[go: up one dir, main page]

CN113164105B - 用于生理参数分析的方法、设备和系统 - Google Patents

用于生理参数分析的方法、设备和系统 Download PDF

Info

Publication number
CN113164105B
CN113164105B CN201980070041.9A CN201980070041A CN113164105B CN 113164105 B CN113164105 B CN 113164105B CN 201980070041 A CN201980070041 A CN 201980070041A CN 113164105 B CN113164105 B CN 113164105B
Authority
CN
China
Prior art keywords
processors
glucose
time period
glucose levels
physiological parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980070041.9A
Other languages
English (en)
Other versions
CN113164105A (zh
Inventor
徐勇进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Abbott Diabetes Care Co
Original Assignee
Abbott Diabetes Care Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abbott Diabetes Care Co filed Critical Abbott Diabetes Care Co
Priority to CN202411563210.1A priority Critical patent/CN119517401A/zh
Publication of CN113164105A publication Critical patent/CN113164105A/zh
Application granted granted Critical
Publication of CN113164105B publication Critical patent/CN113164105B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
    • A61B5/14503Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
    • A61B5/14546Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/414Evaluating particular organs or parts of the immune or lymphatic systems
    • A61B5/417Evaluating particular organs or parts of the immune or lymphatic systems the bone marrow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • A61B5/4839Diagnosis combined with treatment in closed-loop systems or methods combined with drug delivery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6832Means for maintaining contact with the body using adhesives
    • A61B5/6833Adhesive patches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/172Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • C12Q1/006Enzyme electrodes involving specific analytes or enzymes for glucose
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/66Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/72Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
    • G01N33/721Haemoglobin
    • G01N33/723Glycosylated haemoglobin
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/10ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
    • G16H20/17ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/60ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to nutrition control, e.g. diets
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/60Complex ways of combining multiple protein biomarkers for diagnosis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Chemical & Material Sciences (AREA)
  • Surgery (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Vascular Medicine (AREA)
  • Emergency Medicine (AREA)
  • Food Science & Technology (AREA)
  • Physiology (AREA)
  • Artificial Intelligence (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Psychiatry (AREA)
  • Computer Vision & Pattern Recognition (AREA)

Abstract

使用网织红细胞生产指数(RPI)值计算至少一种生理参数的方法包括:测量第一时间段内多个第一葡萄糖水平;测量对应于所述第一时间段结束时的第一糖化血红蛋白(HbA1c)水平;测量所述RPI值;基于所述RPI值计算红细胞消除常数(kage);和基于(1)所述多个第一葡萄糖水平、(2)所述第一HbA1c水平和(3)所述kage计算至少一种生理参数,其选自:红细胞糖化速率常数(kgly)、红细胞生成速率常数(kgen)和表观糖化常数(K)。此外,可以基于所述至少一种生理参数估计和/或调整一种或多种相关分析(例如个性化目标葡萄糖范围、个性化目标平均葡萄糖、cHbA1c等)。

Description

用于生理参数分析的方法、设备和系统
背景
对个体内各种分析物的测量有时对监测其健康状况是至关重要的。在哺乳动物(如人类)红细胞的正常循环过程中,葡萄糖分子与血红蛋白结合,这种血红蛋白称为糖基化血红蛋白(也称为糖化血红蛋白)。血液中葡萄糖含量越高,与葡萄糖分子结合的循环血红蛋白分子的百分比就越高。血糖控制不佳的糖尿病受试者的红细胞糖基化血红蛋白水平升高。由于在红细胞的生命周期中(通常不超过约120天)葡萄糖分子一直与血红蛋白结合,糖基化血红蛋白的水平反映了这个时间段内的平均血糖水平。
大多数血红蛋白的类型叫做HbA。当葡萄糖分子与HbA分子结合时形成被称为HbA1的糖基化HbA。HbA1具有三种成分:HbA1a、HbA1b和HbA1c。因为葡萄糖与HbA1c的结合比与HbA1a和HbA1b的结合更强并且程度更高,通常将血液中HbA1c的量度(HbA1c测试)用作120天的时间段(红细胞的平均生命周期)中受试者的平均血糖水平的指标。通过在医疗专业人员办公室抽取受试者的血样然后在实验中进行分析来进行HbA1c测试。HbA1c测试可用作前驱糖尿病和糖尿病的筛查和诊断测试。可在一个时间段内多次进行HbA1c测试来监测受试者的健康,以进行诊断和/或疗法决策。
市售的体外血糖测试条和体内传感器(及其相关设备和系统)提供各种程度测量频率的葡萄糖水平测量。这些设备还能够提供估计HbA1c(“eHbA1c”)值。尽管已知体外和体内传感器(及其相关设备和系统)是可靠且准确的,但是当已经比较了HbA1c值和eHbA1c值的时候,还是会观察到这两种测量的显著差异。依赖于静态模型、和/或宽泛的假设和/或不太稳健的数据,现有的eHbA1c方法和设备通常被认为不如HbA1c测试结果可靠。然而,HbA1c测定对受试者而言是不方便和不舒服的,受试者必须定期抽血进行HbA1c测试,然后等待结果。此外,受试者和医疗服务人员将受益于更准确的eHbA1c,这将使受试者及其医疗服务人员能够监测和应对eHbA1c的任何变化。因此,需要改进eHbA1c方法和设备。
附图的简要说明
本公开内容包括以下附图以说明本发明的某些方面,不应将附图视为排他性实施方案。在不脱离本公开内容的范围的情况下,所公开的主题能够在形式和功能上进行相当大的修改、改变、组合和等价物。
图1示出了实例时间线100,其示出了一个时间段内至少一个HbA1c值和多个葡萄糖水平的数据收集(collection)。
图2示出了根据本公开内容的一些实施方案的提供生理参数分析的生理参数分析系统的实例。
图3示出了根据本公开内容的一些实施方案的提供生理参数分析的生理参数分析系统的实例。
图4示出了计算HbA1c(cHbA1c)报告的实例,所述报告可作为根据本公开内容的一些实施方案的生理参数分析系统的输出而产生。
图5A示出了根据本公开内容的一些实施方案的测定个性化目标葡萄糖范围的方法的实例。
图5B示出了个性化目标葡萄糖范围报告的实例,所述报告可作为根据本公开内容的一些实施方案的生理参数分析系统的输出而产生。
图6示出了个性化目标葡萄糖范围报告的实例,所述报告可作为根据本公开内容的一些实施方案的生理参数分析系统的输出而产生。
图7示出了葡萄糖模式透视(insight)报告的实例,所述报告可作为根据本公开内容的一些实施方案的生理参数分析系统的输出而产生。
图8示出了根据本公开内容的一些实施方案的体内分析物监测系统的实例。
图9A-C示出了在第200天(±5天)两种不同模型的实验室HbA1c水平相对于估计HbA1c(eHbA1c)值的比较(9A和9B)和本公开内容的动力学模型的计算HbA1c(cHbA1c)值(9C)。
图10示出了实例研究受试者的数据,包括测量葡萄糖水平(实线)、实验室HbA1c读数(开口圆)、cHbA1c模型值(长虚线)和14天eHbA1c模型值(虚线)。
图11示出了稳态葡萄糖和平衡HbA1c之间的关系:(1)如使用HbA1c标准转换成估计平均葡萄糖确定的(带误差线的虚线)和(2)如针对90个参与者测量的(实线)。
图12示出了使用本公开内容的动力学模型的不同HbA1c目标值的K(dL/mg)和均值葡萄糖水平目标(mg/dl)之间的关系。
详述
本公开内容一般性描述了用于测定与受试者体内红细胞糖基化、消除和生成以及网织红细胞成熟动力学相关的生理参数的方法、设备和系统。例如,可以使用这样的生理参数来计算更可靠的计算HbA1c和/或个性化目标葡萄糖范围等。
动力学模型
式1示出了红细胞糖化、消除和生成的动力学,其中“G”是游离葡萄糖,“R”是非糖化红细胞,而“GR”是糖化红细胞。糖化红细胞(GR)形成时的速率在本文中被称为红细胞糖化速率常数(通常kgly的单位是dL*mg-1*天-1)。
随着时间的推移,包括糖化红细胞在内的红细胞不断从受试者的循环系统中消除,并生成新的红细胞,通常以每秒约200万个细胞的速率产生。与消除和生成相关的速率在本文中分别被称为红细胞消除常数(通常kage的单位是天-1)和红细胞生成速率常数(通常kgen的单位是M2/天)。因为在绝大多数时间体内红细胞的量维持在稳定水平,kage和kgen的比应当是单独的常数,即红细胞浓度的平方。
如前所述,HbA1c是一种常用的分析物,它指示红细胞中糖化血红蛋白的分数。因此,可以使用动力学模型,例如,基于至少为受试者测量的葡萄糖水平导出计算HbA1c。但是,动力学模型也可以应用于HbA1。简便起见,在本文中一致使用HbA1c,但除了使用特定HbA1c值的情况外,可以用HbA1代替HbA1c(例如,见方程15和16)。在这种情况下,可以使用特定的HbA1值导出类似的方程。
通常,在对生理过程进行动力学建模时,会进行假设以关注对生理过程影响最大的因素,并简化一些数学。
本公开内容仅使用以下一组假设来对式1中示出的生理过程进行动力学建模。第一,葡萄糖浓度足够高,不受红细胞糖化反应的影响。第二,没有影响HbA1c测量的异常红细胞,因此血细胞比容在感兴趣的时间段内是恒定的。这一假设是为了排除通常不存在并且可能对模型的准确性产生不利影响的极端条件或生命事件。第三,糖化过程对红细胞和葡萄糖浓度都有一级依赖关系。第四,新生成的红细胞含有可忽略不计的糖化血红蛋白,根据之前的报道,网织红细胞HbA1c非常低并且几乎检测不到。第五,红细胞生产与总细胞浓度呈负相关,而消除是一个一级过程。
根据上述该动力学模型的五个假设,糖化和非糖化红细胞的变化速率可通过微分方程1和2进行建模。
d[GR]/dt=kgly[G][R]-kage[GR] 方程1
(d[R])/dt=kgen/C-kage[R]-kgly[G][R] 方程2
C是红细胞总数,其中C=[R]+[GR](方程2a)。通常C的单位是M(mol/L),[R],通常[GR]的单位是M,而通常[G]的单位是mg/dL。
假设稳态,其中葡萄糖水平是恒定的而糖化和非糖化红细胞浓度保持稳定((d[GR]/dt=(d[R])/dt=0),则可以导出以下两个方程。方程3将kgly和kage的比定义为表观糖化常数K(通常其单位是dL/mg),而方程4建立了红细胞生成和消除速率之间的依赖关系。
K=kgly/kage=[GR]/[G][R] 方程3
kgen/kage=C2 方程4
简便起见,在下文中kage用于描述本公开内容的方法、设备和系统。除非另外指明,否则可以用kage代替kgen。为了用kage代替kgen,方程4可以被重排成kgen=kage*C2
HbA1c是如方程5所示的糖化血红蛋白的分数。
HbA1c=[GR]/C=(C-[R])/C 方程5
在一个人无限地保持相同葡萄糖水平的假设状态中,方程5中的HbA1c可以定义为“平衡HbA1c”(EA)(通常报告为a%(例如6.5%)但在计算中以十进制形式使用(例如0.065))。对于给定的葡萄糖水平,可以从方程2a、3和5导出EA(方程6)。
EA=(kgly[G])/(kage+kgly[G])=[G]/(K-1+[G]) 方程6
EA是基于长期恒定的葡萄糖浓度[G]的HbA1c的估计。这种关系有效地近似于具有稳定的日常葡萄糖曲线的个体的平均葡萄糖和HbA1c。EA依赖于K,K的值是每个受试者的特征。方程6表明稳定葡萄糖与EA不呈线性相关。稳定葡萄糖和EA可能在特定的葡萄糖水平范围内而不是在整个典型的临床HbA1c范围内近似为一个线性函数。此外,在葡萄糖水平持续波动的现实生活中,个体的实验室HbA1c和平均葡萄糖之间没有可靠的线性关系。
其他人也已经得出该结论并且产生了动力学模型,以将测量HbA1c值与平均葡萄糖水平相关联。例如,美国糖尿病协会有一个在线计算器,用于将HbA1c值转换为估计平均血糖水平。然而,该模型基于这样的假设:kage和kgly在受试者之间没有显著差异,下面的实施例1示出了这一假设是错误的。因此,美国糖尿病协会目前采用的模型认为kage和kgly是常数,而不是按受试者的变量。
Higgens等人(Sci.Transl.Med.8,359ra130,2016)已经开发了最新的模型,去除红细胞寿命恒定的假设。但是,该最新的模型仍然假设kgly在受试者之间没有显著变化。
相反,本文所述的动力学模型的kage和kgly均为变量。此外,在一些实施方案中,使用受试者的kgly导出与该受试者的糖尿病状况和治疗有关的个性化参数(例如药物剂量、补充剂量、运动计划、饮食/膳食计划等)。
继续介绍本公开内容的动力学模型,给定起始HbA1c(HbA1c0)并假设在时间段t期间葡萄糖水平[G]恒定,可以从方程1导出该时间段t结束时的HbA1c值(HbA1ct)(方程7)。
为了适应随时间变化的葡萄糖水平,每个个体的葡萄糖史近似为对应于平均葡萄糖水平[Gi]的一系列时间间隔ti。递归应用方程7,时间间隔tz结束时的HbA1cz可由方程8表示,以进行数值计算。
其中衰减项
当使用方程6、7或8求解kage和kgly时,通过非限制性实例,可将kage和kgly限制在5.0×10-6dL*mg-1*天-1<kgly<8.0×10-6dL*mg-1*天-1和0.006天-1<kage<0.024天-1的合理的生理限度内。另外或者可替代地,使用Broyden-Fletcher-Goldfarb-Shanno算法的经验方法可用于kage和kgly的估计初始值(例如kgly=4.4×10-6dL*mg-1*天-1并且kage=0.0092天-1)。葡萄糖水平数据点和测量HbA1c数据点越多,本文描述的生理参数越精确。
可以基于在实施方案之间可以发生变化的许多因素(例如,由用户或开发人员或者由在一个或多个处理器上执行的软件指令)来选择时间间隔ti的值,因此,时间间隔ti的值可以发生变化。一个这样的因素是从个体葡萄糖史中一个葡萄糖数据值(例如,在离散时间测量的葡萄糖水平,代表在多个离散时间内特定时间段的葡萄糖水平的值,或另外的)到另一个葡萄糖数据值的持续时间。葡萄糖数据值之间的持续时间可以称为时间间隔tg。时间间隔tg可在个体的葡萄糖史中发生变化,使得单个葡萄糖史可具有许多不同的时间间隔tg的值。在本文中记载了导致不同的时间间隔tg的值的很多实例实施方案。在葡萄糖监测系统的一些实施方案中,在固定时间间隔tg(例如,每分钟、每十分钟、每十五分钟等)之后确定葡萄糖数据点,所得到的葡萄糖史是一系列葡萄糖数据点,其中每个点代表在固定时间间隔tg到期时或固定时间间隔tg内的葡萄糖(例如,一分钟间隔的一系列葡萄糖数据点等)。
在其它实施方案中,以多个不同的固定时间间隔tg获取或确定葡萄糖数据点。例如,在一些闪式(flash)分析物监测系统(在本文中进一步详述)中,用户可以以第一相对较短的时间间隔tg(例如,每分钟、每两分钟)从存储最近时间段(例如,最近十五分钟、最近一小时等)内的葡萄糖数据的设备(例如,传感器控制设备)请求葡萄糖数据,以及该最近时间段以外(在某些情况下,最多八小时、十二小时、二十四小时等)以第二相对较长的时间间隔tg(例如,每十分钟、每十五分钟、每二十分钟等)存储的所有其他数据。可以从最初以相对较短的时间间隔tg获取的数据来确定以第二相对较长的时间间隔存储的数据(例如,平均值、中值或其他算法确定的值)。在这样的实例中,所得到的葡萄糖史取决于用户多久请求一次葡萄糖数据,并且可以是第一时间间隔tg的一些葡萄糖数据点和第二时间间隔tg的其他葡萄糖数据点的组合。当然,也可以使用例如三个或更多个时间间隔tg来实现更复杂的变化。在一些实施方案中,通过特殊辅助测量(例如,手指针刺和试纸条)收集的血糖数据也可能存在,这可能导致时间间隔tg的更多变化。
对受试者(约400个)样品的葡萄糖史进行的实例分析(其中葡萄糖数据点通常以一分钟至十五分钟的时间间隔tg存在),表明可在不显著丧失准确性的情况下选择在三小时的范围(或约三小时)至二十四小时的范围(或约二十四小时)之间的时间间隔ti的值。一般而言,相比于较长的时间间隔,时间间隔ti越短,其准确度越高,而接近三小时的时间间隔ti的值是最准确的。小于三小时的时间间隔ti的值可能会因数值舍入误差而开始表现出准确度的损失。可以在损害处理负载和计算时间的情况下通过使用较长的数字字符串来减少这些舍入误差。应当注意的是,3-24小时范围之外的时间间隔ti的其他值可能取决于所需的准确度水平和其他因素例如葡萄糖数据点之间的平均时间间隔tg也是适合的。
在时间间隔ti的选择中的另一个因素是个体葡萄糖史中是否存在缺口(gap)或缺失数据,其中缺口比最长时间间隔tg更长或显著更长。一个或多个这样的缺口的存在可能会导致结果偏差。例如,这些缺口可能是由于无法在特定时间段内收集葡萄糖数据(例如,用户没有佩戴传感器、用户忘记扫描传感器以获取数据、发生故障等)。在选择时间间隔ti时,应考虑缺口的存在及其持续时间。一般而言,应尽可能减少(或消除)缺口的数量和持续时间。但是,由于这种类型的缺口通常难以消除,在这样缺口存在的意义上,在许多实施方案中,时间间隔ti的选择应至少是葡萄糖数据点之间最大(最大限度)缺口的持续时间的两倍。例如,如果时间间隔ti选择为3小时,则最大限度缺口不应超过90分钟,如果时间间隔ti选择为24小时,则最大缺口不应超过12小时,依此类推。
值HbA1cz是本发明的动力学模型的估计HbA1c,其在本文中被称为cHbA1c(计算HbA1c),以与本文所述的其他eHbA1c区分开。
如先前所述和在方程8中示出的,EAi和Di均受葡萄糖水平[Gi]、kgly和kage影响。另外,Di取决于时间间隔ti的长度。方程8是方程7的递归形式。方程7和8描述了HbA1c、葡萄糖水平和个体红细胞动力学常数kgly和kage之间的关系。
可以通过昂贵且费力的方法直接测量kage。在本文中,该动力学模型被扩展到包括网织红细胞成熟作为估计kage的方法。
网织红细胞是成熟的红细胞,通常占总红细胞的约1%。网织红细胞成熟成成熟的红细胞的速率是kmat(通常其单位是天-1)。正常网织红细胞的成熟半衰期约为4.8小时,其由方程9提供。
kmat=ln2/(4.8小时)=3.47天-1 方程9
本动力学模型作出了两个假设:(1)在时间0,所有的红细胞均为网织红细胞,并且(2)网织红细胞不被消除(即,网织红细胞成熟成成熟的红细胞并且不死亡)。网织红细胞年龄的概率密度(pRET)可用方程10表示。
其中τ是细胞年龄。
网织红细胞生产指数(RPI)(也称为校正网织红细胞计数(CRC))是网织红细胞占红细胞总数的百分比。因此,如方程11所示,RPI是pRET在细胞年龄上的积分,其中RPI是所报告RPI的十进制形式(例如,在方程11中,报告为2%的RPI为0.02)。
假定典型的kmat为3.47天-1,可以从测量的RPI估计kage。可以通过常规方法确定RPI。例如,RPI可以通过测量红细胞压积百分比(HMm)、测量RNA染色的血涂片中的网织红细胞百分比(RP)、根据测量的红细胞压积百分比确定成熟校正(MC)以及根据方程12计算RPI来确定,其中RP和HMm用作百分比值,而不是小数形式(即,在方程中,报告为3%的RP为3,而不是0.03)。
RPI=(RP*HMm/HMn)/MC 方程12
其中HMn是常规红细胞压积值(通常为45)。
除非另有规定,否则所述典型单位与其各自的值相关联。本领域技术人员将识别其他单位和适当的转换。例如,[G]通常以mg/dL计量,但可以使用葡萄糖的摩尔质量转换为M。如果[G]以M表示,或任何其他变量以不同的单位表示,则应调整本文中的方程,以考虑单位的差异。
从动力学模型计算生理参数
本发明的实施方案提供了受试者体内红细胞糖化、消除和生成以及网织红细胞成熟的动力学模型。
可以从一个或多个RPI测量来估计生理参数kage。虽然可以使用上述方程11从单个RPI测量估计kage,但是两个或更多个RPI测量可以增加RPI值的准确度。此外,RPI可以响应治疗并响应疾病状态的改善或恶化而随时间发生变化。因此,虽然可以在任何期望的时间间隔(例如,每周到每年)测量RPI,但是优选每三到六个月测量一次RPI。
一旦计算出kage,可考虑到在紧接HbA1c测量之前的一段时间内的至少一个测量HbA1c值(也称为HbA1c水平测量)和多个葡萄糖水平(也称为葡萄糖水平测量)而根据本文所述方程来估计生理参数kgly和/或K。
图1示出了实例时间线100,其示出了在时间段106和108内的至少一个测量HbA1c值102a、102b、102c、多个葡萄糖水平104a和104b以及至少一个测量RPI值110a、110b、110c的数据收集。
计算kgly和/或K所需的测量HbA1c值102a、102b、102c的数量取决于多个葡萄糖水平的频率和持续时间。计算kage所需的测量RPI值110a、110b、110c的数量取决于个体kmat的稳定性及其与典型kmat的偏差(3.47天-1)。优选地,每三到六个月测量一次RPI,但如有需要,可每月或每周测量。
在第一实施方案中,可以使用一个测量的RPI值110b来计算kage,并且一个测量HbA1c 102b可与计算的kage和时间段106内的多个葡萄糖测量一起使用来计算kgly和/或K。此类实施方案适用于具有长时间段106(例如,超过约200天)的稳定每日葡萄糖测量的受试者。通过用测量HbA1c值102b替换EA和用时间段106内的日平均葡萄糖替换[G],可在时间点101用方程6计算K。然后可根据方程3计算kgly。因此,在该实施方案中,不一定需要初始HbA1c水平测量102a。
由于未测量第一HbA1c值,因此频繁测量的初始血糖水平测量的时间间隔106可能需要较长时间,以获得平均葡萄糖的准确表示并减少误差。使用超过100天的稳定血糖模式进行此方法可减少误差。另外的时间长度如200天或更多天或300天或更多天进一步减少误差。
其中可以使用一个测量HbA1c值102b的实施方案包括约100天到约300天(或更长时间)的时间段106,其中葡萄糖水平每天至少测量约72次(例如,约每20分钟)到每天约96次(例如,约每15分钟)或更频繁。此外,在这样的实施方案中,葡萄糖水平测量之间的时间可以稍微一致,其中两次葡萄糖水平测量之间的间隔不应超过约一小时。当只使用一个测得的HbA1c值时,一些葡萄糖测量数据的丢失是可以接受的。数据丢失增加可能会导致误差更多。
作为一种选择,在使用一个测得的HbA1c值102b的一些情况下,如果受试者具有稳定、一致葡萄糖曲线的现有葡萄糖水平监测史,则可以缩短时间段106。例如,对于已经测试了很长时间(例如,6个月或更长时间)但可能以更低频率或受管制的次数进行测试的受试者,可以使用现有的葡萄糖水平测量来确定和分析葡萄糖曲线。然后,如果在时间段106内执行更频繁且受管制的葡萄糖监测(例如,在大约14天或更长时间内,每天大约72次到大约96次或更多次),然后测量HbA1c 102b和RPI 110b,则可以组合使用四组数据来计算在时间点101的一个或多个生理参数(kgly、kage和/或K)。
作为一种选择,在一些实施方案中,一个或多个测量RPI值110a、110b、两个测量HbA1c值(在时间段106开始时的第一测量HbA1c值102a和在时间段106结束时的第二测量HbA1c值102b),并且在时间段106期间测量的多个葡萄糖水平104a可用于计算时间点101的一个或多个生理参数(kgly、kage和/或K)。在这些实施方案中,方程11可用于计算kage,而方程8可用于计算时间点101的kgly和/或K。在此类实施方案中,可测量多个葡萄糖水平104a约10天至约30天或更长时间,测量平均为每天约4次(例如,约每6小时)至每天约24次(例如,约每1小时)或更频繁。
在上述实施方案中,可以在示出的时间以外的时间测量RPI值,因为测量的RPI值随时间相对稳定。因此,RPI值可以在时间段106期间的任何时间测量,并且适用于这些实施方案。
上述实施方案不限于提供的实例葡萄糖水平测量时间段和频率范围。葡萄糖水平可以在大约几天至300天或以上的时间段内测量(例如,大约一周或更长时间,约10天或更长时间,约14天或更长时间,约30天或更长时间,约60天或更长时间,约90天或更长时间,约120天或更长时间,等等)。在一些实施方案中,时间段是7天或更多,优选一到十个月,并且小于一年。这种葡萄糖水平的频率平均每天约为14,400次(例如,约每6秒的时间间隔tg)(或更频繁)至每天约3次(例如,约每8小时的时间间隔tg)(例如,每天1,440次(例如,约每1分钟的时间间隔tg),每天约288次(例如,约每5分钟的时间间隔tg),每天约144次(例如,约每10分钟的时间间隔tg),每天约96次(例如,约每15分钟的时间间隔tg),每天约72次(例如,约每20分钟的时间间隔tg),每天约48次(例如,约每30分钟的时间间隔tg),每天约24次(例如,约每1小时的时间间隔tg),每天约12次(例如,约每2小时的时间间隔tg),每天约8次(例如,约每3小时的时间间隔tg),每天约6次(例如,约每4小时的时间间隔tg),每天约4次(例如,约每6小时的时间间隔tg),依此类推)。在一些情况下,可以使用更低频率的监测(如每天一次或两次),其中每天约同时(大约30分钟内)进行葡萄糖测量,以便更直接地比较日常葡萄糖水平,并减少后续分析中的误差。
上述实施方案还可以包括计算与一个或多个生理参数相关的误差或不确定性。在一些实施方案中,该误差可用于确定是否应在时间点101附近测量另一个HbA1c值(未示出)、是否应测量一个或多个葡萄糖水平104b(例如,在时间点101附近)、是否应延长监测和分析(例如,将时间段108从时间点101延长到时间点103,包括在时间段108期间测量葡萄糖水平104b和在时间点103测量HbA1c值102c)和/或是否应相对于时间段106期间的葡萄糖水平测量104a的频率增加在延长时间段108的葡萄糖水平测量104b的频率。在一些实施方案中,当与kgly、kage和/或K相关的误差为或大于约15%、优选为或大于约10%、优选为或大于约7%和优选为或大于约5%时,可以采取上述动作中的一个或多个。当受试者具有现有疾病状况(例如,心血管疾病)时,可能优选较低的误差,以在本文所述的分析中具有更严格的监测和更少的误差。
作为一种选择或者当误差可接受时,在一些实施方案中,可使用在时间点101的一个或多个生理参数(kgly、kage和/或K)来确定受试者个性化糖尿病管理的一个或多个参数或特征(例如,时间段108结束时的cHbA1c、个性化目标葡萄糖范围,和/或近期针对受试者的治疗或治疗改变),每一个在本文中更进一步详细地描述。在一些情况下,除了前述实施方案之外,还可以在时间点103测量HbA1c值,并且重新计算一个或多个生理参数并将其应用于未来时间段(未示出)。
作为一种选择或者另外,可以使用方程8和方程11来估计kage的两个值。这两个值的比较可用于确定是否应在时间点101附近测量另一个HbA1c值(未示出),是否应测量一个或多个葡萄糖水平104b(例如,在时间点101附近),是否应延长监测和分析(例如,将时间段108从时间点101延长到时间点103,包括在时间点103测量葡萄糖水平104b和糖化血红蛋白值102c),和/或是否应相对于在时间段106期间的葡萄糖水平测量104a的频率增加在延长时间段108的葡萄糖水平测量104b的频率。例如,如果kage的两个值的差异超过10%(例如,基于高值,低值不在高值的10%之内),则个体kmat可能不同于典型的kmat(3.47天-1)。如果观察到较大的差异(例如,超过20%的差异),可以确定个体kmat。如果个体kmat在一段时间内(例如,三到六个月)是稳定的,则在本文描述的方法、系统和设备中,应使用确定的个体kmat来代替方程11中的典型kmat。kmat的波动可能暗示其他健康问题。
受试者个性化糖尿病管理的一个或多个生理参数和/或一个或多个参数或特征可以测量和/或计算两次或更多次(例如,时间点101和时间点103)并进行比较。例如,可以比较在时间点101的kgly和在时间点103的kgly。在另一实例中,可比较在时间点103及在未来时间的cHbA1c。本文进一步描述的一些实施方案可以使用这种比较来(1)监测受试者个性化糖尿病管理的进展和/或有效性,并且可选地改变受试者个性化糖尿病管理,(2)鉴定异常或患病的生理状况,和/或(3)鉴定服用影响红细胞生产和/或影响新陈代谢的补充剂和/或药物的受试者。
本文所述的每个实例方法、设备和系统可利用一个或多个生理参数(kgly、kage和K)并执行一个或多个相关分析(例如,个性化目标葡萄糖范围、个性化目标平均葡萄糖、cHbA1c等)。一个或多个生理参数(kgly、kage和K)和相关分析可定期更新(例如,约每3个月到每年更新一次)。除其他事项外,更新的频率可取决于受试者的葡萄糖水平和糖尿病史(例如,受试者良好保持在规定阈值内的程度)、其他医疗状况等。
其他因素
在本文描述的应用一个或多个生理参数(kgly、kage和/或K)的实施方案中,除了所述一个或多个生理参数之外,还可以使用一个或多个其他受试者特异性参数。受试者特异性参数的实例可包括但不限于重要信息(例如,心率、体温、血压或任何其他重要信息)、身体化学信息(例如,药物浓度、血液水平、肌钙蛋白水平、胆固醇水平或任何其他身体化学信息)、膳食数据/信息(例如,碳水化合物量、糖量或关于膳食的任何其他信息)、活动信息(例如,睡眠和/或运动的发生和/或持续时间)、现有的医疗状况(例如,心血管疾病、心脏瓣膜置换、癌症,和系统性疾病,如自身免疫疾病、激素紊乱和血细胞紊乱)、医疗状况家族史、目前治疗、年龄、种族、性别、地理位置(例如,受试者成长的地方或目前居住的地方)、糖尿病类型、糖尿病诊断的持续时间等,以及其任何组合。
系统
在一些实施方案中,可使用生理参数分析系统确定受试者的一个或多个生理参数(kgly、kage和/或K)。
图2示出了根据本公开的一些实施方案的用于提供生理参数分析的生理参数分析系统211的实例。生理参数分析系统211包括一个或多个处理器212和一个或多个机器可读存储介质214。一个或多个机器可读存储介质214包含用于执行由一个或多个处理器212执行的生理参数分析例程的指令集。
在一些实施方案中,这些指令包括接收输入216(例如,一个或多个RPI值、一个或多个葡萄糖水平、一个或多个HbA1c水平、一个或多个先前确定的生理参数(kgly、kage和/或K)或多个其他受试者特异性参数,和/或与前述任一相关的一个或多个次数),确定输出218(例如,一个或多个生理参数(kgly、kage和/或K)、与所述一个或多个生理参数相关的误差、用于受试者个性化糖尿病管理的一个或多个参数或特征(除其他参数或特征外例如,cHbA1c、个性化目标葡萄糖范围、平均目标葡萄糖水平、补充剂或药物剂量)、匹配的参与者组等),并通信输出218。例如,在一些实施方案中,输入216的通信可以经由用户接口(其可以是显示器的一部分)、数据网络、服务器/云、另一设备、计算机或其任何组合。例如,在一些实施方案中,输出218的通信可以是到显示器(其可以是用户接口的一部分)、数据网络、服务器/云、另一设备、计算机或其任何组合。
如本文所使用的术语,“机器可读介质”包括能够以机器可访问的形式存储信息的任何机制(机器可以是例如计算机、网络设备、蜂窝电话、个人数字助理(PDA)、制造工具、具有一个或多个处理器的任何设备等)。例如,机器可访问介质包括可记录/不可记录介质(例如,只读存储器(ROM)、随机存取存储器(RAM)、磁盘存储介质、光存储介质、闪存设备等)。
在一些情况下,一个或多个处理器212和一个或多个机器可读存储介质214可以在单个设备(例如,计算机、网络设备、蜂窝电话、PDA、分析物监测器等)中。
在一些实施方案中,生理参数分析系统可包括其它组件。图3示出了根据本公开的一些实施方案的用于提供生理参数分析的生理参数分析系统311的另一实例。
生理参数分析系统311包括具有受试者接口320A和分析模块320B的健康监测设备320。健康监测设备320是或可以可操作地连接到数据网络322。在生理参数分析系统311中还提供葡萄糖监测器324(例如,体内和/或体外(离体)设备或系统)和数据处理终端/个人计算机(PC)326,各自可操作地连接到健康监测设备320和/或数据网络322。在图3中进一步示出了可操作地连接到数据网络322的服务器/云328,用于与健康监测设备320、数据处理终端/PC 326和葡萄糖监测器324中的一个或多个进行双向数据通信。本公开内容范围内的生理参数分析系统311可以不包括服务器/云328、数据处理终端/PC 326和/或数据网络322中的一个或多个。
在某些实施方案中,分析模块320B被编程或配置为执行生理参数分析和(任选地)其他分析(例如,cHbA1c、个性化目标葡萄糖范围和本文所述的其他分析)。如所示出的,分析模块320B是健康监测设备320的一部分(例如,由其中的处理器执行)。然而,作为一种选择,分析模块320B可与服务器/云328、葡萄糖监测器324和/或数据处理终端/PC 326中的一个或多个相关联。例如,服务器/云328、葡萄糖监测器324和/或数据处理终端/PC 326中的一个或多个可以包括具有指令集的一个机器可读存储介质(或多个介质),该指令集使得一个或多个处理器执行对应于分析模块320B的指令集。
虽然健康监测设备320、数据处理终端/PC 326和葡萄糖监测器324被示出为各自可操作地连接到数据网络322以用于与服务器/云328进行来回通信,但是健康监测设备320、数据处理终端/PC 326和葡萄糖监测器324中的一个或多个可以被编程或配置为绕过数据网络322而直接与服务器/云328通信。健康监测设备320、数据处理终端/PC 326、葡萄糖监测器324和数据网络322之间的通信模式包括一个或多个无线通信、有线通信、RF通信、通信、WiFi数据通信、支持射频识别(RFID)的通信、通信或任何其他合适的数据通信协议,并且任选地支持数据加密/解密、数据压缩、数据解压缩等。
如下文进一步详细描述的,可以由健康监测设备320、数据处理终端/PC 326、葡萄糖监测器324和服务器/云328中的一个或多个执行生理参数分析,其中所得分析输出在生理参数分析系统311中共享。
另外,虽然葡萄糖监测器324、健康监测设备320和数据处理终端/PC 326被示出为通过通信线路相互可操作地连接,但是它们可以是一个集成设备内的模块(例如,带有处理器和通信接口的传感器,以用于发送/接收和处理数据)。
测量葡萄糖和HbA1c水平
在本文所述的不同时间段内对多个葡萄糖水平的测量可通过体内和/或体外(离体)方法、设备或系统来完成,所述方法、设备或系统用于测量体液(例如血液、间质液(ISF)、皮下液、皮肤液、汗液、泪液、唾液或其他生物液体)中的至少一种分析物,例如葡萄糖。在一些情况下,可组合使用体内和体外方法、设备或系统。
体内方法、设备或系统的实例测量血液或ISF中的葡萄糖水平和任选的其他分析物,其中传感器和/或传感器控制设备的至少一部分位于或可以位于受试者体内(例如,受试者皮肤表面下方)。设备的实例包括但不限于连续分析物监测设备和闪式分析物监测设备。具体设备或系统在本文中进一步描述,并且可以在美国专利号6,175,752和美国专利申请公开号2011/0213225中找到,其每一篇的全部公开内容出于所有目的通过引用并入本文。
体外方法、设备或系统(包括完全无创的)包括接触身体外体液以测量血糖水平的传感器。例如,体外系统可以使用具有接收带有受试者体液的分析测试条的端口的仪表设备,该测试条可被分析以确定受试者体液中的葡萄糖水平。下文进一步描述了另外的设备和系统。
如上所述,测量葡萄糖水平的频率和持续时间可分别从平均每天约3次(例如,约每8小时)到约14,400次(例如,约每10秒)(或更频繁)以及从约几天到超过约300天而发生变化。
一旦测量了葡萄糖水平,葡萄糖水平可用于确定一个或多个生理参数(kgly、kage和/或K)以及在一些情况下的其他分析(例如,cHbA1c、个性化目标葡萄糖范围和本文所述的其他分析)。在一些情况下,可使用生理参数分析系统来执行此类分析。例如,回到图3,在一些实施方案中,葡萄糖监测器324可以包括连接到电子器件的葡萄糖传感器,用于(1)处理来自葡萄糖传感器的信号和(2)将处理后的葡萄糖信号传送到健康监测设备320、服务器/云328和数据处理终端/PC 326中的一个或多个。
在本文所述的不同时间对一个或多个HbA1c水平的测量可根据任何合适的方法进行。通常,在实验室中用受试者的血样测量HbA1c水平。实验室测试的实例包括但不限于基于色谱的测定、基于抗体的免疫测定和基于酶的免疫测定。也可以用电化学生物传感器测量HbA1c水平。
HbA1c水平测量的频率可能从平均每月到每年发生变化(如果受试者的平均血糖水平稳定,则不太频繁)。
回到图3,在一些实施方案中,可通过实验室测试来测量HbA1c水平,其中将结果输入到服务器/云328、受试者接口320A和/或来自测试实体、医学专业人员、受试者或其他用户的显示器。然后,健康监测设备320、服务器/云328和数据处理终端/PC 326中的一个或多个可以接收HbA1c水平以通过本文所述的一个或多个方法进行分析。
计算HbA1c(cHbA1c)
在计算一个或多个生理参数(kgly、kage和/或K)之后,可在下一时间段内进行多个葡萄糖测量,并用于在下一时间段期间和/或结束时计算HbA1c。例如,回到图1,可以基于一个或多个测量RPI值110a、110b、在时间段106内的多个葡萄糖水平104a的测量、在时间段106结束时的测量HbA1c水平102b以及任选地在时间段106的开始处测量HbA1c水平102a来计算在时间点101的一个或多个生理参数(kgly、kage和/或K)。然后,对于随后的时间段108,可测量多个葡萄糖水平104b。然后,在时间段108期间和/或结束时,可以使用方程8来确定cHbA1c值(方程8的HbA1cz),其中HbA1c0是在时间段106(其是时间段108的开始)结束时测得的HbA1c水平102b,[Gi]是在时间段108(或在时间段108期间确定cHbA1c的时间段108的部分)期间的葡萄糖水平或平均葡萄糖水平,并且使用对应于时间点101的所提供的一个或多个生理参数(kgly、kage和/或K)。
基于最近测量HbA1c水平、最近测量RPI值和葡萄糖水平的干预测量而确定的一个或多个生理参数(kgly、kage和/或K),可在几个连续的时间段内确定受试者的cHbA1c。RPI值可定期测量(例如,每6个月到一年)以重新计算kage。计算中可以使用最新的RPI值或两个或更多个RPI值的平均值。可以定期测量HbA1c(例如,每6个月到一年),以重新计算一个或多个生理参数。重新测量RPI值和测量HbA1c之间的时间可取决于(1)葡萄糖水平测量的一致性,(2)葡萄糖水平测量的频率,(3)受试者和相应家庭的糖尿病史,(4)受试者已被诊断为糖尿病的时间长短,(5)受试者个性化糖尿病管理的改变(例如,药物/剂量的改变、饮食的改变、运动的改变等),(6)影响kmat的疾病或紊乱的存在(例如,贫血、骨髓疾病、遗传病况、免疫系统紊乱及其组合)。例如,与最近(例如,在过去6个月内)改变糖化药物剂量的受试者相比,具有一致的葡萄糖水平测量(例如,变化小于5%的[G])和频繁的葡萄糖水平测量(例如,连续葡萄糖监测)的受试者测量HbA1c水平的频率可能更低,即使是连续和频繁地测量葡萄糖水平。
参考图2,图4示出了可以由本公开内容的生理参数分析系统211作为输出218生成的cHbA1c报告的实例。所示出的实例报告包括一个随时间变化的平均葡萄糖水平图。报告中还包括最近测量RPI值(开口圆)、最近测量HbA1c水平(十字)和由生理参数分析系统211计算的cHbA1c水平(星号)。虽然最近测量RPI值和最近测量HbA1c水平作为在不同的日子进行测量而示出,但对医疗服务人员而言,可以在同一次就诊中完成这两项测量。
在该报告中示出了两个cHbA1c水平,但可以展示一个或多个cHbA1c水平,包括连续追踪cHbA1c的线。作为一种选择,生理参数分析系统211的输出218可包括用于目前或最近计算的cHbA1c的单个数字、与图4的数据相对应的表、或向受试者、医疗服务人员等提供至少一个cHbA1c水平的任何其它报告。
在一些情况下,cHbA1c可与先前的cHbA1c和/或先前的测量HbA1c水平进行比较,以监测受试者个性化糖尿病管理的疗效。例如,如果将饮食和/或运动计划作为受试者个性化糖尿病管理的一部分实施,且所有其他因素(如药物和其他疾病)相同,然后,与先前的cHbA1c和/或先前的测量HbA1c水平相比cHbA1c的变化可能表明饮食和/或运动计划是否有效、无效或两者之间的分级。
在一些情况下,cHbA1c可与先前的cHbA1c和/或先前的测量HbA1c水平进行比较,以确定是否应进行另一次HbA1c测量。例如,在没有显著的葡萄糖曲线变化的情况下,如果cHbA1c相对于先前的cHbA1c和/或先前的测量HbA1c水平变化0.5个百分比单位或更多(例如,从7.0%变化到6.5%或从7.5%变化到6.8%),则可以测试另一个测量HbA1c水平。
在一些情况下,cHbA1c与先前的cHbA1c和/或先前的测量HbA1c水平的比较可能表明是否存在异常或患病的生理状况。例如,如果受试者长时间保持cHbA1c和/或测量HbA1c水平,然后如果确定cHbA1c的变化没有其他明显原因,则受试者可能有新的异常或患病的生理状况。可以从一个或多个生理参数(kgly、kage和/或K)中收集新的异常或患病的生理状况的指示。本文进一步讨论与一个或多个生理参数相关的异常或患病的生理状况的细节。
个性化目标葡萄糖范围
通常,患有糖尿病的受试者的葡萄糖水平最好保持在54mg/dL和180mg/dL之间。然而,本文所述的动力学模型(见方程6)示出了细胞内葡萄糖水平取决于生理参数kgly、kage和K。因此,测量葡萄糖水平可能并不对应于受试者的实际生理状况。例如,K值高于正常值的受试者可能更容易糖化葡萄糖。因此,180mg/dL的测量葡萄糖水平对受试者来说可能过高,从长远来看,可能会加重受试者糖尿病的影响。在另一实例中,kgly低于正常值的受试者可能会将葡萄糖糖化到较低的程度。因此,在54mg/dL的葡萄糖水平下,受试者的细胞内葡萄糖水平可能会低得多,使受试者感到虚弱,并且从长期来看,会导致受试者低血糖。
使用可接受的正常葡萄糖下限(LGL)和可接受的正常HbA1c上限(AU),可从方程6导出个性化葡萄糖下限(GL)(方程13)和个性化葡萄糖上限(GU)(方程14)的方程。
其中是正常人的kgly,而是受试者的kgly
GU=AU/(K(1-AU)) 方程14
方程13基于kgly,因为葡萄糖范围的下限基于等效的细胞内葡萄糖水平。方程14基于K,因为葡萄糖范围的上限基于等效的细胞外葡萄糖水平(例如,可接受的正常HbA1c上限)。
目前可接受的上述值为LGL=54mg/dL, 而AU=0.08(即8%)。利用目前可接受的值,可导出方程15和16。
GU=0.087/K 方程16
图5A示出了确定个性化目标葡萄糖范围530的方法的实例。具有下限534和上限536的期望细胞内葡萄糖范围532(例如,目前可接受的葡萄糖范围)可分别使用方程13和方程14使用一个或多个确定的生理参数(kgly、kage和/或K)538来个性化。这导致个性化葡萄糖下限(GL)540(方程13±7%)和个性化葡萄糖上限(GU)542(方程14±7%),其定义个性化目标葡萄糖范围530。在计算一个或多个生理参数(kgly、kage和/或K)之后,可确定个性化目标葡萄糖范围,其中可根据方程13(或方程15)±7%改变葡萄糖下限和/或根据方程14(或方程16)±7%改变葡萄糖上限。相对于上述每个计算值的±7%允许基本上接近要使用的计算值的不同值,从而维持个性化目标葡萄糖范围530的个性化性质。作为一种选择,±7%可以是±10%、±5%或±3%。
例如,K值为4.5×10-4dL/mg、kgly值为7.0×10-6dL*mg-1*天-1的受试者可具有约48±3.4mg/dL至约193±13.5mg/dL的个性化目标葡萄糖范围。因此,受试者可接受的葡萄糖水平范围可能比目前实践的葡萄糖范围更宽。
参考图2,图5B示出了可由本公开内容的生理参数分析系统211作为输出218生成的个性化目标葡萄糖范围报告的实例。所示出的实例报告包括一天内葡萄糖水平相对于前述个性化目标葡萄糖范围(虚线之间的区域)的曲线图。作为一种选择,其他报告可以包括但不限于动态葡萄糖曲线(AGP)图、个性化目标葡萄糖范围的数字显示与最近的葡萄糖水平测量等,以及它们的任何组合。
在另一实例中,K值为6.5×10-4dL/mg、kgly值为6.0×10-6dL*mg-1*天-1的受试者可具有约56±3.5mg/dL至约134±10mg/dL的个性化目标葡萄糖范围。随着葡萄糖水平上限大大降低,受试者的个性化糖尿病管理可能包括更频繁的葡萄糖水平测量和/或药物治疗,以基本上保持在个性化目标血糖范围内。
在又一实例中,K值为5.0×10-4dL/mg、kgly值为5.0×10-6dL*mg-1*天-1的受试者可具有约67±4.5mg/dL至约174±12mg/dL的个性化目标葡萄糖范围。该受试者对较低的葡萄糖水平更敏感,并且可能感到虚弱、饥饿、头晕等。如果使用目前实践的血糖范围(54mg/dL和180mg/dL),则更频繁。
尽管上述实例都包括个性化葡萄糖下限和个性化葡萄糖上限,个性化目标葡萄糖范围也可以仅包括个性化葡萄糖下限或个性化葡萄糖上限,并使用目前实践的葡萄糖下限或上限作为个性化的目标葡萄糖范围中的另一个值。
个性化目标葡萄糖范围可在生理参数分析系统中确定和/或实现。例如,与确定治疗(例如胰岛素剂量)的葡萄糖监测器和/或健康监测设备相关的一组指示或程序可在此类分析中使用个性化的目标葡萄糖范围。在一些情况下,显示器或具有显示器的受试者接口可以显示个性化目标葡萄糖范围。
随着一个或多个生理参数的重新计算,个性化目标葡萄糖范围可能会随着时间的推移而更新。
个性化目标平均葡萄糖
在一些情况下,受试者的个性化糖尿病管理可能包括为未来时间点设定HbA1c值目标。例如,参考图1,受试者在时间段106内可具有时间点101的测量RPI值110b和测量HbA1c值102b以及在此之前的多个葡萄糖水平测量。受试者的个性化糖尿病管理可包括与受试者的健康改善相关的时间点103的目标HbA1c值(AT)。方程17可用于计算下一时间段108的个性化目标平均葡萄糖水平(GT),并且基于在时间点101计算的目标HbA1c值(AT)和受试者的K。
GT=AT/(K(1-AT)) 方程17
在一些实施方案中,生理参数分析系统可确定时间段108期间受试者的平均葡萄糖水平,并且在一些情况下,显示平均葡萄糖水平和/或目标平均葡萄糖水平。受试者可使用目前平均血糖水平和目标平均血糖水平来自我监测其在时间段108内的进展。在一些情况下,可使用用于监测和/或分析的生理参数分析系统将目前平均葡萄糖水平传送(周期性地或定期地)给医疗服务人员。
参考图2,图6示出了可由本公开内容的生理参数分析系统211作为输出218生成的个性化目标平均葡萄糖报告的实例。所示出的实例报告包括随时间变化的受试者平均葡萄糖(实线)和个性化目标平均葡萄糖(以150mg/dL,虚线表示)的曲线图。作为一种选择,其他报告可以包括但不限于个性化目标平均葡萄糖与给定时间框架(例如,过去12小时)内的受试者平均葡萄糖水平的数字显示等,以及其任何组合。
随着一个或多个生理参数的重新计算,个性化目标平均葡萄糖可能会随着时间的推移而更新。
个性化治疗-受试者筛选分类(triage)
胰岛素泵与连续葡萄糖监测一起可用于需要严格控制血糖水平的受试者。如上所示,目标葡萄糖范围是个体化的并且基于kgly和/或K。因此,在一些情况下,具有较窄个性化目标葡萄糖范围的受试者可能是具有连续监测的胰岛素泵的更强候选。可基于个性化目标葡萄糖范围、kgly和/或K的分散情况(spread),将受试者筛选分类为胰岛素泵与连续葡萄糖监测一起的更强候选。
目前实践的葡萄糖下限或上限之间的分散情况为约126mg/dL。然而,如上所示,取决于kgly和K,其可能会缩小到约78mg/dL。一些实施方案可涉及在个性化目标葡萄糖范围跨度约为110mg/dL或更小、优选为100mg/dL或更小的时候,将受试者筛选分类为胰岛素泵与连续葡萄糖监测一起。
当kgly是6.4×10-6dL*mg-1*天-1或更小时、当kgly是6.0×10-6dL*mg-1*天-1或更小时、当kgly是5.5×10-6dL*mg-1*天-1或更小时或者当kgly是5.0×10-6dL*mg-1*天-1或更小时,一些实施方案可包括将受试者筛选分类为具有连续监测的胰岛素泵。
当K是5.0×10-4dL/mg或更大时、当K是5.5×10-4dL/mg或更大时、当K是5.75×10- 4dL/mg或更大时或者当K是6.0×10-4dL/mg或更大时,一些实施方案可包括将受试者筛选分类为具有连续监测的胰岛素泵。
在一些实施方案中,将受试者筛选分类为具有连续葡萄糖监测的胰岛素泵可以是分级筛选分类,其中首先在合理的时间段(例如,约5天、约10天、约15天、约30天或更多)内连续监测受试者的葡萄糖水平。这一连续监测时间段可用于评估受试者是否能够有效管理葡萄糖水平,或者胰岛素泵是否靠得住,或者是否需要。
可根据指标水平(即个性化目标血糖范围跨度、kgly、K或其任何组合)确定:筛选分类是直接到胰岛素泵进行连续血糖监测,还是在胰岛素泵治疗前进行带有监测的分级筛选分类。例如,如果kgly约为6.4×10-6dL*mg-1*天-1,但个性化目标葡萄糖范围跨度约为100mg/dL,则与相应指标建议应使用胰岛素泵的另一受试者相比,该受试者可能更适合分级筛选分类。
在一些实施方案中,筛选分类可以基于查找表(lookup table)(例如,存储在本公开内容的生理参数分析系统中)。例如,查找表可以相互关联多个值,包括但不限于一个或多个生理参数(kgly、kage和/或K)、个性化目标葡萄糖范围跨度和/或本文所述的其他因素,如现有医疗状况、医疗状况的家族史、目前治疗、年龄、种族、性别、地理位置、糖尿病类型、糖尿病诊断持续时间等,以及任何组合。例如,查找表中的列可以定义上述参数的范围或限制,而行可以指示建议的动作步骤,该动作步骤可以是图2的生理参数分析系统211的输出218。例如,两列可定义kgly的上下限,其中每行对应于建议的动作步骤,例如“胰岛素泵候选”、“闭环控制系统候选”、“基础/大剂量胰岛素治疗候选”、“仅基础胰岛素治疗候选”,或者任何用于控制糖尿病或影响受试者糖化的治疗。在一些情况下,可以指示不止一种动作步骤。因此,在本实例中,受试者筛选分类报告可以简单地显示建议的动作步骤。
作为一种选择,例如,受试者筛选分类报告可以显示对应于由上述相对于查找表的一种或多种参数定义的曲线图上的动作步骤的区域图。在一些情况下,这些区域可由查找表定义。图上的每个区域可标记为代表建议,并且可在图上指示受试者的葡萄糖参数点,以显示该受试者的相关区域。
尽管上述两个受试者筛选分类报告是基于查找表的实例,但是,作为一种选择,上述两个受试者分类报告可以基于(1)一个或多个生理参数(kgly、kage和/或K)、个人化目标葡萄糖范围跨度和/或本文所述的其他因素和(2)动作步骤之间的其他相关性(例如,数学算法或矩阵分析)。
如所述的,受试者的糖化参数可帮助服务人员和付款人更好地确定哪些治疗工具最适合于哪些受试者。例如,闭环胰岛素泵系统使用和维护的成本很高,但糖化率高的受试者可能有一个非常窄的个性化目标葡萄糖范围,其中最安全的治疗方法是使用闭环胰岛素泵系统将其葡萄糖水平保持在这样的范围内。
在一些实施方案中,胰岛素泵与连续葡萄糖监测一起可为闭环系统。在一些实施方案中,胰岛素泵与连续葡萄糖监测一起可为混合环路系统。例如,回到图3,生理参数分析系统还可以包括与生理参数分析系统311中的一个或多个组件(例如,葡萄糖监测器324(例如连续葡萄糖监测系统)和健康监测设备320。
个性化治疗——糖尿病药物的滴定(titration)
在一些实施方案中,一个或多个生理参数(kgly、kage和/或K)可用于对给予受试者的糖尿病药物(例如胰岛素)的剂量进行滴定。例如,参考图2,本公开内容的生理参数分析系统211可以确定或具有输入(1)一个或多个生理参数,(2)个性化目标葡萄糖范围,和/或(3)个性化目标平均葡萄糖。然后,当测量了后续葡萄糖水平时,生理参数分析系统211可输出建议的糖尿病药物剂量。替代选择或补充输出218可以是葡萄糖模式透视报告。
葡萄糖模式透视报告的实例可见于美国专利申请公开号2014/0188400和2014/0350369,其每一篇的全部公开内容出于所有目的通过引用并入本文。上述申请中公开的分析和报告可基于本公开内容的一个或多个生理参数(kgly、kage和K)进行修改。
例如,参考图2,图7示出了示出了可以是生理参数分析系统211(例如,胰岛素滴定系统)的输出218的葡萄糖模式透视报告的实例。所示出的葡萄糖模式透视报告包括AGP与血糖控制措施表(或“交通信号灯”)一起。如所示的,该报告包括分析时间段(例如,约一个月到约四个月)内的AGP曲线图,其显示了120mg/dL的个性化目标平均葡萄糖,分析时间段内受试者的平均葡萄糖水平,分析时间段内受试者的葡萄糖水平的第25至75个百分位,以及分析时间段内受试者的葡萄糖水平的第10至90个百分位。葡萄糖模式透视报告可进一步或替代选择地显示个性化目标葡萄糖范围。另外,葡萄糖模式透视报告可任选地进一步包括以下中的一个或多个:测量HbA1c水平、cHbA1c水平、确定平均葡萄糖和相关百分位的日期范围等。
葡萄糖模式透视报告上的AGP曲线图下方是表格,该表格将在分析时间段内,一天中给定的较短时间段的一种或多种(所示出的为三种)血糖控制措施与受试者的平均葡萄糖水平相关联。在该实例中,相关性显示为与基于血糖控制措施的状况风险相对应的交通信号灯(例如,绿色(良好)、黄色(中等)或高(红色))。血糖控制措施的实例包括但不限于低葡萄糖的可能性,高葡萄糖的可能性,平均葡萄糖与个性化目标平均葡萄糖的接近程度,葡萄糖水平对个性化目标葡萄糖范围的依从性,低于(或高于)个性化目标平均葡萄糖的平均葡萄糖的变化程度,超出(低于和/或高于)个性化目标葡萄糖范围的葡萄糖水平的变化程度等。
在一些实施方案中,葡萄糖模式透视报告可以用作糖尿病药物滴定系统的一部分,其中交通信号灯(或与之相关的值)可以驱动逻辑以提供治疗修改,例如更改糖尿病药物的基础剂量或大剂量的糖尿病药物与膳食有关。例如,当与自动或半自动系统结合使用进行滴定时,由这些交通信号灯驱动的逻辑可以就剂量调整给受试者提供建议。
包括使用本文所述的动力学模型的葡萄糖模式透视报告和相关分析可以为患有糖尿病的受试者提供更好的治疗。对于此实例,如上所述,K为5.0×10-4dL/mg、kgly为5.0×10-6dL*mg-1*天-1的受试者的个性化目标葡萄糖范围约为67±4.5mg/dL至约174±12mg/dL。如果使用目前实践的葡萄糖范围(54mg/dL至180mg/dL),则该受试者对较低的葡萄糖水平更为敏感,并且可能更经常感到虚弱、饥饿、头晕等。本文所述的使用一个或多个生理参数(kgly、kage和K)的用于葡萄糖模式透视报告的分析逻辑可以包括将低血糖风险定义为“低葡萄糖可能性”交通信号灯的设置。例如,如果低葡萄糖的可能性表明存在低风险(例如,绿色交通信号灯),则认为增加胰岛素是安全的。如果低葡萄糖的可能性表明存在中等风险(例如,黄色交通信号灯),则认为目前风险是可以接受的,但不应进一步增加胰岛素。最后,如果低葡萄糖的可能性表明存在高风险,则建议减少胰岛素以使葡萄糖恢复到可忍受的水平。对于由于葡萄糖水平下限增加而高风险患有高血糖的受试者,指示中等风险和高风险的阈值葡萄糖值(例如,低于葡萄糖水平下限的多少)可能比具有正常葡萄糖水平下限的受试者高。
尽管前述实例讨论了葡萄糖模式透视报告作为输出218,但是在其他实施方案中可以使用采用相同逻辑和分析的其他输出。例如,输出218可以是剂量推荐的值。
一个或多个生理参数(kgly、kage和K)和相关分析(例如,个性化目标葡萄糖范围、个性化目标平均葡萄糖、cHbA1c等)可定期更新(例如,约每3个月到每年更新一次)。除其他事项外,更新的频率可取决于受试者的葡萄糖水平和糖尿病史(例如,受试者良好保持在规定阈值内的程度)、其他医疗状况等。
胰岛素滴定系统还可以利用与一个或多个生理参数(kgly、kage和K)相关的误差。误差值可以由本领域技术人员使用标准统计技术确定,并且可以用作用于配置该滴定系统的另一组参数。例如,当个性化目标血糖范围的葡萄糖水平下限为约64mg/dL且误差为约7%或更小时,滴定系统可以使用降低的低血糖可接受风险量(即,较小的耐受性低于葡萄糖水平下限以指示中等风险和高风险)。
当重新计算一个或多个生理参数时,糖尿病药物的剂量(例如,通过滴定)可随时间更新。
闭环和混合闭环控制系统
已经基于接近实时的葡萄糖读数开发了向受试者推荐或施用胰岛素剂量的闭环系统和混合闭环系统用于胰岛素递送。这些系统通常基于描述受试者的生理、葡萄糖传感器动态和葡萄糖传感器误差特征的模型。在一些实施方案中,可以将一个或多个生理参数(kgly、kage和K)和相关分析(例如,个性化目标葡萄糖范围、个性化目标平均葡萄糖、cHbA1c等)包括到闭环系统中,类似于上面针对胰岛素滴定所述的系统,以便更好地满足受试者的需求。
通常将闭环系统配置成“驱动”受试者的葡萄糖水平处于目标范围中和/或朝向单个葡萄糖目标,其可以是本文所述的个性化目标葡萄糖范围和/或个性化目标平均葡萄糖。例如,对于具有高kgly并且其个性化目标葡萄糖范围的葡萄糖下限增加的受试者,控制器可能会以某种方式驱动他们的葡萄糖水平,使其保持在基于kgly的葡萄糖下限之上,这样可以避免较低的葡萄糖水平比具有正常葡萄糖范围的受试者对这些受试者的不利影响更大。类似地,对于其个性化目标葡萄糖范围的葡萄糖上限降低的受试者可以具有闭环胰岛素递送系统和混合闭环胰岛素递送系统的控制器,以驱动葡萄糖保持在个性化葡萄糖上限以下以减轻高血糖作用。
当重新计算一个或多个生理参数时,可以随时间更新闭环胰岛素递送系统和混合闭环胰岛素递送系统确定胰岛素剂量的量度。例如,当重新计算一个或多个生理参数时,可以更新个性化目标葡萄糖范围和/或个性化目标平均葡萄糖。
个性化治疗-糖化药物
糖尿病是由于受试者的胰腺不能产生足够的(或任何)胰岛素而引起的疾病。但是,在一些情况下,受试者的糖化过程可能是人体没有适当地控制细胞内葡萄糖的来源。这样的受试者可能比使用传统的糖尿病治疗对使用糖化药物的治疗更加具有反应性。本公开内容的动力学模型导出kgly和/或K(其部分基于kgly)。因此,这些生理参数中的一个或二者可以用于鉴定、治疗和/或监测患有糖化紊乱的受试者。
一些实施方案可以涉及监测糖化药物的受试者的kgly和/或K,并且在一些情况下,基于kgly和/或K的改变来改变糖化药物剂量。例如,参考图1,一些实施方案可以涉及确定在时间点101的kgly1和/或K1以及在时间点103的相应的kgly2和/或K2(如上所述),并在时间段108内用糖化药物治疗受试者。然后,基于将kgly1和/或K1与相应的kgly2和/或K2进行比较,则可以在随后的时间段内改变糖化药物的剂量和/或类型。然后,在一些情况下,可以在随后的时间段结束时确定相应的kgly3和/或K3,以便与一个或多个先前确定的生理参数进行比较。在时间点101和时间点103之间以及在时间点103和对应于kgly3和/或K3的时间点之间的时间应该至少是糖化药物在所监测的参数中产生可测量变化的预期时间,这可能是取决于药物和剂量。
在一些实施方案中,图2的生理参数分析系统211的输出218可以是糖化药物报告,其包括基于生理参数分析系统211计算的kgly和/或K的糖化药物和/或剂量推荐。该输出218可以显示给受试者、医疗服务人员和/或等人,以查看和调整糖化药物和/或剂量。
作为一种选择,剂量建议为受试者和/或自动药物递送系统提供了待施用的下一个剂量。在此,系统指导药物的滴定,其中受试者可以从最低剂量或建议的初始剂量开始。初始剂量可以由受试者的目前状况、受试者的kgly1和/或K1以及本文所述的其他因素来定义。在经过适当的时间以充分确定目前药物剂量的影响之后,可以基于新的测量HbA1c水平和药物剂量期间测得的葡萄糖水平来确定kgly2和/或K2。然后可以将kgly2和/或K2与(1)kgly1和/或K1和/或(2)目标kgly和/或目标K进行比较,以确定是否需要改变剂量。例如,对于服用意欲降低糖化率的药物的高糖化受试者,如果kgly2仍高于期望值,则可以根据(1)标准滴定操作方案和/或(2)解释过去的剂量变化如何影响受试者的系统来增加剂量推荐(称为控制理论)。在另一实例中,如果受试者的kgly2低,则可以减少剂量。也可以类似地滴定药物以影响K或其他参数。另外,可以使用类似的过程来推荐非药物治疗,例如通过引导适当量的受影响血液而进行输血或采血。
使用kgly和/或K监测糖化药物的功效和滴定度用于治疗糖化生理异常的受试者对于医疗服务人员而言是有价值的。
当重新计算一个或多个生理参数时,确定糖化药物剂量的量度可以随时间更新。
鉴定异常或患病的生理状况
在某些实施方案中,动力学建模提供不同时间段的生理参数(例如,kgly、kage(或kgen)和/或K),其中在不同时间段之间比较同一参数以指示受试者的异常或疾病状态。受试者的kgly、kage和/或K的变化可以提供受试者异常或疾病状况的指示。即,尽管kgly、kage和/或K在受试者之间发生变化,但是单一个体的kgly、kage和/或K的变化小且慢。因此,在两个或更多个不同时间段的kgly、kage和/或K的比较提供了受试者的生理状况信息。例如,当随时间观察到kgly、kage和/或K的临床上显著变化时,可能并且很可能存在异常或患病的生理状况。
例如,当kgly随时间显著变化以致该变化临床上显著时,这样的临床上显著变化可能表明葡萄糖转运蛋白水平或细胞膜已发生变化。这样的生物学变化可表明由于受试者的生理正经历疾病状态而使得受试者体内发生潜在的新陈代谢变化。
当kgly和/或kgen随时间显著变化以致该变化临床上显著时,这样的临床上显著变化可能表明受试者免疫系统的变化,因为该免疫系统被设计为识别需要去除的细胞。
kgly和/或kgen的临床上显著变化还可或作为一种选择与体内的氧感应机制相关。随着时间的推移,不断增加的kage和/或kgen可能表示受试者的身体需要红细胞携带更多的氧,或者氧感应机制无法正常运行,原因可能是生理状态发生变化(例如失血)或疾病状况。
在又一实例(与上述实例结合或作为上述实例的一种选择)中,kgly和/或kgen的临床上显著变化可与骨髓变化相关。例如,如果骨髓突然产生更多的携带氧的红细胞,受试者的身体将通过杀死或消除更多的红细胞而做出反应。即,kgly和/或kgen的临床上显著增加可能与骨髓异常有关。
在另一实例中,激素紊乱能够导致kage、kgen和/或K的临床上显著变化。激素能够影响心率、收缩力、血容量、血压和红细胞产生。应激激素(例如儿茶酚胺和皮质醇)会刺激网织细胞从骨髓中释放出来,并可能还促进红细胞生成。因此,激素水平的大幅波动会改变kage和/或kgen,进而改变K。
在又一实例中,kgly、kage和/或K偏离正常值可能是糖尿病或糖尿病前期的指标。使用kgly、kage和/或K来测量糖尿病或糖尿病前期可能比标准的空腹葡萄糖测试和测量HbA1c更有效。例如,具有在正常范围内的测量HbA1c值和正常的空腹葡萄糖的受试者可能在一天中除空腹以外的时间具有与高葡萄糖值相关的低kgly。因此,该受试者可能是早期糖尿病干预的候选,否则基于标准的糖尿病诊断方法可能则没有引起注意。
在另一实例中,对于具有新的高的测量HbA1c的受试者,可以采用标准的糖尿病治疗来降低其HbA1c。但是,确定kgly异常可能表明问题在于糖化生理而不是胰腺,这提示了其他更具针对性的治疗形式。
本公开内容的实施方案包括显示确定的kgly、kage和/或K,kgly、kage和/或K随时间的变化,和/或可能的异常或患病的生理状况。
在本文所述的方式中,根据本公开内容的实施方案,生理参数分析提供受试者的异常或疾病状况的指示,以及用于受试者的个性化糖尿病管理的一个或多个参数或特征的分析和/或监测工具。
鉴定补充剂和/或药物
几种补充剂和药物与体内红细胞糖化、消除和生成的动力学相互作用。例如,运动员用于兴奋剂的补充剂和药物包括但不限于人生长激素、增加代谢水平的补充剂和药物等。人生长激素能够增加红细胞数量并因此增加kage。在另一实例中,增加代谢水平的补充剂和药物(例如运动模拟物如AMPK激动剂)能够影响kgly。因此,一些实施方案可以使用一个或多个生理参数(kgly、kage和/或K)作为兴奋剂的指标。
在第一实例中,在一些情况下,具有在正常范围之外的一个或多个生理参数(kgly、kage和/或K)可以用作兴奋剂的指标。
在另一实例中,一旦确定了一个或多个生理参数(kgly、kage和/或K),则在10天或更长时间内的连续监测可以鉴定出可能指示兴奋剂的生理参数突然变化。这可以单独使用,也可以与上述一个或多个生理参数在正常范围之外的实例结合使用。
生理年龄
生理参数kage和因此的K会因老化而发生变化。因此,kage和/或K(假设kgly发生稳定或已知的变化)可以用作生物标志物,以计算标准化的代谢年龄。一般而言,随着时间的过去,kage减小而K增大。利用健康受试者的kage和/或K与年龄之间的相关性,可以计算出新的受试者的代谢年龄。然后,该代谢年龄可用作新的受试者发生与年龄有关的退行性病况(如心脏病、阿尔茨海默氏病或骨质疏松症)的风险的指标。年龄相关性退行性病况的风险可与年龄相关性退行性病况的家族史一起用于主动筛查和/或预防性治疗。例如,与代谢年龄为50岁并有类似的家族史的54岁的受试者相比,代谢年龄为65岁并有心血管疾病家族病史的54岁的受试者可能会更频繁地进行心血管疾病的体征和/或进展的测试。
基于对等治疗的分组决策
可以使用利用对等交互作为动力的分组程序系统和方法来处理个体的健康状况。在一些实例中,健康状况可以包括以下中的一种或多种:糖尿病前期、心脏病、高血压前期、高血压、冠状动脉粥样硬化、肾功能衰竭以及它们的组合等。该系统和方法可用于促进创建和/或维护参与者在其中与促进者和/或彼此交互以更有效地遵循健康方案的社交环境。
在许多实施方案中,利用这样的分组程序的方法包括基于参与者之间的共同或相似特征来选择一组参与者的步骤。可以使用本文所述的生理参数中的一个或多个参数(例如,kgly、kage(或kgen)、K和/或cHbA1c)进行匹配(例如,对于一个或多个生理参数具有相同或相似的值)来执行此选择。参与者的组可以包括任意数量的两个或更多个参与者(例如8-16个、12-18个等)。
可以使用一个或多个身体量度以评估已经实现健康方案的目标或目的的程度。可以使用这些生理参数中的一个或多个参数(例如kgly、kage(或kgen)、和/或cHbA1c)作为身体指标,但是这样并非是必需的。例如,该系统和方法可用于指导被诊断患有糖尿病前期的参与者减肥以降低其患糖尿病的风险,通过运动和/或饮食方案来指导被诊断患有肥胖症的参与者减肥,以及用于其他目的。尽管体重减轻是能够用来评估实现目的进展的常用指标,但是也可以使用其他的身体量度,包括但不限于:体重指数(BMI)、体脂百分比、血压和胆固醇。
除了组的选择之外,方法还可包括通过网络从匹配的参与者组接收身体量度测量;确定每个参与者的身体量度测量趋势;并基于参与者的身体量度测量趋势相对于匹配组其人员的身体量度测量趋势向参与者提供反馈。这种反馈可以起到激励作用,以促进朝着目标或目的的进一步进展。领导匹配组的促进者和/或匹配组中的参与者可以提供针对匹配组整体和/或匹配组中的各个参与者量身定制的反馈和支持。接收和分析测量并提供反馈的过程可以在程序的整个过程中定期重复进行,以实现持续的动力和进步。
将多个参与者分组到匹配组中起到在参与者之间建立团体的作用。除了具有至少一个共同的生理参数(例如,kgly、kage(或kgen)、K和/或cHbA1c)之外,分组决策还可以基于其他因素,包括但不限于:共同目的特征(例如,失去或获得个体各自初始体重的某个百分比(例如5%)的目的,保持目前的初始体重或达到特定目的体重的目的,失去、获得、维持或达到特定水平或量的BMI、体脂百分比或其他身体量度测量的目的,降低体脂百分比的目的,与健康状况相关的共同目的,例如预防糖尿病前期发展成糖尿病,以及其他目的);共同的病史(例如,大约在同一时间诊断出某种特定疾病(例如,彼此之间两个月内被诊断出患有糖尿病前期,或其他合适的阈值),相似的初始体重,相似的初始程度(级别或阶段)的充血性心力衰竭或其他心血管疾病的诊断,相似程度的肥胖,相似阶段的骨关节炎或其他影响活动能力的关节疾病,相似的抑郁症或强迫症诊断的等);共有的人格特质或人格谱内的相似位置(例如,人格测试或其他评估的相似结果);共同的生活方式特征或共同兴趣(例如,类似的饮食限制或偏好(例如,素食主义、全素主义、无坚果、无麸质),婚姻状况(例如,已婚、离婚、丧偶、单身),子女状态(例如,存在、年龄、性别、子女数量),宠物状态(例如,存在、年龄、种类、宠物数量),宗教认同,相似的爱好或其他兴趣(例如运动、电视节目、烹饪)或其他);和/或类似的个人信息(例如性别、种族或国籍、年龄、目前地理区域或职业领域、家乡、就读的学校、雇主或其他)。基于具有至少一个共同的生理参数(例如,kgly、kage(或kgen)、K和/或cHbA1c)和一个或多个上述其他因素,进行分组决策可以是一个分层或分阶段的过程,其有效地将各种特征置于重要性等级中。
在以下参考文献中描述了利用基于对等治疗的分组程序的进一步实例(其中分组决策可基于kgly、kage(或kgen)、K和/或cHbA1c中的至少一个),这些参考文献全文通过引用并入本文以用于所有目的:美国专利公开2013/0117040(“Method and System forSupporting a Health Regimen”);美国专利公开2014/0214442(“Systems and Methodsfor Tracking Participants in a Health Improvement Program”);美国专利公开2014/0214443(“Systems and Methods for Displaying Metrics Associated with a HealthImprovement Program”);美国专利公开2014/0222454(“Systems and Methods thatAdminister a Health Improvement Program and an Adjunct Medical Treatment”);和美国专利公开2017/0344726(“Method and System for Supporting a HealthRegimen”)。
分析物监测器和监测系统
一般而言,本公开内容的实施方案与用于测量体液中的葡萄糖以及在一些情况下的至少一种其他分析物的系统、设备和方法一起使用或用作该系统、设备和方法。本文所述的实施方案可用于监测和/或处理关于葡萄糖以及在一些情况下至少一种其他分析物的信息。可以监测的其他分析物包括但不限于葡萄糖衍生物、HbA1c、乙酰胆碱、淀粉酶、胆红素、胆固醇、绒毛膜促性腺激素、肌酸激酶(例如CK-MB)、肌酸、肌酐、DNA、果糖胺、谷氨酰胺、生长激素、激素、酮、酮体、乳酸、过氧化物、前列腺特异性抗原、凝血酶原、RNA、促甲状腺激素和肌钙蛋白。还可以监测药物例如抗生素(例如庆大霉素、万古霉素等)、洋地黄毒苷、地高辛、滥用药物、茶碱和华法林的浓度。在监测葡萄糖和一种或多种其他分析物的实施方案中,可以在相同或不同时间监测每个分析物。
用于测量体液中的葡萄糖以及在一些情况下的至少一种其他分析物的系统、设备和方法一起使用或用作该系统、设备和方法的分析物监测器和/或分析物监测系统(本文统称为分析物监测系统)可为体内分析物监测系统或体外分析物监测系统。在一些情况下,本公开内容的系统、设备和方法可同时使用体内分析物监测系统和体外分析物监测系统。
体内分析物监测系统包括分析物监测系统,其中分析物传感器的至少一部分被定位或能够被定位在受试者的体内以获取关于身体的至少一种被分析物的信息。体内分析物监测系统无需用户校准即可运行。体内分析物监测系统的实例包括但不限于连续分析物监测系统和闪式分析物监测系统。
例如,连续分析物监测系统(例如,连续葡萄糖监测系统)是可以在不提示的情况下(例如,根据时间表自动地)将数据从传感器控制设备重复或连续地传输至读取器设备的体内系统。
例如,闪式分析物监测系统(或闪式葡萄糖监测系统或简易闪式系统)是可以响应读取器设备对扫描或数据的请求而从传感器控制设备传输数据(例如采用近场通信(NFC)或射频识别(RFID)协议)的体内系统。
体内分析物监测系统可以包括传感器,尽管其定位在体内,所述传感器与受试者的体液接触并感测其中包含的一种或多种分析物水平。传感器可以是驻留在受试者身体上的传感器控制设备的一部分,并包含使得能够进行分析感测和控制分析物感测的电子设备和电源。传感器控制设备及其变型也可以称为“传感器控制单元”、“在体电子设备”设备或单元、“在体”设备或单元或“传感器数据通信”设备或单元(仅举几例)。如本文所使用的,这些术语并不限于具有分析物传感器的设备,而是包括具有其他类型的传感器的设备,无论是生物特征的还是非生物特征的。术语“在体”是指直接位于身体上或紧邻身体的任何设备,例如可穿戴设备(例如,眼镜、手表、腕带或手镯、颈带或项链等)。
体内分析物监测系统还可以包括一个或多个读取器设备,所述读取器设备从传感器控制设备接收感测到的分析物数据。这些读取器设备可以以任何数量的形式向受试者处理和/或显示感测到的分析物数据。这些设备及其变体可以称为“手持式读取器设备”、“读取器设备”(或简称为“读取器”)、“手持式电子设备”(或手持式设备)、“便携式数据处理”设备或单元、“数据接收器”、“接收器”设备或单元(或简称为接收器)、“中继”设备或单元或“远程”设备或单元(仅举几例)。诸如个人计算机之类的其他设备也已经与体内和体外监测系统一起使用或集成入其中。
例如,参考图3,体内分析物监测系统的传感器或其一部分可以是葡萄糖监测器324,并且读取器设备可以是健康监测设备320。在替代实施方案中,体内分析物监测系统整体上可以是葡萄糖监测器324,所述葡萄糖监测器将数据发送到健康监测设备320、数据网络322、数据处理终端/PC 326和/或服务器/云328。
对于体内分析物监测系统,在一些情况下,可以在体内分析物监测系统中进行本文所述的一种或多种生理参数(例如kgly、kage(或kgen)和/或K)的确定和/或其他分析。例如,可以仅在体内分析物监测系统内确定生理参数,并将其传输至生理参数分析系统的合适的其他组件,其可以执行本文所述的其他分析。在一些实施方案中,体内分析物监测系统可以仅产生与生理参数分析系统的另一组件所接收的葡萄糖水平相对应的输出信号。在这种情况下,生理参数分析系统的一个或多个其他组件可以确定一个或多个生理参数(例如,kgly、kage(或kgen)和/或K),并在一些情况下执行本文描述的一个或多个其他分析。
图8示出了体内分析物监测系统的实例860。对于本公开内容的实施方案,该实例体内分析物监测系统860监测葡萄糖以及在一些情况下的一个或多个其他分析物。关于人生理学的其他感兴趣的分析物可以包括例如乳酸、氧、pH、A1c、酮、药物水平等。这些分析物中的任何一种均可通过本文公开的聚合物膜组合物表现出对温度不敏感的渗透性。既可以测定单一分析物,也可以测定前述分析物的任何组合。
体内分析物监测系统860包含彼此通过本地通信路径(或链路)866通信的传感器控制设备862(其可以是图3的葡萄糖监测器324的至少一部分)和读取器设备864(其可以是图3的健康监测设备320的至少一部分),所述本地通信路径(或链路)可以是有线或无线、单向或双向和/或加密或非加密的。任何合适的电子通信协议可以用于每个本地通信路径866或链路。例如,在路径866是无线的实施方案中,可以使用近场通信(NFC)协议、RFID协议、低能耗协议、WiFi协议、专有协议等,包括截至本申请之日或以后开发的变体形式存在的那些通信协议。
读取器设备864(例如,专用读取器、运行应用程序的蜂窝电话或PDA等)也能够通过通信路径(或链路)870与计算机系统868(其可以是图3的数据处理终端/PC 326的至少一部分)进行有线、无线或组合通信并且通过通信路径(或链路)874与例如互联网或云的网络872(其可以是图3的数据网络322和/或服务器/云328的至少一部分)进行通信。与网络872的通信可涉及与网络872内的受信计算机系统876的通信,或者通过网络872经由通信链路(或路径)878与计算机系统868的通信。通信路径870、874和878可以是无线、有线的,或两者都可以,可以是单向或双向的,可以是加密的或未加密的,并且可以是电信网络(例如Wi-Fi网络、局域网(LAN)、广域网(WAN)、互联网或其他数据网络)的一部分。在一些情况下,通信路径870和874可以是同一路径。可以对路径866、870和874上的所有通信进行加密,并且可以将传感器控制设备862、读取器设备864、计算机系统868和受信计算机系统876分别配置为对发送和接收的那些通信进行加密和解密。
设备862和864的变体以及适用于与基于体内分析物监测系统一起使用的该系统的其他组件和本文所示方法实施方案描述于美国专利申请公开号2011/0213225(下文称为‘225公开),其整体出于所有目的通过引用并入本文。
传感器控制设备862可包括包含体内分析物监测电路和电源的壳体880。在该实施方案中,体内分析物监测电路与分析物传感器882电子连接,分析物传感器882延伸穿过粘合贴片884并且突出远离壳体880。粘合贴片884包含用于附着至受试者身体皮肤表面的粘合层(未示出)。除了或代替粘合剂,可以使用其他形式的身体附着到身体。包含在粘合层中的合适的粘合剂对于本领域普通技术人员将是熟悉的。
传感器882适于至少部分地插入感兴趣的组织,例如皮肤的真皮层或皮下层。传感器882可以包括足够长的传感器尾部,以用于插入到给定组织的期望深度中。传感器尾部可以包括主动感测的感测区域,并且可以包括酶、聚合物膜和其他成分。可以使用传感器882来确定一个或多个分析物水平,并使其与读取器设备864通信。可以监测任何生物流体(例如皮肤液、血浆、血液、淋巴液等)中的分析物。
传感器882和任何伴随的传感器控制电子器件可以以任何期望的方式应用于身体。例如,可以短暂地存在导引器以促进传感器882向组织中的引入。在示例性实施方案中,导引器可以包括针。应当认识到,在替代实施方案中可以存在其他类型的导引器,例如护套或刀片。更具体地,在插入之前,针或类似的导引器可以暂时地驻留在传感器882附近,然后在之后拔出。当存在时,针或其他导引器可以通过打开供传感器882跟随的进入通道来促进传感器882插入组织中。例如,根据一个或多个实施方案,针可促进穿透表皮作为通往真皮的通路,以允许传感器882的植入发生。打开进入通道后,可以拔出针或其他导引器,使得没有锐利的危险。在示例性实施方案中,针的横截面可以是实心的或空心的、斜面的或非斜面的和/或圆形或非圆形的。在更具体的实施方案中,针的横截面直径和/或尖端设计可与针灸针相当,其横截面直径可为约250微米。然而,应当认识到,如果特定应用需要,合适的针可具有更大或更小的横截面直径。在替代实施方案中,只要传感器882足够稳健以穿透组织并建立与感兴趣的体液的连通,就可以不存在针或类似的导引器。
在一些实施方案中,针的尖端可以在传感器882的末端上成一定角度,使得针首先穿透组织并打开传感器882的进入通道。在其他示例性实施方案中,传感器882可以位于针的内腔或凹槽内,其中针类似地打开传感器882的进入通道。在任何一种情况下,针在帮助插入之后都被拔出。
导引器(也称为插入设备)的实例描述于美国专利申请公开号2008/0009692、2011/0319729、2015/0018639、2015/0025345和2015/0173661中,其均整体并且出于所有目的通过引用并入本文。
应当认识到,分析物监测系统860可以包括在本文中为了简洁起见而不必描述的附加特征和功能。因此,上述分析物监测系统860的描述应被认为本质上是示例性的而非限制性的。
在从受试者的身体收集原始数据之后,传感器控制设备862可以将模拟信号应用调节成数据,并将数据转换为经调节的原始数据的数字形式。在一些实施方案中,可以对经调节的原始数字数据进行编码,以传输到另一设备(例如读取器设备864),然后再通过算法将该数字原始数据处理为代表受试者测量生物特征的最终形式(例如容易适合于显示给受试者或易于在图3的分析模块320B中使用的形式)。然后可以对经算法处理的数据进行格式化或以图形方式处理,以数字方式显示给受试者。在其他实施方案中,传感器控制设备862可以将数字原始数据算法处理成代表受试者的测量生物特征(例如,分析物水平)的最终形式,然后对该数据进行编码并将其无线通信至读取器设备864,读取器设备864进而能够将接收到的数据进行格式化或以图形方式处理,以数字方式显示给受试者。在其他实施方案中,传感器控制设备862可以图形方式处理数据的最终形式,使得其准备好以用于显示,并且在传感器控制设备862的显示器上显示该数据或将该数据传输至读取器设备864。在一些实施方案中,生物特征数据的最终形式(在图形方式处理之前)由系统使用(例如,并入糖尿病监测方案中),而无需进行处理以显示给受试者。在一些实施方案中,传感器控制设备862和读取器设备864将数字原始数据传输到另一计算机系统以进行算法处理和显示。
读取器设备864可以包括显示器886,以向受试者输出信息(例如,一个或多个生理参数或从中导出的诸如cHbA1c的输出)和/或接受来自受试者和/或医疗服务人员的输入(例如,测量RPI值和/或测量HbA1c值)和任选的输入组件888(或更多)(例如按钮、执行器、触摸感应开关、电容开关、压力感应开关、滚轮等)输入数据、命令或其他方式控制读取器设备864的操作。在某些实施方案中,显示器886和输入组件888可以集成到单个组件中,例如,其中显示器可以测量显示器上物理接触触摸的存在和位置,诸如触摸屏受试者接口(其可以是图3的受试者接口320A的至少一部分)。在某些实施方案中,读取器设备864的输入组件888可以包括麦克风,并且读取器设备864可以包括被配置为分析从麦克风接收的音频输入的软件,使得读取器设备864的功能和操作可以由语音命令控制。在某些实施方案中,读取器设备864的输出组件包括扬声器(未示出),用于将信息输出为可听信号。传感器控制设备862中可以包括类似的语音响应组件,例如扬声器、麦克风和软件例行程序,用于生成、处理和存储语音驱动信号。
读取器设备864还可以包括一个或多个数据通信端口890,用于与诸如计算机系统868的外部设备进行有线数据通信。示例性数据通信端口890包括但不限于USB端口、迷你USB端口、USB Type-C端口、USB micro-A和/或micro-B端口、RS-232端口、以太网端口、Firewire端口或配置为连接到兼容数据电缆的其他类似数据通信端口。读取器设备864还可包括集成的或可附接的体外葡萄糖测定仪,其包括体外测试条端口(未示出),以接收用于执行体外血糖测量的体外葡萄糖测试条。
读取器设备864可以显示从传感器控制设备862无线接收的测量生物特征数据,并且还可以被配置为输出警报(例如,显示器上的视觉警报、听觉警报或其组合)、报警通知、葡萄糖水平等,其可以是视觉、听觉、触觉形式或它们的任意组合。进一步的细节和其他显示实施方案可以在例如美国专利申请公开号2011/0193704中找到,其整体出于所有目的通过引用并入本文。
读取器设备864可以用作数据管道,以将测量的据从传感器控制设备862传输到计算机系统868或受信计算机系统876。在某些实施方案中,在上传到计算机系统868、受信计算机系统876或网络872之前,可以将从传感器控制设备862接收的数据(永久或临时)存储在读取器设备864的一个或多个存储器中。
计算机系统868可以是个人计算机、服务器终端、膝上型计算机、平板电脑或其他合适的数据处理设备。计算机系统868可以是(或包括)用于数据管理和分析以及与分析物监测系统860中的组件通信的软件。计算机系统868可以由受试者、医学专业人员或其他用户用来显示和/或分析由传感器控制设备862测量的生物特征数据。在一些实施方案中,传感器控制设备862可以将生物特征数据直接通信给计算机系统868,而无需诸如读取器设备864之类的中介,或者间接使用互联网连接(在一些情况下,无需先发送到读取器设备864)。计算机系统868的操作和使用在并入本文的‘225公开中进一步描述。也如并入的'225公开中所描述的,分析物监测系统860还可以被配置为与数据处理模块(未示出)一起操作。
受信计算机系统876可以物理地或虚拟地通过安全连接由传感器控制设备862的制造商或分销商拥有,并且可以用于对传感器控制设备862进行认证,以安全地存储受试者的生物特征数据和/或作为托管数据分析程序(例如,可通过网络浏览器访问)的服务器,以对受试者的测量数据进行分析。
体内分析物监测系统可以与集成糖尿病管理系统结合或作为其一部分使用。例如,集成糖尿病管理系统可以包括体内分析物监测系统和补充剂/药物递送系统,更具体地,包括体内葡萄糖监测系统和胰岛素输送系统(例如,胰岛素泵)。集成糖尿病管理系统可以是闭环的、开环的或它们的混合体。闭环系统完全控制分析物的测量时间以及补充剂/药物的剂量和时间。开环系统允许受试者完全控制分析物的测量时间以及补充剂/药物的剂量和时间。混合系统可以主要依靠闭环系统方法,但是可以让受试者进行干预。
体外分析物监测系统接触身体外部的体液。在一些情况下,体外分析物监测系统包括测量仪设备,该测量仪设备具有用于接收受试者的体液的端口(例如,在分析物测试条/拭子上或通过体液的收集),可以对其进行分析以确定受试者的分析物水平。
实例实施方案
本公开内容的实施方案的实例包括实施方案A、实施方案B、实施方案C、实施方案D、实施方案E、实施方案F、实施方案G、实施方案H、实施方案I和实施方案J。还包括此类实施方案的组合作为本公开内容的一部分。
实施方案A是一种方法,包括:提供(或接收)第一时间段内多个葡萄糖水平;提供(或接收)对应于第一时间段结束的第一糖化血红蛋白(HbA1c)水平;提供(或接收)与第一时间段内的时间相对应的网织红细胞生产指数(RPI)值;从RPI值确定(例如,计算)红细胞消除常数(kage);基于(1)多个葡萄糖水平、(2)第一HbA1c水平和(3)kage确定(例如,计算)选自以下的至少一个生理参数:红细胞糖化速率常数(kgly)、红细胞生成速率常数(kgen)和表观糖化常数(K)。
实施方案B是一种方法,包括:测量第一时间段内多个葡萄糖水平;测量对应于第一时间段结束的第一糖化血红蛋白(HbA1c)水平;测量与第一时间段内的时间相对应的网织红细胞生成指数(RPI)值;从RPI值确定(例如,计算)红细胞消除常数(kage);基于(1)多个葡萄糖水平、(2)第一HbA1c水平和(3)kage,确定(例如,计算)选自以下的至少一个生理参数:红细胞糖化速率常数(kgly)、红细胞生成速率常数(kgen)和表观糖化常数(K)。
实施方案A或B可包括另外的元素,其可包括但不限于:元素1:其中第一时间段为约300天或更长,并且多个葡萄糖水平平均每天发生约96次或更多次;元素2:该方法进一步包括测量与第一时间段的开始相对应的第二HbA1c水平,并且,在一些情况下,其中第一时间段为约30天或更长时间,并且多个葡萄糖水平平均每天发生约24次或更多次;元素3:其中多个葡萄糖水平中的至少一些是用体内分析物传感器测量的,该体内分析物传感器具有与体液接触的部分,该体内分析物传感器生成对应于体液中的多个葡萄糖水平的信号;元素4:元素3并且其中体液包括选自以下的流体:血液、皮肤液、间质液或其组合;元素5:元素3并且其中体内分析物传感器是用于递送胰岛素剂量的闭环控制系统或混合闭环控制系统的组件;元素6:其中多个葡萄糖水平中的至少一些是通过连续葡萄糖监测系统测量的;元素7:其中基于体外葡萄糖水平测量输入多个葡萄糖水平中的至少一些;元素8:元素7并且其中体外葡萄糖水平测量测量选自以下的流体中的多个葡萄糖水平:血液、间质液、皮下液、皮肤液、汗液、泪液、唾液或其组合;元素9:该方法还包括显示至少一个生理参数;元素10:该方法还包括计算与至少一个生理参数相关的误差;以及当误差等于或大于约7%时,测量至少一个新的葡萄糖水平和/或测量至少一个新的HbA1c水平;元素11:该方法进一步包括基于kage和/或K计算代谢年龄;元素12:该方法还包括基于至少一个生理参数计算个性化目标葡萄糖范围;元素13:该方法还包括基于至少一个生理参数计算个性化目标平均葡萄糖;元素14:该方法进一步包括基于在第一时间段之后的第二时间段中的至少一个生理参数和多个葡萄糖水平计算cHbA1c,并且在一些情况下,其中在第二时间段内多个葡萄糖水平位于由在时间间隔ti分开的多个时间,时间间隔ti为(a)大于或等于三小时且小于或等于二十四小时和/或(b)在第二时间段内,多个葡萄糖水平中的相邻葡萄糖水平之间的最大缺口持续时间的至少两倍;元素15:该方法还包括基于至少一个生理参数对受试者的治疗进行筛选分类;元素16:该方法进一步包括基于至少一个生理参数来调整糖尿病药物的剂量;元素17:所述方法还包括基于所述至少一个生理参数调节糖化药物的剂量;元素18:该方法还包括基于至少一个生理参数来确定受试者的异常或患病的生理状况;以及元素19:该方法还包括根据至少一个生理参数确定受试者体内药物或补充剂的类型。元素的组合的示例包括但不限于元素11-19中的两个或更多个元素的组合;元素6和7组合,任选地进一步与元素8组合;元素6与元素3结合,任选地进一步与元素4-5之一或两者组合;元素9-10组合;元素9和/或元素10与元素11-19中的一个或多个组合;元素3-8中的一个或多个与元素11-19中的一个或多个组合;元素1或元素2与元素3-19中的一个或多个组合,包括元素3-19的前述组合中的任何一个。
实施方案C是一种仪器,包含:一个或多个处理器;和存储器,所述存储器可操作地连接到一个或多个处理器并具有存储在其上的指令,当由一个或多个处理器执行时,该指令使一个或多个处理器:接收第一时间段内多个葡萄糖水平;以及接收对应于第一时间段结束的第一糖化血红蛋白(HbA1c)水平;接收对应于第一时间段期间的时间的网织红细胞生产指数(RPI)值;根据RPI值确定红细胞消除常数(kage);并基于(1)多个葡萄糖水平、(2)第一HbA1c水平和(3)kage确定选自以下的至少一个生理参数:红细胞糖化速率常数(kgly)、红细胞生成速率常数(kgen)和表观糖化常数(K)。作为一种选择,基于RPI计算的kage可以是接收的而不是RPI。
实施方案D是一种系统,包含:配置成测量体液葡萄糖水平的分析物传感器;和监测设备,所述监测设备包含:一个或多个处理器;和存储器,所述存储器可操作地连接到一个或多个处理器并具有存储在其上的指令,当由一个或多个处理器执行时,该指令使一个或多个处理器:从分析物传感器接收第一时间段内多个葡萄糖水平;以及接收对应于第一时间段结束的第一糖化血红蛋白(HbA1c)水平;接收对应于第一时间段期间的时间的网织红细胞生产指数(RPI)值;根据RPI值确定红细胞消除常数(kage);并基于(1)多个葡萄糖水平、(2)第一HbA1c水平和(3)kage确定选自以下的至少一个生理参数:红细胞糖化速率常数(kgly)、红细胞生成速率常数(kgen)和表观糖化常数(K)。作为一种选择,基于RPI计算的kage可以是接收的而不是RPI。
实施方案E是一种系统,包含:一个或多个处理器;具有定位成与体液接触的部分的体内分析物传感器,体内分析物传感器生成对应于体液葡萄糖水平的信号;发射器,所述发射器连接至体内分析物传感器和连接至一个或多个处理器中的至少一个处理器;和存储器,所述存储器可操作地连接到一个或多个处理器并具有存储在其上的指令,当由一个或多个处理器执行时,该指令使一个或多个处理器:从分析物传感器接收第一时间段内多个葡萄糖水平;以及接收对应于第一时间段结束的第一糖化血红蛋白(HbA1c)水平;接收对应于第一时间段期间的时间的网织红细胞生产指数(RPI)值;根据RPI值确定红细胞消除常数(kage);并基于(1)多个葡萄糖水平、(2)第一HbA1c水平和(3)kage确定选自以下的至少一个生理参数:红细胞糖化速率常数(kgly)、红细胞生成速率常数(kgen)和表观糖化常数(K)。作为一种选择,基于RPI计算的kage可以是接收的而不是RPI。
实施方案C、D和E可以包括另外的元素,这些元素可以包括但不限于:元素1;元素20:其中,当由一个或多个处理器执行时,指令使一个或多个处理器进一步:接收与第一时间段的开始相对应的第二HbA1c水平,并且在一些情况下,其中第一时间段为约30天或更长时间,并且平均每天约24次或更多次发生多种葡萄糖水平;元素21:配置成从具有被定位成与体液接触的部分的体内分析物传感器接收多个葡萄糖水平中的至少一些;元素22:配置成从连续葡萄糖监测系统接收多个葡萄糖水平中的至少一些;元素23:配置成基于体外葡萄糖水平测量从受试者接收多个葡萄糖水平中的至少一些;元素24:其中,当由一个或多个处理器执行时,指令使所述一个或多个处理器进一步:显示至少一个生理参数;元素25:其中,当由一个或多个处理器执行时,指令使所述一个或多个处理器进一步:确定与所述至少一个生理参数相关的误差;以及当误差等于或大于约7%时,请求至少一种新的葡萄糖水平和/或要求至少一种新的HbA1c水平;元素26:其中,当由一个或多个处理器执行时,指令使所述一个或多个处理器进一步:基于kage和/或K计算代谢年龄,并且在一些情况下输出包括代谢年龄的报告;元素27:其中,当由一个或多个处理器执行时,指令使所述一个或多个处理器进一步:基于至少一个生理参数计算个性化目标葡萄糖范围,并且在一些情况下输出包括个性化目标血糖范围的报告;元素28:其中,当由一个或多个处理器执行时,指令使所述一个或多个处理器进一步:基于至少一个生理参数计算个性化目标平均葡萄糖,并且在一些情况下输出包括个性化目标平均葡萄糖的报告;元素29:其中,当由一个或多个处理器执行时,指令使所述一个或多个处理器进一步:基于所述至少一个生理参数和在所述第一时间段之后的第二时间段内的多个葡萄糖水平计算cHbA1c,并在一些情况下输出包含cHbA1c的报告,并且在一些情况下,其中在第二时间段内多个葡萄糖水平位于由在时间间隔ti分开的多个时间,时间间隔ti为(a)大于或等于三小时且小于或等于二十四小时和/或(b)在第二时间段内,多个葡萄糖水平中的相邻葡萄糖水平之间的最大缺口持续时间的至少两倍,或(c)(a)和(b)两者;元素30:其中,当由一个或多个处理器执行时,指令使所述一个或多个处理器进一步:基于至少一个生理参数输出针对受试者的治疗的筛选分类建议,并且在一些情况下输出包含筛选分类建议的报告;元素31:其中,由一个或多个处理器执行时,指令使所述一个或多个处理器进一步:基于至少一个生理参数输出糖尿病药物的剂量,并且在一些情况下输出包括糖尿病药物的剂量的报告;元素32:其中,当由一个或多个处理器执行时,指令使一个或多个处理器进一步:基于至少一个生理参数输出糖化药物的剂量,并且在一些情况下输出包括糖化药物的剂量的报告;元素33:其中,当由一个或多个处理器执行时,指令使一个或多个处理器进一步:基于至少一个生理参数输出受试者的异常或患病的生理状况,并且在一些情况下输出包括异常或患病的生理状况的报告;以及元素34:其中,当由一个或多个处理器执行时,指令使一个或多个处理器进一步:基于至少一个生理参数输出受试者体内药物或补充剂的类型,并且在一些情况下输出包括药物或补充剂的类型的报告。元素的组合的实例包括但不限于元素26-34中的两个或更多个组合;元素21-25中的两个或更多个组合;元素21-25中的一个或多个元素与元素26-34中的一个或多个元素组合;元素1或元素20与元素21-34中的一个或多个元素组合,包括元素21-34的任何前述组合。
实施方案F是一种系统,包括:配置成测量体液中的葡萄糖水平的分析物传感器;以及监测设备,监测设备包含:一个或多个处理器;和存储器,所述存储器可操作地连接到一个或多个处理器并具有存储在其上的指令,当由一个或多个处理器执行时,该指令使一个或多个处理器:基于(1)第一时间段内获取的多个第一葡萄糖水平和(2)第一HbA1c水平,确定选自以下的至少一个生理参数:红细胞糖化速率常数(kgly)、红细胞生成速率常数(kgen)、红细胞消除常数(kage)和表观糖化常数(K);基于至少一个生理参数和以时间间隔ti隔开的多个时间的多个第二葡萄糖水平,确定计算糖化血红蛋白(cHbA1c)水平,其中时间间隔ti为(a)大于或等于三小时且小于或等于二十四小时,(b)多个第二葡萄糖水平中的相邻葡萄糖水平之间的最大缺口持续时间的至少两倍,或(c)(a)和(b)二者,其中多个第二葡萄糖水平是在第一时间段之后的第二时间段的;并输出cHbA1c水平。
实施方案G是一种用于确定糖化血红蛋白水平的计算机实现的方法,其包括:基于(1)第一时间段内获取的多个第一葡萄糖水平和(2)对应于第一时间段结束时的第一HbA1c水平,确定选自以下的至少一个生理参数:红细胞糖化速率常数(kgly)、红细胞生成速率常数(kgen)、红细胞消除常数(kage)和表观糖化常数(K);基于至少一个生理参数和以时间间隔ti隔开的多个时间的多个第二葡萄糖水平,确定计算糖化血红蛋白(cHbA1c)水平,其中时间间隔ti为(a)大于或等于三小时且小于或等于二十四小时,(b)多个第二葡萄糖水平中的相邻葡萄糖水平之间的最大缺口持续时间的至少两倍,或(c)(a)和(b)二者,其中多个第二葡萄糖水平是在第一时间段之后的第二时间段的;并输出cHbA1c水平。
实施方案F或G可包括另外的元素,其可包括但不限于:元素1,元素2,元素3(如应用于多个第一葡萄糖水平和多个第二葡萄糖水平中的一个或两者),元素4,元素5,元素6(如应用于多个第一葡萄糖水平和多个第二葡萄糖水平中的一个或两者),元素7(多个第一葡萄糖水平和多个第二葡萄糖水平中的一个或两者),元素8-14中的一个或多个,以及元素16-19中的一个或多个。元素的组合的实例包括但不限于元素11-19中的两个或更多个组合;元素6和7组合,任选地进一步与元素8组合;元素6与元素3组合,任选地进一步与元素4-5之一或两者结合;元素9-10组合;元素9和/或元素10与元素11-14和16-19中的一个或多个组合;元素3-8中的一个或多个与元素11-14和16-19中的一个或多个组合;以及元素1或元素2与元素3-14和16-19中的一个或多个组合,包括元素3-14和16-19的上述任意组合。
实施方案H是一种用于确定基于对等的治疗程序中匹配的参与者组的系统,包含:配置成测量体液中的葡萄糖水平的分析物传感器;以及监测设备,监测设备包含:一个或多个处理器;和存储器,所述存储器可操作地连接到一个或多个处理器并具有存储在其上的指令,当由一个或多个处理器执行时,所述指令使所述一个或多个处理器:基于(1)第一时间段内获取的多个第一葡萄糖水平和(2)对应于第一时间段结束时的第一HbA1c水平,确定选自以下的至少一个生理参数:红细胞糖化速率常数(kgly)、红细胞生成速率常数(kgen)、红细胞消除常数(kage)和表观糖化常数(K);使用所述至少一个生理参数来确定基于对等的治疗程序中的匹配的参与者组;并输出匹配的参与者组。
实施方案I是一种用于在基于对等的治疗程序中确定匹配的参与者组的计算机实现的方法,包括:基于(1)第一时间段内获取的多个第一葡萄糖水平和(2)对应于第一时间段结束时的第一HbA1c水平,确定选自以下的至少一个生理参数:红细胞糖化速率常数(kgly)、红细胞生成速率常数(kgen)、红细胞消除常数(kage)和表观糖化常数(K);使用所述至少一个生理参数来确定基于对等的治疗程序中的匹配的参与者组;并输出匹配的参与者组。
实施方案H或I可包括另外的元素,其可包括但不限于:元素1,元素2,元素3(如应用于多个第一葡萄糖水平和多个第二葡萄糖水平中的一个或两者),元素4,元素5,元素6(如应用于多个第一葡萄糖水平和多个第二葡萄糖水平中的一个或两者),元素7(多个第一葡萄糖水平和多个第二葡萄糖水平中的一个或两者),以及元素8-19中的一个或多个。元素的组合的实例包括但不限于元素11-19中的两个或更多个组合;元素6和7组合,任选地进一步与元素8组合;元素6与元素3组合,任选地进一步与元素4-5之一或两者结合;元素9-10组合;元素9和/或元素10与元素11-19中的一个或多个组合;元素3-8中的一个或多个与元素11-19中的一个或多个组合;以及元素1或元素2与元素3-19中的一个或多个组合,包括元素3-19的上述任意组合。
除非另有说明,否则在本说明书和相关权利要求书中所有表示数量等的数字应理解为在所有情况下均被术语“约”修饰。因此,除非有相反的指示,否则以下说明书和所附权利要求书中所示的数字参数是近似值,其可以根据本公开内容的实施方案试图获得的期望特性而变化。至少,并且不试图将等同原则的应用限制于权利要求的范围,每个数字参数至少应根据所报告的有效数字的数目并通过应用普通的舍入技术来解释。
本文提出了结合了各种特征的一个或多个示例性实施方案。为了清楚起见,在本申请中并未描述或示出物理实现的所有特征。应当理解,在结合本公开内容的实施方案的物理实施方案的开发中,必须做出许多特定于实现的决定来实现开发人员的目的,例如遵守与系统有关、与商业有关、与政府有关以及与其他的约束,具体取决于实施情况和不时变化。尽管开发人员的工作可能很耗时,但是对于本领域的普通技术人员来说,这样的工作仍然是常规进行的工作,并且受益于本公开内容。
虽然本文根据“包括/包含”各种组件或步骤来描述各种系统、工具和方法,但是系统、工具和方法也可以“基本上由各种组件和步骤组成”或“由各种组件和步骤组成”。
如在本文中使用的,在一系列项目之前的短语“至少一个”,用术语“和”或“或”来分隔任何一个项目,整体上修改了该列表,而不是整个列表的每个成员(即每个项目)。短语“至少一个”允许包括至少一个项目中的至少一个,和/或至少任何项目组合中的至少一个,和/或项目中每一个的至少一个的含义。举例来说,短语“A、B和C中的至少一个”或“A、B或C中的至少一个”分别指仅A、仅B或仅C;A、B和C的任意组合;和/或A、B和C中每一个的至少一个。
为了有助于更好地理解本发明的实施方案,给出了优选或代表性实施方案的以下实施例。决不应该将以下实施例理解为限制或限定本发明的范围。
实施例
分析了来自参加两个具有六个月连续葡萄糖监测的先前临床研究的148个2型和139个型1受试者的数据。只有90个受试者的数据足以满足上述动力学模型假设,而这些数据没有连续12小时或更长时间的连续葡萄糖数据缺口。研究参与者分别在第1天、第100天(±5天)和第200天(±5天)进行了3次HbA1c测量,并在整个分析时间段内进行了频繁的皮下葡萄糖监测,从而可以分析每位参与者的两个独立的数据部分(第1-100天和第101-200天)。
第一数据部分(第1-100天)用于数字估计个体kgly和kage,这允许前瞻性计算第二数据部分(第101-200天)的结束cHbA1c。可以将该结束cHbA1c与观察到的结束HbA1c进行比较,以验证本文所述的动力学模型。为了进行比较,第二数据部分的估计HbA1c是基于(1)14天均值和(2)14天加权平均葡萄糖计算得出的,该加权平均葡萄糖是通过A1c衍生平均葡萄糖(ADAG)研究的公认回归模型转换而来的,两者均假设kgly为常数,如前所讨论的,这是将HbA1c与葡萄糖测量相关的目前大家接受的方法。
图9A-C示出了在第200天(±5天)实验室HbA1c水平相对于估计HbA1c值之间的比较,其中使用14天均值模型计算9A曲线图中的eHbA1c值,使用14天加权平均模型计算9B曲线图中的eHbA1c值,并使用本文所述的动力学模型(方程8)计算9C图中的cHbA1c值。所有图中的实线示出了相应模型的HbA1c比较值的线性回归。虚线是一对一的线,其中越接近实线线性回归则模型越好。显然,本文描述的动力学模型可以更好地对数据进行建模,这说明kage和kgly是个体化的,这是一种新的将HbA1c与葡萄糖测量相关的方法。
图10示出了实例研究受试者的数据,包括测量葡萄糖水平(实线)、实验室HbA1c读数(开口圆)、cHbA1c模型值(长虚线)和14天eHbA1c模型值(虚线)。使用生理参数(kage和kgly)计算图10中的cHbA1c模型值。基于前两个实验室HbA1c读数和前两个实验室HbA1c读数之间测量的葡萄糖水平计算生理参数。14天eHbA1c值是研究期间葡萄糖水平的14天运行平均值。
图10的实例显示葡萄糖与cHbA1c和葡萄糖与eHbA1c关系的动态性质。针对1型和2型糖尿病研究参与者,在一系列预测偏差范围内确定了其他实例:cHbA1c方法的第25、50和75个百分位。在这些实例中,cHbA1c与14天平均葡萄糖之间的不一致表明简单14天方法固有的夸大幅度变化。
图11示出了稳态葡萄糖和平衡HbA1c之间的关系:(1)如使用HbA1c标准转换成估计平均葡萄糖确定的(带误差线的虚线)和(2)如针对90个参与者测量的(实线)。这些个体曲线(实线)代表平均葡萄糖与实验室测量HbA1c在几天至几周内平均葡萄糖水平稳定的条件下的一致性。该模型表明,葡萄糖与HbA1c的关系不是恒定的,而是随着后者标记物水平的提高,需要更大的葡萄糖变化才能实现相同的HbA1c变化。与先前对糖化指数的评估相反,本公开内容的动力学模型表明,个体糖化指数在所有水平的HbA1c上都不恒定。与eHbA1c不同,cHbA1c的关键优势在于其能够解释糖化的个体差异。K值较低的个体是“低糖化者”,并且对于给定的HbA1c水平,其平均葡萄糖水平更高,而K值较高的人则相反。
使用本公开内容的动力学模型,在为不同HbA1c目标值绘制的图12中示出了K(dL/mg)和均值葡萄糖水平目标(mg/dL)之间的关系。换言之,如果受试者靶向特定的HbA1c值(例如,用于随后的HbA1c测量或cHbA1c估计),并且具有已知的K值(例如,基于多个测量葡萄糖水平和至少一个测量HbA1c),则在受试者靶向该HbA1c值的时间段内,可以得出受试者的均值葡萄糖目标和/或对其进行鉴定。
因此,所公开的系统、工具和方法非常适合于获得所提及的目的和优点以及其中固有的目的和优点。上面公开的特定实施方案仅是示例性的,因为可以以受益于本公开内容的教导的本领域技术人员显然不同但等效的方式来修改和实践本公开内容的教导。此外,除了在所附权利要求书中描述的以外,没有意图限制本文中所示的构造或设计的细节。因此,明显的是,以上公开的特定示例性实施方案可以被改变、组合或修改,并且所有这样的变化都被认为在本公开内容的范围内。本文示例性公开的系统、工具和方法可以在不存在本文未具体公开的任何元件和/或本文公开的任何任选元件的情况下适当地实践。尽管用“包括”、“含有”或“包括”各种组件或步骤来描述系统、工具和方法,但是系统、工具和方法也可以“基本上由各种组件和步骤组成”或“由各种组件和步骤组成”。以上公开的所有数字和范围可能有所不同。每当公开具有下限和上限的数值范围时,具体公开落入该范围内的任何数字和任何包括的范围。具体而言,本文公开的值的每个范围(形式为“从约a到约b”,或等效地“从约a到b”,或等效地“从约a-b”)被理解为列出了更广泛的值范围内包含的每个数字和范围。另外,除非专利权人另外明确和清楚地定义,否则权利要求书中的术语具有其简明、普通的含义。此外,在权利要求书中使用的不定冠词“a”或“an”在本文中被定义为表示其引入的一个或不止一个元素。如果本说明书中的单词或术语的使用与可以通过引用并入本文的一个或多个专利或其他文件存在任何冲突,则应采用与本说明书一致的定义。

Claims (156)

1.一种用于确定葡萄糖水平目标的方法,包括:
接收第一时间段内多个第一葡萄糖水平;
接收对应于所述第一时间段结束时的第一糖化血红蛋白HbA1c水平;
接收网织红细胞生产指数RPI值;
基于所述RPI值计算红细胞消除常数kage,其中kage=RPI*(kmat*(1-ln2)),kmat是网织红细胞成熟成成熟的红细胞的速率;
基于(1)所述多个第一葡萄糖水平、(2)所述第一HbA1c水平和(3)所述kage计算至少一种生理参数,其选自:红细胞糖化速率常数kgly、红细胞生成速率常数kgen和表观糖化常数K;和
基于所述至少一种生理参数调整葡萄糖水平目标。
2.根据权利要求1所述的方法,其中kmat = 3.47 天-1
3.根据权利要求1所述的方法,其中所述葡萄糖水平目标是选自以下的一种或多种值:个性化葡萄糖下限、个性化葡萄糖上限和个性化目标葡萄糖平均值。
4.根据权利要求3所述的方法,其中所述至少一种生理参数包括K,并且所述个性化葡萄糖上限等于0.087/K。
5.根据权利要求3所述的方法,其中所述至少一种生理参数包括kgly,并且其中所述个性化葡萄糖下限等于3.35×10-4/kgly
6.根据权利要求3所述的方法,其中所述至少一种生理参数包括K,并且其中所述个性化目标葡萄糖平均值等于AT/(K(1-AT)),其中AT是目标HbA1c水平。
7.根据权利要求1或2所述的方法,还包括:
接收对应于所述第一时间段开始时的第二HbA1c,其中还基于(4)所述第二HbA1c确定所述至少一种生理参数。
8.根据权利要求1或2所述的方法,还包括:
计算与所述至少一种生理参数相关的误差;和
当所述误差为或大于7%时接收至少一种新的葡萄糖水平和/或接收至少一种新的HbA1c水平。
9.根据权利要求1或2所述的方法,其中接收来自体液中的所述多个第一葡萄糖水平,所述体液选自血液、皮肤液、间质液或其组合。
10.根据权利要求1或2所述的方法,还包括:
显示调整的葡萄糖水平目标。
11.根据权利要求1或2所述的方法,还包括:
调整所述葡萄糖水平目标之后,接收受试者的葡萄糖水平;和
当所述葡萄糖水平超出调整的葡萄糖水平目标时显示警报。
12.根据权利要求1或2所述的方法,还包括:
基于kage和/或K计算代谢年龄。
13.根据权利要求1或2所述的方法,还包括:
在所述第一时间段之后接收第二时间段的多个第二葡萄糖水平;和
基于(1)所述kgly、(2)所述kage、(3)所述第二时间段的多个第二葡萄糖水平和(4)所述第一HbA1c水平确定计算的糖化血红蛋白cHbA1c水平。
14.一种用于确定葡萄糖水平目标的系统,包含:
一个或多个处理器;和
存储器,所述存储器与所述一个或多个处理器操作性偶联并且其上存储有指令,当所述一个或多个处理器执行所述指令时,使所述一个或多个处理器:
接收第一时间段内来自分析物传感器的体液的多个第一葡萄糖水平,所述分析物传感器配置为测量体液的葡萄糖水平;
接收对应于所述第一时间段结束时的第一糖化血红蛋白HbA1c水平;
接收网织红细胞生产指数RPI值;
基于所述RPI值确定红细胞消除常数kage,其中kage=RPI*(kmat*(1-ln2)),kmat是网织红细胞成熟成成熟的红细胞的速率;
基于(1)所述多个第一葡萄糖水平、(2)所述第一HbA1c水平和所述kage确定至少一种生理参数,其选自:红细胞糖化速率常数kgly、红细胞生成速率常数kgen和表观糖化常数K;和
基于所述至少一种生理参数调整葡萄糖水平目标。
15.根据权利要求14所述的系统,其中kmat = 3.47天-1
16.根据权利要求14或15所述的系统,其中所述葡萄糖水平目标是选自以下的一种或多种值:个性化葡萄糖下限、个性化葡萄糖上限和个性化目标葡萄糖平均值。
17.根据权利要求16所述的系统,其中所述至少一种生理参数包括K,并且所述个性化葡萄糖上限等于0.087/K。
18.根据权利要求16所述的系统,其中所述至少一种生理参数包括kgly,并且其中所述个性化葡萄糖下限等于3.35×10-4/kgly
19.根据权利要求16所述的系统,其中所述至少一种生理参数包括K,并且其中所述个性化目标葡萄糖平均值等于AT/(K(1-AT)),其中AT是目标HbA1c水平。
20.根据权利要求14或15所述的系统,还包含:
显示器,其中当所述一个或多个处理器执行所述指令时,所述指令使所述一个或多个处理器进一步显示调整的葡萄糖水平目标。
21.根据权利要求20所述的系统,其中当所述一个或多个处理器执行所述指令时,所述指令使所述一个或多个处理器进一步:
接收在所述第一时间段之后第二时间段内来自所述分析物传感器的所述体液的多个第二葡萄糖水平;和
当来自所述多个第二葡萄糖水平的葡萄糖水平超出调整的葡萄糖水平目标时显示警报。
22.根据权利要求14或15所述的系统,其中当所述一个或多个处理器执行所述指令时,所述指令使所述一个或多个处理器进一步:
确定与所述至少一种生理参数相关的误差;和
当所述误差为或大于7%时输出请求至少一个新的葡萄糖水平和/或至少一个新的HbA1c水平。
23.根据权利要求14或15所述的系统,其中当所述一个或多个处理器执行所述指令时,所述指令使所述一个或多个处理器进一步:
基于kage和/或K确定代谢年龄。
24.根据权利要求14或15所述的系统,其中当所述一个或多个处理器执行所述指令时,所述指令使所述一个或多个处理器进一步:
接收在所述第一时间段之后第二时间段的来自所述分析物传感器的多个第二葡萄糖水平;和
基于(1)所述kgly、(2)所述kage、(3)所述第二时间段的多个第二葡萄糖水平和(4)所述第一HbA1c水平确定计算的糖化血红蛋白cHbA1c水平。
25.根据权利要求14或15所述的系统,其中当所述一个或多个处理器执行所述指令时,所述指令使所述一个或多个处理器进一步:
接收在所述第一时间段之后的第二时间段结束时的第二HbA1c水平;
确定对应于所述至少一种第一生理参数的至少一种第二生理参数;和
基于所述至少一种第一生理参数与所述至少一种第二生理参数的比较,鉴定(1)异常或患病生理状况的存在和/或(2)兴奋剂的指标。
26.根据权利要求14或15所述的系统,其中当执行时,所述指令使所述一个或多个处理器:
基于调整的葡萄糖水平目标确定胰岛素剂量;和
将所述胰岛素剂量传输至胰岛素泵系统。
27.一种用于确定糖化血红蛋白水平的系统,包含:
一个或多个处理器;和
存储器,所述存储器与所述一个或多个处理器操作性偶联并且其上存储有指令,当所述一个或多个处理器执行所述指令时,使所述一个或多个处理器:
基于网织红细胞生产指数RPI值确定红细胞消除常数kage,其中kage=RPI*(kmat*(1-ln2)),kmat是网织红细胞成熟成成熟的红细胞的速率;
基于(1)第一时间段内获取的多个第一葡萄糖水平、(2)对应于所述第一时间段结束时的第一糖化血红蛋白HbA1c水平和(3)kage,确定至少一种生理参数,其选自:红细胞糖化速率常数kgly、红细胞生成速率常数kgen和表观糖化常数K;
基于至少一种生理参数和由时间间隔ti分开的多段时间的多个第二葡萄糖水平确定计算的糖化血红蛋白cHbA1c水平,其中所述时间间隔ti是(a)大于或等于三小时并且小于或等于二十四小时或者(b)所述多个第二葡萄糖水平中时间上相邻的葡萄糖水平之间最大缺口的至少两倍,其中所述多个第二葡萄糖水平是在所述第一时间段之后第二时间段的葡萄糖水平,并且其中所述时间间隔ti是(a)或(b)中的至少一个;和
输出所述cHbA1c水平。
28.一种用于确定糖化血红蛋白水平的计算机实现的方法,包括:
基于网织红细胞生产指数RPI值确定红细胞消除常数kage,其中kage=RPI*(kmat*(1-ln2)),kmat是网织红细胞成熟成成熟的红细胞的速率;
基于(1)第一时间段内获取的多个第一葡萄糖水平、(2)对应于所述第一时间段结束时的第一HbA1c水平和(3)kage,确定至少一种生理参数,其选自:红细胞糖化速率常数kgly、红细胞生成速率常数kgen和表观糖化常数K;
基于至少一种生理参数和由时间间隔ti分开的多段时间的多个第二葡萄糖水平确定计算的糖化血红蛋白cHbA1c水平,其中所述时间间隔ti是(a)大于或等于三小时并且小于或等于二十四小时或者(b)所述多个第二葡萄糖水平中时间上相邻的葡萄糖水平之间最大缺口的至少两倍,其中所述多个第二葡萄糖水平是在所述第一时间段之后第二时间段的葡萄糖水平,并且其中所述时间间隔ti是(a)或(b)中的至少一个;和
输出所述cHbA1c水平。
29.一种用于确定基于同伴的治疗项目中匹配的参与者组的系统,包含:
一个或多个处理器;和
存储器,所述存储器与所述一个或多个处理器操作性偶联并且其上存储有指令,当所述一个或多个处理器执行所述指令时,使所述一个或多个处理器:
基于网织红细胞生产指数RPI值确定红细胞消除常数kage,其中kage=RPI*(kmat*(1-ln2)),kmat是网织红细胞成熟成成熟的红细胞的速率;
基于(1)第一时间段内获取的多个第一葡萄糖水平、(2)对应于所述第一时间段结束时的第一糖化血红蛋白HbA1c水平和(3)kage,确定至少一种生理参数,其选自:红细胞糖化速率常数kgly、红细胞生成速率常数kgen和表观糖化常数K;
使用所述至少一种生理参数确定所述基于同伴的治疗项目中匹配的参与者组;和
输出所述匹配的参与者组。
30.一种用于确定基于同伴的治疗项目中匹配的参与者组的计算机实现的方法,包括:
基于网织红细胞生产指数RPI值确定红细胞消除常数kage,其中kage=RPI*(kmat*(1-ln2)),kmat是网织红细胞成熟成成熟的红细胞的速率;
基于(1)第一时间段内获取的多个第一葡萄糖水平、(2)对应于所述第一时间段结束时的第一HbA1c水平和(3)kage,确定至少一种生理参数,其选自:红细胞糖化速率常数kgly、红细胞生成速率常数kgen和表观糖化常数K;
使用所述至少一种生理参数确定所述基于同伴的治疗项目中匹配的参与者组;和
输出所述匹配的参与者组。
31.一种用于确定生理参数的方法,包括:
提供或接收第一时间段内多个葡萄糖水平;
提供或接收对应于第一时间段结束的第一糖化血红蛋白HbA1c水平;
提供或接收与第一时间段内的时间相对应的网织红细胞生产指数RPI值;
从RPI值确定红细胞消除常数kage,其中kage=RPI*(kmat*(1-ln2)),kmat是网织红细胞成熟成成熟的红细胞的速率;和
基于(1)多个葡萄糖水平、(2)第一HbA1c水平和(3)kage确定选自以下的至少一个生理参数:红细胞糖化速率常数kgly、红细胞生成速率常数kgen和表观糖化常数K。
32.一种用于确定生理参数的方法,包括:
接收第一时间段内多个葡萄糖水平;
接收对应于第一时间段结束的第一糖化血红蛋白HbA1c水平;
接收与第一时间段内的时间相对应的网织红细胞生成指数RPI值;
从RPI值确定红细胞消除常数kage,其中kage=RPI*(kmat*(1-ln2)),kmat是网织红细胞成熟成成熟的红细胞的速率;和
基于(1)多个葡萄糖水平、(2)第一HbA1c水平和(3)kage,确定选自以下的至少一个生理参数:红细胞糖化速率常数kgly、红细胞生成速率常数kgen和表观糖化常数K。
33.根据权利要求31或32所述的方法,其中从RPI值确定红细胞消除常数kage包括从RPI值计算红细胞消除常数kage
34.根据权利要求31或32所述的方法,其中第一时间段为至少300天,并且多个葡萄糖水平平均每天发生至少96次。
35.根据权利要求31或32所述的方法,该方法进一步包括接收与第一时间段的开始相对应的第二HbA1c水平。
36.根据权利要求35所述的方法,其中第一时间段为至少30天,并且多个葡萄糖水平平均每天发生至少24次。
37.根据权利要求31或32所述的方法,其中多个葡萄糖水平中的至少一些是用体内分析物传感器接收的,该体内分析物传感器具有被定位与体液接触的部分,该体内分析物传感器生成对应于体液中的多个葡萄糖水平的信号。
38.根据权利要求37所述的方法,其中体液包括选自以下的流体:血液、皮肤液、间质液或其组合。
39.根据权利要求38所述的方法,其中体内分析物传感器是用于递送胰岛素剂量的闭环控制系统或混合闭环控制系统的组件。
40.根据权利要求31或32所述的方法,其中多个葡萄糖水平中的至少一些是通过连续葡萄糖监测系统接收的。
41.根据权利要求31或32所述的方法,其中基于体外葡萄糖水平测量输入多个葡萄糖水平中的至少一些。
42.根据权利要求41所述的方法,其中体外葡萄糖水平测量测量选自以下的流体中的多个葡萄糖水平:血液、间质液、皮下液、皮肤液、汗液、泪液、唾液或其组合。
43.根据权利要求31或32所述的方法,该方法还包括显示至少一个生理参数。
44.根据权利要求31或32所述的方法,该方法还包括计算与至少一个生理参数相关的误差;以及当误差等于或大于7%时,接收至少一个新的葡萄糖水平和/或接收至少一个新的HbA1c水平。
45.根据权利要求31或32所述的方法,该方法进一步包括基于kage和/或K计算代谢年龄。
46.根据权利要求31或32所述的方法,该方法还包括基于至少一个生理参数计算个性化目标葡萄糖范围。
47.根据权利要求31或32所述的方法,该方法还包括基于至少一个生理参数计算个性化目标平均葡萄糖。
48.根据权利要求31或32所述的方法,该方法进一步包括基于在第一时间段之后的第二时间段中的至少一个生理参数和多个葡萄糖水平计算cHbA1c。
49.根据权利要求48所述的方法,其中在第二时间段内多个葡萄糖水平位于以时间间隔ti分开的多个时间,时间间隔ti为(a)大于或等于三小时且小于或等于二十四小时和/或(b)在第二时间段内,多个葡萄糖水平中的相邻葡萄糖水平之间的最大缺口持续时间的至少两倍。
50.一种用于确定生理参数的仪器,包含:
一个或多个处理器;和
存储器,所述存储器与所述一个或多个处理器操作性偶联并且其上存储有指令,当所述一个或多个处理器执行所述指令时,使所述一个或多个处理器:
接收第一时间段内多个葡萄糖水平;
接收对应于第一时间段结束的第一糖化血红蛋白HbA1c水平;
接收对应于第一时间段期间的时间的网织红细胞生产指数RPI值;
根据RPI值确定红细胞消除常数kage,其中kage=RPI*(kmat*(1-ln2)),kmat是网织红细胞成熟成成熟的红细胞的速率;和
基于(1)多个葡萄糖水平、(2)第一HbA1c水平和(3)kage确定选自以下的至少一个生理参数:红细胞糖化速率常数kgly、红细胞生成速率常数kgen和表观糖化常数K。
51.一种用于确定生理参数的系统,包含:
一个或多个处理器;和
存储器,所述存储器与所述一个或多个处理器操作性偶联并且其上存储有指令,当所述一个或多个处理器执行所述指令时,使所述一个或多个处理器:
接收第一时间段内来自分析物传感器的多个葡萄糖水平,所述分析物传感器配置为测量体液的葡萄糖水平;
接收对应于第一时间段结束的第一糖化血红蛋白HbA1c水平;
接收对应于第一时间段期间的时间的网织红细胞生产指数RPI值;
根据RPI值确定红细胞消除常数kage,其中kage=RPI*(kmat*(1-ln2)),kmat是网织红细胞成熟成成熟的红细胞的速率;和
基于(1)多个葡萄糖水平、(2)第一HbA1c水平和(3)kage确定选自以下的至少一个生理参数:红细胞糖化速率常数kgly、红细胞生成速率常数kgen和表观糖化常数K。
52.一种用于确定生理参数的系统,包含:
一个或多个处理器;
具有定位成与体液接触的部分的体内分析物传感器,体内分析物传感器生成对应于体液葡萄糖水平的信号;
发射器,所述发射器偶联至体内分析物传感器和偶联至一个或多个处理器中的至少一个处理器;和
存储器,所述存储器与所述一个或多个处理器操作性偶联并且其上存储有指令,当所述一个或多个处理器执行所述指令时,使所述一个或多个处理器:
接收第一时间段内来自所述分析物传感器的多个葡萄糖水平;
接收对应于第一时间段结束的第一糖化血红蛋白HbA1c水平;
接收对应于第一时间段期间的时间的网织红细胞生产指数RPI值;
根据RPI值确定红细胞消除常数kage,其中kage=RPI*(kmat*(1-ln2)),kmat是网织红细胞成熟成成熟的红细胞的速率;和
基于(1)多个葡萄糖水平、(2)第一HbA1c水平和(3)kage确定选自以下的至少一个生理参数:红细胞糖化速率常数kgly、红细胞生成速率常数kgen和表观糖化常数K。
53.根据权利要求50-52中任一项所述的仪器或系统,其中,当由一个或多个处理器执行时,指令使一个或多个处理器进一步:接收与第一时间段的开始相对应的第二HbA1c水平。
54.根据权利要求53所述的仪器或系统,其中第一时间段为至少30天,并且多个葡萄糖水平平均每天发生至少24次。
55.根据权利要求50-52中任一项所述的仪器或系统,配置成从具有被定位成与体液接触的部分的体内分析物传感器接收多个葡萄糖水平中的至少一些。
56.根据权利要求50-52中任一项所述的仪器或系统,配置成从连续葡萄糖监测系统接收多个葡萄糖水平中的至少一些。
57.根据权利要求50-52中任一项所述的仪器或系统,配置成基于体外葡萄糖水平测量接收来自受试者的多个葡萄糖水平中的至少一些。
58.根据权利要求50-52中任一项所述的仪器或系统,其中,当由一个或多个处理器执行时,指令使所述一个或多个处理器进一步:显示至少一个生理参数。
59.根据权利要求50-52中任一项所述的仪器或系统,其中,当由一个或多个处理器执行时,指令使所述一个或多个处理器进一步:确定与所述至少一个生理参数相关的误差;以及当误差等于或大于7%时,请求至少一个新的葡萄糖水平和/或请求至少一个新的HbA1c水平。
60.根据权利要求50-52中任一项所述的仪器或系统,其中,当由一个或多个处理器执行时,指令使所述一个或多个处理器进一步:基于kage和/或K计算代谢年龄。
61.根据权利要求60所述的仪器或系统,其中,当由一个或多个处理器执行时,指令使所述一个或多个处理器进一步:输出包括代谢年龄的报告。
62.根据权利要求50-52中任一项所述的仪器或系统,其中,当由一个或多个处理器执行时,指令使所述一个或多个处理器进一步:基于至少一个生理参数计算个性化目标葡萄糖范围。
63.根据权利要求62所述的仪器或系统,其中,当由一个或多个处理器执行时,指令使所述一个或多个处理器进一步:输出包括个性化目标葡萄糖范围的报告。
64.根据权利要求50-52中任一项所述的仪器或系统,其中,当由一个或多个处理器执行时,指令使所述一个或多个处理器进一步:基于至少一个生理参数计算个性化目标平均葡萄糖。
65.根据权利要求64所述的仪器或系统,其中,当由一个或多个处理器执行时,指令使所述一个或多个处理器进一步:输出包括个性化目标平均葡萄糖的报告。
66.根据权利要求50-52中任一项所述的仪器或系统,其中,当由一个或多个处理器执行时,指令使所述一个或多个处理器进一步:基于所述至少一个生理参数和在所述第一时间段之后的第二时间段内的多个葡萄糖水平计算cHbA1c。
67.根据权利要求66所述的仪器或系统,其中,当由一个或多个处理器执行时,指令使所述一个或多个处理器进一步:输出包括cHbA1c的报告。
68.根据权利要求66所述的仪器或系统,其中在第二时间段内多个葡萄糖水平位于以时间间隔ti分开的多个时间,时间间隔ti为(a)大于或等于三小时且小于或等于二十四小时和/或(b)在第二时间段内,多个葡萄糖水平中的相邻葡萄糖水平之间的最大缺口持续时间的至少两倍,或(c)(a)和(b)两者。
69.根据权利要求50-52中任一项所述的仪器或系统,其中,当由一个或多个处理器执行时,指令使所述一个或多个处理器进一步:基于至少一个生理参数输出针对受试者的治疗的筛选分类建议。
70.根据权利要求69所述的仪器或系统,其中,当由一个或多个处理器执行时,指令使所述一个或多个处理器进一步:输出包括筛选分类建议的报告。
71.根据权利要求50-52中任一项所述的仪器或系统,其中,由一个或多个处理器执行时,指令使所述一个或多个处理器进一步:基于至少一个生理参数输出糖尿病药物的剂量。
72.根据权利要求71所述的仪器或系统,其中,由一个或多个处理器执行时,指令使所述一个或多个处理器进一步:输出包括糖尿病药物的剂量的报告。
73.根据权利要求50-52中任一项所述的仪器或系统,其中,当由一个或多个处理器执行时,指令使一个或多个处理器进一步:基于至少一个生理参数输出糖化药物的剂量。
74.根据权利要求73所述的仪器或系统,其中,当由一个或多个处理器执行时,指令使一个或多个处理器进一步:输出包括糖化药物的剂量的报告。
75.根据权利要求50-52中任一项所述的仪器或系统,其中,当由一个或多个处理器执行时,指令使一个或多个处理器进一步:基于至少一个生理参数输出受试者的异常或患病的生理状况。
76.根据权利要求75所述的仪器或系统,其中,当由一个或多个处理器执行时,指令使一个或多个处理器进一步:输出包括异常或患病的生理状况的报告。
77.根据权利要求50-52中任一项所述的仪器或系统,其中,当由一个或多个处理器执行时,指令使一个或多个处理器进一步:基于至少一个生理参数输出受试者体内药物或补充剂的类型。
78.根据权利要求77所述的仪器或系统,其中,当由一个或多个处理器执行时,指令使一个或多个处理器进一步:输出包括药物或补充剂的类型的报告。
79.一种用于确定生理参数的系统,包含:
一个或多个处理器;和
存储器,所述存储器与所述一个或多个处理器操作性偶联并且其上存储有指令,当所述一个或多个处理器执行所述指令时,使所述一个或多个处理器:
基于网织红细胞生产指数RPI值确定红细胞消除常数kage,其中kage=RPI*(kmat*(1-ln2)),kmat是网织红细胞成熟成成熟的红细胞的速率;
基于(1)第一时间段内获取的多个第一葡萄糖水平、(2)对应于所述第一时间段结束时的第一糖化血红蛋白HbA1c水平和(3)kage,确定选自以下的至少一个生理参数:红细胞糖化速率常数kgly、红细胞生成速率常数kgen和表观糖化常数K;
基于至少一个生理参数和以时间间隔ti隔开的多个时间的多个第二葡萄糖水平,确定计算的糖化血红蛋白cHbA1c水平,其中时间间隔ti为(a)大于或等于三小时且小于或等于二十四小时,(b)多个第二葡萄糖水平中的相邻葡萄糖水平之间的最大缺口持续时间的至少两倍,或(c)(a)和(b)二者,其中多个第二葡萄糖水平是在第一时间段之后的第二时间段的;和
输出cHbA1c水平。
80.根据权利要求79所述的系统,其中第一时间段为至少300天,并且多个葡萄糖水平平均每天发生至少96次。
81.根据权利要求79或80所述的系统,其中,当由一个或多个处理器执行时,存储器使一个或多个处理器进一步接收与第一时间段的开始相对应的第二HbA1c水平。
82.根据权利要求81所述的系统,其中第一时间段为至少30天,并且多个葡萄糖水平平均每天发生至少24次。
83.根据权利要求79或80所述的系统,其中多个葡萄糖水平中的至少一些是用体内分析物传感器接收的,该体内分析物传感器具有与体液接触的部分,该体内分析物传感器生成对应于体液中的多个葡萄糖水平的信号。
84.根据权利要求83所述的系统,其中体液包括选自以下的流体:血液、皮肤液、间质液或其组合。
85.根据权利要求84所述的系统,其中体内分析物传感器是用于递送胰岛素剂量的闭环控制系统或混合闭环控制系统的组件。
86.根据权利要求79或80所述的系统,其中多个葡萄糖水平中的至少一些是通过连续葡萄糖监测系统接收的。
87.根据权利要求79或80所述的系统,其中基于体外葡萄糖水平测量输入多个葡萄糖水平中的至少一些。
88.根据权利要求87所述的系统,其中体外葡萄糖水平测量测量选自以下的流体中的多个葡萄糖水平:血液、间质液、皮下液、皮肤液、汗液、泪液、唾液或其组合。
89.根据权利要求79或80所述的系统,该系统还包含显示至少一个生理参数的显示器。
90.根据权利要求79或80所述的系统,其中,当由一个或多个处理器执行时,存储器使一个或多个处理器进一步计算与至少一个生理参数相关的误差;以及当误差等于或大于7%时,接收至少一个新的葡萄糖水平和/或接收至少一个新的HbA1c水平。
91.根据权利要求79或80所述的系统,其中,当由一个或多个处理器执行时,存储器使一个或多个处理器进一步基于kage和/或K计算代谢年龄。
92.根据权利要求79或80所述的系统,其中,当由一个或多个处理器执行时,存储器使一个或多个处理器进一步基于至少一个生理参数计算个性化目标葡萄糖范围。
93.根据权利要求79或80所述的系统,其中,当由一个或多个处理器执行时,存储器使一个或多个处理器进一步基于至少一个生理参数计算个性化目标平均葡萄糖。
94.根据权利要求79或80所述的系统,其中,当由一个或多个处理器执行时,存储器使一个或多个处理器进一步基于在第一时间段之后的第二时间段中的至少一个生理参数和多个葡萄糖水平计算cHbA1c。
95.根据权利要求94所述的系统,其中在第二时间段内多个葡萄糖水平位于以时间间隔ti分开的多个时间,时间间隔ti为(a)大于或等于三小时且小于或等于二十四小时和/或(b)在第二时间段内,多个葡萄糖水平中的相邻葡萄糖水平之间的最大缺口持续时间的至少两倍。
96.根据权利要求79或80所述的系统,其中,当由一个或多个处理器执行时,存储器使一个或多个处理器进一步基于至少一个生理参数对受试者的治疗进行筛选分类。
97.根据权利要求79或80所述的系统,其中,当由一个或多个处理器执行时,存储器使一个或多个处理器进一步基于至少一个生理参数来调整糖尿病药物的剂量。
98.根据权利要求79或80所述的系统,其中,当由一个或多个处理器执行时,存储器使一个或多个处理器进一步基于所述至少一个生理参数调节糖化药物的剂量。
99.根据权利要求79或80所述的系统,其中,当由一个或多个处理器执行时,存储器使一个或多个处理器进一步基于至少一个生理参数来确定受试者的异常或患病的生理状况。
100.根据权利要求79或80所述的系统,其中,当由一个或多个处理器执行时,存储器使一个或多个处理器进一步基于至少一个生理参数确定受试者体内药物或补充剂的类型或其组合。
101.一种用于确定糖化血红蛋白水平的计算机实现的方法,其包括:
基于网织红细胞生产指数RPI值确定红细胞消除常数kage,其中kage=RPI*(kmat*(1-ln2)),kmat是网织红细胞成熟成成熟的红细胞的速率;
基于(1)第一时间段内获取的多个第一葡萄糖水平、(2)对应于第一时间段结束时的第一HbA1c水平和(3)kage,确定选自以下的至少一个生理参数:红细胞糖化速率常数kgly、红细胞生成速率常数kgen和表观糖化常数K;
基于至少一个生理参数和以时间间隔ti隔开的多个时间的多个第二葡萄糖水平,确定计算的糖化血红蛋白cHbA1c水平,其中时间间隔ti为(a)大于或等于三小时且小于或等于二十四小时,(b)多个第二葡萄糖水平中的相邻葡萄糖水平之间的最大缺口持续时间的至少两倍,或(c)(a)和(b)二者,其中多个第二葡萄糖水平是在第一时间段之后的第二时间段的;和
输出cHbA1c水平。
102.根据权利要求101所述的计算机实现的方法,其中第一时间段为至少300天,并且多个葡萄糖水平平均每天发生至少96次。
103.根据权利要求101或102所述的计算机实现的方法,该方法进一步包括接收与第一时间段的开始相对应的第二HbA1c水平。
104.根据权利要求103所述的计算机实现的方法,其中第一时间段为至少30天,并且多个葡萄糖水平平均每天发生至少24次。
105.根据权利要求101或102所述的计算机实现的方法,其中多个葡萄糖水平中的至少一些是用体内分析物传感器接收的,该体内分析物传感器具有被定位与体液接触的部分,该体内分析物传感器生成对应于体液中的多个葡萄糖水平的信号。
106.根据权利要求105所述的计算机实现的方法,其中体液包括选自以下的流体:血液、皮肤液、间质液或其组合。
107.根据权利要求106所述的计算机实现的方法,其中体内分析物传感器是用于递送胰岛素剂量的闭环控制系统或混合闭环控制系统的组件。
108.根据权利要求101或102所述的计算机实现的方法,其中多个葡萄糖水平中的至少一些是通过连续葡萄糖监测系统接收的。
109.根据权利要求101或102所述的计算机实现的方法,其中基于体外葡萄糖水平测量输入多个葡萄糖水平中的至少一些。
110.根据权利要求109所述的计算机实现的方法,其中体外葡萄糖水平测量测量选自以下的流体中的多个葡萄糖水平:血液、间质液、皮下液、皮肤液、汗液、泪液、唾液或其组合。
111.根据权利要求101或102所述的计算机实现的方法,该方法还包括显示至少一个生理参数。
112.根据权利要求101或102所述的计算机实现的方法,该方法还包括计算与至少一个生理参数相关的误差;以及当误差等于或大于7%时,接收至少一个新的葡萄糖水平和/或接收至少一个新的HbA1c水平。
113.根据权利要求101或102所述的计算机实现的方法,该方法进一步包括基于kage和/或K计算代谢年龄。
114.根据权利要求101或102所述的计算机实现的方法,该方法还包括基于至少一个生理参数计算个性化目标葡萄糖范围。
115.根据权利要求101或102所述的计算机实现的方法,该方法还包括基于至少一个生理参数计算个性化目标平均葡萄糖。
116.根据权利要求101或102所述的计算机实现的方法,该方法进一步包括基于在第一时间段之后的第二时间段中的至少一个生理参数和多个葡萄糖水平计算cHbA1c。
117.根据权利要求116所述的计算机实现的方法,其中在第二时间段内多个葡萄糖水平位于以时间间隔ti分开的多个时间,时间间隔ti为(a)大于或等于三小时且小于或等于二十四小时和/或(b)在第二时间段内,多个葡萄糖水平中的相邻葡萄糖水平之间的最大缺口持续时间的至少两倍。
118.根据权利要求101或102所述的计算机实现的方法,该方法还包括基于至少一个生理参数来确定受试者的异常或患病的生理状况。
119.根据权利要求101或102所述的计算机实现的方法,该方法还包括基于至少一个生理参数确定受试者体内药物或补充剂的类型。
120.一种用于确定基于对等的治疗程序中匹配的参与者组的系统,包含:
一个或多个处理器;和
存储器,所述存储器与所述一个或多个处理器操作性偶联并且其上存储有指令,当所述一个或多个处理器执行所述指令时,使所述一个或多个处理器:
基于网织红细胞生产指数RPI值确定红细胞消除常数kage,其中kage=RPI*(kmat*(1-ln2)),kmat是网织红细胞成熟成成熟的红细胞的速率;
基于(1)第一时间段内获取的多个第一葡萄糖水平、(2)对应于所述第一时间段结束时的第一糖化血红蛋白HbA1c水平和(3)kage,确定选自以下的至少一个生理参数:红细胞糖化速率常数kgly、红细胞生成速率常数kgen和表观糖化常数K;
使用所述至少一个生理参数来确定基于对等的治疗程序中的匹配的参与者组;和
输出匹配的参与者组。
121.根据权利要求120所述的系统,其中第一时间段为至少300天,并且多个葡萄糖水平平均每天发生至少96次。
122.根据权利要求120或121所述的系统,其中,当由一个或多个处理器执行时,存储器使一个或多个处理器进一步接收与第一时间段的开始相对应的第二HbA1c水平。
123.根据权利要求122所述的系统,其中第一时间段为至少30天,并且多个葡萄糖水平平均每天发生至少24次。
124.根据权利要求120或121所述的系统,其中多个葡萄糖水平中的至少一些是用体内分析物传感器接收的,该体内分析物传感器具有被定位与体液接触的部分,该体内分析物传感器生成对应于体液中的多个葡萄糖水平的信号。
125.根据权利要求124所述的系统,其中体液包括选自以下的流体:血液、皮肤液、间质液或其组合。
126.根据权利要求125所述的系统,其中体内分析物传感器是用于递送胰岛素剂量的闭环控制系统或混合闭环控制系统的组件。
127.根据权利要求120或121所述的系统,其中多个葡萄糖水平中的至少一些是通过连续葡萄糖监测系统接收的。
128.根据权利要求120或121所述的系统,其中基于体外葡萄糖水平测量输入多个葡萄糖水平中的至少一些。
129.根据权利要求128所述的系统,其中体外葡萄糖水平测量测量选自以下的流体中的多个葡萄糖水平:血液、间质液、皮下液、皮肤液、汗液、泪液、唾液或其组合。
130.根据权利要求120或121所述的系统,该系统还包含显示至少一个生理参数的显示器。
131.根据权利要求120或121所述的系统,其中,当由一个或多个处理器执行时,存储器使一个或多个处理器进一步计算与至少一个生理参数相关的误差;以及当误差等于或大于7%时,接收至少一个新的葡萄糖水平和/或接收至少一个新的HbA1c水平。
132.根据权利要求120或121所述的系统,其中,当由一个或多个处理器执行时,存储器使一个或多个处理器进一步基于kage和/或K计算代谢年龄。
133.根据权利要求120或121所述的系统,其中,当由一个或多个处理器执行时,存储器使一个或多个处理器进一步基于至少一个生理参数计算个性化目标葡萄糖范围。
134.根据权利要求120或121所述的系统,其中,当由一个或多个处理器执行时,存储器使一个或多个处理器进一步基于至少一个生理参数计算个性化目标平均葡萄糖。
135.根据权利要求120或121所述的系统,其中,当由一个或多个处理器执行时,存储器使一个或多个处理器进一步基于在第一时间段之后的第二时间段中的至少一个生理参数和多个葡萄糖水平计算cHbA1c。
136.根据权利要求135所述的系统,其中在第二时间段内多个葡萄糖水平位于以时间间隔ti分开的多个时间,时间间隔ti为(a)大于或等于三小时且小于或等于二十四小时和/或(b)在第二时间段内,多个葡萄糖水平中的相邻葡萄糖水平之间的最大缺口持续时间的至少两倍。
137.根据权利要求120或121所述的系统,其中,当由一个或多个处理器执行时,存储器使一个或多个处理器进一步基于至少一个生理参数来调整糖尿病药物的剂量、调节糖化药物的剂量、确定受试者的异常或患病的生理状况、确定受试者体内药物或补充剂的类型或其组合。
138.一种用于在基于对等的治疗程序中确定匹配的参与者组的计算机实现的方法,包括:
基于网织红细胞生产指数RPI值确定红细胞消除常数kage,其中kage=RPI*(kmat*(1-ln2)),kmat是网织红细胞成熟成成熟的红细胞的速率;
基于(1)第一时间段内获取的多个第一葡萄糖水平、(2)对应于第一时间段结束时的第一HbA1c水平和(3)kage,确定选自以下的至少一个生理参数:红细胞糖化速率常数kgly、红细胞生成速率常数kgen和表观糖化常数K;
使用所述至少一个生理参数来确定基于对等的治疗程序中的匹配的参与者组;和
输出匹配的参与者组。
139.根据权利要求138所述的计算机实现的方法,其中第一时间段为至少300天,并且多个葡萄糖水平平均每天发生至少96次。
140.根据权利要求138或139所述的计算机实现的方法,该方法进一步包括接收与第一时间段的开始相对应的第二HbA1c水平。
141.根据权利要求140所述的计算机实现的方法,其中第一时间段为至少30天,并且多个葡萄糖水平平均每天发生至少24次。
142.根据权利要求138或139所述的计算机实现的方法,其中多个葡萄糖水平中的至少一些是用体内分析物传感器接收的,该体内分析物传感器具有被定位与体液接触的部分,该体内分析物传感器生成对应于体液中的多个葡萄糖水平的信号。
143.根据权利要求142所述的计算机实现的方法,其中体液包括选自以下的流体:血液、皮肤液、间质液或其组合。
144.根据权利要求143所述的计算机实现的方法,其中体内分析物传感器是用于递送胰岛素剂量的闭环控制系统或混合闭环控制系统的组件。
145.根据权利要求138或139所述的计算机实现的方法,其中多个葡萄糖水平中的至少一些是通过连续葡萄糖监测系统接收的。
146.根据权利要求138或139所述的计算机实现的方法,其中基于体外葡萄糖水平测量输入多个葡萄糖水平中的至少一些。
147.根据权利要求146所述的计算机实现的方法,其中体外葡萄糖水平测量测量选自以下的流体中的多个葡萄糖水平:血液、间质液、皮下液、皮肤液、汗液、泪液、唾液或其组合。
148.根据权利要求138或139所述的计算机实现的方法,该方法还包括显示至少一个生理参数。
149.根据权利要求138或139所述的计算机实现的方法,该方法还包括计算与至少一个生理参数相关的误差;以及当误差等于或大于7%时,接收至少一个新的葡萄糖水平和/或接收至少一个新的HbA1c水平。
150.根据权利要求138或139所述的计算机实现的方法,该方法进一步包括基于kage和/或K计算代谢年龄。
151.根据权利要求138或139所述的计算机实现的方法,该方法还包括基于至少一个生理参数计算个性化目标葡萄糖范围。
152.根据权利要求138或139所述的计算机实现的方法,该方法还包括基于至少一个生理参数计算个性化目标平均葡萄糖。
153.根据权利要求138或139所述的计算机实现的方法,该方法进一步包括基于在第一时间段之后的第二时间段中的至少一个生理参数和多个葡萄糖水平计算cHbA1c。
154.根据权利要求153所述的计算机实现的方法,其中在第二时间段内多个葡萄糖水平位于以时间间隔ti分开的多个时间,时间间隔ti为(a)大于或等于三小时且小于或等于二十四小时和/或(b)在第二时间段内,多个葡萄糖水平中的相邻葡萄糖水平之间的最大缺口持续时间的至少两倍。
155.根据权利要求138或139所述的计算机实现的方法,该方法还包括基于至少一个生理参数来确定受试者的异常或患病的生理状况。
156.根据权利要求138或139所述的计算机实现的方法,该方法还包括基于至少一个生理参数确定受试者体内药物或补充剂的类型。
CN201980070041.9A 2018-10-26 2019-10-25 用于生理参数分析的方法、设备和系统 Active CN113164105B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202411563210.1A CN119517401A (zh) 2018-10-26 2019-10-25 用于生理参数分析的方法、设备和系统

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862750957P 2018-10-26 2018-10-26
US62/750,957 2018-10-26
PCT/US2019/058014 WO2020086934A2 (en) 2018-10-26 2019-10-25 Methods, devices, and systems for physiological parameter analysis

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202411563210.1A Division CN119517401A (zh) 2018-10-26 2019-10-25 用于生理参数分析的方法、设备和系统

Publications (2)

Publication Number Publication Date
CN113164105A CN113164105A (zh) 2021-07-23
CN113164105B true CN113164105B (zh) 2024-10-18

Family

ID=68618196

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202411563210.1A Pending CN119517401A (zh) 2018-10-26 2019-10-25 用于生理参数分析的方法、设备和系统
CN201980070041.9A Active CN113164105B (zh) 2018-10-26 2019-10-25 用于生理参数分析的方法、设备和系统

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202411563210.1A Pending CN119517401A (zh) 2018-10-26 2019-10-25 用于生理参数分析的方法、设备和系统

Country Status (7)

Country Link
US (2) US12232867B2 (zh)
EP (1) EP3870050A2 (zh)
JP (3) JP7254916B2 (zh)
CN (2) CN119517401A (zh)
AU (3) AU2019368318B2 (zh)
CA (1) CA3117468A1 (zh)
WO (1) WO2020086934A2 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021097396A1 (en) * 2019-11-14 2021-05-20 University Of Virginia Patent Foundation Method and system for model-based tracking of hemoglobin a1c from daily continuous glucose monitoring profiles
EP4066253A1 (en) * 2019-11-25 2022-10-05 Abbott Diabetes Care Inc. Methods, devices, and systems for adjusting laboratory hba1c values
CA3157672A1 (en) * 2019-11-25 2021-06-03 Abbott Diabetes Care Inc. Methods, devices, and systems for physiological parameter analysis
US20220199218A1 (en) * 2020-12-07 2022-06-23 Beta Bionics, Inc. Ambulatory medicament pump with integrated medicament ordering interface
US20220189603A1 (en) 2020-12-07 2022-06-16 Beta Bionics, Inc. Medicament pumps and control systems for managing glucose control therapy data of a subject
US20220400986A1 (en) * 2021-06-03 2022-12-22 Abbott Diabetes Care Inc. Systems, devices, and methods for physiological parameter analysis and related graphical user interfaces
US20250031964A1 (en) 2021-11-12 2025-01-30 Abbott Diabetes Care Inc. Systems, devices, and methods of using blockchain for tracking patient identification
EP4434046A1 (en) * 2021-11-15 2024-09-25 Abbott Diabetes Care Inc. Systems, devices, and methods for analyte monitoring

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1367701A (zh) * 1999-05-11 2002-09-04 奥索-麦克尼尔药物公司 红细胞生成素给药的药代动力学和药效模型
CN101371145A (zh) * 2005-10-28 2009-02-18 惠普开发有限公司 测量糖化血色素的系统和方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3232145B2 (ja) * 1991-12-27 2001-11-26 シスメックス株式会社 網赤血球測定方法
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
JP2004038990A (ja) 2000-04-17 2004-02-05 Nec Corp 在宅者健康管理サービス提供方法と在宅者健康管理サービス提供システム
NZ563452A (en) * 2002-07-19 2010-04-30 Abbott Biotech Ltd Treatment of TNFalpha related disorders
US7381184B2 (en) 2002-11-05 2008-06-03 Abbott Diabetes Care Inc. Sensor inserter assembly
US8333714B2 (en) 2006-09-10 2012-12-18 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
US9398882B2 (en) 2005-09-30 2016-07-26 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor and data processing device
US8924159B2 (en) * 2008-05-30 2014-12-30 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
LT4070729T (lt) 2009-08-31 2024-08-12 Abbott Diabetes Care, Inc. Medicinos įrenginio displėjai
BR112012000220A2 (pt) 2009-08-31 2020-12-22 Abbott Diabetes Care Inc. Métodos e dispositivos médicos
US9265453B2 (en) 2010-03-24 2016-02-23 Abbott Diabetes Care Inc. Medical device inserters and processes of inserting and using medical devices
JP5868982B2 (ja) 2010-09-16 2016-02-24 ザ ジェネラル ホスピタル コーポレイション 診断のための赤血球動力学
CA2842699A1 (en) 2011-07-22 2013-01-31 Roche Diagnostics Hematology, Inc. Identifying and measuring reticulocytes
US20140222454A1 (en) 2011-11-03 2014-08-07 Sean Patrick Duffy Systems and Methods That Administer a Health Improvement Program and an Adjunct Medical Treatment
US20140214442A1 (en) 2011-11-03 2014-07-31 Sean Patrick Duffy Systems and Methods for Tracking Participants in a Health Improvement Program
US20140214443A1 (en) 2011-11-03 2014-07-31 Sean Patrick Duffy Systems and Methods for Displaying Metrics Associated With a Health Improvement Program
US20170344726A1 (en) 2011-11-03 2017-11-30 Omada Health, Inc. Method and system for supporting a health regimen
US20130117040A1 (en) 2011-11-03 2013-05-09 Omada Health, Inc. Method and System for Supporting a Health Regimen
US20150173661A1 (en) 2012-07-27 2015-06-25 Abbott Diabetes Care, Inc. Medical Device Applicators
US10383580B2 (en) 2012-12-31 2019-08-20 Abbott Diabetes Care Inc. Analysis of glucose median, variability, and hypoglycemia risk for therapy guidance
EP2972379B1 (en) 2013-03-15 2018-06-13 Abbott Diabetes Care, Inc. System and method to manage diabetes based on glucose median, glucose variability, and hypoglycemic risk
EP3434184B1 (en) 2014-04-10 2021-10-27 DexCom, Inc. Glycemic urgency assessment and alerts interface
EP3152322B1 (en) 2014-06-05 2019-09-11 The General Hospital Corporation Estimating risk of death using the clearance volume of red blood cells as biomarker
EP3191848A1 (en) * 2014-09-12 2017-07-19 Beckman Coulter, Inc. Systems and methods to determine the age of cells
US10955423B2 (en) * 2015-12-15 2021-03-23 The General Hospital Corporation Methods of estimating blood glucose and related systems
US11293852B2 (en) 2016-04-07 2022-04-05 The General Hospital Corporation White blood cell population dynamics
EP3586145A1 (en) * 2017-02-21 2020-01-01 Abbott Diabetes Care Inc. Methods, devices, and systems for physiological parameter analysis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1367701A (zh) * 1999-05-11 2002-09-04 奥索-麦克尼尔药物公司 红细胞生成素给药的药代动力学和药效模型
CN101371145A (zh) * 2005-10-28 2009-02-18 惠普开发有限公司 测量糖化血色素的系统和方法

Also Published As

Publication number Publication date
CN113164105A (zh) 2021-07-23
WO2020086934A3 (en) 2020-08-06
US12232867B2 (en) 2025-02-25
JP2022505796A (ja) 2022-01-14
US20250176868A1 (en) 2025-06-05
AU2019368318B2 (en) 2023-02-16
AU2023202024A1 (en) 2023-05-04
WO2020086934A2 (en) 2020-04-30
AU2024216338A1 (en) 2024-09-12
JP7463590B2 (ja) 2024-04-08
JP7254916B2 (ja) 2023-04-10
JP2023073397A (ja) 2023-05-25
AU2023202024B2 (en) 2024-07-04
US20210378561A1 (en) 2021-12-09
JP2024079874A (ja) 2024-06-12
AU2019368318A1 (en) 2021-05-27
CN119517401A (zh) 2025-02-25
EP3870050A2 (en) 2021-09-01
CA3117468A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
US12042276B2 (en) Methods, devices, and systems for physiological parameter analysis
CN113164105B (zh) 用于生理参数分析的方法、设备和系统
US20230061350A1 (en) Methods, devices, and systems for adjusting laboratory hba1c values
CN115004310A (zh) 用于生理参数分析的方法、设备和系统
US20230215521A1 (en) Methods, devices, and systems for adjusting laboratory hba1c values
CN117396973A (zh) 生理参数分析和相关图形用户界面的系统、设备和方法
WO2025064603A1 (en) Methods, devices, and systems for adjusting laboratory hba1c values
CN118475989A (zh) 用于调整实验室hba1c值的方法、装置和系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant