CN113131786B - A rotary piezoelectric motor - Google Patents
A rotary piezoelectric motor Download PDFInfo
- Publication number
- CN113131786B CN113131786B CN202110377238.6A CN202110377238A CN113131786B CN 113131786 B CN113131786 B CN 113131786B CN 202110377238 A CN202110377238 A CN 202110377238A CN 113131786 B CN113131786 B CN 113131786B
- Authority
- CN
- China
- Prior art keywords
- base
- output shaft
- pair
- clamping
- cross
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/12—Constructional details
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/14—Drive circuits; Control arrangements or methods
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
本发明涉及一种旋转压电马达,属于精密驱动与定位技术领域。包括底座、定子机构和动子机构。底座为L型底座,底座的直立板为正方形框架;定子机构包括十字形框架、两对旋转压电片和两对箝拉压电片,两对旋转压电片设于一对垂直臂上形成驱动单元;两对箝拉压电片设于一对水平臂上形成箝位单元;定子机构固定设于底座的正方形框架内;动子机构包括输出轴和支撑滑块;输出轴通过轴承贯穿设于支撑滑块的上部,支撑滑块的下部通过T型槽配合设于底座上。本发明利用正弦信号控制定子的驱动和箝位动作,实现了定子与输出轴的接触都是突变的,定子与动子之间靠静摩擦力驱动,不存在滑动摩擦力,定子与动子之间没有磨损,延长马达寿命。
The invention relates to a rotary piezoelectric motor, which belongs to the technical field of precision driving and positioning. Including base, stator mechanism and mover mechanism. The base is an L-shaped base, and the upright plate of the base is a square frame; the stator mechanism includes a cross-shaped frame, two pairs of rotating piezoelectric sheets and two pairs of clamping piezoelectric sheets, and the two pairs of rotating piezoelectric sheets are set on a pair of vertical arms to form Drive unit; two pairs of clamping piezoelectric plates are set on a pair of horizontal arms to form a clamping unit; the stator mechanism is fixed in the square frame of the base; the mover mechanism includes an output shaft and a supporting slider; the output shaft passes through the bearing through the design The upper part of the supporting slider is matched with the lower part of the supporting slider on the base through the T-shaped slot. The invention uses sinusoidal signals to control the driving and clamping action of the stator, and realizes that the contact between the stator and the output shaft is abrupt, and the stator and the mover are driven by static friction without sliding friction. No wear, prolonging motor life.
Description
技术领域technical field
本发明属于精密驱动与定位技术领域,具体涉及一种旋转压电马达。The invention belongs to the technical field of precision driving and positioning, and in particular relates to a rotary piezoelectric motor.
背景技术Background technique
压电马达,也称为超声波马达,通过逆压电效应利用振动器的机械振动。电机的运动和扭矩是通过振动器和滑块(转子)之间的摩擦获得的。迄今为止,它们已广泛应用于机器人,高精度仪器中,研究人员喜欢压电电机的原因是它们与电磁电机相比具有优越的优点,包括结构紧凑简单、无线圈、响应迅速、重量和功耗最小、断电状态下自锁以及没有电磁干扰等。Piezoelectric motors, also known as ultrasonic motors, utilize the mechanical vibration of a vibrator through the inverse piezoelectric effect. The motion and torque of the motor is obtained by the friction between the vibrator and the slider (rotor). So far, they have been widely used in robots, high-precision instruments, and researchers like piezoelectric motors because of their superior advantages over electromagnetic motors, including compact and simple structure, no coils, fast response, weight and power consumption Minimum, self-locking in power-off state, and no electromagnetic interference, etc.
压电马达可分为超声马达和准静态马达。超声马达靠定子与动子之间的摩擦力驱动使动子运动,工作在谐振状态,频率高,速度快。因为由单一谐波驱动,定子驱动动子的过程是渐进的,定子与动子之间存在滑动摩擦力,磨损严重,寿命短。2016年,杨等人创造了一种空载速度为342转/分、频率为57.47千赫的纵向弯曲复合驱动电机。尽管如此,最大扭矩仅为6.26 N mm,高频带来高速,但由于摩擦联轴器的驱动原理,限制了电机的效率和使用寿命。准静态马达的频率相对较低,如尺蠖马达。尺蠖马达通过夹紧单元和驱动振子的配合实现单向运动。理论上讲,尺蠖马达在运行过程中不存在滑动摩擦,不存在摩擦磨损,效率很高,寿命比较长。同时,这种类型的压电马达需要两个箱位单元和一个驱动单元同步交替动作,从控制的角度讲难度比较大,需要比较复杂的电路实现有效的控制。Piezoelectric motors can be classified into ultrasonic motors and quasi-static motors. The ultrasonic motor is driven by the friction between the stator and the mover to move the mover, and works in a resonance state with high frequency and fast speed. Because it is driven by a single harmonic, the process of the stator driving the mover is gradual, and there is sliding friction between the stator and the mover, which causes severe wear and short life. In 2016, Yang et al. created a longitudinal bending composite drive motor with a no-load speed of 342 rpm and a frequency of 57.47 kHz. Nevertheless, the maximum torque is only 6.26 N mm, and the high frequency brings high speed, but due to the driving principle of the friction coupling, the efficiency and service life of the motor are limited. The frequency of quasi-static motors is relatively low, such as inchworm motors. The inchworm motor realizes unidirectional movement through the cooperation of the clamping unit and the driving vibrator. Theoretically speaking, the inchworm motor has no sliding friction, no friction and wear during operation, high efficiency and long life. At the same time, this type of piezoelectric motor requires two tank units and one drive unit to act synchronously and alternately, which is relatively difficult from a control point of view and requires a relatively complicated circuit to achieve effective control.
发明内容Contents of the invention
为解决超声马达摩擦磨损严重和准静态马达频率低速度低得缺点,本发明提供了一种旋转压电马达。In order to solve the shortcomings of severe friction and wear of the ultrasonic motor and low frequency and low speed of the quasi-static motor, the invention provides a rotary piezoelectric motor.
一种旋转压电马达包括底座4、定子机构3和动子机构。A rotary piezoelectric motor includes a
所述底座4为L型底座;底座4的水平底板上开有倒T型槽41,底座4的直立板为正方形框架;The
所述定子机构3包括十字形框架31、两对旋转压电片34和两对箝位压电片35;所述十字形框架的中部开设有盲孔,盲孔为圆台槽口32;两对旋转压电片34分别固定设于十字形框架的一对垂直臂38的两侧面上,形成驱动单元;两对箝位压电片35分别固定设于十字形框架的一对水平臂33的两侧面上,形成箝位单元;所述十字形框架31通过一对水平臂33的悬臂端与底座4的正方形框架的内壁固定连接固定在底座4的正方形框架内,所述一对垂直臂38的悬臂端与底座4的正方形框架的内壁不接触;The
所述动子机构包括输出轴1和支撑滑块2;输出轴1通过轴承贯穿设于支撑滑块2的上部,输出轴1的一端为圆台顶尖11,且输出轴1的圆台顶尖11位于十字形框架的圆台槽口32内;支撑滑块2的下部与倒T型槽41配合设于底座4上;The mover mechanism includes an
所述底座4的直立板和动子机构的支撑滑块2之间设有预紧机构;A pre-tightening mechanism is provided between the upright plate of the
工作时,向两对旋转压电片34输入正弦信号,一对垂直臂38的弹性振子在一个周期内带动定子机构3实现正转或反转交替的转动;向两对箝位压电片35输入方波信号,一对水平臂33的弹性振子在一个周期内实现定子机构3在垂直于旋转面的方向上前后移动,实现定子机构3上的圆台槽口32的孔口与输出轴1的圆台顶尖11接触,实现箝位过程;同时向两对旋转压电片34、两对箝位压电片35分别输入频率相等的正弦信号或方波信号,使旋转驱动动作和箝位动作同步进行,以实现马达的连续转动。When working, a sinusoidal signal is input to two pairs of rotating
进一步限定的技术方案如下:Further defined technical solutions are as follows:
所述十字形框架31的一对水平臂的悬臂端分别通过固定块37和螺栓固定连接着底座4的正方形框架的两侧边框内壁;所述水平臂的悬臂端和固定块37之间设有柔性铰链36。The cantilever ends of a pair of horizontal arms of the
所述预紧机构包括螺杆7、螺母6和弹簧5,弹簧5套设在螺杆7上;所述螺杆7穿过底座4下部的通孔43和支撑滑块2下部的通孔21,弹簧5套设在螺母6内侧的螺杆7的外伸端上;通过调节螺母6实现预紧力的调节,实现调节工作时输出轴1的圆台顶尖11与定子机构3的圆台槽口32内壁的接触或非接触。Described pretensioning mechanism comprises
所述底座4的倒T型槽41两侧的水平底板上分别开设有一对椭圆孔42,与一对椭圆孔42对应的支撑滑块2下部两侧分别开设有定位螺纹孔22;支撑滑块2通过螺栓和定位螺纹孔22的螺纹连接配合固定在底座4上,一对椭圆孔42实现支撑滑块2在底座4上调节位置。A pair of
所述旋转压电片34的材料和箝位驱动压电片35的材料均为PZT-4型压电陶瓷片。The material of the rotating
所述底座4、固定块37和支撑滑块2的材料均为铸铁。The materials of the
所述柔性铰链36的材料为弹簧钢。The material of the
所述十字形框架31和输出轴1的材料均为碳素结构钢。The materials of the
本发明的有益技术效果体现在以下方面:Beneficial technical effect of the present invention is embodied in the following aspects:
1.本发明利用正弦信号控制定子的驱动和箝位动作,实现了定子与输出轴的接触都是突变的,定子与动子之间靠静摩擦力驱动,不存在滑动摩擦力,定子与动子之间没有磨损,延长马达寿命。1. The present invention uses sinusoidal signals to control the driving and clamping action of the stator, so that the contact between the stator and the output shaft is abrupt, and the stator and the mover are driven by static friction without sliding friction. There is no wear between them, prolonging the life of the motor.
2.本发明的工作状态为谐振状态,当两个电信号协同工作时,输出轴将实现单向旋转,并且输出轴的旋转方向也可以通过改变正弦信号的初始相位来实现反转。当旋转压电马达的工作频率是652Hz、驱动电压为180V时,旋转压电马达的空载转速和最大输出转矩为15.6r/min和83.6N·mm。2. The working state of the present invention is a resonance state. When two electrical signals work together, the output shaft will realize unidirectional rotation, and the rotation direction of the output shaft can also be reversed by changing the initial phase of the sinusoidal signal. When the operating frequency of the rotary piezoelectric motor is 652Hz and the driving voltage is 180V, the no-load speed and maximum output torque of the rotary piezoelectric motor are 15.6r/min and 83.6N·mm.
附图说明Description of drawings
图1为本发明结构示意图。Fig. 1 is a schematic diagram of the structure of the present invention.
图2为图1的后视图。Fig. 2 is a rear view of Fig. 1 .
图3为定子结构示意图。Figure 3 is a schematic diagram of the stator structure.
图4为动子结构示意图。Figure 4 is a schematic diagram of the mover structure.
图5为定子与输出轴接触的位置关系示意图。Fig. 5 is a schematic diagram of the positional relationship between the stator and the output shaft.
图6为底座结构的示意图。Fig. 6 is a schematic diagram of the base structure.
图7为定子机构上的圆台孔的孔口与输出轴的圆台顶尖接触和非接触状态示意图。Fig. 7 is a schematic diagram of the contact and non-contact states of the orifice of the circular table hole on the stator mechanism and the top of the circular table of the output shaft.
图8为旋转驱动压电片输入信号图。Fig. 8 is a diagram of the input signal of the rotationally driven piezoelectric sheet.
图9为定子旋转动作原理图。Figure 9 is a schematic diagram of the stator rotating action.
图10为箝位驱动压电片输入信号图。Fig. 10 is a diagram of the input signal of the clamp driving piezoelectric film.
图11为定子箝位动作原理图。Figure 11 is a schematic diagram of the stator clamping action.
上图中序号:输出轴1、支撑滑块2、定子机构3、底座4、弹簧5、螺母6、螺杆7、通孔21、定位螺纹孔22、十字形框架31、圆台槽口32、水平臂33、旋转压电片34、箝位压电片35、柔性铰链36、固定块37、垂直臂38、圆台顶尖11、倒T型槽41、椭圆孔42、螺纹孔44、贯穿孔45。Serial numbers in the above picture:
具体实施方式Detailed ways
下面结合附图,通过实施例对本发明作进一步地说明。The present invention will be further described through the embodiments below in conjunction with the accompanying drawings.
参见图1,一种旋转压电马达包括底座4、定子机构3和动子机构。Referring to FIG. 1 , a rotary piezoelectric motor includes a
参见图6,底座4为L型底座;底座4的水平底板上开有倒T型槽41,底座4的直立板为正方形框架。倒T型槽41两侧的水平底板上分别开设有一对椭圆孔42;参见图4,与一对椭圆孔42对应的支撑滑块2下部两侧分别开设有定位螺纹孔22;支撑滑块2通过螺栓和定位螺纹孔22的螺纹连接配合固定在底座4上,一对椭圆孔42实现支撑滑块2在底座4上调节位置,见图1。Referring to Fig. 6, the
参见图3,定子机构3包括十字形框架31、两对旋转压电片34和两对箝位压电片35;所述十字形框架的中部开设有盲孔,盲孔为内小外大的圆台槽口32;两对旋转压电片34分别固定设于十字形框架的一对垂直臂38的两侧面上,形成驱动单元;两对箝位压电片35分别固定设于十字形框架的一对水平臂33的两侧面上,形成箝位单元。十字形框架31的一对水平臂33的悬臂端分别通过固定块37和螺栓固定连接着底座4的正方形框架的两侧边框内壁;水平臂33的悬臂端和固定块37之间设有柔性铰链36。一对垂直臂38的悬臂端与底座4的正方形框架的内壁不接触。Referring to Fig. 3, the
参见图4,动子机构包括输出轴1和支撑滑块2;输出轴1通过轴承贯穿设于支撑滑块2的上部,输出轴1的一端为圆台顶尖11,且输出轴1的圆台顶尖11位于十字形框架的圆台槽口32内;支撑滑块2的下部与倒T型槽41配合设于底座4上;Referring to Fig. 4, the mover mechanism includes an
参见图1,底座4的直立板和动子机构的支撑滑块2之间设有预紧机构。预紧机构包括螺杆7、螺母6和弹簧5。螺杆7穿过底座4下部的通孔43和支撑滑块2下部的通孔21,弹簧5套装在螺母6内侧的螺杆7的外伸端上;通过调节螺母6实现预紧力的调节,实现调节工作时输出轴1的圆台顶尖11与定子机构3的圆台槽口32内壁的接触或非接触,圆台顶尖11与圆台槽口32内壁接触时,见图7中的a,圆台顶尖11与圆台槽口32内壁非接触时,见图7中的b。Referring to Fig. 1, a pre-tightening mechanism is provided between the upright plate of the
旋转压电片34的材料和箝位压电片35的材料均为PZT-4型压电陶瓷片。底座4、固定块37和支撑滑块2的材料均为铸铁。柔性铰链36的材料为弹簧钢。十字形框架31和输出轴1的材料均为碳素结构钢。The materials of the
本发明的工作原理详细说明如下:The working principle of the present invention is described in detail as follows:
参见图8,向旋转压电片34输入正弦信号。Referring to FIG. 8 , a sinusoidal signal is input to the
参见图9,无电压信号时如图9中的a所示;时间由t0至t1,垂直臂38逆时针 摆动一个小角度,见图9中的b,十字形框架31顺时针转动一个角度;时间由t1至t2时,垂直臂38回到初始位置,见图9中的c,十字形框架31回到初始位置;时间由t2至t3,垂直臂38顺时针摆动一个小角度,见图9中的d,十字形框架31逆时针转动一个角度;时间由t3至t4时,垂直臂38回到初始位置,见图9中的e所示,十字形框架31回到初始位置。Referring to Fig. 9, when there is no voltage signal, it is shown in a in Fig. 9; the time is from t0 to t1, the
参见图10,向箝位压电片35输入正弦信号。Referring to FIG. 10 , a sinusoidal signal is input to the clamping
参见图11,无信号时十字形框架31的状态如图11中的f所示;时间由t0至t1时,水平臂33向靠近输出轴1的方向摆动,见图11中的g,同时十字形框架31靠近输出轴1;时间由t1至t2时,水平臂33回到初始位置,见图11中的h,同时十字形框架31远离输出轴1;当时间由t2至t3时,水平臂33向远离输出轴1的方向摆动,见图11中的i,同时十字形框架31再次远离输出轴1;时间由t3至t4时,水平臂33向靠近输出轴1的方向摆动,见图11中的j,同时十字形框架31靠近输出轴1。一个循环完成。Referring to Figure 11, the state of the
在一个周期内,垂直臂38逆时针转动,此时十字形框架31顺时针转动,箝位压电片35的输入信号使十字形框架31靠近输出轴1,此时定子机构3上的圆台槽口32与输出轴1的圆台顶尖11接触,从而驱动输出轴1顺时针旋转;当垂直臂38反向振动时,箝位压电片35的输入信号使十字形框架31远离输出轴1;当垂直臂38继续逆时针转动时,此时十字形框架31继续靠近输出轴1,使得定子机构3上的圆台槽口32与输出轴1的圆台顶尖11接触,如此往复,可实现压电马达顺时针方向的连续转动。使驱动与箝位电压信号的相位角反向,即可实现压电马达反向转动。调整驱动与箝位电压信号的相位角及占空比可以实现不同的转速及转矩。In one cycle, the
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110377238.6A CN113131786B (en) | 2021-04-08 | 2021-04-08 | A rotary piezoelectric motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110377238.6A CN113131786B (en) | 2021-04-08 | 2021-04-08 | A rotary piezoelectric motor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113131786A CN113131786A (en) | 2021-07-16 |
CN113131786B true CN113131786B (en) | 2023-02-24 |
Family
ID=76775290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110377238.6A Expired - Fee Related CN113131786B (en) | 2021-04-08 | 2021-04-08 | A rotary piezoelectric motor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113131786B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115224977B (en) * | 2022-03-04 | 2024-04-16 | 合肥工业大学 | A resonant rotary piezoelectric motor |
CN114785186B (en) * | 2022-05-11 | 2024-03-15 | 合肥工业大学 | A linear piezoelectric motor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203233339U (en) * | 2013-05-08 | 2013-10-09 | 吉林大学 | Bionic micro-nano-scale piezoelectric rotary drive device |
CN104362889A (en) * | 2014-11-14 | 2015-02-18 | 西安交通大学 | Self-adaptation stepping type angular displacement piezoelectric actuator and method |
CN204316376U (en) * | 2014-12-09 | 2015-05-06 | 燕山大学 | Rotate looper piezoelectric micromotion motor |
CN108365773A (en) * | 2018-04-03 | 2018-08-03 | 合肥工业大学 | A kind of rotary piezo-electric motor |
CN110086374A (en) * | 2019-05-07 | 2019-08-02 | 江西理工大学 | A kind of Inchworm type precision rotation microdrive based on compliant mechanism |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH696993A5 (en) * | 2004-06-24 | 2008-02-29 | Miniswys Sa | Piezoelectric drive unit positioning optical component, has resonator connecting pair of arms which oscillate to and from each other, causing movement along shaft |
FR3092454B1 (en) * | 2019-02-04 | 2022-06-10 | Cedrat Tech | SCREW NANOMETRIC DISPLACEMENT MECHANISM |
-
2021
- 2021-04-08 CN CN202110377238.6A patent/CN113131786B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203233339U (en) * | 2013-05-08 | 2013-10-09 | 吉林大学 | Bionic micro-nano-scale piezoelectric rotary drive device |
CN104362889A (en) * | 2014-11-14 | 2015-02-18 | 西安交通大学 | Self-adaptation stepping type angular displacement piezoelectric actuator and method |
CN204316376U (en) * | 2014-12-09 | 2015-05-06 | 燕山大学 | Rotate looper piezoelectric micromotion motor |
CN108365773A (en) * | 2018-04-03 | 2018-08-03 | 合肥工业大学 | A kind of rotary piezo-electric motor |
CN110086374A (en) * | 2019-05-07 | 2019-08-02 | 江西理工大学 | A kind of Inchworm type precision rotation microdrive based on compliant mechanism |
Also Published As
Publication number | Publication date |
---|---|
CN113131786A (en) | 2021-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113131786B (en) | A rotary piezoelectric motor | |
CN108429400B (en) | Electromagnetic piezoelectric hybrid drive multi-degree-of-freedom motor | |
CN101090244A (en) | Single vibrator longitudinal bending sandwich transducer type planar multi-degree-of-freedom ultrasonic motor | |
CN110460264A (en) | Piezoelectric actuator and control method to improve performance based on quadruped coupling motion | |
CN210431263U (en) | Novel piezoelectric rotation precision driving platform | |
CN110752771B (en) | A piezoelectric rotary precision drive platform based on parasitic inertia principle | |
CN112383241A (en) | Bidirectional inertia linear piezoelectric motor | |
CN101860259B (en) | Single-electrical signal-stimulated rotation ultrasonic motor | |
CN110912448B (en) | A Piezoelectric Drive Platform Based on Asymmetric Triangular Flexible Hinge Mechanism | |
CN113131783B (en) | A clamp-controlled inertial linear piezoelectric motor | |
CN110995058A (en) | Novel piezoelectric rotation precision driving platform based on parasitic inertia principle | |
CN108712103B (en) | Impact type piezoelectric rotary motor | |
CN113131785B (en) | Inertia rotation piezoelectric motor | |
CN110299866A (en) | The accurate piezoelectric straight line mobile platform and operation mode of frame structure driving | |
CN210157098U (en) | Precise piezoelectric linear moving platform driven by square frame structure | |
CN110855181A (en) | A Rotary Piezoelectric Drive Device Based on Asymmetric Triangular Hinged Mechanism | |
CN115224977B (en) | A resonant rotary piezoelectric motor | |
CN110995056B (en) | A synchronous impulse piezoelectric motor | |
CN114785186B (en) | A linear piezoelectric motor | |
CN109378995A (en) | A High Frequency Resonant Piezoelectric Inertial Drive Linear Displacement Platform | |
CN1272900C (en) | Ultrasonic motor travelling wave driving vibrator capable of realizing straight line or rotate movement | |
King et al. | Piezomotors using flexure hinged displacement amplifiers | |
CN212572422U (en) | Birotor rotating piezoelectric motor | |
CN115566930A (en) | Large-stroke piezoelectric actuator capable of outputting continuous angular displacement | |
CN109495011B (en) | Arc-shaped vibrator linear piezoelectric motor and driving method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20230224 |