势垒层,厚度为18nm;
9)关闭铝源、镓源,降至室温。
在工艺控制上,通过设定铝源及镓源流量的初始值、终了值、渐变模式三个参数,实现III族源流量的渐变,如图2-图4所示。图2中的(a)为保持镓源流量不变,铝源流量线性渐变;图2中的(b)为保持镓源流量不变,铝源流量非线性渐变;图3中的(a)为保持铝源流量不变,镓源流量线性渐变;图3中的(b)为保持铝源流量不变,镓源流量非线性渐变;图4中的(a)-(d)为铝源流量、镓源流量同时渐变。
本发明采用两步法生长AlGaN势垒层,目的是改善势垒层Al组分沿生长方向的一致性。第一层AlGaN的渐变方式和初始值需要根据不同类型的外延设备、生长工艺来优化制定,以AlGaN势垒层Al组分沿生长方向的一致性作为评价标准。
实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。
Claims (7)
1.一种氮化物高电子迁移率晶体管外延材料的生长方法,在衬底上依次生长缓冲层、GaN沟道层和AlGaN势垒层,其特在于于:所述AlGaN势垒层采用两步法生长,第一步采用至少一种III族源流量渐变工艺生长第一层AlGaN势垒层,第二步采用III族源流量恒定工艺生长第二层AlGaN势垒层,所述第一层AlGaN势垒层的厚度为0~4nm。
2.根据权利要求1所述氮化物高电子迁移率晶体管外延材料的生长方法,其特征在于:所述第二步采用的III族源流量恒定工艺的流量与所述第一步采用的至少一种III族源流量渐变工艺的流量终了值相等。
3.根据权利要求1所述氮化物高电子迁移率晶体管外延材料的生长方法,其特征在于:所述第一步采用的至少一种III族源流量渐变工艺包括三种组合方式:第一种为铝源流量渐变,镓源流量恒定;第二种为铝源流量恒定,镓源流量渐变;第三种为铝源和镓源流量同时渐变。
4.根据权利要求1-3中任一项所述氮化物高电子迁移率晶体管外延材料的生长方法,其特征在于:所述第一步采用的至少一种III族源流量渐变工艺,对于铝源,采用流量渐变减小的工艺,初始值是终了值的1-5倍;对于镓源,采用流量渐变增大的工艺,初始值是终了值的0.2-1倍。
5.根据权利要求1-3中任意一项所述氮化物高电子迁移率晶体管外延材料的生长方法,其特征在于:所述第一步采用的至少一种III族源流量渐变工艺,渐变方式包括线性变化和非线性变化。
6.根据权利要求1所述氮化物高电子迁移率晶体管外延材料的生长方法,其特征在于:所述衬底的材质为蓝宝石、Si或SiC。
7.根据权利要求1所述氮化物高电子迁移率晶体管外延材料的生长方法,其特征在于:所述缓冲层的材质为AlN、GaN或AlGaN。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110333421.6A CN113299553B (zh) | 2021-03-29 | 2021-03-29 | 一种氮化物高电子迁移率晶体管外延材料的生长方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110333421.6A CN113299553B (zh) | 2021-03-29 | 2021-03-29 | 一种氮化物高电子迁移率晶体管外延材料的生长方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113299553A true CN113299553A (zh) | 2021-08-24 |
CN113299553B CN113299553B (zh) | 2022-09-02 |
Family
ID=77319297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110333421.6A Active CN113299553B (zh) | 2021-03-29 | 2021-03-29 | 一种氮化物高电子迁移率晶体管外延材料的生长方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113299553B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113502460A (zh) * | 2021-09-09 | 2021-10-15 | 苏州长光华芯光电技术股份有限公司 | 一种半导体结构的制备方法、半导体生长设备 |
WO2023184199A1 (en) * | 2022-03-30 | 2023-10-05 | Innoscience (suzhou) Semiconductor Co., Ltd. | Nitride-based semiconductor device and method for manufacturing the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020167023A1 (en) * | 2001-05-11 | 2002-11-14 | Cree Lighting Company And Regents Of The University Of California | Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer |
CN102365745A (zh) * | 2009-04-08 | 2012-02-29 | 宜普电源转换公司 | 反向扩散抑制结构 |
CN105789296A (zh) * | 2015-12-29 | 2016-07-20 | 中国电子科技集团公司第五十五研究所 | 一种铝镓氮化合物/氮化镓高电子迁移率晶体管 |
CN212542443U (zh) * | 2020-07-13 | 2021-02-12 | 厦门市三安集成电路有限公司 | 一种氮化镓晶体管结构及氮化镓基外延结构 |
-
2021
- 2021-03-29 CN CN202110333421.6A patent/CN113299553B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020167023A1 (en) * | 2001-05-11 | 2002-11-14 | Cree Lighting Company And Regents Of The University Of California | Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer |
CN102365745A (zh) * | 2009-04-08 | 2012-02-29 | 宜普电源转换公司 | 反向扩散抑制结构 |
CN105789296A (zh) * | 2015-12-29 | 2016-07-20 | 中国电子科技集团公司第五十五研究所 | 一种铝镓氮化合物/氮化镓高电子迁移率晶体管 |
CN212542443U (zh) * | 2020-07-13 | 2021-02-12 | 厦门市三安集成电路有限公司 | 一种氮化镓晶体管结构及氮化镓基外延结构 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113502460A (zh) * | 2021-09-09 | 2021-10-15 | 苏州长光华芯光电技术股份有限公司 | 一种半导体结构的制备方法、半导体生长设备 |
CN113502460B (zh) * | 2021-09-09 | 2021-12-03 | 苏州长光华芯光电技术股份有限公司 | 一种半导体结构的制备方法、半导体生长设备 |
WO2023184199A1 (en) * | 2022-03-30 | 2023-10-05 | Innoscience (suzhou) Semiconductor Co., Ltd. | Nitride-based semiconductor device and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
CN113299553B (zh) | 2022-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7709859B2 (en) | Cap layers including aluminum nitride for nitride-based transistors | |
JP3836697B2 (ja) | 半導体素子 | |
US7456443B2 (en) | Transistors having buried n-type and p-type regions beneath the source region | |
KR940006711B1 (ko) | 델타도핑 양자 우물전계 효과 트랜지스터의 제조방법 | |
CN100576467C (zh) | 利用铟掺杂提高氮化镓基晶体管材料与器件性能的方法 | |
CN101399284B (zh) | 氮化镓基高电子迁移率晶体管结构 | |
CN102881715B (zh) | 一种高频低噪声氮化镓基高电子迁移率晶体管结构 | |
WO2006096249A2 (en) | High electron mobility transistor | |
CN103594509A (zh) | 一种氮化镓高电子迁移率晶体管及其制备方法 | |
CN111009468A (zh) | 一种半导体异质结构制备方法及其用途 | |
CN105931999A (zh) | 薄势垒增强型AlGaN/GaN高电子迁移率晶体管及其制作方法 | |
CN102646700A (zh) | 复合缓冲层的氮化物高电子迁移率晶体管外延结构 | |
CN218039219U (zh) | 一种高迁移率晶体管的外延结构 | |
CN113889402A (zh) | 一种用于制备GaN基电子器件的方法 | |
CN109638074A (zh) | 具有n-p-n结构背势垒的高电子迁移率晶体管及其制作方法 | |
CN111009579A (zh) | 半导体异质结构及半导体器件 | |
CN106024881A (zh) | 双异质氮化镓基场效应晶体管结构及制作方法 | |
CN113299553A (zh) | 一种氮化物高电子迁移率晶体管外延材料的生长方法 | |
CN106972058A (zh) | 一种半导体器件及其制备方法 | |
CN106549040A (zh) | 一种背势垒高电子迁移率晶体管以及制备方法 | |
CN101005034A (zh) | 碳化硅衬底氮化镓高电子迁移率晶体管及制作方法 | |
CN109638066A (zh) | 含有组分渐变高阻缓冲层的双异质结hemt及其制作方法 | |
CN111799326A (zh) | 一种新型二维电子气浓度调控的晶体管结构及制作方法 | |
CN113555431B (zh) | 基于P型GaN漏电隔离层的同质外延氮化镓高电子迁移率晶体管及制作方法 | |
CN112750691A (zh) | 氮极性面GaN材料及同质外延生长方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |