CN113092414B - SARS-CoV-2 antibody detection method - Google Patents
SARS-CoV-2 antibody detection method Download PDFInfo
- Publication number
- CN113092414B CN113092414B CN202110366253.0A CN202110366253A CN113092414B CN 113092414 B CN113092414 B CN 113092414B CN 202110366253 A CN202110366253 A CN 202110366253A CN 113092414 B CN113092414 B CN 113092414B
- Authority
- CN
- China
- Prior art keywords
- cov
- sars
- antibody
- optical fiber
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 241001678559 COVID-19 virus Species 0.000 title claims abstract description 83
- 238000001514 detection method Methods 0.000 title claims abstract description 48
- 239000013307 optical fiber Substances 0.000 claims abstract description 83
- 238000000034 method Methods 0.000 claims abstract description 35
- 239000000523 sample Substances 0.000 claims description 41
- 239000000243 solution Substances 0.000 claims description 31
- 239000000835 fiber Substances 0.000 claims description 27
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 12
- 238000012360 testing method Methods 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- 210000002966 serum Anatomy 0.000 claims description 10
- PVGATNRYUYNBHO-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-(2,5-dioxopyrrol-1-yl)butanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCCN1C(=O)C=CC1=O PVGATNRYUYNBHO-UHFFFAOYSA-N 0.000 claims description 8
- VUQUOGPMUUJORT-UHFFFAOYSA-N methyl 4-methylbenzenesulfonate Chemical compound COS(=O)(=O)C1=CC=C(C)C=C1 VUQUOGPMUUJORT-UHFFFAOYSA-N 0.000 claims description 8
- 239000007853 buffer solution Substances 0.000 claims description 6
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 6
- 239000012498 ultrapure water Substances 0.000 claims description 6
- 239000000872 buffer Substances 0.000 claims description 5
- 238000002360 preparation method Methods 0.000 claims description 5
- 230000008929 regeneration Effects 0.000 claims description 5
- 238000011069 regeneration method Methods 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 241000252506 Characiformes Species 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 238000002791 soaking Methods 0.000 claims description 4
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims description 2
- 230000000903 blocking effect Effects 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 229960002317 succinimide Drugs 0.000 claims 2
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 239000011259 mixed solution Substances 0.000 claims 1
- 238000007789 sealing Methods 0.000 claims 1
- 241000711573 Coronaviridae Species 0.000 abstract description 19
- 230000008859 change Effects 0.000 abstract description 3
- 229940027941 immunoglobulin g Drugs 0.000 description 34
- 238000002965 ELISA Methods 0.000 description 7
- 238000003018 immunoassay Methods 0.000 description 5
- 150000007523 nucleic acids Chemical class 0.000 description 4
- 102000039446 nucleic acids Human genes 0.000 description 4
- 108020004707 nucleic acids Proteins 0.000 description 4
- 239000011247 coating layer Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000000405 serological effect Effects 0.000 description 3
- 238000011895 specific detection Methods 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- 238000012767 chemiluminescent enzyme immunoassay Methods 0.000 description 2
- 238000003759 clinical diagnosis Methods 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000003753 real-time PCR Methods 0.000 description 2
- -1 (methyl p-toluenesulfonate) toluene Chemical compound 0.000 description 1
- 208000001528 Coronaviridae Infections Diseases 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000011898 label-free detection Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/41—Refractivity; Phase-affecting properties, e.g. optical path length
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54306—Solid-phase reaction mechanisms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
- G01N33/56983—Viruses
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Virology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Tropical Medicine & Parasitology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
技术领域technical field
本发明属于生物技术领域,具体涉及一种SARS-CoV-2抗体的检测方法。The invention belongs to the field of biotechnology, and in particular relates to a detection method for SARS-CoV-2 antibodies.
背景技术Background technique
新型冠状病毒(SARS-CoV-2)具有高传染性和致病性,爆发后便迅速传播,引发了全球性的公共卫生问题,及时准确的检测病毒核酸和抗体对疫情控制有着重要意义。目前,针对新型冠状病毒(SARS-CoV-2)检测的常用方法主要有:病毒核酸实时聚合酶链反应法、酶联免疫分析法、化学发光免疫分析法、测流免疫分析法等。The novel coronavirus (SARS-CoV-2) is highly contagious and pathogenic, and spread rapidly after the outbreak, causing global public health problems. Timely and accurate detection of viral nucleic acid and antibodies is of great significance to the control of the epidemic. At present, the commonly used methods for the detection of the new coronavirus (SARS-CoV-2) mainly include: viral nucleic acid real-time polymerase chain reaction method, enzyme-linked immunoassay method, chemiluminescence immunoassay method, flow immunoassay method, etc.
病毒核酸实时聚合酶链反应法是临床诊断新冠病毒患者的常用方法,被称为“金标准”,但采用这种方法进行测试,由于采样过程和样品保存问题,检测结果常常产生不可避免的“假阴性”和“假阳性”。而新型冠状病毒感染诱导产生的抗SARS-CoV-2免疫球蛋白G(IgG)和免疫球蛋白M(IgM)等抗体的血清检测学具有高灵敏度、特异性和稳定性,可作为核酸检测有效的互补方法。常用的新型冠状病毒(SARS-CoV-2)抗体的检测试剂盒,如酶联免疫分析(ELISA)、化学发光酶免疫分析(CLIA)和测流免疫分析(LFIA)试剂盒可用于特异性检测SARS-CoV-2抗体。其中酶联免疫吸附法(ELISA)检测对设备要求较低,不需要大型的仪器设备,可实现对新冠抗体的定量检测,但该方法的操作步骤较为繁琐,检测周期较长;化学发光酶免疫分析(CLIA)也可实现对新冠抗体的定量检测,但该方法需要昂贵复杂的仪器和专业的操作人员;测流免疫分析(LFIA)虽可以快速得到检测结果,但该方法仅可定性或半定量的分析抗体的浓度而无法准确的检测抗体浓度,因此,迫切地需要开发一种快速、简单、灵敏的血清学检测技术用于新型冠状病毒肺炎的临床诊断。Viral nucleic acid real-time polymerase chain reaction method is a common method for clinical diagnosis of patients with new coronavirus, known as the "gold standard". However, due to the sampling process and sample preservation problems, the test results often produce unavoidable " false negatives" and "false positives". The serological detection of anti-SARS-CoV-2 immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies induced by the new coronavirus infection has high sensitivity, specificity and stability, and can be used as an effective nucleic acid detection method. complementary approach. Commonly used detection kits for novel coronavirus (SARS-CoV-2) antibodies, such as enzyme-linked immunoassay (ELISA), chemiluminescent enzyme immunoassay (CLIA) and flow immunoassay (LFIA) kits, can be used for specific detection SARS-CoV-2 antibodies. Among them, enzyme-linked immunosorbent assay (ELISA) detection has lower requirements for equipment, does not require large-scale equipment, and can realize the quantitative detection of new crown antibodies, but the operation steps of this method are relatively cumbersome and the detection cycle is long; chemiluminescence enzyme immunoassay Analysis (CLIA) can also realize the quantitative detection of the new crown antibody, but this method requires expensive and complicated instruments and professional operators; although flow immunoassay (LFIA) can quickly obtain the detection results, this method can only be qualitative or semi-antibody. Quantitative analysis of antibody concentration cannot accurately detect antibody concentration. Therefore, it is urgent to develop a rapid, simple and sensitive serological detection technology for clinical diagnosis of new coronavirus pneumonia.
发明内容Contents of the invention
本发明的目的是提供一种新型冠状病毒抗体的免标记检测方法,更加简便、准确、微量的实现SARS-CoV-2免疫球蛋白M(IgM)和免疫球蛋白G(IgG)的血清学免疫定量检测方法,以解决现有的化学发光酶免疫分析(CLIA)和酶联免疫吸附法(ELISA)检测新冠抗体的耗时长、操作复杂等缺点和不足。本发明所需的样品量极少,操作简单,准确性高,可对两种新冠抗体进行特异性检测。The purpose of the present invention is to provide a label-free detection method for novel coronavirus antibodies, which is more convenient, accurate and traceable to realize the serological immunity of SARS-CoV-2 immunoglobulin M (IgM) and immunoglobulin G (IgG). Quantitative detection method to solve the shortcomings and deficiencies of the existing chemiluminescent enzyme immunoassay (CLIA) and enzyme-linked immunosorbent assay (ELISA) to detect new crown antibodies, such as time-consuming and complicated operation. The amount of sample required by the invention is very small, the operation is simple, and the accuracy is high, and the specific detection of two new coronavirus antibodies can be carried out.
第一方面,本发明提供了一种功能化光纤探针。In a first aspect, the present invention provides a functionalized fiber optic probe.
本发明所提供的功能化光纤探针是按照包括下述步骤的方法制备得到的:The functionalized optical fiber probe provided by the present invention is prepared according to the method comprising the following steps:
a)采用多模光纤作为检测探针,去除光纤表面涂覆层,将光纤两端磨平并抛光;a) Using a multimode optical fiber as a detection probe, removing the coating layer on the surface of the optical fiber, and grinding and polishing both ends of the optical fiber;
b)将光纤端面置于V(H2SO4):V(H2O2)=3:1的食人鱼溶液中进行反应,反应结束后用超纯水将光纤洗净烘干;b) Place the end face of the optical fiber in a piranha solution of V(H 2 SO 4 ):V(H 2 O 2 )=3:1 for reaction, and wash and dry the optical fiber with ultrapure water after the reaction;
c)将步骤b)的光纤一端的端面置于MTS(对甲苯磺酸甲酯)的甲苯溶液中浸泡,反应结束后洗净吹干;c) Soak the end face of one end of the optical fiber in step b) in a toluene solution of MTS (methyl p-toluenesulfonate), wash and dry after the reaction;
d)将步骤c)处理的光纤的端面置于GMBS(4-马来酰亚胺基丁酸-N-琥珀酰亚胺酯)乙醇溶液中浸泡,反应结束后将光纤洗净备用。d) Soak the end face of the optical fiber treated in step c) in GMBS (4-maleimidobutyric acid-N-succinimidyl ester) ethanol solution, and clean the optical fiber for later use after the reaction.
e)将步骤d)处理的光纤的端面浸泡在抗SARS-CoV-2抗体(即二抗,为针对SARS-CoV-2抗体的特异性抗体)溶液中,于4℃冰箱中反应过夜,反应结束后使用超纯水清洗光纤;e) Soak the end face of the optical fiber processed in step d) in the solution of anti-SARS-CoV-2 antibody (ie, secondary antibody, which is a specific antibody against SARS-CoV-2 antibody), and react overnight in a refrigerator at 4°C. Clean the optical fiber with ultrapure water after the end;
f)用BSA溶液封闭光纤端面未反应的位点2小时,制作成SARS-CoV-2 IgG功能化检测光纤或SARS-CoV-2 IgM功能化检测光纤。f) Seal the unreacted site on the end face of the optical fiber with BSA solution for 2 hours, and make a SARS-CoV-2 IgG functionalized detection optical fiber or a SARS-CoV-2 IgM functionalized detection optical fiber.
上述方法步骤a)中,所述多模光纤的直径可为400~600微米,光纤数值孔径为0.18~0.22。所述光纤的长度可为3-5厘米。In step a) of the above method, the diameter of the multimode optical fiber may be 400-600 microns, and the numerical aperture of the optical fiber may be 0.18-0.22. The length of the optical fiber may be 3-5 cm.
上述方法步骤b)中,所述反应的条件为:于70℃中加热20-40分钟。In step b) of the above method, the reaction conditions are: heating at 70° C. for 20-40 minutes.
上述方法步骤c)中,所述MTS甲苯溶液中MTS的质量浓度为1%~5%(具体如2%);所述浸泡的时间可为1-3小时。In step c) of the above method, the mass concentration of MTS in the MTS toluene solution is 1%-5% (specifically, 2%); the soaking time may be 1-3 hours.
上述方法步骤d)中,所述GMBS(4-马来酰亚胺基丁酸-N-琥珀酰亚胺酯)乙醇溶液中GMBS的浓度可为10~50mM(具体如20mM);所述浸泡的时间可为0.5-2小时。In step d) of the above method, the concentration of GMBS in the ethanol solution of GMBS (4-maleimidobutyric acid-N-succinimidyl ester) can be 10-50mM (specifically, 20mM); the soaking The time can be 0.5-2 hours.
上述方法步骤e)中,所述抗SARS-CoV-2抗体溶液中抗SARS-CoV-2抗体的浓度可为100μg/mL-1000μg/mL。所述抗SARS-CoV-2抗体可为抗SARS-CoV-2 IgG抗体或抗SARS-CoV-2IgM抗体。In step e) of the above method, the concentration of the anti-SARS-CoV-2 antibody in the anti-SARS-CoV-2 antibody solution may be 100 μg/mL-1000 μg/mL. The anti-SARS-CoV-2 antibody can be an anti-SARS-CoV-2 IgG antibody or an anti-SARS-CoV-2 IgM antibody.
上述方法步骤f)中,所述BSA溶液的质量浓度为1%~5%。所述封闭的时间为2-3小时。In step f) of the above method, the mass concentration of the BSA solution is 1%-5%. The blocking time is 2-3 hours.
上述方法制备的功能化光纤探针也属于本发明保护的内容。The functionalized optical fiber probe prepared by the above method also belongs to the protection content of the present invention.
第二方面,本发明还保护了上述功能化光纤探针的应用。In the second aspect, the present invention also protects the application of the above-mentioned functionalized fiber optic probe.
本发明所提供的功能化光纤探针的应用是其在制备检测SARS-CoV-2抗体的试剂盒中的应用。The application of the functionalized fiber optic probe provided by the present invention is its application in the preparation of a kit for detecting SARS-CoV-2 antibodies.
所述SARS-CoV-2抗体可为SARS-CoV-2 IgG抗体和/或SARS-CoV-2 IgM抗体。The SARS-CoV-2 antibody can be a SARS-CoV-2 IgG antibody and/or a SARS-CoV-2 IgM antibody.
第三方面,本发明还保护了上述功能化光纤探针和SARS-CoV-2抗体标准品的应用。In the third aspect, the present invention also protects the application of the functionalized fiber optic probe and the SARS-CoV-2 antibody standard.
本发明所提供的功能化光纤探针和SARS-CoV-2抗体标准品的应用是它们在制备检测SARS-CoV-2抗体的试剂盒中的应用。The application of the functionalized optical fiber probe and the SARS-CoV-2 antibody standard provided by the present invention is their application in the preparation of a kit for detecting the SARS-CoV-2 antibody.
所述SARS-CoV-2抗体可为SARS-CoV-2 IgG抗体和/或SARS-CoV-2 IgM抗体。The SARS-CoV-2 antibody can be a SARS-CoV-2 IgG antibody and/or a SARS-CoV-2 IgM antibody.
第四方面,本发明还保护一种检测SARS-CoV-2抗体的试剂盒。In the fourth aspect, the present invention also protects a kit for detecting SARS-CoV-2 antibodies.
本发明所提供的检测SARS-CoV-2抗体的试剂盒,包括本发明所提供的功能化光纤探针。The kit for detecting SARS-CoV-2 antibodies provided by the present invention includes the functionalized fiber optic probe provided by the present invention.
进一步的,所述检测SARS-CoV-2抗体的试剂盒中还包括SARS-CoV-2抗体标准品。Further, the kit for detecting SARS-CoV-2 antibodies also includes SARS-CoV-2 antibody standards.
进一步的,所述检测SARS-CoV-2抗体的试剂盒中还包括载体,所述载体上记载了下述检测SARS-CoV-2抗体的方法。Further, the kit for detecting the SARS-CoV-2 antibody also includes a carrier on which the following method for detecting the SARS-CoV-2 antibody is recorded.
第五方面,本发明还保护一种检测SARS-CoV-2抗体含量的方法。In the fifth aspect, the present invention also protects a method for detecting the antibody content of SARS-CoV-2.
本发明所提供的检测SARS-CoV-2抗体含量的方法,包括下述步骤:The method for detecting SARS-CoV-2 antibody content provided by the present invention comprises the following steps:
c1)向上述制备的功能化光纤探针表面通入PBS缓冲液1-2分钟,使得光信号稳定,获得反射光强信号值1;c1) Passing PBS buffer solution to the surface of the functionalized optical fiber probe prepared above for 1-2 minutes to stabilize the light signal and obtain a reflected light intensity signal value of 1;
c2)再向所述功能化光纤探针的光纤端面通入不同浓度的SARS-CoV-2抗体标准品,反应5-7分钟,获得反射光强信号值2;c2) Pass SARS-CoV-2 antibody standards of different concentrations into the optical fiber end face of the functionalized optical fiber probe, react for 5-7 minutes, and obtain a reflected light intensity signal value of 2;
c3)然后向光纤表面通入再生液3-5分钟,使得SARS-CoV-2 IgG抗体与所述功能化光纤探针表面的抗SARS-CoV-2 IgG抗体解离,最后向光纤表面通入PBS缓冲液1-5分钟检测结果为信号值1-信号值2;c3) Then pass the regenerating solution to the surface of the optical fiber for 3-5 minutes, so that the SARS-CoV-2 IgG antibody dissociates from the anti-SARS-CoV-2 IgG antibody on the surface of the functionalized fiber optic probe, and finally pass to the surface of the optical fiber The detection result of PBS buffer in 1-5 minutes is signal value 1-signal value 2;
c4)重复上述c1)-c3)的步骤,测定系列浓度的SARS-CoV-2抗体标准品对应的反射光强信号值2,获得系列浓度SARS-CoV-2抗体标准品对应的检测结果,以SARS-CoV-2抗体标准品浓度为横坐标,以所述SARS-CoV-2抗体标准品浓度对应的检测结果信号值为纵坐标进行Logistic拟合绘制标准曲线图,得到标准曲线方程;c4) Repeat the steps of c1)-c3) above, measure the reflected light intensity signal value 2 corresponding to the SARS-CoV-2 antibody standard product with a series concentration, and obtain the detection results corresponding to the SARS-CoV-2 antibody standard product with a series concentration, to The concentration of the SARS-CoV-2 antibody standard substance is the abscissa, and the standard curve is drawn by Logistic fitting with the detection result signal value corresponding to the concentration of the SARS-CoV-2 antibody standard substance on the ordinate to obtain the standard curve equation;
c5)将待测样品按照上述c1)-c3)中的方法进行检测,得到待测样品对应的检测结果信号值,并将其代入c4)所得标准曲线方程,计算得到所述待测样品中的SARS-CoV-2抗体的浓度。c5) The sample to be tested is detected according to the method in the above c1)-c3), and the signal value of the test result corresponding to the sample to be tested is obtained, and it is substituted into the standard curve equation obtained in c4), and the α in the sample to be tested is calculated. Concentrations of SARS-CoV-2 antibodies.
上述方法可用于检测SARS-CoV-2 IgG抗体或SARS-CoV-2 IgM抗体。The above method can be used to detect SARS-CoV-2 IgG antibody or SARS-CoV-2 IgM antibody.
当检测SARS-CoV-2 IgG抗体时,所述功能化光纤探针的光纤端面具有抗SARS-CoV-2 IgG抗体;When detecting SARS-CoV-2 IgG antibody, the optical fiber end face of the functionalized fiber optic probe has anti-SARS-CoV-2 IgG antibody;
当检测SARS-CoV-2 IgM抗体时,所述功能化光纤探针的光纤端面具有抗SARS-CoV-2 IgM抗体。When detecting SARS-CoV-2 IgM antibody, the optical fiber end face of the functionalized fiber optic probe has anti-SARS-CoV-2 IgM antibody.
上述方法中,所述再生液为质量浓度0.5%SDS水溶液。In the above method, the regeneration solution is an aqueous solution of SDS with a mass concentration of 0.5%.
本发明中所述待测样品具体可为待测血清。检测前需将待测血清用PBS缓冲液稀释20-50倍,放置4℃备用。The sample to be tested in the present invention may specifically be serum to be tested. Before the test, the serum to be tested needs to be diluted 20-50 times with PBS buffer, and placed at 4°C for use.
本发明由于采取以上技术方案,其具有以下优点:1、本发明的新型冠状病毒(SARS-CoV-2)抗体检测方法,通过在光纤端面修饰抗新型冠状病毒(SARS-CoV-2)抗体,样本中的新型冠状病毒(SARS-CoV-2)抗体与光纤端面的新型冠状病毒(SARS-CoV-2)抗体结合,光纤端面处的折射率由于两种抗体的特异性结合而增大,通过检测光纤内光强的变化达到检测目的。2、本发明的新型冠状病毒(SARS-CoV-2)抗体检测方法具有检测速度快、可特异性定量检测新冠抗体的含量。The present invention has the following advantages due to the adoption of the above technical scheme: 1. The novel coronavirus (SARS-CoV-2) antibody detection method of the present invention, by modifying the anti-new coronavirus (SARS-CoV-2) antibody at the end face of the optical fiber, The new coronavirus (SARS-CoV-2) antibody in the sample is combined with the new coronavirus (SARS-CoV-2) antibody on the end face of the optical fiber, and the refractive index at the end face of the optical fiber increases due to the specific combination of the two antibodies. Detect the change of light intensity in the optical fiber to achieve the purpose of detection. 2. The new coronavirus (SARS-CoV-2) antibody detection method of the present invention has a fast detection speed and can specifically and quantitatively detect the content of the new coronavirus antibody.
附图说明Description of drawings
图1为新型冠状病毒SARS-CoV-2 IgG检测典型曲线图;Figure 1 is a typical curve diagram for detection of novel coronavirus SARS-CoV-2 IgG;
图2新型冠状病毒SARS-CoV-2 IgG检测标准曲线图。Figure 2 The standard curve for the detection of novel coronavirus SARS-CoV-2 IgG.
具体实施方式Detailed ways
下面结合具体实施案例对本发明技术方案作进一步的详细描述,以使本领域的技术人员可以更好的理解发明并能予以实施,但所举实例案例不作为对本发明的限定。The technical solution of the present invention will be further described in detail below in conjunction with specific implementation cases, so that those skilled in the art can better understand the invention and implement it, but the examples given are not intended to limit the present invention.
本次所举案例为人血清样本中新型冠状病毒IgG抗体进行加标检测。The case cited this time is the spiked detection of IgG antibodies against novel coronavirus in human serum samples.
下述实施例所使用的SARS-CoV-2 IgG抗体标准品购自北京博奥龙免疫技术有限公司BF02020。The SARS-CoV-2 IgG antibody standard used in the following examples was purchased from Beijing Boaolong Immunology Technology Co., Ltd. BF02020.
下述实施例所使用的抗SARS-CoV-2 IgG抗体购自北京博奥龙免疫技术有限公司BF03082-S。The anti-SARS-CoV-2 IgG antibody used in the following examples was purchased from Beijing Boaolong Immunology Technology Co., Ltd. BF03082-S.
下述实施例所使用的多模光纤购自北京首量科技股份有限公司RMDX-23。The multimode fiber used in the following examples was purchased from RMDX-23 of Beijing Shouliang Technology Co., Ltd.
实施例Example
本发明提供的新型冠状病毒(SARS-CoV-2)IgG抗体的检测方法,包括如下步骤:The detection method of novel coronavirus (SARS-CoV-2) IgG antibody provided by the invention comprises the following steps:
(1)功能化光纤探针的制作(1) Fabrication of functionalized fiber optic probes
a1)采用直径为600微米的多模光纤作为检测探针,光纤数值孔径为0.22,去除光纤表面涂覆层,去除的涂覆层长度为5厘米,光纤探针总长度为5厘米,光纤两端磨平并抛光。a1) A multimode optical fiber with a diameter of 600 microns is used as the detection probe, the numerical aperture of the optical fiber is 0.22, the coating layer on the surface of the optical fiber is removed, the length of the removed coating layer is 5 cm, and the total length of the optical fiber probe is 5 cm. Ends ground and polished.
b1)将光纤端面置于V(H2SO4):V(H2O2)=3:1的食人鱼溶液中,于70℃中加热30分钟,反应结束后用超纯水将光纤洗净烘干。b1) Place the end face of the optical fiber in a piranha solution of V(H 2 SO 4 ):V(H 2 O 2 )=3:1, heat at 70°C for 30 minutes, and wash the optical fiber with ultrapure water after the reaction Dry clean.
c1)将步骤b1)的光纤一端的端面置于质量浓度2%的MTS(对甲苯磺酸甲酯)甲苯溶液中浸泡2小时,反应结束后洗净吹干。c1) Soak the end face of one end of the optical fiber in step b1) in 2% MTS (methyl p-toluenesulfonate) toluene solution for 2 hours, wash and dry after the reaction.
d1)将步骤c)处理的光纤的端面置于20mM的GMBS(4-马来酰亚胺基丁酸-N-琥珀酰亚胺酯)乙醇溶液中浸泡1小时,反应结束后将光纤洗净备用。d1) Soak the end face of the optical fiber treated in step c) in 20mM GMBS (4-maleimidobutyric acid-N-succinimidyl ester) ethanol solution for 1 hour, and clean the optical fiber after the reaction spare.
e1)将步骤d)处理的光纤的端面浸泡在浓度为100μg/mL的抗SARS-CoV-2 IgG抗体溶液中于4℃冰箱中反应过夜,反应结束后使用超纯水清洗光纤。e1) Soak the end face of the optical fiber treated in step d) in an anti-SARS-CoV-2 IgG antibody solution with a concentration of 100 μg/mL and react overnight in a refrigerator at 4° C. After the reaction, clean the optical fiber with ultrapure water.
f1)用质量浓度为2%的BSA溶液封闭光纤端面未反应的位点2小时,制作成SARS-CoV-2 IgG功能化检测光纤。f1) Seal the unreacted sites on the end face of the optical fiber with a BSA solution with a mass concentration of 2% for 2 hours to make a SARS-CoV-2 IgG functionalized detection optical fiber.
(2)标准曲线的建立(2) Establishment of standard curve
取梯度浓度为10、20、50、100、500、1000ng/mL的SARS-CoV-2 IgG抗体标准品进行检测,检测过程具体为:向步骤(1)制备的“抗SARS-CoV-2 IgG抗体功能化检测光纤”表面通入PBS缓冲液60秒,使得光信号稳定,获得反射光强信号值1,再向光纤端面通入新型冠状病毒IgG抗体标准品(即SARS-CoV-2 IgG抗体标准品),反应300秒,获得反射光强信号值2。然后向光纤表面通入再生液(质量浓度0.5%SDS水溶液)300秒,使得SARS-CoV-2 IgG抗体与光纤表面的二抗(二抗为针对SARS-CoV-2 IgG抗体的特异性抗体,即前述的抗SARS-CoV-2IgG抗体)解离,最后向光纤表面通入PBS缓冲液75秒清洗光纤表面。检测结果为信号值1-信号值2,检测的实时典型曲线如图1所示。依次通入不同浓度SARS-CoV-2 IgG抗体标准品,获得SARS-CoV-2 IgG抗体检测标准曲线如图2所示。Get the SARS-CoV-2 IgG antibody standard substance that gradient concentration is 10, 20, 50, 100, 500, 1000ng/mL to detect, and the detection process is specifically: to step (1) prepared " anti-SARS-CoV-2 IgG The surface of the antibody functionalized detection fiber is passed into PBS buffer for 60 seconds to stabilize the light signal and obtain a reflected light intensity signal value of 1, and then pass the new coronavirus IgG antibody standard (that is, SARS-CoV-2 IgG antibody standard product), reacted for 300 seconds, and obtained a reflected light intensity signal value of 2. Pass into regeneration solution (mass concentration 0.5% SDS aqueous solution) to optical fiber surface then 300 seconds, make SARS-CoV-2 IgG antibody and the secondary antibody on optical fiber surface (secondary antibody is the specific antibody against SARS-CoV-2 IgG antibody, That is, the aforementioned anti-SARS-CoV-2 IgG antibody) is dissociated, and finally the surface of the optical fiber is passed into PBS buffer solution for 75 seconds to clean the surface of the optical fiber. The test result is signal value 1-signal value 2, and the real-time typical curve of the test is shown in Figure 1. Different concentrations of SARS-CoV-2 IgG antibody standards were sequentially injected to obtain a SARS-CoV-2 IgG antibody detection standard curve as shown in Figure 2.
(3)样本检测(3) Sample testing
分别向6个不同健康人血清中加入浓度为25、50、100ng/mL的新型冠状病毒IgG抗体进行检测,具体检测步骤如下:Add 25, 50, and 100 ng/mL IgG antibodies to the sera of 6 different healthy people for detection. The specific detection steps are as follows:
a2)将待测血清用PBS缓冲液稀释20倍,放置4℃备用。a2) Dilute the serum to be tested 20 times with PBS buffer, and store it at 4°C for later use.
b2)向光纤表面通入PBS缓冲液60秒,使得光信号稳定,获得信号值1,再向光纤端面通入稀释的待测血清,反应300秒,获得信号值2,再向光纤表面通入再生液(质量浓度0.5%SDS水溶液)清洗300秒,最后向光纤表面通入PBS缓冲液75秒,使光信号恢复至原始值。b2) Pass PBS buffer solution to the surface of the optical fiber for 60 seconds to stabilize the optical signal and obtain a signal value of 1, then pass diluted serum to be tested to the end face of the optical fiber, react for 300 seconds, obtain a signal value of 2, and then pass it to the surface of the optical fiber The regeneration solution (0.5% SDS aqueous solution) was washed for 300 seconds, and finally PBS buffer solution was passed through the surface of the optical fiber for 75 seconds to restore the optical signal to the original value.
c2)检测结果为“信号值1减信号值2”,将检测结果与建立的SARS-CoV-2 IgG检测标准曲线相对照,得到待测血清中SARS-CoV-2 IgG的浓度,结果如下表:c2) The test result is "signal value 1 minus signal value 2". Compare the test result with the established SARS-CoV-2 IgG detection standard curve to obtain the concentration of SARS-CoV-2 IgG in the serum to be tested. The results are shown in the following table :
以上结果表明,SARS-CoV-2 IgG抗体加标回收率为95.2%-105.2%,相对标准偏差小于10%,检测结果可靠。The above results show that the recovery rate of SARS-CoV-2 IgG antibody spiked is 95.2%-105.2%, the relative standard deviation is less than 10%, and the detection result is reliable.
检测限定义为检测到的最低浓度,检测的线性范围由建立的标准曲线得到,附图所示标准曲线的检测限为5ng/mL,线性范围为10.025~109.393ng/mL。The detection limit is defined as the lowest detected concentration, and the linear range of detection is obtained from the established standard curve. The detection limit of the standard curve shown in the attached figure is 5 ng/mL, and the linear range is 10.025-109.393 ng/mL.
本发明的检测原理如下:The detection principle of the present invention is as follows:
光在光纤中传输,由于光纤端面足够光滑、平整,由于光纤内和光纤端面外的折射率不同,光在光纤端面处发生菲涅尔反射,反射回光纤的光可被检测到,反射回光纤的光强度与光纤端面处的折射率有关,且光纤端面处的折射率越大,反射回光纤的光强度越小。在光纤端面处修饰抗新冠病毒抗体,待测样本中含有的新冠抗体可与光纤端面的抗新冠抗体发生特异性结合,光纤端面处的折射率由于两种抗体的特异性结合而增大,反射光减小,不同浓度的抗体引起的折射率变化不同,光纤端面处的反射光强也不同,可通过检测光强度的变化达到定量检测血清样本中新冠病毒抗体浓度的目的。Light is transmitted in the optical fiber. Because the end face of the fiber is smooth and flat enough, and because the refractive index inside the fiber and outside the end face of the fiber are different, the light undergoes Fresnel reflection at the end face of the fiber, and the light reflected back to the fiber can be detected and reflected back to the fiber The light intensity is related to the refractive index at the end face of the fiber, and the greater the refractive index at the end face of the fiber, the smaller the light intensity reflected back to the fiber. The anti-new coronavirus antibody is modified on the end face of the optical fiber. The new crown antibody contained in the sample to be tested can specifically bind to the anti-new crown antibody on the end face of the optical fiber. The refractive index at the end face of the optical fiber increases due to the specific combination of the two antibodies. As the light decreases, the refractive index changes caused by different concentrations of antibodies are different, and the reflected light intensity at the end face of the optical fiber is also different. The purpose of quantitatively detecting the concentration of the new coronavirus antibody in the serum sample can be achieved by detecting the change of light intensity.
以上仅为本发明的优选实施案例,并非因此限制本发明的专利范围,凡是利用本发明说明书及内容所作的等效结构或等效流程变换,或者直接或间接运用在其他相关技术领域,均同理包括在本发明的专利保护范围内。The above are only preferred implementation cases of the present invention, and are not intended to limit the patent scope of the present invention. Any equivalent structure or equivalent process transformation made by using the specification and content of the present invention, or directly or indirectly used in other related technical fields, are the same as The theory is included in the patent protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110366253.0A CN113092414B (en) | 2021-04-06 | 2021-04-06 | SARS-CoV-2 antibody detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110366253.0A CN113092414B (en) | 2021-04-06 | 2021-04-06 | SARS-CoV-2 antibody detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113092414A CN113092414A (en) | 2021-07-09 |
CN113092414B true CN113092414B (en) | 2023-03-10 |
Family
ID=76673731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110366253.0A Active CN113092414B (en) | 2021-04-06 | 2021-04-06 | SARS-CoV-2 antibody detection method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113092414B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114624196B (en) * | 2021-07-12 | 2024-09-20 | 西湖大学 | Biosensing detection method and biosensing detection system for neutralizing antibody |
CN114624195B (en) * | 2021-07-12 | 2024-08-27 | 西湖大学 | A biosensor detection method and detection system combined with antibodies |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004109289A1 (en) * | 2003-06-10 | 2004-12-16 | Agency For Science, Technology And Research | Method of diagnosing sars corona virus infection |
CN101107366A (en) * | 2004-12-24 | 2008-01-16 | 卡洛斯Ⅲ世健康研究所 | Probes and methods for simultaneous detection and identification of multiple viruses causing respiratory infections in humans |
CN111426844A (en) * | 2020-03-13 | 2020-07-17 | 南京农业大学 | A fluorescent immunochromatographic test strip for joint detection of IgG-IgM antibodies against novel coronavirus SARS-CoV-2 |
CN111650370A (en) * | 2020-08-10 | 2020-09-11 | 苏州微湃医疗科技有限公司 | Detection method and detection device of novel coronavirus SARS-CoV-2 |
CN111679070A (en) * | 2020-05-12 | 2020-09-18 | 中国计量科学研究院 | A rapid, sensitive and accurate quantitative detection method and quantitative detector for novel coronavirus antibodies |
CN112268874A (en) * | 2020-09-22 | 2021-01-26 | 浙江大学 | A fast and ultrasensitive sensing device based on optical fiber biochemical probe |
CN112557349A (en) * | 2020-11-17 | 2021-03-26 | 华东师范大学重庆研究院 | SARS-CoV-2 real time in vitro fast detecting system based on graphene oxide coated microfiber sensor |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7202076B2 (en) * | 2000-10-30 | 2007-04-10 | Sru Biosystems, Inc. | Label-free high-throughput optical technique for detecting biomolecular interactions |
WO2004094667A2 (en) * | 2003-04-21 | 2004-11-04 | Genome Institute Of Singapore | Reagents and methods for detecting severe acute respiratory syndrome coronavirus |
US20210088517A1 (en) * | 2020-09-29 | 2021-03-25 | RayBiotech Life | MULTIPLEX HIGH-THROUGHPUT FLOW CYTOMETRY DETECTION OF SARS-COV-2-SPECIFIC IgG, IgA AND IgM |
-
2021
- 2021-04-06 CN CN202110366253.0A patent/CN113092414B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004109289A1 (en) * | 2003-06-10 | 2004-12-16 | Agency For Science, Technology And Research | Method of diagnosing sars corona virus infection |
CN101107366A (en) * | 2004-12-24 | 2008-01-16 | 卡洛斯Ⅲ世健康研究所 | Probes and methods for simultaneous detection and identification of multiple viruses causing respiratory infections in humans |
CN111426844A (en) * | 2020-03-13 | 2020-07-17 | 南京农业大学 | A fluorescent immunochromatographic test strip for joint detection of IgG-IgM antibodies against novel coronavirus SARS-CoV-2 |
CN111679070A (en) * | 2020-05-12 | 2020-09-18 | 中国计量科学研究院 | A rapid, sensitive and accurate quantitative detection method and quantitative detector for novel coronavirus antibodies |
CN111650370A (en) * | 2020-08-10 | 2020-09-11 | 苏州微湃医疗科技有限公司 | Detection method and detection device of novel coronavirus SARS-CoV-2 |
CN112268874A (en) * | 2020-09-22 | 2021-01-26 | 浙江大学 | A fast and ultrasensitive sensing device based on optical fiber biochemical probe |
CN112557349A (en) * | 2020-11-17 | 2021-03-26 | 华东师范大学重庆研究院 | SARS-CoV-2 real time in vitro fast detecting system based on graphene oxide coated microfiber sensor |
Non-Patent Citations (2)
Title |
---|
Anti-SARS-CoV-2 IgG and IgM detection with a GMR based LFIA system;Qiaoge Bayin 等;《Talanta》;20210210;第227卷;全文 * |
Detection of antibodies against SARS-CoV-2 spike protein by gold nanospikes in an opto-microfluidic chip;Riccardo Funari 等;《Biosensors and Bioelectronics》;20200903;第169卷;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN113092414A (en) | 2021-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109061204A (en) | A kind of kit of fluorescence immunoassay detection hair trace drugs | |
CN113092414B (en) | SARS-CoV-2 antibody detection method | |
Song et al. | Rapid and quantitative detection of SARS-CoV-2 IgG antibody in serum using optofluidic point-of-care testing fluorescence biosensor | |
CN108387748A (en) | Immunofluorescence for detecting cat serum amyloid A protein chromatographs detection card and preparation method | |
CN108398565A (en) | Immunofluorescence for detecting dog C reactive protein chromatographs detection card and preparation method | |
CN109856406B (en) | Canine parvovirus antibody fluorescence detection test strip and preparation method and application thereof | |
CN102608090B (en) | A method for detecting viruses based on quantum dot homogeneous immunoassay | |
Kumar et al. | Detection of botulinum toxin using an evanescent wave immunosensor | |
JP4068148B2 (en) | Assay method | |
CN105353116B (en) | A kind of method and its application that immunoassay is carried out based on hydrogen peroxide test strips | |
CN105759028A (en) | Immunochromatographic detection method of Norovirus Raman microprobe labeling | |
CN106124487B (en) | Electrochemiluminescence multi-component immunodetection method based on spectral resolution principle | |
EP0201211A1 (en) | Method and compositions for visual solid phase immunoassays based on luminescent microspheric particles | |
Jiang et al. | A simple and rapid colloidal gold-based immunochromatogarpic strip test for detection of FMDV serotype A | |
CN110672850A (en) | Hepatitis A virus antibody IgM detection kit and preparation method thereof | |
CN112268874B (en) | Quick ultrasensitive sensing device based on optical fiber biochemical probe | |
CN109298178A (en) | Cardiac myosin binding protein C(cMyBP-C based on immunomagnetic beads) time-resolved fluoroimmunoassay kit | |
CN208443852U (en) | Immunofluorescence for detecting dog C reactive protein chromatographs detection card | |
CN109975538A (en) | A kind of detection perlsucht IFN-γ and the test strips of bovine paratuberculosis antibody and preparation method thereof | |
JPH0421819B2 (en) | ||
Spiker et al. | Preliminary study of biosensor optimization for the detection of protein C | |
CN104502608A (en) | Group A rotavirus chromatography test paper strip based on low-noise excitation fluorescent label | |
Xu et al. | Development of chemiluminescent lab‐on‐fiber immunosensors for rapid point‐of‐care testing of anti‐SARS‐CoV‐2 antibodies and evaluation of longitudinal immune response kinetics following three‐dose inactivation virus vaccination | |
CN111024940B (en) | Time-resolved fluorescence immunoassay method based on gold magnetic particles | |
CN211453649U (en) | Immunochromatography test strip based on quantum dot fluorescent microspheres |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |