[go: up one dir, main page]

CN112750691A - 氮极性面GaN材料及同质外延生长方法 - Google Patents

氮极性面GaN材料及同质外延生长方法 Download PDF

Info

Publication number
CN112750691A
CN112750691A CN202110060278.8A CN202110060278A CN112750691A CN 112750691 A CN112750691 A CN 112750691A CN 202110060278 A CN202110060278 A CN 202110060278A CN 112750691 A CN112750691 A CN 112750691A
Authority
CN
China
Prior art keywords
substrate
gan
nitrogen
nitrogen polar
transition layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110060278.8A
Other languages
English (en)
Inventor
薛军帅
李蓝星
姚佳佳
杨雪妍
孙志鹏
张赫朋
刘芳
张进成
郝跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202110060278.8A priority Critical patent/CN112750691A/zh
Publication of CN112750691A publication Critical patent/CN112750691A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/40FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
    • H10D30/47FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/85Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
    • H10D62/8503Nitride Group III-V materials, e.g. AlN or GaN
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D8/00Diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明公开了一种氮极性面GaN材料及其制作方法,主要解决现有氮极性面GaN材料位错密度高、表面形貌差、非故意掺杂背景载流子浓度高、生长工艺控制难度大的问题。其材料结构自下而上包括衬底(1)、过渡层(2)、GaN外延层(3),其中过渡层采用InAlN或ScAlN或YAlN,衬底采用非斜切面的氮极性面氮化镓单晶。其制作步骤为:在衬底基片上,利用分子束外延方法生长厚度为1nm‑10nm的过渡层;用分子束外延方法,在过渡层上生长GaN外延层。本发明材料结晶质量高,表面形貌光滑,背景载流子浓度低,生长工艺简单,工艺重复性和一致性高,可用于制作高电子迁移率晶体管和高速微波整流二极管。

Description

氮极性面GaN材料及同质外延生长方法
技术领域
本发明属于半导体材料生长领域,特别涉及一种氮极性面GaN半导体材料,可用于制作高电子迁移率晶体管和高速微波整流二极管。
背景技术
III族氮化物半导体材料在高频、大功率、高效率、耐高温、耐高压、抗辐照等领域应用中体现出独一无二的优势,适合制备固态微波功率器件和微波毫米波单片集成电路。经过近三十年的深入研究,GaN基高电子迁移率晶体管的性能和可靠性取得了提升,已经在5G通信基站和雷达探测中得到了应用。目前氮化物半导体材料和器件的研究和应用主要基于镓极性面氮化物材料,这是由于镓极性面材料外延生长技术成熟,易于实现高质量生长,并且建立了标准的镓极性面材料器件工艺流程。为进一步提高GaN基高电子迁移率晶体管的工作频率和输出功率,采用氮极性面氮化物材料是主要的技术途径之一。
氮极性面GaN异质结材料中,势垒层在沟道层下方天然形成背势垒,可以提高二维电子气限域性,且不受器件栅长和势垒层厚度等比例缩小规则限制。氮极性面GaN异质结材料中GaN沟道位于外延材料顶部,易实现低欧姆接触电阻。目前,氮极性面GaN材料常在SiC等其它衬底材料上采用金属有机物化学气相淀积技术异质外延获得。常规方法生长的氮极性面GaN材料结构,如图1所示。其自下而上包括衬底、AlN成核层、GaN缓冲层和氮极性面GaN材料。该材料存在以下缺点:
一是异质外延氮极性面GaN材料中存在高密度位错缺陷,会引起器件可靠性退化,材料表面形貌粗糙,坑状缺陷多;
二是异质外延氮极性面GaN材料易发生极性翻转,极性控制难度大;
三是异质外延的氮极性面GaN材料背景载流子浓度高,会形成体漏电通道,降低器件击穿电压;
四是金属有机物化学气相淀积技术异质外延氮极性面GaN材料,需要采用斜切面衬底,增加材料外延成本;
五是金属有机物化学气相淀积技术异质外延氮极性面GaN材料,需要富氮生长条件,该条件阻碍了金属原子在薄膜生长表面的迁移能力和扩散长度。
六是金属有机物化学气相淀积技术异质外延氮极性面GaN材料,需要采用Fe掺杂补偿其中的背景载流子,增加了生长工艺控制难度和寄生污染。
七是异质外延氮极性面GaN材料时,AlN成核层和GaN缓冲层生长时需要改变生长温度并切换气流,生长过程需要短暂停顿和间隔,这会增加氮极性面GaN材料中背景掺杂杂质浓度。
发明内容
本发明目的在于针对上述已有技术的缺点,提出一种氮极性面GaN材料及同质外延生长方法,以提高氮极性面GaN材料晶体质量和表面形貌,降低背景载流子浓度和生长工艺控制难度。
本发明的技术方案是这样实现的:
1、一种氮极性面GaN材料,包括衬底和GaN外延层,其特征在于:衬底与GaN外延层之间设有过渡层,该过渡层采用InAlN,或ScAlN,或YAlN,其厚度为1nm~10nm;
所述衬底采用非斜切面的氮极性面氮化镓单晶。
2、一种氮极性面GaN材料的制备方法,其特征在于,包括如下步骤:
1)在衬底基片上利用分子束外延法,在温度为670℃~720℃,氮气流量为2.3sccm,金属束流平衡蒸汽压为1.0×10-8Torr~2.6×10-7Torr,氮气射频源功率为375W的工艺条件下生长1nm~10nm的过渡层;
2)用分子束外延法,设置温度为670℃~720℃,氮气流量为2.3sccm,镓束流平衡蒸气压为6.0×10-7Torr~8.0×10-7Torr,氮气射频源功率为375W的工艺条件,在过渡层上生长GaN外延层,完成材料制备。
本发明与现有技术相比具有如下优点:
1.本发明由于采用InAlN,或ScAlN,或YAlN过渡层,可实现氮极性面氮化镓衬底、过渡层与氮极性面GaN外延层这三者的面内晶格匹配,降低位错密度和表面坑状缺陷密度。
2.本发明由于采用InAlN,或ScAlN,或YAlN过渡层,可有效吸附和俘获同质外延界面处非故意掺杂杂质,阻止氮极性面氮化镓衬底表面的杂质向氮极性面GaN材料中扩散,降低氮极性面GaN材料背景载流子浓度。并且氮极性面GaN材料生长过程不需要采用Fe掺杂补偿背景载流子,生长工艺简单、控制难度低、工艺重复性和一致性高。
3.本发明采用分子束外延技术生长氮极性面GaN外延层,在富镓条件下易于增强金属原子在薄膜生长表面的迁移能力和扩散长度,提高氮极性面GaN材料表面形貌。
4.本发明中的衬底由于采用常规非斜切面衬底,降低了材料外延成本。
5.本发明由于采用同质外延生长氮极性面GaN材料,避免了异质外延中晶格失配产生的位错缺陷。
6.本发明中由于过渡层和GaN外延层生长温度一致,避免了生长过程中短暂停顿和间隔,从而减小了非故意掺杂杂质的吸附。
附图说明
图1是传统生长氮极性面GaN材料的结构示意图;
图2是本发明的氮极性面GaN材料的结构示意图;
图3是本发明制作氮极性面GaN材料的流程示意图。
具体实施方式
以下结合附图对本发明的实施例进行进一步详细描述。
参照图2,本发明的氮极性面GaN材料,自下而上,包括衬底1、过渡层2、GaN外延层3。其中过渡层采用InAlN,或ScAlN,或YAlN,厚度为1nm~10nm。衬底采用氮极性面氮化镓单晶;氮极性面GaN外延层的厚度根据实际需求确定。
参照图3,本发明制作氮极性面GaN材料给出如下三种实施例。
实施例1,制作衬底为非斜切面的氮极性面氮化镓单晶,过渡层为厚度为10nm的In0.17Al0.83N,外延层为GaN的氮极性面GaN材料。
步骤一,选用非斜切面的氮极性面氮化镓单晶作为衬底,如图3(a)。
步骤二,外延In0.17Al0.83N过渡层,如图3(b)。
使用分子束外延技术在氮极性面氮化镓单晶衬底上外延厚度为10nm的In0.17Al0.83N过渡层。
外延In0.17Al0.83N过渡层采用的工艺条件为:温度为670℃,氮气流量为2.3sccm,铟束流平衡蒸气压为1.5×10-7Torr,铝束流平衡蒸气压为2.3×10-7Torr,氮气射频源功率为375W。
步骤三,外延氮极性面GaN外延层,如图3(c)。
使用分子束外延技术在In0.17Al0.83N过渡层上淀积GaN外延层。
外延氮极性面GaN外延层采用的工艺条件为:温度为670℃,氮气流量为2.3sccm,镓束流平衡蒸气压为6.0×10-7Torr,氮气射频源功率为375W,完成氮极性面GaN材料的制作。
实施例2,制作衬底为非斜切面的氮极性面氮化镓单晶,过渡层为厚度为5nm的Sc0.18Al0.82N,外延层为GaN的氮极性面GaN材料。
步骤1,选用非斜切面的氮极性面氮化镓单晶作为衬底,如图3(a)。
步骤2,使用分子束外延技术淀积Sc0.18Al0.82N过渡层,如图3(b)。
设定温度为690℃,氮气流量为2.3sccm,钪束流平衡蒸气压为1.3×10-8Torr,铝束流平衡蒸气压为2.0×10-7Torr,氮气射频源功率为375W的工艺条件,使用分子束外延技术,在氮极性面氮化镓单晶衬底上淀积厚度为5nm的Sc0.18Al0.82N过渡层。
步骤3,使用分子束外延技术淀积GaN外延层,如图3(c)。
设置温度为690℃,氮气流量为2.3sccm,镓束流平衡蒸气压为7.0×10-7Torr,氮气射频源功率为375W的工艺条件,使用分子束外延技术,在Sc0.18Al0.82N过渡层上淀积氮极性面GaN外延层,完成氮极性面GaN材料的制作。
实施例3,制作衬底为非斜切面的氮极性面氮化镓单晶,过渡层为厚度为1nm的Y0.11Al0.89N,外延层为GaN的氮极性面GaN材料。
步骤A,选用非斜切面的氮极性面氮化镓单晶作为衬底,如图3(a)。
步骤B,生长Y0.11Al0.89N过渡层,如图3(b)。
使用分子束外延技术,在温度为720℃,氮气流量为2.3sccm,钇束流平衡蒸气压为1.0×10-8Torr,铝束流平衡蒸气压为2.6×10-7Torr,氮气射频源功率为375W的工艺条件下,在非斜切面的氮极性面氮化镓单晶衬底上生长厚度为1nm的Y0.11Al0.89N过渡层。
步骤C,生长氮极性面GaN外延层,如图3(c)。
使用分子束外延技术,在温度为720℃,氮气流量为2.3sccm,镓束流平衡蒸气压为8.0×10-7Torr,氮气射频源功率为375W的工艺条件下,在Y0.11Al0.89N过渡层上生长氮极性面GaN外延层,完成氮极性面GaN材料的制作。
上述三个实例中的GaN外延层厚度根据实际需求确定。
以上描述仅是本发明的三个具体事例,并未构成对本发明的任何限制,显然对于本领域的专业人员来说,在了解了本发明的内容和原理后,都可能在不背离本发明原理、结构的情况下,进行形式和细节的各种修改和改变,但是这些基于本发明思想的修正和改变仍在本发明的权利要求范围之内。

Claims (4)

1.一种氮极性面GaN材料,包括衬底(1)和GaN外延层(3),其特征在于:
所述GaN外延层(3)与衬底(1)之间设有过渡层(2),该过渡层采用InAlN,或ScAlN,或YAlN,其厚度为1nm~10nm;
所述衬底(1)采用非斜切面的氮极性面氮化镓单晶。
2.如权利要求1所述的材料,其特征在于:所述GaN外延层的厚度,根据使用要求确定。
3.一种氮极性面GaN材料的同质外延生长方法,其特征在于,包括如下步骤:
1)选用非斜切面的氮极性面氮化镓单晶作为衬底;
2)在衬底基片上利用分子束外延法,在温度为670℃~720℃,氮气流量为2.3sccm,金属束流平衡蒸汽压为1.0×10-8Torr~2.6×10-7Torr,氮气射频源功率为375W的工艺条件下生长1nm~10nm的过渡层;
3)用分子束外延法,设置温度为670℃~720℃,氮气流量为2.3sccm,镓束流平衡蒸气压为6.0×10-7Torr~8.0×10-7Torr,氮气射频源功率为375W的工艺条件,在过渡层上生长GaN外延层,完成材料制备。
4.如权利要求3所述方法,其特征在于:所述金属束流平衡蒸气压,包括铟束流平衡蒸气压、钪束流平衡蒸气压、钇束流平衡蒸气压和铝束流平衡蒸气压。
CN202110060278.8A 2021-01-18 2021-01-18 氮极性面GaN材料及同质外延生长方法 Pending CN112750691A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110060278.8A CN112750691A (zh) 2021-01-18 2021-01-18 氮极性面GaN材料及同质外延生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110060278.8A CN112750691A (zh) 2021-01-18 2021-01-18 氮极性面GaN材料及同质外延生长方法

Publications (1)

Publication Number Publication Date
CN112750691A true CN112750691A (zh) 2021-05-04

Family

ID=75652245

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110060278.8A Pending CN112750691A (zh) 2021-01-18 2021-01-18 氮极性面GaN材料及同质外延生长方法

Country Status (1)

Country Link
CN (1) CN112750691A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117855355A (zh) * 2024-03-04 2024-04-09 江西兆驰半导体有限公司 发光二极管外延片及其制备方法、发光二极管
EP4411827A4 (en) * 2021-10-28 2024-11-20 Huawei Technologies Co., Ltd. INTEGRATED CIRCUIT AND ITS PREPARATION METHOD, POWER AMPLIFIER AND ELECTRONIC DEVICE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070045654A1 (en) * 2005-08-30 2007-03-01 Samsung Electro-Mechanics Co., Ltd. Group III-nitride semiconductor thin film, method for fabricating the same, and group III-nitride semiconductor light emitting device
US20110033966A1 (en) * 2009-08-10 2011-02-10 Applied Materials, Inc. Growth of n-face led with integrated processing system
US20140134773A1 (en) * 2011-10-10 2014-05-15 Sensor Electronic Technology, Inc. Patterned Layer Design for Group III Nitride Layer Growth
CN105914232A (zh) * 2016-05-06 2016-08-31 西安电子科技大学 T栅N面GaN/AlGaN鳍式高电子迁移率晶体管
US20200006543A1 (en) * 2018-06-28 2020-01-02 Epistar Corporation High electron mobility transistor and methods for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070045654A1 (en) * 2005-08-30 2007-03-01 Samsung Electro-Mechanics Co., Ltd. Group III-nitride semiconductor thin film, method for fabricating the same, and group III-nitride semiconductor light emitting device
US20110033966A1 (en) * 2009-08-10 2011-02-10 Applied Materials, Inc. Growth of n-face led with integrated processing system
US20140134773A1 (en) * 2011-10-10 2014-05-15 Sensor Electronic Technology, Inc. Patterned Layer Design for Group III Nitride Layer Growth
CN105914232A (zh) * 2016-05-06 2016-08-31 西安电子科技大学 T栅N面GaN/AlGaN鳍式高电子迁移率晶体管
US20200006543A1 (en) * 2018-06-28 2020-01-02 Epistar Corporation High electron mobility transistor and methods for manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
葛莎莎: "N面GaN外延材料生长与背景载流子抑制方法研究", 《万方学术期刊数据库》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4411827A4 (en) * 2021-10-28 2024-11-20 Huawei Technologies Co., Ltd. INTEGRATED CIRCUIT AND ITS PREPARATION METHOD, POWER AMPLIFIER AND ELECTRONIC DEVICE
CN117855355A (zh) * 2024-03-04 2024-04-09 江西兆驰半导体有限公司 发光二极管外延片及其制备方法、发光二极管
CN117855355B (zh) * 2024-03-04 2024-05-14 江西兆驰半导体有限公司 发光二极管外延片及其制备方法、发光二极管

Similar Documents

Publication Publication Date Title
JP3836697B2 (ja) 半導体素子
KR102452739B1 (ko) 갈륨 질화물 고전자이동도 전계효과 트랜지스터의 계면 열저항 감소를 위한 에피택셜 성장 방법
CN100495724C (zh) 氮化镓基异质结场效应晶体管结构及制作方法
CN101266999B (zh) 氮化镓基双异质结场效应晶体管结构及制作方法
JP4458223B2 (ja) 化合物半導体素子及びその製造方法
JP2005167275A (ja) 半導体素子
CN111009468A (zh) 一种半导体异质结构制备方法及其用途
JP2002359255A (ja) 半導体素子
CN114551594A (zh) 一种外延片、外延片生长方法及高电子迁移率晶体管
JP4468744B2 (ja) 窒化物半導体薄膜の作製方法
CN114551593A (zh) 一种外延片、外延片生长方法及高电子迁移率晶体管
CN112750691A (zh) 氮极性面GaN材料及同质外延生长方法
CN111681953B (zh) 一种提升氮化镓异质外延的界面质量的生长方法
CN111863945A (zh) 一种高阻氮化镓及其异质结构的制备方法
CN113299553B (zh) 一种氮化物高电子迁移率晶体管外延材料的生长方法
CN112687525B (zh) 一种提高超薄氮化镓场效应管晶体质量的外延方法
US12020925B2 (en) Methods for preparing AlN based template having Si substrate and GaN based epitaxial structure having Si substrate
CN110797394B (zh) 一种高电子迁移率晶体管的外延结构及其制备方法
CN113555431A (zh) 基于P型GaN漏电隔离层的同质外延氮化镓高电子迁移率晶体管及制作方法
CN115799332B (zh) 一种极性硅基高电子迁移率晶体管及其制备方法
CN114855273B (zh) 一种外延片制备方法、外延片以及发光二极管
JP2004289005A (ja) エピタキシャル基板、半導体素子および高電子移動度トランジスタ
CN111009579A (zh) 半导体异质结构及半导体器件
WO2023070428A1 (zh) 集成电路、其制备方法、功率放大器及电子设备
CN112750689A (zh) 镓极性面氮化镓材料及同质外延生长方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210504