[go: up one dir, main page]

CN113284839B - A diamond crystal heterogeneous bonding method and heterogeneous structure - Google Patents

A diamond crystal heterogeneous bonding method and heterogeneous structure Download PDF

Info

Publication number
CN113284839B
CN113284839B CN202110557868.1A CN202110557868A CN113284839B CN 113284839 B CN113284839 B CN 113284839B CN 202110557868 A CN202110557868 A CN 202110557868A CN 113284839 B CN113284839 B CN 113284839B
Authority
CN
China
Prior art keywords
bonding
diamond crystal
bonded
medium layer
bonding medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110557868.1A
Other languages
Chinese (zh)
Other versions
CN113284839A (en
Inventor
欧欣
周李平
伊艾伦
游天桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN202110557868.1A priority Critical patent/CN113284839B/en
Publication of CN113284839A publication Critical patent/CN113284839A/en
Application granted granted Critical
Publication of CN113284839B publication Critical patent/CN113284839B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/201Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates the substrates comprising an insulating layer on a semiconductor body, e.g. SOI

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

The application relates to the technical field of semiconductors, and discloses a heterogeneous bonding method and a heterogeneous structure of a diamond crystal. According to the heterogeneous bonding method provided by the application, the bonding medium layer is introduced on the surface of the diamond crystal, and then hydrophilic bonding or SAB bonding and other bonding methods can be adopted, so that the defects that the diamond crystal is not easy to polish and bond are overcome, and the bonding method has the advantages of flexible bonding and high bonding strength.

Description

一种钻石晶体的异质键合方法及异质结构A diamond crystal heterogeneous bonding method and heterogeneous structure

技术领域Technical Field

本发明涉及半导体技术领域,特别涉及一种钻石晶体的异质键合方法及异质结构。The invention relates to the field of semiconductor technology, and in particular to a diamond crystal heterogeneous bonding method and a heterogeneous structure.

背景技术Background technique

钻石具有超宽的禁带(Eg≈5.5eV),在室温下展现出非常高的电子迁移率和空穴迁移率、优于4H-SiC和GaN的击穿场强,因此,钻石作为半导体在电子器件领域是一种潜力巨大的材料,可适用于高频场效应管、高功率器件,具备代替传统高功率真空管的可能性;另外钻石2200Wm-1K-1的热导率几乎比其他材料高出一个数量级,更确立了其在高功率领域的应用,还适合用作高功率器件的衬底来实现高效散热;单晶钻石的化学性质相当稳定并且莫氏硬度为10,基于钻石制备的器件能应对各种极端环境。Diamond has an ultra-wide bandgap (Eg≈5.5eV), and exhibits very high electron mobility and hole mobility at room temperature, and a breakdown field strength that is superior to 4H-SiC and GaN. Therefore, as a semiconductor, diamond is a material with great potential in the field of electronic devices. It can be applied to high-frequency field-effect transistors and high-power devices, and has the potential to replace traditional high-power vacuum tubes. In addition, the thermal conductivity of diamond at 2200Wm-1K-1 is almost an order of magnitude higher than that of other materials, which further establishes its application in the high-power field. It is also suitable for use as a substrate for high-power devices to achieve efficient heat dissipation. The chemical properties of single crystal diamond are quite stable and its Mohs hardness is 10. Devices made based on diamond can cope with various extreme environments.

除此之外,钻石还是一个优秀的光学平台,在可见光至红外波段的超宽区域具有高透射率,尤其在近红外波段突破了传统硅光子学的瓶颈;相对较高的折射率(2.38)能与传统波导包层形成有效折射率差,实现有效光波传输;不俗的非线性光学效应使其在参数振荡和拉曼激光方向上极具前途;杨氏模量为1220GPa,能提供很高的微谐振器机械共振频率,实现光共振模式与机械共振模式的高效耦合。In addition, diamond is an excellent optical platform with high transmittance in an ultra-wide range from visible light to infrared bands, especially in the near-infrared band, breaking through the bottleneck of traditional silicon photonics; the relatively high refractive index (2.38) can form an effective refractive index difference with the traditional waveguide cladding to achieve effective light wave transmission; the excellent nonlinear optical effect makes it very promising in the direction of parameter oscillation and Raman laser; the Young's modulus is 1220GPa, which can provide a very high mechanical resonance frequency of the microresonator and achieve efficient coupling of the optical resonance mode and the mechanical resonance mode.

然而现有技术中,由于在异质衬底上外延的钻石缺陷多,限制了钻石晶体在电子学和光量子学领域的应用。However, in the prior art, the application of diamond crystals in the fields of electronics and photonics is limited due to the large number of defects in diamond epitaxially grown on foreign substrates.

发明内容Summary of the invention

本发明要解决的是上述现有技术中不能实现在异质衬底上制备出合格的钻石晶体的技术问题。The present invention aims to solve the technical problem that the above-mentioned prior art cannot realize the preparation of qualified diamond crystals on a foreign substrate.

为解决上述技术问题,本申请在一方面公开了一种钻石晶体的异质键合方法,其特征在于,包括以下步骤:In order to solve the above technical problems, the present application discloses, on one hand, a diamond crystal heterogeneous bonding method, characterized in that it comprises the following steps:

对钻石晶体进行清洁处理;Cleaning of diamond crystals;

在清洁后的该钻石晶体的表面外延生长第一键合介质层,得到待键合钻石晶体结构;epitaxially growing a first bonding medium layer on the surface of the cleaned diamond crystal to obtain a diamond crystal structure to be bonded;

提供一待键合衬底;Providing a substrate to be bonded;

将该待键合钻石晶体和该待键合衬底进行键合,得到异质结构;该第一键合介质层与该待键合衬底键合连接。The diamond crystal to be bonded and the substrate to be bonded are bonded to obtain a heterostructure; the first bonding medium layer is bonded to the substrate to be bonded.

可选的,该在清洁后的该钻石晶体的表面外延生长第一键合介质层,得到待键合钻石晶体结构之后,还包括:Optionally, after epitaxially growing a first bonding medium layer on the surface of the cleaned diamond crystal to obtain a diamond crystal structure to be bonded, the method further comprises:

对该待键合钻石晶体结构进行第一退火处理;Performing a first annealing treatment on the diamond crystal structure to be bonded;

该第一退火处理的温度为300℃-800℃;The temperature of the first annealing treatment is 300°C-800°C;

该第一退火处理的氛围包括真空、氩气或者氮气。The first annealing process may be performed in an atmosphere of vacuum, argon or nitrogen.

可选的,该清洁处理的方法为有机溶液清洗、RCA清洗和等离子体处理中的一种或者多种。Optionally, the cleaning method is one or more of organic solution cleaning, RCA cleaning and plasma treatment.

可选的,该在清洁后的该钻石晶体的表面外延生长第一键合介质层,得到待键合钻石晶体结构之后,还包括:Optionally, after epitaxially growing a first bonding medium layer on the surface of the cleaned diamond crystal to obtain a diamond crystal structure to be bonded, the method further comprises:

对该待键合钻石晶体结构进行表面处理;Performing surface treatment on the diamond crystal structure to be bonded;

该表面处理的方法包括化学机械抛光、低能粒子辐照、离子束掠入射抛光法或者反应离子束刻蚀。The surface treatment method includes chemical mechanical polishing, low energy particle irradiation, ion beam grazing incidence polishing or reactive ion beam etching.

可选的,该外延生长方法包括微波等离子体化学气相沉积法、热辅助化学气相沉积法、等离子增强化学气相沉积法和溅射法;Optionally, the epitaxial growth method includes microwave plasma chemical vapor deposition, thermally assisted chemical vapor deposition, plasma enhanced chemical vapor deposition and sputtering;

该第一键合介质层的厚度为1纳米-5微米;The thickness of the first bonding medium layer is 1 nanometer to 5 micrometers;

该第一键合介质层的材料包括二氧化硅、氮化硅、氧化铝或者纳米硅。The material of the first bonding dielectric layer includes silicon dioxide, silicon nitride, aluminum oxide or nano silicon.

可选的,该该待键合钻石晶体和该待键合衬底进行键合,得到异质结构之后,还包括:Optionally, after the diamond crystal to be bonded and the substrate to be bonded are bonded to obtain a heterostructure, the method further includes:

对该异质结构进行第二退火处理。The heterostructure is subjected to a second annealing treatment.

可选的,该键合的方法包括表面活化(SAB)键合和亲水性键合;Optionally, the bonding method includes surface activated (SAB) bonding and hydrophilic bonding;

该键合的温度范围为20℃-800℃;The temperature range of this bonding is 20°C-800°C;

该键合的氛围包括真空、常温常压或者氮气气氛。The bonding atmosphere includes vacuum, normal temperature and pressure, or nitrogen atmosphere.

可选的,提供一待键合衬底,包括:Optionally, a substrate to be bonded is provided, comprising:

提供一衬底;providing a substrate;

在该衬底的表面形成该第二键合介质层;forming the second bonding dielectric layer on the surface of the substrate;

该第一键合介质层与该第二键合介质层键合连接。The first bonding medium layer is bonded to the second bonding medium layer.

可选的,该衬底的材料包括硅、绝缘体上硅(SOI)、蓝宝石、碳化硅、绝缘体上碳化硅(SiCOI)和氮化铝;Optionally, the material of the substrate includes silicon, silicon on insulator (SOI), sapphire, silicon carbide, silicon carbide on insulator (SiCOI) and aluminum nitride;

该第二键合介质层的材料包括二氧化硅、氮化硅、氧化铝或者纳米硅。The material of the second bonding dielectric layer includes silicon dioxide, silicon nitride, aluminum oxide or nano silicon.

本申请在另一方面还公开了一种异质结构,其特征在于,包括衬底、键合介质层和钻石晶体;The present application also discloses a heterostructure in another aspect, characterized in that it includes a substrate, a bonding medium layer and a diamond crystal;

该衬底的顶部设有该键合介质层;The bonding medium layer is provided on the top of the substrate;

该键合介质层的顶部设有该钻石晶体;The diamond crystal is disposed on the top of the bonding medium layer;

该键合介质层分别与该衬底、该钻石晶体键合连接。The bonding medium layer is bonded to the substrate and the diamond crystal respectively.

采用上述技术方案,本申请提供的钻石晶体的异质键合方法具有如下有益效果:By adopting the above technical solution, the heterogeneous bonding method of diamond crystals provided in this application has the following beneficial effects:

本申请提供的该方法通过在钻石晶体表面引入键合介质层,继而可以采用亲水键合或者SAB键合等键合方法,绕过了钻石晶体不易抛光和键合的缺点,上述键合方法具有键合简单以及键合强度高的优点,最终形成的异质结构也为后续钻石晶体发展集成光子学、量子信息学和高功率器件等应用提供了材料基础。The method provided in the present application introduces a bonding medium layer on the surface of the diamond crystal, and then a bonding method such as hydrophilic bonding or SAB bonding can be adopted, thereby bypassing the shortcomings of diamond crystals that are difficult to polish and bond. The above bonding method has the advantages of simple bonding and high bonding strength. The heterostructure finally formed also provides a material basis for the subsequent development of diamond crystals in integrated photonics, quantum information science, high-power devices and other applications.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application, the drawings required for use in the description of the embodiments will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present application. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying any creative work.

图1为本申请一种可选的钻石晶体的异质键合方法的流程图;FIG1 is a flow chart of an optional heterogeneous bonding method of diamond crystals according to the present application;

图2为本申请钻石晶体的异质键合方法的过程示意图;FIG2 is a schematic diagram of the process of the heterogeneous bonding method of diamond crystals of the present application;

图3为本申请另一种可选的钻石晶体的异质键合方法的流程图。FIG3 is a flow chart of another optional diamond crystal heterogeneous bonding method of the present application.

以下对附图作补充说明:The following is a supplementary description of the attached drawings:

1-待键合钻石晶体结构;11-钻石晶体;12-第一键合介质层;2-待键合衬底;21-衬底;22-第二键合介质层;3-异质结构。1-diamond crystal structure to be bonded; 11-diamond crystal; 12-first bonding medium layer; 2-substrate to be bonded; 21-substrate; 22-second bonding medium layer; 3-heterostructure.

具体实施方式Detailed ways

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。除非另有限定,本文使用的所有技术以及科学术语具有与本发明所属领域普通技术人员通常理解的相同的含义。当存在矛盾时,以本说明书中的定义为准。The technical solutions in the embodiments of the present application will be clearly and completely described below in conjunction with the drawings in the embodiments of the present application. Obviously, the described embodiments are only a part of the embodiments of the present application, rather than all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by ordinary technicians in the field without making creative work belong to the scope of protection of this application. Unless otherwise specified, all technical and scientific terms used herein have the same meanings as those generally understood by ordinary technicians in the field to which the present invention belongs. When there is a contradiction, the definition in this specification shall prevail.

此处所称的“一个实施例”或“实施例”是指可包含于本申请至少一个实现方式中的特定特征、结构或特性。在本申请的描述中,需要理解的是,术语“上”、“下”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含的包括一个或者更多个该特征。而且,术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。The term "one embodiment" or "embodiment" as used herein refers to a specific feature, structure or characteristic that may be included in at least one implementation of the present application. In the description of the present application, it should be understood that the orientation or positional relationship indicated by the terms "upper", "lower", "top", "bottom", etc. is based on the orientation or positional relationship shown in the accompanying drawings, which is only for the convenience of describing the present application and simplifying the description, rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation of the present application. In addition, the terms "first" and "second" are used only for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, the features defined as "first" and "second" may include one or more of the features explicitly or implicitly. Moreover, the terms "first", "second", etc. are used to distinguish similar objects, and are not necessarily used to describe a specific order or sequence. It should be understood that the data used in this way can be interchangeable where appropriate, so that the embodiments of the present application described here can be implemented in an order other than those illustrated or described here.

当本文中公开一个数值范围时,上述范围视为连续,且包括该范围的最小值及最大值,以及这种最小值与最大值之间的每一个值。进一步地,当范围是指整数时,包括该范围的最小值与最大值之间的每一个整数。此外,当提供多个范围描述特征或特性时,可以合并该范围。换言之,除非另有指明,否则本文中所公开之所有范围应理解为包括其中所归入的任何及所有的子范围。例如,从“1至10”的指定范围应视为包括最小值1与最大值10之间的任何及所有的子范围。范围1至10的示例性子范围包括但不限于1至6.1、3.5至7.8、5.5至10等。When a numerical range is disclosed herein, the above range is considered to be continuous and includes the minimum and maximum values of the range, as well as each value between such minimum and maximum values. Further, when a range refers to an integer, each integer between the minimum and maximum values of the range is included. In addition, when multiple ranges are provided to describe features or characteristics, the ranges can be merged. In other words, unless otherwise indicated, all ranges disclosed herein should be understood to include any and all sub-ranges included therein. For example, a specified range from "1 to 10" should be considered to include any and all sub-ranges between a minimum of 1 and a maximum of 10. Exemplary sub-ranges of ranges 1 to 10 include, but are not limited to, 1 to 6.1, 3.5 to 7.8, 5.5 to 10, etc.

为了更好地说明本申请提供该异质键合方法,以下将先对现有技术中存在的问题进行说明,钻石作为第三代半导体材料,具有许多较为优异的材料性能,例如超宽的禁带、较高的热导率以及对可见光至红外波段的超宽区域具有高透射率,从而使得其可以应用于电子学以及光量子学中;但由于钻石晶体的晶格失配与热失配问题,使得在异质衬底上直接外延的钻石缺陷多,晶体质量不完美,严重限制钻石在电子学和光量子学领域的应用。In order to better illustrate the heterogeneous bonding method provided by the present application, the problems existing in the prior art will be explained below. Diamond, as a third-generation semiconductor material, has many relatively excellent material properties, such as ultra-wide bandgap, high thermal conductivity and high transmittance in an ultra-wide region from visible light to infrared band, so that it can be used in electronics and photonics; but due to the lattice mismatch and thermal mismatch problems of diamond crystals, the diamond directly epitaxially grown on a foreign substrate has many defects and the crystal quality is imperfect, which seriously limits the application of diamond in the fields of electronics and photonics.

想要促进钻石在上述应用中的不断发展,这使得实现钻石的异质集成至关重要。基于此,本申请在一方面公开了一种钻石晶体的异质键合方法,其特征在于,参阅图1-2,图1为本申请一种可选的钻石晶体的异质键合方法的流程图;图2为本申请钻石晶体的异质键合方法的过程示意图。包括以下步骤:In order to promote the continuous development of diamond in the above applications, it is essential to realize the heterogeneous integration of diamond. Based on this, the present application discloses a heterogeneous bonding method of diamond crystals, characterized in that, referring to Figures 1-2, Figure 1 is a flow chart of an optional heterogeneous bonding method of diamond crystals in the present application; Figure 2 is a process schematic diagram of the heterogeneous bonding method of diamond crystals in the present application. It includes the following steps:

S1O1:对钻石晶体11进行清洁处理;从而能够提高钻石晶体表面的洁净度,从而能够增加钻石晶体11与后续材料的键合强度。S1O1: Cleaning the diamond crystal 11; thereby improving the cleanliness of the surface of the diamond crystal, thereby increasing the bonding strength between the diamond crystal 11 and subsequent materials.

可选的,该钻石晶体11可以单晶体,也可以是多晶体。Optionally, the diamond crystal 11 may be a single crystal or a polycrystalline crystal.

于一种可选的实施例中,该清洁处理的方法为有机溶液清洗、RCA清洗和等离子体处理中的一种或者多种;可选的,该有机溶液清洗中采用的有机溶剂包括丙酮、异丙醇、硫酸双氧水混合(SPM)溶液和甲基丙烯酸羟丙酯(Hydroxypropyl methacrylate,HPM)溶液等,从而可以达到清洗钻石晶体表面有机污染物的效果;其中,采用SPM溶液可以清洗有机颗粒和表面有机官能团,采用HPM溶液可以清洗金属污染,采用等离子体处理钻石晶体11,可以改变其表面的悬挂官能团,尤其提高C-OH的比例,从而进一步提高其与后续外延生成的第一键合介质层12的结合强度。In an optional embodiment, the cleaning method is one or more of organic solution cleaning, RCA cleaning and plasma treatment; optionally, the organic solvent used in the organic solution cleaning includes acetone, isopropyl alcohol, sulfuric acid and hydrogen peroxide mixture (SPM) solution and hydroxypropyl methacrylate (HPM) solution, etc., so as to achieve the effect of cleaning organic pollutants on the surface of the diamond crystal; wherein, the SPM solution can be used to clean organic particles and surface organic functional groups, the HPM solution can be used to clean metal pollution, and the plasma treatment of the diamond crystal 11 can change the suspended functional groups on its surface, especially increase the proportion of C-OH, thereby further improving its bonding strength with the first bonding medium layer 12 generated by subsequent epitaxy.

S1O2:在清洁后的该钻石晶体11的表面外延生长第一键合介质层12,得到待键合钻石晶体结构1。S1O2: epitaxially grow a first bonding medium layer 12 on the surface of the cleaned diamond crystal 11 to obtain a diamond crystal structure 1 to be bonded.

于一种可选的实施例中,该外延生长方法包括但不限于微波等离子体化学气相沉积法(MPCVD)、热辅助化学气相沉积法(HFCVD)、等离子增强化学气相沉积法(PECVD)、原子层沉积法(ALD)和溅射法;该第一键合介质层12的厚度为1纳米-5微米;该第一键合介质层12的材料包括但不限于二氧化硅、氮化硅、氧化铝或者纳米硅。In an optional embodiment, the epitaxial growth method includes but is not limited to microwave plasma chemical vapor deposition (MPCVD), heat-assisted chemical vapor deposition (HFCVD), plasma enhanced chemical vapor deposition (PECVD), atomic layer deposition (ALD) and sputtering; the thickness of the first bonding medium layer 12 is 1 nanometer-5 microns; the material of the first bonding medium layer 12 includes but is not limited to silicon dioxide, silicon nitride, aluminum oxide or nano-silicon.

S1O3:提供一待键合衬底2。S1O3: Provide a substrate 2 to be bonded.

S1O4:将该待键合钻石晶体11和该待键合衬底2进行键合,得到异质结构3;该第一键合介质层12与该待键合衬底2键合连接。S1O4: The diamond crystal 11 to be bonded and the substrate 2 to be bonded are bonded to obtain a heterostructure 3; the first bonding medium layer 12 is bonded to the substrate 2 to be bonded.

于一种可选的实施例中,上述待键合钻石晶体结构1与待键合衬底2的键合方法包括表面活化(SAB)键合和亲水性键合;该键合的温度范围为20℃-800℃;该键合的氛围包括真空、常温常压或者氮气气氛。In an optional embodiment, the bonding method of the above-mentioned diamond crystal structure 1 to be bonded and the substrate 2 to be bonded includes surface activated (SAB) bonding and hydrophilic bonding; the bonding temperature range is 20°C-800°C; the bonding atmosphere includes vacuum, normal temperature and pressure or nitrogen atmosphere.

由上述步骤S101-S104可知,该方法通过在钻石晶体表面引入键合介质层,继而可以采用亲水键合或者SAB键合等键合方法,绕过了钻石晶体不易抛光和键合的缺点,上述键合方法具有键合简单以及键合强度高的优点。It can be seen from the above steps S101-S104 that this method introduces a bonding medium layer on the surface of the diamond crystal, and then adopts a bonding method such as hydrophilic bonding or SAB bonding, thereby bypassing the shortcomings of diamond crystals that are difficult to polish and bond. The above bonding method has the advantages of simple bonding and high bonding strength.

于一种可选的实施例中,为了促进钻石晶体11与第一键合介质层12的键合过程,上述步骤S102之后,还包括:对该待键合钻石晶体结构1进行第一退火处理;该第一退火处理的温度为300℃-800℃;该第一退火处理的氛围包括真空、氩气或者氮气。In an optional embodiment, in order to promote the bonding process between the diamond crystal 11 and the first bonding medium layer 12, after the above step S102, it also includes: performing a first annealing treatment on the diamond crystal structure 1 to be bonded; the temperature of the first annealing treatment is 300°C-800°C; the atmosphere of the first annealing treatment includes vacuum, argon or nitrogen.

于一种可选的实施例中,为了让待键合钻石晶体结构1的表面粗糙度满足键合条件,该条件一般为表面粗糙度Rq<0.5nm,进而提高键合强度,上述步骤S102之后,还包括:对该待键合钻石晶体结构1进行表面处理;该表面处理的方法包括但不限于化学机械抛光(CMP)、低能粒子辐照、离子束掠入射抛光法或者反应离子束刻蚀(RIE)。In an optional embodiment, in order to make the surface roughness of the diamond crystal structure 1 to be bonded meet the bonding condition, which is generally the surface roughness Rq<0.5nm, and thus improve the bonding strength, after the above step S102, it also includes: surface treatment of the diamond crystal structure 1 to be bonded; the surface treatment method includes but is not limited to chemical mechanical polishing (CMP), low-energy particle irradiation, ion beam grazing incidence polishing or reactive ion beam etching (RIE).

于一种可选的实施例中,为了提高该异质结构内的键合强度,该步骤S104之后,该方法还包括:对该异质结构3进行第二退火处理。In an optional embodiment, in order to improve the bonding strength within the heterostructure, after step S104, the method further includes: performing a second annealing treatment on the heterostructure 3.

于一种可选的实施例中,参阅图3,图3为本申请另一种可选的钻石晶体的异质键合方法的流程图。上述步骤S103可以包括:In an optional embodiment, refer to FIG3 , which is a flow chart of another optional diamond crystal heterogeneous bonding method of the present application. The above step S103 may include:

S1031:提供一衬底21。S1031: Provide a substrate 21.

S1032:在该衬底21的表面形成该第二键合介质层22;该第一键合介质层12与该第二键合介质层22键合连接,有利于形成与钻石晶体11较强的键合。S1032 : forming the second bonding medium layer 22 on the surface of the substrate 21 ; the first bonding medium layer 12 is bonded to the second bonding medium layer 22 , which is conducive to forming a stronger bond with the diamond crystal 11 .

于一种可选的实施例中,该衬底21的材料包括但不限于硅、绝缘体上硅(SOI)、蓝宝石、碳化硅、绝缘体上碳化硅(SiCOI)和氮化铝;该第二键合介质层22的材料包括但不限于二氧化硅、氮化硅、氧化铝或者纳米硅。In an optional embodiment, the material of the substrate 21 includes but is not limited to silicon, silicon on insulator (SOI), sapphire, silicon carbide, silicon carbide on insulator (SiCOI) and aluminum nitride; the material of the second bonding dielectric layer 22 includes but is not limited to silicon dioxide, silicon nitride, aluminum oxide or nano-silicon.

本申请在另一方面还公开了一种异质结构3,其特征在于,包括衬底21、键合介质层和钻石晶体11;该衬底21的顶部设有该键合介质层;该键合介质层的顶部设有该钻石晶体11;该键合介质层分别与该衬底21、该钻石晶体11键合连接。On the other hand, the present application also discloses a heterostructure 3, characterized in that it includes a substrate 21, a bonding medium layer and a diamond crystal 11; the bonding medium layer is provided on the top of the substrate 21; the diamond crystal 11 is provided on the top of the bonding medium layer; the bonding medium layer is bonded to the substrate 21 and the diamond crystal 11 respectively.

可选的,该键合介质层包括键合连接的第一键合介质层12和第二键合介质层22;该第一键合介质层12与钻石晶体11键合连接,该第二键合介质层22与衬底21键合连接。Optionally, the bonding dielectric layer includes a first bonding dielectric layer 12 and a second bonding dielectric layer 22 that are bonded to each other; the first bonding dielectric layer 12 is bonded to the diamond crystal 11 , and the second bonding dielectric layer 22 is bonded to the substrate 21 .

需要说明的是,本实施例中的衬底21、第一键合介质层12、第二键合介质层22的材料以及厚度可参考上述的描述,在此不再赘述。It should be noted that the materials and thicknesses of the substrate 21 , the first bonding dielectric layer 12 , and the second bonding dielectric layer 22 in this embodiment can refer to the above description, which will not be repeated here.

综上所述,本申请提供了一种对钻石晶体11进行异质键合的方法,用于实现钻石晶体11的高强度键合。这种方法通过对钻石晶体11的一系列表面处理方法,加强了钻石晶体11与第一键合介质层12之间的相互作用,既实现了钻石晶体11的异质键合,还保证了键合强度足够高,后续还可以通过对钻石晶体表面等离子激活后在表面外延第一键合介质层12,并进行退火加固,使该第一键合介质层12与钻石晶体表面形成更加牢固的连接;在钻石晶体表面引入第一键合介质层12,采用不同的第一键合介质层12材料可分别实现亲水性键合和SAB键合等键合方法,这种键合方法为钻石晶体11键合提供了一条比较简单高效的方法,绕过了钻石晶体11不易抛光和键合的缺点,基于上述方法得到的异质结构3为后续钻石晶体11发展集成光子学、量子信息学和高功率器件等应用提供了材料基础。In summary, the present application provides a method for heterogeneous bonding of diamond crystal 11, which is used to achieve high-strength bonding of diamond crystal 11. This method strengthens the interaction between diamond crystal 11 and first bonding medium layer 12 through a series of surface treatment methods for diamond crystal 11, which not only achieves heterogeneous bonding of diamond crystal 11, but also ensures that the bonding strength is high enough. Subsequently, the first bonding medium layer 12 can be epitaxially grown on the surface after plasma activation of the diamond crystal surface, and annealing and reinforcement can be performed to form a more solid connection between the first bonding medium layer 12 and the diamond crystal surface; the first bonding medium layer 12 is introduced on the surface of the diamond crystal, and different first bonding medium layer 12 materials can be used to respectively achieve bonding methods such as hydrophilic bonding and SAB bonding. This bonding method provides a relatively simple and efficient method for bonding diamond crystal 11, bypassing the disadvantages of diamond crystal 11 being difficult to polish and bond. The heterostructure 3 obtained based on the above method provides a material basis for the subsequent development of integrated photonics, quantum information science, and high-power devices for diamond crystal 11.

为了更好地体现本申请的方案以及有益效果,以下以具体实施例进行描述:In order to better reflect the scheme and beneficial effects of the present application, the following is a description of specific embodiments:

本申请对钻石晶体11进行异质键合的方法的具体步骤如下:1)提供一钻石晶体11,对钻石表面依次进行丙酮溶液、无水乙醇溶液、SPM溶液和HPM溶液清洗;2)再对上述清洗后的钻石晶体表面进行氧等离子体激活处理;3)对上述氧等离子体激活处理的钻石晶体表面利用PECVD方法外延一层500nm的二氧化硅,得到待键合钻石晶体结构1,该二氧化硅即为第一键合介质层12;4)将待键合钻石晶体结构1放置在退火炉中进行第一退火处理,该第一退火处理为高温退火;5)对所述退火后的钻石晶体表面的第一键合介质层12进行表面处理,使表面粗糙度降至能键的程度;6)提供一表面粗糙度足够低的硅片作为衬底21,并通过热氧化工艺在表面形成一层500nm的二氧化硅,得到待键合衬底2,该二氧化硅即为第二键合介质层22;7)将所述钻石晶体表面的第一键合介质层12与硅片表面的第二键合介质层22进行亲水性键合,得到异质结构3;8)将所述异质结构3放置于退火炉中进行第二退火处理,该第二退火也为高温退火,提高键合强度。The specific steps of the method for heterogeneous bonding of diamond crystal 11 in the present application are as follows: 1) providing a diamond crystal 11, and cleaning the surface of the diamond with acetone solution, anhydrous ethanol solution, SPM solution and HPM solution in sequence; 2) performing oxygen plasma activation treatment on the surface of the diamond crystal after the cleaning; 3) epitaxially growing a 500nm layer of silicon dioxide on the surface of the diamond crystal after the oxygen plasma activation by using the PECVD method to obtain a diamond crystal structure 1 to be bonded, and the silicon dioxide is the first bonding medium layer 12; 4) placing the diamond crystal structure 1 to be bonded in an annealing furnace for a first annealing treatment, and the first annealing treatment is a high temperature annealing ; 5) Surface treatment is performed on the first bonding medium layer 12 on the surface of the annealed diamond crystal to reduce the surface roughness to a bonding level; 6) A silicon wafer with a sufficiently low surface roughness is provided as a substrate 21, and a 500nm layer of silicon dioxide is formed on the surface through a thermal oxidation process to obtain a substrate 2 to be bonded, and the silicon dioxide is the second bonding medium layer 22; 7) The first bonding medium layer 12 on the surface of the diamond crystal is hydrophilically bonded with the second bonding medium layer 22 on the surface of the silicon wafer to obtain a heterostructure 3; 8) The heterostructure 3 is placed in an annealing furnace for a second annealing treatment, and the second annealing is also a high-temperature annealing to improve the bonding strength.

在本实施例中,该第一键合介质层12可以是二氧化硅、氧化铝或者氮化硅。In this embodiment, the first bonding dielectric layer 12 may be silicon dioxide, aluminum oxide or silicon nitride.

在本实施例中,上述表面处理方法为化学机械抛光法,可选的,还可以采用反应离子刻蚀法(RIE)或者离子束掠入射抛光法来对第一键合介质层12进行表面处理,以减低表面粗糙度。In this embodiment, the surface treatment method is chemical mechanical polishing. Optionally, reactive ion etching (RIE) or ion beam grazing incidence polishing may be used to perform surface treatment on the first bonding medium layer 12 to reduce surface roughness.

在本实施例中,第一退火处理的条件为:采用氮气氛围、500℃条件退火2h。In this embodiment, the first annealing treatment is performed under the conditions of: annealing at 500° C. for 2 h in a nitrogen atmosphere.

需要说明的是,在上述方法中,使用丙酮和无水乙醇对钻石晶体表面清洗主要是为了清洗表面的有机物污染,也可以选择异丙醇等具有溶解有机物的溶液;使用SPM溶液可以进一步清洗钻石晶体表面的难溶有机颗粒,清除钻石晶体表面的有机官能团并增加氢氧根(-OH)悬挂键,使用HPM溶液可以清洗剩余的金属颗粒;上述使用氧等离子体对钻石晶体表面进行激活处理,进一步且更有效地去除钻石晶体表面的有机悬挂键并增加氢氧根悬挂键,极大的提高钻石晶体表面的亲水性。It should be noted that, in the above method, acetone and anhydrous ethanol are used to clean the surface of the diamond crystal mainly to clean the organic pollution on the surface, and solutions such as isopropanol that can dissolve organic matter can also be selected; the use of SPM solution can further clean the insoluble organic particles on the surface of the diamond crystal, remove the organic functional groups on the surface of the diamond crystal and increase the hydroxyl (-OH) hanging bonds, and the use of HPM solution can clean the remaining metal particles; the above-mentioned use of oxygen plasma to activate the surface of the diamond crystal can further and more effectively remove the organic hanging bonds on the surface of the diamond crystal and increase the hydroxyl hanging bonds, greatly improving the hydrophilicity of the surface of the diamond crystal.

上述第一退火处理可以促进PECVD形成的二氧化硅与钻石晶体11接触界面处的氢氧根的脱水反应,形成Si-O-C键,进而可以增强异质连结强度,提高结构稳定性,利于后续的工艺处理。The first annealing treatment can promote the dehydration reaction of hydroxyl groups at the contact interface between the silicon dioxide formed by PECVD and the diamond crystal 11 to form Si-O-C bonds, thereby enhancing the strength of the heterojunction and improving the structural stability, which is beneficial to subsequent process treatments.

上述对待键合晶体结构与待键合衬底2的键合方法,可以根据第一键合介质和第二键合介质的材料选择相应的键合方式,例如亲水性键合和SAB键合,本实施例中第一键合介质和第二键合介质均为二氧化硅,故,优选的,采用亲水性键合。The above-mentioned bonding method for the bonded crystal structure and the bonded substrate 2 can select corresponding bonding methods according to the materials of the first bonding medium and the second bonding medium, such as hydrophilic bonding and SAB bonding. In this embodiment, the first bonding medium and the second bonding medium are both silicon dioxide, so preferably, hydrophilic bonding is adopted.

以上所述仅为本申请可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above description is only an optional embodiment of the present application and is not intended to limit the present application. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the present application should be included in the protection scope of the present application.

Claims (7)

1.一种钻石晶体的异质键合方法,其特征在于,包括以下步骤:1. A diamond crystal heterogeneous bonding method, characterized in that it comprises the following steps: 对钻石晶体(11)进行清洁处理,所述清洁处理的方法为有机溶液清洗、RCA清洗和等离子体处理;所述有机溶液清洗中采用的有机溶剂包括丙酮、异丙醇、硫酸双氧水混合溶液和甲基丙烯酸羟丙酯溶液;The diamond crystal (11) is cleaned by organic solution cleaning, RCA cleaning and plasma treatment; the organic solvent used in the organic solution cleaning includes acetone, isopropyl alcohol, a sulfuric acid and hydrogen peroxide mixed solution and a hydroxypropyl methacrylate solution; 在清洁后的所述钻石晶体(11)的表面外延生长第一键合介质层(12),得到待键合钻石晶体结构(1);epitaxially growing a first bonding medium layer (12) on the surface of the cleaned diamond crystal (11) to obtain a diamond crystal structure (1) to be bonded; 提供一待键合衬底(2),包括:A substrate to be bonded (2) is provided, comprising: 提供一衬底(21),在所述衬底(21)的表面形成第二键合介质层(22),所述第一键合介质层(12)与所述第二键合介质层(22)键合连接;A substrate (21) is provided, a second bonding medium layer (22) is formed on a surface of the substrate (21), and the first bonding medium layer (12) is bonded to the second bonding medium layer (22); 将所述待键合钻石晶体(11)和所述待键合衬底(2)进行键合,得到异质结构(3);所述第一键合介质层(12)与所述待键合衬底(2)键合连接;The diamond crystal to be bonded (11) and the substrate to be bonded (2) are bonded to obtain a heterostructure (3); the first bonding medium layer (12) is bonded to the substrate to be bonded (2); 所述键合的方法包括表面活化(SAB)键合和亲水性键合;The bonding methods include surface activated (SAB) bonding and hydrophilic bonding; 所述键合的温度范围为20℃-800℃;The bonding temperature range is 20°C-800°C; 所述键合的氛围包括真空、常温常压或者氮气气氛。The bonding atmosphere includes vacuum, normal temperature and pressure, or nitrogen atmosphere. 2.根据权利要求1所述的钻石晶体的异质键合方法,其特征在于,所述在清洁后的所述钻石晶体(11)的表面外延生长第一键合介质层(12),得到待键合钻石晶体结构(1)之后,还包括:2. The diamond crystal heterogeneous bonding method according to claim 1 is characterized in that after epitaxially growing a first bonding medium layer (12) on the surface of the cleaned diamond crystal (11) to obtain the diamond crystal structure (1) to be bonded, the method further comprises: 对所述待键合钻石晶体结构(1)进行第一退火处理;Performing a first annealing treatment on the diamond crystal structure (1) to be bonded; 所述第一退火处理的温度为300℃-800℃;The temperature of the first annealing treatment is 300°C-800°C; 所述第一退火处理的氛围包括真空、氩气或者氮气。The first annealing treatment is performed in an atmosphere including vacuum, argon or nitrogen. 3.根据权利要求1所述的钻石晶体的异质键合方法,其特征在于,所述在清洁后的所述钻石晶体(11)的表面外延生长第一键合介质层(12),得到待键合钻石晶体结构(1)之后,还包括:3. The diamond crystal heterogeneous bonding method according to claim 1 is characterized in that after epitaxially growing a first bonding medium layer (12) on the surface of the cleaned diamond crystal (11) to obtain the diamond crystal structure (1) to be bonded, the method further comprises: 对所述待键合钻石晶体结构(1)进行表面处理;Performing surface treatment on the diamond crystal structure (1) to be bonded; 所述表面处理的方法包括化学机械抛光(chemical mechanical polishing,CMP)、低能粒子辐照、离子束掠入射抛光法或者反应离子束刻蚀。The surface treatment method includes chemical mechanical polishing (CMP), low-energy particle irradiation, ion beam grazing incidence polishing or reactive ion beam etching. 4.根据权利要求1所述的钻石晶体的异质键合方法,其特征在于,所述外延生长方法包括微波等离子体化学气相沉积法、热辅助化学气相沉积法、等离子增强化学气相沉积法、原子层沉积法和溅射法;4. The diamond crystal heterogeneous bonding method according to claim 1, characterized in that the epitaxial growth method comprises microwave plasma chemical vapor deposition, thermally assisted chemical vapor deposition, plasma enhanced chemical vapor deposition, atomic layer deposition and sputtering; 所述第一键合介质层(12)的厚度为1纳米-5微米;The thickness of the first bonding medium layer (12) is 1 nanometer to 5 micrometers; 所述第一键合介质层(12)的材料包括二氧化硅、氮化硅、氧化铝或者纳米硅。The material of the first bonding medium layer (12) includes silicon dioxide, silicon nitride, aluminum oxide or nano silicon. 5.根据权利要求1所述的钻石晶体的异质键合方法,其特征在于,所述待键合钻石晶体(11)和所述待键合衬底(2)进行键合,得到异质结构(3)之后,还包括:5. The diamond crystal heterogeneous bonding method according to claim 1, characterized in that after the diamond crystal (11) to be bonded and the substrate (2) to be bonded are bonded to obtain a heterogeneous structure (3), the method further comprises: 对所述异质结构(3)进行第二退火处理。The heterostructure (3) is subjected to a second annealing treatment. 6.根据权利要求1所述的钻石晶体的异质键合方法,其特征在于,所述衬底(21)的材料包括硅、绝缘体上硅(SOI)、蓝宝石、碳化硅、绝缘体上碳化硅(SiCOI)和氮化铝;6. The heterogeneous bonding method of diamond crystal according to claim 1, characterized in that the material of the substrate (21) comprises silicon, silicon on insulator (SOI), sapphire, silicon carbide, silicon carbide on insulator (SiCOI) and aluminum nitride; 所述第二键合介质层(22)的材料包括二氧化硅、氮化硅、氧化铝或者纳米硅。The material of the second bonding medium layer (22) includes silicon dioxide, silicon nitride, aluminum oxide or nano silicon. 7.一种异质结构,其特征在于,利用权利要求1~6中任一项所述的钻石晶体的异质键合方法得到,包括衬底(21)、键合介质层和钻石晶体(11);7. A heterostructure, characterized in that it is obtained by the heterogeneous bonding method of diamond crystals according to any one of claims 1 to 6, comprising a substrate (21), a bonding medium layer and a diamond crystal (11); 所述衬底(21)的顶部设有所述键合介质层;The bonding medium layer is provided on the top of the substrate (21); 所述键合介质层的顶部设有所述钻石晶体(11);The diamond crystal (11) is arranged on the top of the bonding medium layer; 所述键合介质层分别与所述衬底(21)、所述钻石晶体(11)键合连接;The bonding medium layer is bonded to the substrate (21) and the diamond crystal (11) respectively; 所述键合介质层包括键合连接的第一键合介质层(12)和第二键合介质层(22);所述第一键合介质层(12)与钻石晶体(11)键合连接,所述第二键合介质层(22)与衬底(21)键合连接;The bonding medium layer comprises a first bonding medium layer (12) and a second bonding medium layer (22) which are bonded to each other; the first bonding medium layer (12) is bonded to the diamond crystal (11), and the second bonding medium layer (22) is bonded to the substrate (21); 所述钻石晶体表面的第一键合介质层(12)与第二键合介质层(22)进行亲水性键合或者SAB键合,得到异质结构(3)。The first bonding medium layer (12) and the second bonding medium layer (22) on the surface of the diamond crystal are subjected to hydrophilic bonding or SAB bonding to obtain a heterogeneous structure (3).
CN202110557868.1A 2021-05-21 2021-05-21 A diamond crystal heterogeneous bonding method and heterogeneous structure Active CN113284839B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110557868.1A CN113284839B (en) 2021-05-21 2021-05-21 A diamond crystal heterogeneous bonding method and heterogeneous structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110557868.1A CN113284839B (en) 2021-05-21 2021-05-21 A diamond crystal heterogeneous bonding method and heterogeneous structure

Publications (2)

Publication Number Publication Date
CN113284839A CN113284839A (en) 2021-08-20
CN113284839B true CN113284839B (en) 2024-07-02

Family

ID=77280640

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110557868.1A Active CN113284839B (en) 2021-05-21 2021-05-21 A diamond crystal heterogeneous bonding method and heterogeneous structure

Country Status (1)

Country Link
CN (1) CN113284839B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114460685A (en) * 2022-01-30 2022-05-10 上海图灵智算量子科技有限公司 Optical unit, chip and manufacturing method thereof
CN114497322A (en) * 2022-03-31 2022-05-13 江西兆驰半导体有限公司 A method of fabricating a flip-chip structure
CN115098431A (en) * 2022-05-27 2022-09-23 北京奕斯伟计算技术股份有限公司 Processor, method for allocating shared cache and device therefor
CN115573032B (en) * 2022-10-18 2024-06-21 北京科技大学 Method for synthesizing large-size single crystal diamond in assembled mode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110970363A (en) * 2019-05-31 2020-04-07 中国科学院上海微系统与信息技术研究所 A kind of preparation method of heterogeneous integrated single crystal diamond thin film
CN111370321A (en) * 2020-02-07 2020-07-03 中国科学院微电子研究所 Substrate bonding method, three-dimensional integrated substrate and circuit, electronic device and chip
CN112018025A (en) * 2019-05-31 2020-12-01 中国科学院上海微系统与信息技术研究所 Preparation method of III-V group compound semiconductor heterojunction structure

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212401A (en) * 1991-07-25 1993-05-18 Kobe Steel Usa, Inc. High temperature rectifying contact
US6323108B1 (en) * 1999-07-27 2001-11-27 The United States Of America As Represented By The Secretary Of The Navy Fabrication ultra-thin bonded semiconductor layers
CN1385906A (en) * 2002-05-24 2002-12-18 中国科学院上海微系统与信息技术研究所 Generalized semiconductor film material on isolator and preparation method thereof
FR2921200B1 (en) * 2007-09-18 2009-12-18 Centre Nat Rech Scient EPITAXIC MONOLITHIC SEMICONDUCTOR HETEROSTRUCTURES AND PROCESS FOR THEIR MANUFACTURE
CN101807626A (en) * 2010-03-17 2010-08-18 中国科学院半导体研究所 GaAs/InP chip low-temperature direct bonding method for multi-junction solar cell
CN202815365U (en) * 2012-07-26 2013-03-20 福建华科光电有限公司 Acousto-optic modulator
CN103794467A (en) * 2014-02-21 2014-05-14 上海超硅半导体有限公司 Recycle method for thin silicon wafers
CN106711027B (en) * 2017-02-13 2021-01-05 中国科学院上海微系统与信息技术研究所 Wafer bonding method and heterogeneous substrate preparation method
CN109786229B (en) * 2018-12-05 2021-07-02 中北大学 A wafer bonding method and a corresponding method for preparing a heterogeneous substrate
CN111383914B (en) * 2018-12-28 2021-03-19 中国科学院上海微系统与信息技术研究所 Adjustment method and post-processing method of warpage degree of heterobonded structure
CN109904064A (en) * 2019-01-21 2019-06-18 中国航空工业集团公司北京长城航空测控技术研究所 A method for improving the direct bonding strength of silicon carbide
CN109860049B (en) * 2019-03-22 2020-10-09 西安交通大学 Heterogeneous integration method for diamond-based gallium nitride high-electron-mobility transistor
CN111799368B (en) * 2020-06-29 2021-06-22 中国科学院上海微系统与信息技术研究所 Preparation method of heterostructure film with reduced thermal stress of film peeling
CN111962148A (en) * 2020-08-04 2020-11-20 中国科学院上海微系统与信息技术研究所 Preparation method of single crystal diamond film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110970363A (en) * 2019-05-31 2020-04-07 中国科学院上海微系统与信息技术研究所 A kind of preparation method of heterogeneous integrated single crystal diamond thin film
CN112018025A (en) * 2019-05-31 2020-12-01 中国科学院上海微系统与信息技术研究所 Preparation method of III-V group compound semiconductor heterojunction structure
CN111370321A (en) * 2020-02-07 2020-07-03 中国科学院微电子研究所 Substrate bonding method, three-dimensional integrated substrate and circuit, electronic device and chip

Also Published As

Publication number Publication date
CN113284839A (en) 2021-08-20

Similar Documents

Publication Publication Date Title
CN113284839B (en) A diamond crystal heterogeneous bonding method and heterogeneous structure
US6328796B1 (en) Single-crystal material on non-single-crystalline substrate
WO2000044966A1 (en) Single-crystal material on non-single-crystalline substrate
CN111540684A (en) Microelectronic device of diamond-based heterogeneous integrated gallium nitride thin film and transistor and preparation method thereof
JP2001274090A (en) Semiconductor substrate manufacturing method
CN111681946B (en) Preparation method of gallium nitride single crystal substrate
CN107634734A (en) Surface acoustic wave resonator, filter and manufacturing method thereof
CN110211880B (en) Manufacturing method of diamond-based gallium nitride HEMT structure
US20020035960A1 (en) Silicon carbide film and method for manufacturing the same
CN101866860B (en) A kind of preparation method of ZnO thin film field effect transistor
CN110164766A (en) A kind of gallium nitride device and preparation method thereof based on diamond substrate
CN112382665A (en) Gallium oxide-based MOSFET device and manufacturing method thereof
CN111540710A (en) A kind of preparation method of high thermal conductivity gallium nitride high power HEMT device
CN118039466B (en) Composite substrate with Si-doped diamond modification layer and semiconductor device
CN110875170A (en) Method for remotely epitaxially growing hafnium disulfide based on boron nitride intermediate layer
US6475456B2 (en) Silicon carbide film and method for manufacturing the same
CN116247017B (en) A method for preparing a diamond substrate sp3-sp2 hybrid bonding network layer and its application
CN113555497B (en) SiC-based graphene device with high mobility and preparation method thereof
CN112864006B (en) A kind of preparation method of semiconductor substrate
CN114695148A (en) Silicon and lithium niobate heterogeneous bonding method of silicon-based optoelectronic device
CN106505095B (en) Composite substrate, preparation method thereof and epitaxial wafer
TW202223177A (en) Composite substrate structure and method for manufacturing the same
CN111962148A (en) Preparation method of single crystal diamond film
CN116819805B (en) A method for preparing a light modulator based on silicon carbide carriers and a light modulator
WO2020019312A1 (en) Multi-layer composite semiconductor substrate structure and method for preparing same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant