CN112018025A - Preparation method of III-V group compound semiconductor heterojunction structure - Google Patents
Preparation method of III-V group compound semiconductor heterojunction structure Download PDFInfo
- Publication number
- CN112018025A CN112018025A CN201910471852.1A CN201910471852A CN112018025A CN 112018025 A CN112018025 A CN 112018025A CN 201910471852 A CN201910471852 A CN 201910471852A CN 112018025 A CN112018025 A CN 112018025A
- Authority
- CN
- China
- Prior art keywords
- compound semiconductor
- dielectric layer
- aluminum oxide
- iii
- bonding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76251—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
技术领域technical field
本发明属于异质衬底制备技术领域,特别是涉及一种Ⅲ-Ⅴ族化合物半导体异质键合结构的制备方法。The invention belongs to the technical field of preparation of heterogeneous substrates, and particularly relates to a preparation method of a III-V group compound semiconductor hetero-bonded structure.
背景技术Background technique
近些年,硅光领域有着重要的突破性进展,不同种硅基光学器件不断涌现,这使得硅基光系统在未来信息处理和交流方面起到重要作用,特别是在数据中心和超级计算机方面。In recent years, there have been important breakthroughs in the field of silicon photonics, and various silicon-based optical devices have been emerging, which makes silicon-based photonics systems play an important role in future information processing and communication, especially in data centers and supercomputers. .
但是,由于硅是间接带隙半导体,导致它不能成为一个有效的光发射材料,而大部分Ⅲ-Ⅴ族化合物半导体材料是直接带隙半导体材料,是很好的制备光学器件的材料。为了实现硅基光系统,主要方法有两种,一种是在硅衬底上直接外延生长Ⅲ-Ⅴ族化合物半导体材料,制备光学器件,另一种是将制备出的Ⅲ-Ⅴ族光学器件直接与硅衬底结合,无论哪种方法都需要实现Ⅲ-Ⅴ族化合物半导体材料同硅衬底的异质集成,这也是目前硅基光系统最大的挑战。由于Ⅲ-Ⅴ族化合物半导体和硅之间存在很大的晶格失配和热失配,导致在硅衬底上异质外延生长Ⅲ-Ⅴ族化合物半导体时,会出现较多的位错,很难实现高质量Ⅲ-Ⅴ族化合物半导体同硅衬底的异质集成,从而降低后期器件的性能和可靠性。键合技术的出现,使将Ⅲ-Ⅴ族化合物半导体材料同硅等异质材料结合成为可能。键合技术是指将两片原子级平整表面的衬底片的表面相接触,在整个界面处形成化学键,随后通过高温退火来加强键合强度。将两种异质材料衬底键合在一起后,通过研磨减薄、化学机械抛光或者离子束剥离技术可以实现薄膜异质材料的集成。之后又发展出芯片到晶圆的键合技术,即将制备好的器件与异质衬底键合来实现集成。However, because silicon is an indirect band gap semiconductor, it cannot be an effective light emitting material, while most III-V compound semiconductor materials are direct band gap semiconductor materials, which are very good materials for preparing optical devices. In order to realize the silicon-based optical system, there are two main methods, one is to directly epitaxially grow III-V compound semiconductor materials on a silicon substrate to prepare optical devices, and the other is to prepare the III-V group optical devices. No matter which method is directly combined with the silicon substrate, it is necessary to realize the heterogeneous integration of III-V compound semiconductor materials with the silicon substrate, which is also the biggest challenge of the current silicon-based optical system. Due to the large lattice mismatch and thermal mismatch between III-V compound semiconductors and silicon, more dislocations will occur when III-V compound semiconductors are heteroepitaxially grown on silicon substrates. It is difficult to achieve hetero-integration of high-quality III-V compound semiconductors with silicon substrates, thereby reducing the performance and reliability of late-stage devices. The advent of bonding technology has made it possible to combine III-V compound semiconductor materials with heterogeneous materials such as silicon. The bonding technology refers to contacting the surfaces of two atomically flat substrate sheets, forming chemical bonds at the entire interface, and then strengthening the bonding strength through high temperature annealing. After bonding the two heterogeneous material substrates together, the integration of thin film heterogeneous materials can be achieved by grinding thinning, chemical mechanical polishing or ion beam lift-off techniques. Later, the chip-to-wafer bonding technology was developed, that is, the prepared device is bonded to a heterogeneous substrate to achieve integration.
但是,无论是异质材料通过键合直接集成还是器件通过芯片到晶圆的键合集成,都存在热失配和键合界面气泡的问题。大的热失配会导致晶圆碎裂或者解键合,同时,键合过程在界面产生的气泡也会影响键合强度和键合界面的质量,从而降低集成器件的性能和可靠性。However, whether it is the direct integration of dissimilar materials through bonding or the integration of devices through chip-to-wafer bonding, there are problems of thermal mismatch and bonding interface bubbles. Large thermal mismatch can lead to wafer fragmentation or debonding, and at the same time, the air bubbles generated at the interface during the bonding process will also affect the bonding strength and the quality of the bonding interface, thereby reducing the performance and reliability of integrated devices.
因此,提供一种Ⅲ-Ⅴ族化合物半导体异质键合结构的制备方法,以解决现有技术中的上述问题实属必要。Therefore, it is necessary to provide a method for preparing a III-V compound semiconductor hetero-bonded structure to solve the above problems in the prior art.
发明内容SUMMARY OF THE INVENTION
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种Ⅲ-Ⅴ族化合物半导体异质键合结构的制备方法,用于解决现有技术中Ⅲ-Ⅴ族化合物半导体与异质衬底键合的键合强度低及键合界面的质量差等的问题。In view of the above-mentioned shortcomings of the prior art, the purpose of the present invention is to provide a method for preparing a III-V compound semiconductor hetero-bonded structure, which is used to solve the problem of the III-V compound semiconductor and the hetero liner in the prior art. Problems such as low bonding strength of bottom bonding and poor quality of bonding interface.
为实现上述目的及其他相关目的,本发明提供一种Ⅲ-Ⅴ族化合物半导体异质键合结构的制备方法,所述制备方法至少包括步骤:In order to achieve the above object and other related objects, the present invention provides a preparation method of a III-V compound semiconductor hetero-bonded structure, and the preparation method at least comprises the steps:
提供单晶Ⅲ-Ⅴ族化合物半导体基底和异质支撑衬底,且所述单晶Ⅲ-Ⅴ族化合物半导体基底具有第一键合面,所述异质支撑衬底具有第二键合面;A single crystal III-V compound semiconductor substrate and a heterogeneous supporting substrate are provided, wherein the single crystal III-V compound semiconductor substrate has a first bonding surface, and the heterogeneous supporting substrate has a second bonding surface;
于所述第一键合面上形成第一氧化铝介质层,于所述第二键合面上形成第二氧化铝介质层;forming a first aluminum oxide dielectric layer on the first bonding surface, and forming a second aluminum oxide dielectric layer on the second bonding surface;
将所述第一氧化铝介质层与所述第二氧化铝介质层进行键合。Bonding the first aluminum oxide dielectric layer and the second aluminum oxide dielectric layer.
可选地,所述单晶Ⅲ-Ⅴ族化合物半导体基底的材料包括由磷化铟、砷化镓、锑化镓、锑化铟、砷化铟及氮化镓构成的群组中的一种。Optionally, the material of the single crystal III-V compound semiconductor substrate includes one selected from the group consisting of indium phosphide, gallium arsenide, gallium antimonide, indium antimonide, indium arsenide and gallium nitride .
可选地,所述异质支撑衬底的材料包括由硅、氧化硅、锗、碳化硅、砷化镓构成的群组中的一种。Optionally, the material of the heterogeneous support substrate includes one selected from the group consisting of silicon, silicon oxide, germanium, silicon carbide, and gallium arsenide.
可选地,采用原子层沉积、磁控溅射沉积或化学气相沉积方法形成所述第一氧化铝介质层,采用原子层沉积、磁控溅射沉积或化学气相沉积方法形成所述第二氧化铝介质层。Optionally, the first alumina dielectric layer is formed by atomic layer deposition, magnetron sputtering deposition or chemical vapor deposition, and the second oxide layer is formed by atomic layer deposition, magnetron sputtering deposition or chemical vapor deposition. Aluminum dielectric layer.
可选地,所述第一氧化铝介质层的厚度介于2nm~100nm之间,所述第二氧化铝介质层的厚度介于2nm~100nm之间。Optionally, the thickness of the first aluminum oxide dielectric layer is between 2 nm and 100 nm, and the thickness of the second aluminum oxide dielectric layer is between 2 nm and 100 nm.
可选地,将所述第一氧化铝介质层与所述第二氧化铝介质层进行键合之后还包括对所述单晶Ⅲ-Ⅴ族化合物半导体基底和/或所述异质支撑衬底进行减薄处理。Optionally, after the first aluminum oxide dielectric layer and the second aluminum oxide dielectric layer are bonded, the method further includes bonding the single crystal III-V compound semiconductor substrate and/or the heterogeneous supporting substrate. Thinning is performed.
可选地,所述异质支撑衬底包括单晶异质支撑衬底。Optionally, the heterogeneous support substrate comprises a single crystal heterogeneous support substrate.
可选地,于所述第一键合面上形成所述第一氧化铝介质层之前还包括自所述第一键合面对所述单晶Ⅲ-Ⅴ族化合物半导体基底进行离子注入,以于所述单晶Ⅲ-Ⅴ族化合物半导体基底内的预设深度处形成缺陷层;将所述第一氧化铝介质层与所述第二氧化铝介质层进行键合之后还包括沿所述缺陷层剥离部分所述单晶Ⅲ-Ⅴ族化合物半导体基底,以在所述异质支撑衬底上形成薄层结构。Optionally, before forming the first aluminum oxide dielectric layer on the first bonding surface, the method further includes performing ion implantation on the single crystal III-V compound semiconductor substrate from the first bonding surface, so as to forming a defect layer at a predetermined depth in the single-crystal III-V compound semiconductor substrate; after bonding the first aluminum oxide dielectric layer and the second aluminum oxide dielectric layer, further comprising along the defect The layer peels off a portion of the single crystal III-V compound semiconductor substrate to form a thin layer structure on the hetero support substrate.
进一步地,沿所述缺陷层剥离部分所述单晶Ⅲ-Ⅴ族化合物半导体基底的方法包括将形成有所述缺陷层的所述单晶Ⅲ-Ⅴ族化合物半导体基底进行退火处理。Further, the method for peeling off a portion of the single crystal group III-V compound semiconductor substrate along the defect layer includes annealing the single crystal group III-V compound semiconductor substrate on which the defect layer is formed.
可选地,所述单晶Ⅲ-Ⅴ族化合物半导体基底中形成有器件结构,所述第一键合界面的材料为单晶Ⅲ-Ⅴ族化合物。Optionally, a device structure is formed in the single crystal III-V compound semiconductor substrate, and the material of the first bonding interface is a single crystal III-V compound.
如上所述,本发明的Ⅲ-Ⅴ族化合物半导体异质键合结构的制备方法,包括:提供单晶Ⅲ-Ⅴ族化合物半导体基底和异质支撑衬底,且所述单晶Ⅲ-Ⅴ族化合物半导体基底具有第一键合面,所述异质支撑衬底具有第二键合面;于所述第一键合面上形成第一氧化铝介质层,于所述第二键合面上形成第二氧化铝介质层;将所述第一氧化铝介质层与所述第二氧化铝介质层进行键合。由于氧化铝薄膜的表面能很高,可以在低温键合条件下得到很高的键合质量,而且氧化铝薄膜是非晶态材料,对水分子具有很好的吸收性和透过性,可以有效的排除键合过程中在键合界面产生的气体,因此,本发明通过在单晶Ⅲ-Ⅴ族化合物半导体基底及异质支撑衬底上形成氧化铝介质层实现单晶Ⅲ-Ⅴ族化合物半导体与异质衬底的键合,可以实现高的键合强度、键合界面无泡的高质量键合界面。As described above, the preparation method of the III-V group compound semiconductor heterobonded structure of the present invention includes: providing a single-crystal III-V group compound semiconductor substrate and a heterogeneous supporting substrate, and the single-crystal III-V group compound semiconductor substrate is provided. The compound semiconductor substrate has a first bonding surface, and the heterogeneous supporting substrate has a second bonding surface; a first aluminum oxide dielectric layer is formed on the first bonding surface, and a first aluminum oxide dielectric layer is formed on the second bonding surface forming a second aluminum oxide dielectric layer; bonding the first aluminum oxide dielectric layer and the second aluminum oxide dielectric layer. Due to the high surface energy of the aluminum oxide film, high bonding quality can be obtained under low temperature bonding conditions, and the aluminum oxide film is an amorphous material, which has good absorption and permeability for water molecules, and can effectively Therefore, the present invention realizes the single crystal III-V compound semiconductor by forming an alumina dielectric layer on the single crystal III-V compound semiconductor substrate and the heterogeneous support substrate. Bonding with a heterogeneous substrate can achieve high bonding strength and a high-quality bonding interface with no bubbles at the bonding interface.
附图说明Description of drawings
图1显示为本发明的Ⅲ-Ⅴ族化合物半导体异质键合结构的制备方法的流程示意图。FIG. 1 is a schematic flow chart of the preparation method of the III-V compound semiconductor hetero-bonded structure of the present invention.
图2~图5显示为实施例一的Ⅲ-Ⅴ族化合物半导体异质键合结构的制备方法中各步骤对应的结构示意图示意图。2 to 5 are schematic structural diagrams corresponding to each step in the preparation method of the III-V group compound semiconductor hetero-bonded structure according to the first embodiment.
图6~图9显示为实施例二的Ⅲ-Ⅴ族化合物半导体异质键合结构的制备方法中各步骤对应的结构示意图示意图。6 to 9 are schematic diagrams showing the structures corresponding to each step in the preparation method of the III-V group compound semiconductor hetero-bonded structure according to the second embodiment.
图10~图13显示为实施例三的Ⅲ-Ⅴ族化合物半导体异质键合结构的制备方法中各步骤对应的结构示意图示意图。10 to 13 are schematic diagrams showing the structures corresponding to each step in the preparation method of the III-V group compound semiconductor hetero-bonded structure of the third embodiment.
元件标号说明Component label description
11 单晶Ⅲ-Ⅴ族化合物半导体基底11 Single crystal III-V compound semiconductor substrate
110 部分单晶Ⅲ-Ⅴ族化合物半导体基底110 Partial single crystal III-V compound semiconductor substrates
111 剩余单晶Ⅲ-Ⅴ族化合物半导体基底111 Remaining single crystal III-V compound semiconductor substrate
12 异质支撑衬底12 Heterogeneous support substrate
13 第一键合面13 The first bonding surface
14 第二键合面14 Second bonding surface
15 第一氧化铝介质层15 The first aluminum oxide dielectric layer
16 第二氧化铝介质层16 The second aluminum oxide dielectric layer
17 缺陷层17 Defective layer
18 器件结构18 Device Structure
D1 第一氧化铝介质层的厚度D1 Thickness of the first aluminum oxide dielectric layer
D2 第二氧化铝介质层的厚度D2 Thickness of the second aluminum oxide dielectric layer
S1~S3 步骤S1~S3 steps
具体实施方式Detailed ways
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。The embodiments of the present invention are described below through specific specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification. The present invention can also be implemented or applied through other different specific embodiments, and various details in this specification can also be modified or changed based on different viewpoints and applications without departing from the spirit of the present invention.
请参阅图1~图13。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。Please refer to Figure 1 to Figure 13. It should be noted that the diagrams provided in this embodiment are only to illustrate the basic concept of the present invention in a schematic way, so the diagrams only show the components related to the present invention rather than the number, shape and the number of components in the actual implementation. For dimension drawing, the type, quantity and proportion of each component can be changed at will in actual implementation, and the component layout may also be more complicated.
如图1所示,本发明提供一种Ⅲ-Ⅴ族化合物半导体异质键合结构的制备方法,所述制备方法至少包括步骤:As shown in FIG. 1 , the present invention provides a method for preparing a III-V compound semiconductor hetero-bonded structure, the preparation method at least comprising the steps of:
步骤S1:提供单晶Ⅲ-Ⅴ族化合物半导体基底和异质支撑衬底,且所述单晶Ⅲ-Ⅴ族化合物半导体基底具有第一键合面,所述异质支撑衬底具有第二键合面;Step S1: providing a single crystal III-V compound semiconductor substrate and a heterogeneous supporting substrate, wherein the single crystal III-V compound semiconductor substrate has a first bonding surface, and the heterogeneous supporting substrate has a second bonding face;
步骤S2:于所述第一键合面上形成第一氧化铝介质层,于所述第二键合面上形成第二氧化铝介质层;Step S2: forming a first aluminum oxide dielectric layer on the first bonding surface, and forming a second aluminum oxide dielectric layer on the second bonding surface;
步骤S3:将所述第一氧化铝介质层与所述第二氧化铝介质层进行键合。Step S3: bonding the first aluminum oxide dielectric layer and the second aluminum oxide dielectric layer.
由于氧化铝薄膜的表面能很高,可以在低温键合条件下得到很高的键合质量,而且氧化铝薄膜是非晶态材料,对水分子具有很好的吸收性和透过性,可以有效的排除键合过程中在键合界面产生的气体,因此,本发明通过在单晶Ⅲ-Ⅴ族化合物半导体基底及异质支撑衬底上形成氧化铝介质层实现单晶Ⅲ-Ⅴ族化合物半导体与异质衬底的键合,可以实现高的键合强度、键合界面无泡的高质量键合界面。Due to the high surface energy of the aluminum oxide film, high bonding quality can be obtained under low temperature bonding conditions, and the aluminum oxide film is an amorphous material, which has good absorption and permeability for water molecules, and can effectively Therefore, the present invention realizes the single crystal III-V compound semiconductor by forming an alumina dielectric layer on the single crystal III-V compound semiconductor substrate and the heterogeneous support substrate. Bonding with a heterogeneous substrate can achieve high bonding strength and a high-quality bonding interface with no bubbles at the bonding interface.
作为示例,所述单晶Ⅲ-Ⅴ族化合物半导体基底的材料可以为现有已知的单晶Ⅲ-Ⅴ族化合物半导体中的任一种,譬如,磷化铟、砷化镓、锑化镓、锑化铟、砷化铟或氮化镓等。As an example, the material of the single crystal group III-V compound semiconductor substrate may be any of the known single crystal group III-V compound semiconductors, such as indium phosphide, gallium arsenide, gallium antimonide , indium antimonide, indium arsenide or gallium nitride, etc.
作为示例,所述异质支撑衬底作为后续键合后所述单晶Ⅲ-Ⅴ族化合物半导体基底的支撑衬底,所述异质支撑衬底的材料可以为现有已知的适合用作支撑衬底的任一材料,譬如,硅、氧化硅、锗、碳化硅或砷化镓等。所述异质支撑衬底也可以为单晶异质支撑衬底。As an example, the heterogeneous supporting substrate is used as a supporting substrate for the single crystal III-V compound semiconductor substrate after subsequent bonding, and the material of the heterogeneous supporting substrate can be any known material suitable for use as Any material of the support substrate, for example, silicon, silicon oxide, germanium, silicon carbide, or gallium arsenide. The hetero support substrate may also be a single crystal hetero support substrate.
作为示例,可以采用原子层沉积、磁控溅射沉积或化学气相沉积等沉积方法形成所述第一氧化铝介质层;可以采用原子层沉积、磁控溅射沉积或化学气相沉积等沉积方法形成所述第二氧化铝介质层。As an example, the first aluminum oxide dielectric layer can be formed by deposition methods such as atomic layer deposition, magnetron sputtering deposition, or chemical vapor deposition; it can be formed by deposition methods such as atomic layer deposition, magnetron sputtering deposition, or chemical vapor deposition. the second aluminum oxide dielectric layer.
作为示例,所述第一氧化铝介质层的厚度介于2nm~100nm之间,例如,可以是10nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm或90nm。所述第二氧化铝介质层的厚度介于2nm~100nm之间,例如,可以是10nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm或90nm。As an example, the thickness of the first aluminum oxide dielectric layer is between 2 nm and 100 nm, for example, may be 10 nm, 20 nm, 30 nm, 40 nm, 50 nm, 60 nm, 70 nm, 80 nm or 90 nm. The thickness of the second aluminum oxide dielectric layer is between 2 nm and 100 nm, for example, may be 10 nm, 20 nm, 30 nm, 40 nm, 50 nm, 60 nm, 70 nm, 80 nm or 90 nm.
这里需要说明的是,将所述第一氧化铝介质层与所述第二氧化铝介质层进行键合后还可能需要对已形成的结构进行一些后续工艺处理,例如,根据不同的产品需求,可能会对所述单晶Ⅲ-Ⅴ族化合物半导体基底或所述异质支撑衬底进行减薄处理,也可能需要对所述单晶Ⅲ-Ⅴ族化合物半导体基底及所述异质支撑衬底均进行减薄处理。It should be noted here that after bonding the first aluminum oxide dielectric layer and the second aluminum oxide dielectric layer, it may be necessary to perform some subsequent processing on the formed structure, for example, according to different product requirements, The single crystal III-V compound semiconductor substrate or the heterogeneous supporting substrate may be subjected to a thinning process, and the single crystal III-V compound semiconductor substrate and the heterogeneous supporting substrate may also be required to be thinned All are thinned.
以下结合具体实施例进一步说明本发明的Ⅲ-Ⅴ族化合物半导体异质键合结构的制备方法。The preparation method of the III-V group compound semiconductor hetero-bonded structure of the present invention is further described below with reference to specific embodiments.
实施例一Example 1
如图1及图2所示,首先进行步骤S1,提供单晶Ⅲ-Ⅴ族化合物半导体基底11和异质支撑衬底12,且所述单晶Ⅲ-Ⅴ族化合物半导体基底11具有第一键合面13,所述异质支撑衬底12具有第二键合面14。As shown in FIG. 1 and FIG. 2 , step S1 is first performed to provide a single crystal III-V
这里需要说明的是,所述单晶Ⅲ-Ⅴ族化合物半导体基底11为单晶衬底片,其中并没有形成其他器件结构。It should be noted here that the single crystal III-V
如图1及图3所示,接着进行步骤S2,采用原子层沉积、磁控溅射沉积或化学气相沉积方法于所述第一键合面13上形成第一氧化铝介质层15,采用原子层沉积、磁控溅射沉积或化学气相沉积方法于所述第二键合面14上形成第二氧化铝介质层16。As shown in FIG. 1 and FIG. 3 , step S2 is performed next, and a first aluminum
作为示例,所述第一氧化铝介质层的厚度D1介于20nm~40nm之间,所述第二氧化铝介质层的厚度D2介于20nm~40nm之间。As an example, the thickness D1 of the first aluminum oxide dielectric layer is between 20 nm and 40 nm, and the thickness D2 of the second aluminum oxide dielectric layer is between 20 nm and 40 nm.
这里需要说明的是,所述第一氧化铝介质层15及所述第二氧化铝介质层16的形成不受顺序限制,可同时形成,也可先后形成,根据实际工艺情况进行选择。It should be noted here that the formation of the first aluminum
如图1及图4所示,进行步骤S3,将所述第一氧化铝介质层15与所述第二氧化铝介质层16进行键合。As shown in FIG. 1 and FIG. 4 , step S3 is performed to bond the first aluminum
如图5所示,将所述第一氧化铝介质层15与所述第二氧化铝介质层16键合后,还需要对所述单晶Ⅲ-Ⅴ族化合物半导体基底11和所述异质支撑衬底12进行研磨、抛光等工艺进行减薄。As shown in FIG. 5 , after the first aluminum
实施例二Embodiment 2
如图1及图2所示,首先进行步骤S1,提供单晶Ⅲ-Ⅴ族化合物半导体基底11和异质支撑衬底12,且所述单晶Ⅲ-Ⅴ族化合物半导体基底11具有第一键合面13,所述异质支撑衬底12具有第二键合面14。As shown in FIG. 1 and FIG. 2 , step S1 is first performed to provide a single crystal III-V
如图6所示,以所述第一键合面13为注入面,箭头表示离子注入方向,在所述单晶Ⅲ-Ⅴ族化合物半导体基底11内进行离子注入,以于所述单晶Ⅲ-Ⅴ族化合物半导体基底11的预设深度处形成缺陷层17,所述缺陷层17将所述单晶Ⅲ-Ⅴ族化合物半导体基底11分离为位于其上下两侧的剩余单晶Ⅲ-Ⅴ族化合物半导体基底111和部分单晶Ⅲ-Ⅴ族化合物半导体基底110。As shown in FIG. 6 , the
如图1及图7所示,接着进行步骤S2,采用原子层沉积、磁控溅射沉积或化学气相沉积方法于所述第一键合面13上形成第一氧化铝介质层15,采用原子层沉积、磁控溅射沉积或化学气相沉积方法于所述第二键合面14上形成第二氧化铝介质层16。As shown in FIG. 1 and FIG. 7 , step S2 is performed next, and a first aluminum
作为示例,所述第一氧化铝介质层的厚度D1介于50nm~70nm之间,所述第二氧化铝介质层的厚度D2介于50nm~70nm之间。As an example, the thickness D1 of the first aluminum oxide dielectric layer is between 50 nm and 70 nm, and the thickness D2 of the second aluminum oxide dielectric layer is between 50 nm and 70 nm.
如图1及图8所示,进行步骤S3,将所述第一氧化铝介质层15与所述第二氧化铝介质层16进行键合。As shown in FIG. 1 and FIG. 8 , step S3 is performed to bond the first aluminum
如图9所示,沿所述缺陷层17剥离部分所述单晶Ⅲ-Ⅴ族化合物半导体基底110,以在所述异质支撑衬底上留下剩余所述单晶Ⅲ-Ⅴ族化合物半导体基底111,从而形成薄层结构,实现利用离子束剥离技术将单晶Ⅲ-Ⅴ族化合物半导体薄层结构转移到所述异质支撑衬底12上。As shown in FIG. 9 , a portion of the single crystal Group III-V
作为示例,沿所述缺陷层17剥离所述部分单晶Ⅲ-Ⅴ族化合物半导体基底110的方法为:将形成有所述缺陷层17的所述单晶Ⅲ-Ⅴ族化合物半导体基底11进行退火处理,以实现所述部分单晶Ⅲ-Ⅴ族化合物半导体基底110沿所述缺陷层17剥离。As an example, the method of peeling off the part of the single crystal group III-V
实施例三Embodiment 3
如图1及图10所示,首先进行步骤S1,提供单晶Ⅲ-Ⅴ族化合物半导体基底11和异质支撑衬底12,且所述单晶Ⅲ-Ⅴ族化合物半导体基底11具有第一键合面13,所述异质支撑衬底12具有第二键合面14。这里需要说明的是,所述单晶Ⅲ-Ⅴ族化合物半导体基底11中形成有器件结构18,所述第一键合界面13的材料为单晶Ⅲ-Ⅴ族化合物。As shown in FIG. 1 and FIG. 10 , step S1 is first performed to provide a single crystal III-V
如图1及图11所示,接着进行步骤S2,采用原子层沉积、磁控溅射沉积或化学气相沉积方法于所述第一键合面13上形成第一氧化铝介质层15,采用原子层沉积、磁控溅射沉积或化学气相沉积方法于所述第二键合面14上形成第二氧化铝介质层16。As shown in FIG. 1 and FIG. 11 , step S2 is performed next, and a first aluminum
作为示例,所述第一氧化铝介质层的厚度D1介于80nm~100nm之间,所述第二氧化铝介质层的厚度D2介于80nm~100nm之间。As an example, the thickness D1 of the first aluminum oxide dielectric layer is between 80 nm and 100 nm, and the thickness D2 of the second aluminum oxide dielectric layer is between 80 nm and 100 nm.
如图1及图12所示,进行步骤S3,将所述第一氧化铝介质层15与所述第二氧化铝介质层16进行键合。As shown in FIG. 1 and FIG. 12 , step S3 is performed to bond the first aluminum
如图13所示,将所述第一氧化铝介质层15与所述第二氧化铝介质层16键合后,还需要对所述单晶Ⅲ-Ⅴ族化合物半导体基底11和所述异质支撑衬底12进行研磨、抛光等工艺进行减薄。As shown in FIG. 13 , after the first aluminum
综上所述,本发明提供一种Ⅲ-Ⅴ族化合物半导体异质键合结构的制备方法,包括:提供单晶Ⅲ-Ⅴ族化合物半导体基底和异质支撑衬底,且所述单晶Ⅲ-Ⅴ族化合物半导体基底具有第一键合面,所述异质支撑衬底具有第二键合面;于所述第一键合面上形成第一氧化铝介质层,于所述第二键合面上形成第二氧化铝介质层;将所述第一氧化铝介质层与所述第二氧化铝介质层进行键合。由于氧化铝薄膜的表面能很高,可以在低温键合条件下得到很高的键合质量,而且氧化铝薄膜是非晶态材料,对水分子具有很好的吸收性和透过性,可以有效的排除键合过程中在键合界面产生的气体,因此,本发明通过在单晶Ⅲ-Ⅴ族化合物半导体基底及异质支撑衬底上形成氧化铝介质层实现单晶Ⅲ-Ⅴ族化合物半导体与异质衬底的键合,可以实现高的键合强度、键合界面无泡的高质量键合界面。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。To sum up, the present invention provides a method for preparing a III-V group compound semiconductor hetero-bonded structure, including: providing a single crystal III-V group compound semiconductor substrate and a heterogeneous support substrate, and the single crystal III-V compound semiconductor substrate is provided. - The Group V compound semiconductor substrate has a first bonding surface, and the heterogeneous support substrate has a second bonding surface; a first aluminum oxide dielectric layer is formed on the first bonding surface, and a first aluminum oxide dielectric layer is formed on the second bonding surface A second aluminum oxide dielectric layer is formed on the joint surface; the first aluminum oxide dielectric layer and the second aluminum oxide dielectric layer are bonded. Due to the high surface energy of the aluminum oxide film, high bonding quality can be obtained under low temperature bonding conditions, and the aluminum oxide film is an amorphous material, which has good absorption and permeability for water molecules, and can effectively Therefore, the present invention realizes the single crystal III-V compound semiconductor by forming an alumina dielectric layer on the single crystal III-V compound semiconductor substrate and the heterogeneous support substrate. Bonding with a heterogeneous substrate can achieve high bonding strength and a high-quality bonding interface with no bubbles at the bonding interface. Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial application value.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments merely illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can make modifications or changes to the above embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those with ordinary knowledge in the technical field without departing from the spirit and technical idea disclosed in the present invention should still be covered by the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910471852.1A CN112018025A (en) | 2019-05-31 | 2019-05-31 | Preparation method of III-V group compound semiconductor heterojunction structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910471852.1A CN112018025A (en) | 2019-05-31 | 2019-05-31 | Preparation method of III-V group compound semiconductor heterojunction structure |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112018025A true CN112018025A (en) | 2020-12-01 |
Family
ID=73506811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910471852.1A Pending CN112018025A (en) | 2019-05-31 | 2019-05-31 | Preparation method of III-V group compound semiconductor heterojunction structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112018025A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113284839A (en) * | 2021-05-21 | 2021-08-20 | 中国科学院上海微系统与信息技术研究所 | Heterogeneous bonding method and heterogeneous structure of diamond crystals |
CN113380639A (en) * | 2021-05-26 | 2021-09-10 | 西安交通大学 | Atomic-level ion cleaning activation low-temperature bonding device and method |
CN115881622A (en) * | 2023-01-29 | 2023-03-31 | 合肥晶合集成电路股份有限公司 | Wafer bonding method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060076559A1 (en) * | 2003-07-24 | 2006-04-13 | Bruce Faure | Method of fabricating an epitaxially grown layer |
CN101005110A (en) * | 2007-01-12 | 2007-07-25 | 中国科学院上海微系统与信息技术研究所 | Method for realizing gallium nitride ELD vertical structure using metal bounding process |
CN101295753A (en) * | 2007-04-24 | 2008-10-29 | 中国科学院上海微系统与信息技术研究所 | Low Temperature Au-In-Au Bonding Method for III-V Compound Devices |
CN102623299A (en) * | 2011-01-31 | 2012-08-01 | 洲磊科技股份有限公司 | Method for manufacturing crystal grain for wafer bonding |
CN105895576A (en) * | 2016-07-06 | 2016-08-24 | 中国科学院上海微系统与信息技术研究所 | Method for preparing semiconductor material thick film by ion injection stripping |
-
2019
- 2019-05-31 CN CN201910471852.1A patent/CN112018025A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060076559A1 (en) * | 2003-07-24 | 2006-04-13 | Bruce Faure | Method of fabricating an epitaxially grown layer |
CN101005110A (en) * | 2007-01-12 | 2007-07-25 | 中国科学院上海微系统与信息技术研究所 | Method for realizing gallium nitride ELD vertical structure using metal bounding process |
CN101295753A (en) * | 2007-04-24 | 2008-10-29 | 中国科学院上海微系统与信息技术研究所 | Low Temperature Au-In-Au Bonding Method for III-V Compound Devices |
CN102623299A (en) * | 2011-01-31 | 2012-08-01 | 洲磊科技股份有限公司 | Method for manufacturing crystal grain for wafer bonding |
CN105895576A (en) * | 2016-07-06 | 2016-08-24 | 中国科学院上海微系统与信息技术研究所 | Method for preparing semiconductor material thick film by ion injection stripping |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113284839A (en) * | 2021-05-21 | 2021-08-20 | 中国科学院上海微系统与信息技术研究所 | Heterogeneous bonding method and heterogeneous structure of diamond crystals |
CN113284839B (en) * | 2021-05-21 | 2024-07-02 | 中国科学院上海微系统与信息技术研究所 | A diamond crystal heterogeneous bonding method and heterogeneous structure |
CN113380639A (en) * | 2021-05-26 | 2021-09-10 | 西安交通大学 | Atomic-level ion cleaning activation low-temperature bonding device and method |
CN115881622A (en) * | 2023-01-29 | 2023-03-31 | 合肥晶合集成电路股份有限公司 | Wafer bonding method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110534474B (en) | Preparation method of thin film on substrate | |
JP6938468B2 (en) | Systems and methods for graphene-based layer transfer | |
US10796905B2 (en) | Manufacture of group IIIA-nitride layers on semiconductor on insulator structures | |
Crnogorac et al. | Semiconductor crystal islands for three-dimensional integration | |
TWI709197B (en) | A method of manufacturing high resistivity semiconductor-on-insulator wafers with charge trapping layers | |
WO2018086380A1 (en) | Method for preparing large-sized iii-v heterogeneous substrate | |
KR100805469B1 (en) | In particular, a method for manufacturing a substrate for optical, electronic or optoelectronics, and a substrate by the method | |
US7939428B2 (en) | Methods for making substrates and substrates formed therefrom | |
JP6726180B2 (en) | High resistivity semiconductor-on-insulator wafer and manufacturing method | |
CN109860049B (en) | Heterogeneous integration method for diamond-based gallium nitride high-electron-mobility transistor | |
CN113097124B (en) | Preparation method of heterogeneous integrated GaN film and GaN device | |
CN105957831A (en) | Method for manufacturing monocrystal material thin layer structure on supporting substrate | |
TWI699832B (en) | A method of manufacturing silicon germanium-on-insulator | |
CN107195534B (en) | Ge composite substrate, substrate epitaxial structure and preparation method thereof | |
JP7689371B2 (en) | Epitaxial growth template using carbon buffer on sublimated SIC substrate | |
CN112018025A (en) | Preparation method of III-V group compound semiconductor heterojunction structure | |
CN109427538B (en) | A kind of preparation method of heterostructure | |
WO2015074478A1 (en) | Method for preparing low-warpage semiconductor substrate | |
CN111902571A (en) | Manufacturing method of AlN material single crystal layer and substrate for epitaxial growth of AlN material single crystal film | |
CN118471808A (en) | Preparation method of diamond-based gallium nitride HEMT device | |
US11976380B2 (en) | Method for manufacturing a monocrystalline layer of GaAs material and substrate for epitaxial growth of a monocrystalline layer of GaAs material | |
CN115206811A (en) | Heterojunction structure and preparation method | |
CN106449369B (en) | Semiconductor-on-insulator structure and method of fabrication | |
CN101615564A (en) | A Crack-Free Heteroepitaxial Growth Technology Based on Intermediate Grooving Process | |
CN106449663A (en) | Upper semiconductor structure of insulator and preparation method of upper semiconductor structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20201201 |
|
WD01 | Invention patent application deemed withdrawn after publication |