[go: up one dir, main page]

CN113078884A - Adaptive algorithm with addition of non-linear fitting - Google Patents

Adaptive algorithm with addition of non-linear fitting Download PDF

Info

Publication number
CN113078884A
CN113078884A CN202110277276.4A CN202110277276A CN113078884A CN 113078884 A CN113078884 A CN 113078884A CN 202110277276 A CN202110277276 A CN 202110277276A CN 113078884 A CN113078884 A CN 113078884A
Authority
CN
China
Prior art keywords
nonlinear
represent
filter module
module
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110277276.4A
Other languages
Chinese (zh)
Other versions
CN113078884B (en
Inventor
毛鑫
向阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202110277276.4A priority Critical patent/CN113078884B/en
Publication of CN113078884A publication Critical patent/CN113078884A/en
Application granted granted Critical
Publication of CN113078884B publication Critical patent/CN113078884B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H21/00Adaptive networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Filters That Use Time-Delay Elements (AREA)

Abstract

The invention discloses a self-adaptive algorithm for adding nonlinear fitting. The algorithm comprises the following steps: step S1, adding a nonlinear filtering module in the linear filtering module of the adaptive filter, collecting the input signal received by the adaptive filter, and intercepting the input signal to obtain the input signal of the nonlinear filtering module; step S2, carrying out nonlinear transformation on the input signal of the nonlinear filtering module to obtain a nonlinear transformation signal; step S3, calculating output signals of the nonlinear filtering module and the linear filtering module; step S4, calculating an error signal; step S5, calculating a filter update value; step S6, calculating the convergence weight coefficients of the linear filtering module and the nonlinear filtering module; and step S7, obtaining output signals of a linear filtering module and a nonlinear filtering module according to filtering operation, and superposing the two output signals to highly fit the expected signal. The algorithm is applied to a scene with a nonlinear effect, and a better system modeling effect is obtained.

Description

添加非线性拟合的自适应算法Adaptive algorithm for adding nonlinear fitting

技术领域technical field

本发明涉及通过自适应滤波器处理信号的方法,具体地指一种添加非线性拟合的自适应算法。The present invention relates to a method for processing a signal through an adaptive filter, in particular to an adaptive algorithm adding nonlinear fitting.

背景技术Background technique

自适应滤波器是指根据环境的改变,使用自适应算法来改变滤波器的参数和结构的滤波器。一般情况下,不改变自适应滤波器的结构,而自适应滤波器的权系数是由自适应算法更新的时变系数。自适应算法是以输入信号和输出信号的统计特性估计为依据,采取特定算法自动地调整滤波器权系数,使其达到最佳滤波特性的一种算法。最小均方算法(LMS算法)由于其容易实现而很快得到了广泛应用,成为自适应滤波的标准算法。这一算法利用最陡下降法,由均方误差的梯度估计从现时刻滤波器权系数向量迭代计算下一个时刻的权系数向量。该方法主要应用领域为声学系统建模、有源噪声控制、声学回声消除等。Adaptive filter refers to a filter that uses an adaptive algorithm to change the parameters and structure of the filter according to changes in the environment. In general, the structure of the adaptive filter is not changed, and the weight coefficients of the adaptive filter are time-varying coefficients updated by the adaptive algorithm. The adaptive algorithm is based on the estimation of the statistical characteristics of the input signal and the output signal, and adopts a specific algorithm to automatically adjust the filter weight coefficients to achieve the best filtering characteristics. The least mean square algorithm (LMS algorithm) has been widely used quickly because of its easy implementation and has become the standard algorithm for adaptive filtering. This algorithm uses the steepest descent method to iteratively calculate the weight coefficient vector of the next moment from the filter weight coefficient vector at the current moment by the gradient estimation of the mean square error. The main application fields of this method are acoustic system modeling, active noise control, acoustic echo cancellation, etc.

对于线性系统,输出信号中的频率分量与输入信号中的频率分量相同。然而对于非线性系统,输出信号中的频率通常不等于输入信号中的频率,如果输入信号有一个以上频率成分,那么输出信号就会有互调项以及输入信号频率的谐波。例如,扬声器驱动器很容易出现非线性失真,特别是在低频范围内。非线性失真的主要原因是通过谐波和互调项产生新的频率分量。现在常用的LMS算法,在控制策略中,没有考虑非线性失真的影响,制约了其在非线性失真场景下的应用。For a linear system, the frequency components in the output signal are the same as those in the input signal. However, for nonlinear systems, the frequency in the output signal is usually not equal to the frequency in the input signal. If the input signal has more than one frequency component, the output signal will have intermodulation terms and harmonics of the input signal frequency. For example, speaker drivers are prone to nonlinear distortion, especially in the low frequency range. The main cause of nonlinear distortion is the creation of new frequency components through harmonic and intermodulation terms. The commonly used LMS algorithm does not consider the influence of nonlinear distortion in the control strategy, which restricts its application in nonlinear distortion scenarios.

发明内容SUMMARY OF THE INVENTION

本发明的目的就是要考虑非线性效应,提供一种在非线性失真场景下,优化LMS算法的添加非线性拟合的自适应算法。The purpose of the present invention is to consider nonlinear effects, and to provide an adaptive algorithm that optimizes the addition of nonlinear fitting of the LMS algorithm under the scenario of nonlinear distortion.

为实现上述目的,本发明提供了一种添加非线性拟合的自适应算法,其特别之处在于,包括:In order to achieve the above object, the present invention provides an adaptive algorithm for adding nonlinear fitting, which is special in that it includes:

步骤S1,输入信号获取:将自适应滤波器线性滤波模块中添加非线性滤波模块,采集自适应滤波器接收到的输入信号,并将所述输入信号进行截取处理得到非线性滤波模块的输入信号;Step S1, input signal acquisition: adding a nonlinear filter module to the linear filter module of the adaptive filter, collecting the input signal received by the adaptive filter, and intercepting the input signal to obtain the input signal of the nonlinear filter module ;

步骤S2,非线性变换:对所述非线性滤波模块的输入信号进行非线性变换,得到非线性变换信号;Step S2, nonlinear transformation: performing nonlinear transformation on the input signal of the nonlinear filtering module to obtain a nonlinear transformation signal;

步骤S3,信号滤波:根据所述非线性变换信号以及所述非线性滤波模块权系数,滤波得到非线性滤波模块的输出信号,同时滤波得到线性滤波模块的输出信号;Step S3, signal filtering: filter to obtain the output signal of the nonlinear filter module according to the nonlinear transformation signal and the weight coefficient of the nonlinear filter module, and simultaneously filter to obtain the output signal of the linear filter module;

步骤S4,误差信号计算:根据所述线性滤波模块的输出信号、非线性滤波模块的输出信号以及输出时刻的期望信号,得到所述输出时刻的误差信号。Step S4, error signal calculation: according to the output signal of the linear filter module, the output signal of the nonlinear filter module, and the expected signal at the output time, the error signal at the output time is obtained.

步骤S5,滤波器更新值计算:计算每次滤波器更新的梯度值,对线性模块和非线性模块的滤波器系数进行更新,其中,滤波器更新值的推导原理是,将所述误差信号函数取平方、求期望得到损失函数,将所述损失函数分别对线性滤波模块权系数和非线性滤波模块权系数求偏导运算,得到线性滤波模块权系数的梯度更新值和非线性滤波模块权系数的梯度更新值;Step S5, filter update value calculation: calculate the gradient value of each filter update, update the filter coefficients of the linear module and the nonlinear module, wherein, the derivation principle of the filter update value is, the error signal function Take the square, find the expected loss function, and obtain the partial derivative operation of the loss function on the weight coefficient of the linear filter module and the weight coefficient of the nonlinear filter module respectively, and obtain the gradient update value of the weight coefficient of the linear filter module and the weight coefficient of the nonlinear filter module. The gradient update value of ;

步骤S6,滤波器更新:根据所述线性滤波模块权系数的梯度更新值,采用梯度下降法,得到线性滤波模块权系数的更新公式,根据所述线性滤波模块权系数的更新公式反复运算得到线性滤波模块收敛权系数;根据所述非线性滤波模块权系数的梯度更新值,采用梯度下降法,得到非线性滤波模块权系数的更新公式,根据所述非线性滤波模块权系数的更新公式反复运算得到非线性滤波模块收敛权系数;Step S6, filter update: according to the gradient update value of the weight coefficient of the linear filter module, the gradient descent method is used to obtain the update formula of the weight coefficient of the linear filter module, and the linear filter module is repeatedly calculated according to the update formula of the weight coefficient of the linear filter module. Filtering module convergence weight coefficient; according to the gradient update value of the nonlinear filter module weight coefficient, adopt the gradient descent method to obtain the update formula of the nonlinear filter module weight coefficient, and repeat the calculation according to the update formula of the nonlinear filter module weight coefficient Obtain the nonlinear filter module convergence weight coefficient;

步骤S7,分别将所述线性滤波模块收敛权系数和非线性滤波模块收敛权系数进行滤波运算,得到线性滤波模块输出信号和非线性滤波模块输出信号,上述两项输出信号叠加后能够高度拟合所述期望信号。In step S7, the linear filtering module convergence weight coefficient and the nonlinear filtering module convergence weight coefficient are respectively subjected to filtering operation to obtain the output signal of the linear filtering module and the output signal of the non-linear filtering module. The above two output signals can be highly fitted after being superimposed the desired signal.

优选地,所述步骤S2中,所述非线性变换信号为:Preferably, in the step S2, the nonlinear transformation signal is:

u(n)=f(xcut(n))u(n)=f(x cut (n))

其中,in,

xcut(n)=[x(n),x(n-1),…,x(n-M+1)]T,x(n)=[x(n),x(n-1),…,x(n-N+1)]T,M用于表示非线性滤波模块阶数,N用于表示线性滤波模块阶数,且M<N,上标T用于表示转置操作,x(n)用于表示线性滤波模块的输入信号输入信号,xcut(n)用于表示非线性滤波模块的输入信号;x cut (n)=[x(n), x(n-1),...,x(n-M+1)] T , x(n)=[x(n), x(n-1), ..., x(n-N+1)] T , M is used to represent the order of the nonlinear filter module, N is used to represent the order of the linear filter module, and M<N, the superscript T is used to represent the transpose operation, x (n) is used to represent the input signal input signal of the linear filtering module, and x cut (n) is used to represent the input signal of the nonlinear filtering module;

n用于表示时刻;n is used to represent the time;

f用于表示非线性变换;f is used to represent nonlinear transformation;

u(n)用于表示非线性变换信号。u(n) is used to represent the nonlinear transform signal.

优选地,所述非线性变换中,f可采取如下取平方非线性变换,其对单频信号可以产生一个二次谐波频率,用于对非线性系统建模,如下所示:Preferably, in the nonlinear transformation, f can adopt the following square nonlinear transformation, which can generate a second harmonic frequency for the single-frequency signal, which is used to model the nonlinear system, as shown below:

Figure BDA0002977154830000031
Figure BDA0002977154830000031

其中,in,

ω用于表示非线性滤波模块的输入信号的频率;ω is used to represent the frequency of the input signal of the nonlinear filtering module;

2ω用于表示非线性变换后产生的二次谐波频率;2ω is used to represent the second harmonic frequency generated after nonlinear transformation;

()2用于表示取平方运算;() 2 is used to represent the square operation;

优选地,所述非线性变换中,f可采取如下RELU非线性变换,其对单频信号可以产生各偶次谐波成分,用于对非线性系统建模,如下所示:Preferably, in the nonlinear transformation, f can adopt the following RELU nonlinear transformation, which can generate each even-order harmonic component for the single-frequency signal, which is used to model the nonlinear system, as shown below:

Figure BDA0002977154830000032
Figure BDA0002977154830000032

其中,in,

ωt用于表示非线性滤波模块的一个频率;ωt is used to represent a frequency of the nonlinear filter module;

2ωt用于表示非线性滤波模块的另一个频率;2ωt is used to represent another frequency of the nonlinear filter module;

n用于表示时刻;n is used to represent the time;

RELU用于表示信号负值置零运算;RELU is used to represent the zero-setting operation of the negative value of the signal;

优选地,所述步骤S3中,所述滤波得到的线性滤波模块输出信号和非线性滤波模块的输出信号根据如下公式计算得到:Preferably, in the step S3, the output signal of the linear filter module and the output signal of the nonlinear filter module obtained by the filtering are calculated according to the following formula:

yl(n)=x(n)Twl(n)y l (n)=x(n) T w l (n)

ynl(n)=u(n)Twnl(n)y nl (n)=u(n) T w nl (n)

其中,in,

x(n)用于表示线性滤波模块的输入信号;x(n) is used to represent the input signal of the linear filtering module;

wl(n)用于表示线性滤波模块权系数;w l (n) is used to represent the linear filter module weight coefficient;

u(n)用于表示非线性滤波模块的非线性变换信号;u(n) is used to represent the nonlinear transformation signal of the nonlinear filtering module;

wnl(n)用于表示非线性滤波模块权系数;w nl (n) is used to represent the weight coefficient of the nonlinear filter module;

n用于表示时刻;n is used to represent the time;

上标T用于表示转置操作;The superscript T is used to represent the transpose operation;

yl(n)用于表示线性滤波模块的输出信号。y l (n) is used to represent the output signal of the linear filter block.

ynl(n)用于表示非线性滤波模块的输出信号。y nl (n) is used to represent the output signal of the nonlinear filter block.

优选地,所述步骤S4中,所述输出时刻的误差信号根据如下公式计算得到:Preferably, in the step S4, the error signal at the output moment is calculated according to the following formula:

e(n)=d(n)+yl(n)+ynl(n)e(n)=d(n)+y l (n)+y nl (n)

其中,in,

d(n)用于表示输出时刻的期望信号;d(n) is used to represent the expected signal at the output moment;

e(n)表示输出时刻的误差信号。e(n) represents the error signal at the output time.

优选地,所述步骤S5中,所述损失函数根据如下公式计算得到:Preferably, in the step S5, the loss function is calculated according to the following formula:

J=E(e2(n))J=E(e 2 (n))

其中,in,

E用于表示期望运算;E is used to represent the expected operation;

优选地,所述步骤S5中,所述线性滤波模块权系数的梯度更新值和非线性滤波模块权系数的梯度更新值分别为:Preferably, in the step S5, the gradient update value of the weight coefficient of the linear filter module and the gradient update value of the weight coefficient of the nonlinear filter module are respectively:

Figure BDA0002977154830000041
Figure BDA0002977154830000041

Figure BDA0002977154830000042
Figure BDA0002977154830000042

其中,in,

x(n)用于表示线性滤波模块的输入信号;x(n) is used to represent the input signal of the linear filtering module;

u(n)用于表示非线性滤波模块的非线性变换信号;u(n) is used to represent the nonlinear transformation signal of the nonlinear filtering module;

Figure BDA0002977154830000043
用于表示线性滤波模块权系数的梯度更新值;
Figure BDA0002977154830000043
The gradient update value used to represent the weight coefficients of the linear filter module;

Figure BDA0002977154830000044
田于表示非线性滤波模块权系数的梯度更新值;
Figure BDA0002977154830000044
Tian Yu represents the gradient update value of the weight coefficient of the nonlinear filter module;

上标T用于表示转置操作。The superscript T is used to denote the transpose operation.

优选地,所述线性滤波模块权系数的梯度更新值和非线性滤波模块权系数的梯度更新值,根据如下公式获得:Preferably, the gradient update value of the weight coefficient of the linear filtering module and the gradient update value of the weight coefficient of the nonlinear filtering module are obtained according to the following formula:

Figure BDA0002977154830000045
Figure BDA0002977154830000045

Figure BDA0002977154830000046
Figure BDA0002977154830000046

其中,in,

Figure BDA0002977154830000047
用于表示对线性滤波模块权系数进行偏导运算;
Figure BDA0002977154830000047
It is used to represent the partial derivative operation on the weight coefficients of the linear filter module;

Figure BDA0002977154830000051
用于表示对非线性滤波模块权系数进行偏导运算;
Figure BDA0002977154830000051
It is used to indicate that the partial derivative operation is performed on the weight coefficients of the nonlinear filter module;

N用于表示线性滤波模块阶数;N is used to represent the linear filter module order;

M用于表示非线性滤波模块阶数,且M<N;M is used to represent the order of the nonlinear filter module, and M<N;

上标T用于表示转置操作。The superscript T is used to denote the transpose operation.

优选地,所述步骤S6中,所述线性模块滤波器权系数的更新公式和非线性模块滤波器权系数的更新公式分别如下:Preferably, in the step S6, the update formula of the linear module filter weight coefficient and the update formula of the nonlinear module filter weight coefficient are respectively as follows:

wl(n+1)=wl(n)-2μle(n)x(n)T w l (n+1)=w l (n)-2μ l e(n)x(n) T

wnl(n+1)=wnl(n)-2μnle(n)u(n)T w nl (n+1)=w nl (n)-2μ nl e(n)u(n) T

其中,in,

wl(n)用于表示线性滤波模块权系数;w l (n) is used to represent the linear filter module weight coefficient;

wnl(n)用于表示非线性滤波模块权系数;w nl (n) is used to represent the weight coefficient of the nonlinear filter module;

μl用于表示线性模块梯度下降法中控制收敛速度的迭代步长;μ l is used to represent the iterative step size that controls the convergence rate in the linear modular gradient descent method;

μnl用于表示非线性模块梯度下降法中控制收敛速度的迭代步长;μ nl is used to represent the iterative step size that controls the convergence rate in the nonlinear modular gradient descent method;

e(n)表示输出时刻的误差信号;e(n) represents the error signal at the output moment;

x(n))用于表示线性滤波模块的输入信号;x(n)) is used to represent the input signal of the linear filtering module;

u(n)用于表示非线性滤波模块的非线性变换信号。u(n) is used to represent the nonlinear transform signal of the nonlinear filter module.

本发明的优点在于:The advantages of the present invention are:

1.本发明提出的添加非线性拟合的自适应算法,将自适应滤波器线性滤波模块中添加非线性滤波模块,通过对所述非线性滤波模块的输入信号进行非线性变换,在滤波算法的基础上,加入非线性拟合项,使该算法在有非线性效应的场景中,得到更优的系统建模效果。1. The adaptive algorithm of adding nonlinear fitting proposed by the present invention, adding a nonlinear filtering module to the linear filtering module of the adaptive filter, and performing nonlinear transformation on the input signal of the nonlinear filtering module, in the filtering algorithm. On the basis of , a nonlinear fitting term is added, so that the algorithm can obtain a better system modeling effect in scenarios with nonlinear effects.

2.本发明提出的非线性变换策略有取平方和负数值置零。2. The nonlinear transformation strategy proposed by the present invention includes squaring and setting of negative values to zero.

3.本发明对提出的添加非线性拟合的自适应算法,进行了严格的数学证明,给出了算法的推导过程。3. The present invention has carried out a strict mathematical proof for the proposed self-adaptive algorithm adding nonlinear fitting, and given the derivation process of the algorithm.

附图说明Description of drawings

附图1为线性拟合的自适应算法框图;Accompanying drawing 1 is the adaptive algorithm block diagram of linear fitting;

附图2为本发明所提出的添加非线性拟合的自适应算法框图;Accompanying drawing 2 is the self-adaptive algorithm block diagram of adding nonlinear fitting proposed by the present invention;

附图3为白噪声信号作为输入信号的功率谱估计;Accompanying drawing 3 is the power spectrum estimation of white noise signal as input signal;

附图4为附图3中的白噪声信号输出时刻的期望信号功率谱估计;Accompanying drawing 4 is the expected signal power spectrum estimation of the white noise signal output moment in accompanying drawing 3;

附图5为自适应算法、本发明所提出的添加非线性拟合的自适应算法中MSE收敛曲线对比图;Accompanying drawing 5 is the MSE convergence curve comparison diagram in the self-adaptive algorithm, the self-adaptive algorithm of adding nonlinear fitting proposed by the present invention;

图中:扬声器1、麦克风2、MSE收敛曲线3(N取值3072的自适应算法)、MSE收敛曲线4(N取值2048的自适应算法)、MSE收敛曲线5(非线性变换采取平方运算的添加非线性拟合的自适应算法)、MSE收敛曲线6(非线性变换采取负值置零运算的添加非线性拟合的自适应算法)。In the figure: speaker 1, microphone 2, MSE convergence curve 3 (an adaptive algorithm with N value of 3072), MSE convergence curve 4 (an adaptive algorithm with N value of 2048), MSE convergence curve 5 (nonlinear transformation adopts square operation The adaptive algorithm of adding nonlinear fitting), MSE convergence curve 6 (non-linear transformation adopts the self-adaptive algorithm of adding non-linear fitting with negative value zeroing operation).

具体实施方式Detailed ways

以下结合附图和具体实施例对本发明作进一步的详细描述:The present invention is described in further detail below in conjunction with the accompanying drawings and specific embodiments:

如图1所示,利用自适应算法对扬声器-封闭空间-传声器这一系统进行建模。输入信号x(n)通过扬声器1进行播放,声音经过传播,在麦克风2处的期望信号为d(n),x(n)经过的系统主要有,扬声器1、空气、麦克风2。采用自适应算法对这一过程进行建模,自适应滤波器权系数的更新公式如下:As shown in Figure 1, an adaptive algorithm is used to model the loudspeaker-enclosed space-microphone system. The input signal x(n) is played through the speaker 1, and the sound is propagated. The desired signal at the microphone 2 is d(n). The system that x(n) passes through mainly includes the speaker 1, the air, and the microphone 2. This process is modeled by an adaptive algorithm, and the update formula of the adaptive filter weight coefficients is as follows:

w(n+1)=w(n)-2μe(n)x(n)w(n+1)=w(n)-2μe(n)x(n)

其中,in,

w(n)用于表示自适应滤波器权系数;w(n) is used to represent the adaptive filter weight coefficient;

w(n+1)用于表示自适应滤波器下一时刻的权系数;w(n+1) is used to represent the weight coefficient of the adaptive filter at the next moment;

μ用于表示自适应滤波梯度下降法中控制收敛速度的迭代步长;μ is used to represent the iterative step size that controls the convergence rate in the adaptive filter gradient descent method;

e(n)表示输出时刻的误差信号,e(n)=d(n)+x(n)Tw(n);e(n) represents the error signal at the output moment, e(n)=d(n)+x(n) Tw (n);

x(n)用于表示自适应滤波器的输入信号,x(n)=[x(n),x(n-1),…,x(n-N+1)]T,上标T用于表示转置操作,N用于表示自适应滤波器阶数。x(n) is used to represent the input signal of the adaptive filter, x(n)=[x(n), x(n-1), ..., x(n-N+1)] T , the superscript T is used for Yu represents the transpose operation, and N is used to represent the adaptive filter order.

从自适应算法的计算公式可以看出,该算法仅考虑了对信号的线性拟合。如图2所示,对扬声器-封闭空间-传声器这一系统重新建模,在LMS算法中添加非线性拟合项,得到新的自适应算法,步骤如下:It can be seen from the calculation formula of the adaptive algorithm that the algorithm only considers the linear fitting of the signal. As shown in Figure 2, the loudspeaker-enclosed space-microphone system is remodeled, and a nonlinear fitting term is added to the LMS algorithm to obtain a new adaptive algorithm. The steps are as follows:

步骤S1,输入信号获取:将自适应滤波器线性滤波模块中添加非线性滤波模块,采集自适应滤波器接收到的输入信号,并将输入信号进行截取处理得到非线性滤波模块的输入信号;Step S1, input signal acquisition: adding a nonlinear filter module to the linear filter module of the adaptive filter, collecting the input signal received by the adaptive filter, and intercepting the input signal to obtain the input signal of the nonlinear filter module;

步骤S2,非线性变换:对非线性滤波模块的输入信号进行非线性变换,得到非线性变换信号;Step S2, nonlinear transformation: perform nonlinear transformation on the input signal of the nonlinear filtering module to obtain a nonlinear transformation signal;

步骤S3,信号滤波:根据非线性变换信号以及非线性滤波模块权系数,滤波得到非线性滤波模块的输出信号;同时滤波得到线性滤波模块的输出信号;Step S3, signal filtering: filtering to obtain the output signal of the nonlinear filtering module according to the nonlinear transformation signal and the weight coefficient of the nonlinear filtering module; and simultaneously filtering to obtain the output signal of the linear filtering module;

步骤S4,误差信号计算:根据线性滤波模块的输出信号、非线性滤波模块的输出信号以及输出时刻的期望信号,得到输出时刻的误差信号。Step S4, error signal calculation: according to the output signal of the linear filter module, the output signal of the nonlinear filter module and the expected signal at the output time, the error signal at the output time is obtained.

步骤S5,滤波器更新值计算:计算每次滤波器更新的梯度值,对线性模块和非线性模块的滤波器系数进行更新,其中,滤波器更新值的推导原理是,将误差信号函数取平方、求期望得到损失函数,将损失函数分别对线性滤波模块权系数和非线性滤波模块权系数求偏导运算,得到线性滤波模块权系数的梯度更新值和非线性滤波模块权系数的梯度更新值;Step S5, filter update value calculation: calculate the gradient value of each filter update, and update the filter coefficients of the linear module and the nonlinear module, wherein the derivation principle of the filter update value is to square the error signal function. , Find the expected loss function, and calculate the partial derivative operation of the loss function on the weight coefficient of the linear filter module and the weight coefficient of the nonlinear filter module respectively, and obtain the gradient update value of the weight coefficient of the linear filter module and the gradient update value of the weight coefficient of the nonlinear filter module. ;

步骤S6,滤波器更新:根据线性滤波模块权系数的梯度更新值,采用梯度下降法,得到线性滤波模块权系数的更新公式,根据线性滤波模块权系数的更新公式反复运算得到线性滤波模块收敛权系数;根据非线性滤波模块权系数的梯度更新值,采用梯度下降法,得到非线性滤波模块权系数的更新公式,根据非线性滤波模块权系数的更新公式反复运算得到非线性滤波模块收敛权系数;Step S6, filter update: According to the gradient update value of the weight coefficient of the linear filter module, the gradient descent method is used to obtain the update formula of the weight coefficient of the linear filter module, and the convergence weight of the linear filter module is obtained by repeated operation according to the update formula of the weight coefficient of the linear filter module. coefficient; according to the gradient update value of the weight coefficient of the nonlinear filter module, the gradient descent method is used to obtain the update formula of the weight coefficient of the nonlinear filter module, and the convergence weight coefficient of the nonlinear filter module is obtained by repeated operation according to the update formula of the weight coefficient of the nonlinear filter module ;

步骤S7,分别将线性滤波模块收敛权系数和非线性滤波模块收敛权系数进行滤波运算,得到线性滤波模块输出信号和非线性滤波模块输出信号,上述两项输出信号叠加后能够高度拟合期望信号。In step S7, the linear filtering module convergence weight coefficient and the nonlinear filtering module convergence weight coefficient are respectively subjected to filtering operation to obtain the output signal of the linear filtering module and the output signal of the non-linear filtering module. After the above two output signals are superimposed, the desired signal can be highly fitted .

在本发明的较佳实施例中,步骤S2中,非线性变换信号为:In a preferred embodiment of the present invention, in step S2, the nonlinear transformation signal is:

u(n)=f(xcut(n))u(n)=f(x cut (n))

其中,in,

xcut(n)=[x(n),x(n-1),…,x(n-M+1)]T,x(n)=[x(n),x(n-1),…,x(n-N+1)]T,M用于表示非线性滤波模块阶数,N用于表示线性滤波模块阶数,且M<N,上标T用于表示转置操作,x(n)用于表示线性滤波模块的输入信号输入信号,xcut(n)用于表示非线性滤波模块的输入信号;x cut (n)=[x(n), x(n-1),...,x(n-M+1)] T , x(n)=[x(n), x(n-1), ..., x(n-N+1)] T , M is used to represent the order of the nonlinear filter module, N is used to represent the order of the linear filter module, and M<N, the superscript T is used to represent the transpose operation, x (n) is used to represent the input signal input signal of the linear filtering module, and x cut (n) is used to represent the input signal of the nonlinear filtering module;

n用于表示时刻;n is used to represent time;

f用于表示非线性变换;f is used to represent nonlinear transformation;

u(n)用于表示非线性变换信号。u(n) is used to represent the nonlinear transform signal.

在本发明的较佳实施例中,非线性变换中,f可采取如下取平方非线性变换,其对单频信号可以产生一个二次谐波频率,用于对非线性系统建模,如下所示:In a preferred embodiment of the present invention, in the nonlinear transformation, f can take the following square nonlinear transformation, which can generate a second harmonic frequency for the single-frequency signal, which is used to model the nonlinear system, as follows Show:

Figure BDA0002977154830000081
Figure BDA0002977154830000081

其中,in,

ω用于表示非线性滤波模块的输入信号的频率;ω is used to represent the frequency of the input signal of the nonlinear filtering module;

2ω用于表示非线性变换后产生的二次谐波频率;2ω is used to represent the second harmonic frequency generated after nonlinear transformation;

()2用于表示取平方运算;() 2 is used to represent the square operation;

在本发明的较佳实施例中,非线性变换中,f可采取如下RELU非线性变换,其对单频信号可以产生各偶次谐波成分,用于对非线性系统建模,如下所示:In a preferred embodiment of the present invention, in the nonlinear transformation, f can adopt the following RELU nonlinear transformation, which can generate each even-order harmonic component for the single-frequency signal, which is used to model the nonlinear system, as shown below :

Figure BDA0002977154830000082
Figure BDA0002977154830000082

其中,in,

ωt用于表示非线性滤波模块的一个频率;ωt is used to represent a frequency of the nonlinear filter module;

2ωt用于表示非线性滤波模块的另一个频率;2ωt is used to represent another frequency of the nonlinear filter module;

n用于表示时刻;n is used to represent time;

RELU用于表示信号负值置零运算;RELU is used to represent the zero-setting operation of the negative value of the signal;

在本发明的较佳实施例中,步骤S3中,滤波得到的线性滤波模块输出信号和非线性滤波模块的输出信号根据如下公式计算得到:In a preferred embodiment of the present invention, in step S3, the output signal of the linear filter module and the output signal of the nonlinear filter module obtained by filtering are calculated according to the following formula:

yl(n)=x(n)Twl(n)y l (n)=x(n) T w l (n)

ynl(n)=u(n)Twnl(n)y nl (n)=u(n) T w nl (n)

其中,in,

x(n)用于表示线性滤波模块的输入信号;x(n) is used to represent the input signal of the linear filtering module;

wl(n)用于表示线性滤波模块权系数;w l (n) is used to represent the linear filter module weight coefficient;

u(n)用于表示非线性滤波模块的非线性变换信号;u(n) is used to represent the nonlinear transformation signal of the nonlinear filtering module;

wnl(n)用于表示非线性滤波模块权系数;w nl (n) is used to represent the weight coefficient of the nonlinear filter module;

n用于表示时刻;n is used to represent the time;

上标T用于表示转置操作;The superscript T is used to represent the transpose operation;

yl(n)用于表示线性滤波模块的输出信号;y l (n) is used to represent the output signal of the linear filtering module;

ynl(n)用于表示非线性滤波模块的输出信号。y nl (n) is used to represent the output signal of the nonlinear filter block.

在本发明的较佳实施例中,步骤S4中,输出时刻的误差信号根据如下公式计算得到:In a preferred embodiment of the present invention, in step S4, the error signal at the output moment is calculated according to the following formula:

e(n)=d(n)+yl(n)+ynl(n)e(n)=d(n)+y l (n)+y nl (n)

其中,in,

d(n)用于表示输出时刻的期望信号;d(n) is used to represent the expected signal at the output moment;

e(n)表示输出时刻的误差信号。e(n) represents the error signal at the output time.

在本发明的较佳实施例中,步骤S5中,损失函数根据如下公式计算得到:In a preferred embodiment of the present invention, in step S5, the loss function is calculated according to the following formula:

J=E(e2(n))J=E(e 2 (n))

其中,in,

E用于表示期望运算;E is used to represent the expected operation;

在本发明的较佳实施例中,步骤S5中,线性滤波模块权系数的梯度更新值和非线性滤波模块权系数的梯度更新值分别为:In a preferred embodiment of the present invention, in step S5, the gradient update value of the weight coefficient of the linear filter module and the gradient update value of the weight coefficient of the nonlinear filter module are respectively:

Figure BDA0002977154830000091
Figure BDA0002977154830000091

Figure BDA0002977154830000092
Figure BDA0002977154830000092

其中,in,

x(n)用于表示线性滤波模块的输入信号;x(n) is used to represent the input signal of the linear filtering module;

u(n)用于表示非线性滤波模块的非线性变换信号;u(n) is used to represent the nonlinear transformation signal of the nonlinear filtering module;

Figure BDA0002977154830000093
田于表示线性滤波模块权系数的梯度更新值;
Figure BDA0002977154830000093
Tian Yu represents the gradient update value of the weight coefficient of the linear filter module;

Figure BDA0002977154830000094
田于表示非线性滤波模块权系数的梯度更新值;
Figure BDA0002977154830000094
Tian Yu represents the gradient update value of the weight coefficient of the nonlinear filter module;

上标T用于表示转置操作。The superscript T is used to denote the transpose operation.

在本发明的较佳实施例中,线性滤波模块权系数的梯度更新值和非线性滤波模块权系数的梯度更新值,根据如下公式获得:In a preferred embodiment of the present invention, the gradient update value of the weight coefficient of the linear filter module and the gradient update value of the weight coefficient of the nonlinear filter module are obtained according to the following formula:

Figure BDA0002977154830000095
Figure BDA0002977154830000095

Figure BDA0002977154830000096
Figure BDA0002977154830000096

其中,in,

Figure BDA0002977154830000097
用于表示对线性滤波模块权系数进行偏导运算;
Figure BDA0002977154830000097
It is used to represent the partial derivative operation on the weight coefficients of the linear filter module;

Figure BDA0002977154830000098
用于表示对非线性滤波模块权系数进行偏导运算;
Figure BDA0002977154830000098
It is used to indicate that the partial derivative operation is performed on the weight coefficients of the nonlinear filter module;

N用于表示线性滤波模块阶数;N is used to represent the linear filter module order;

M用于表示非线性滤波模块阶数,且M<N;M is used to represent the order of the nonlinear filter module, and M<N;

上标T用于表示转置操作。The superscript T is used to denote the transpose operation.

在本发明的较佳实施例中,步骤S6中,线性模块滤波器权系数的更新公式和非线性模块滤波器权系数的更新公式分别如下:In a preferred embodiment of the present invention, in step S6, the update formula of the linear block filter weight coefficient and the update formula of the nonlinear block filter weight coefficient are respectively as follows:

wl(n+1)=wl(n)-2μle(n)x(n)T w l (n+1)=w l (n)-2μ l e(n)x(n) T

wnl(n+1)=wnl(n)-2μnle(n)u(n)T w nl (n+1)=w nl (n)-2μ nl e(n)u(n) T

其中,in,

wl(n)用于表示线性滤波模块权系数;w l (n) is used to represent the linear filter module weight coefficient;

wnl(n)用于表示非线性滤波模块权系数;w nl (n) is used to represent the weight coefficient of the nonlinear filter module;

μl用于表示线性模块梯度下降法中控制收敛速度的迭代步长;μ l is used to represent the iterative step size that controls the convergence rate in the linear modular gradient descent method;

μnl用于表示非线性模块梯度下降法中控制收敛速度的迭代步长;μ nl is used to represent the iterative step size that controls the convergence rate in the nonlinear modular gradient descent method;

e(n)表示输出时刻的误差信号;e(n) represents the error signal at the output moment;

x(n)用于表示线性滤波模块的输入信号;x(n) is used to represent the input signal of the linear filtering module;

u(n)用于表示非线性滤波模块的非线性变换信号。u(n) is used to represent the nonlinear transform signal of the nonlinear filter module.

下面以一个具体实施例来对上述技术方案进行具体说明:Below with a specific embodiment, the above-mentioned technical scheme is described in detail:

如图3~4所示,上述扬声器-封闭空间-传声器这一系统中,采用白噪声信号作为通过扬声器1的输入信号x(n),其功率谱图如图3所示。播放的白噪声传播到麦克风处的期望信号为d(n),其功率谱图如图4所示。为了增加系统中的非线性成分,采用性能较差的扬声器和麦克风。对比图3和图4,可以看出,期望信号d(n)相对于输入信号x(n)高频损失严重。As shown in Figures 3 to 4, in the above speaker-enclosed space-microphone system, a white noise signal is used as the input signal x(n) through the speaker 1, and its power spectrum is shown in Figure 3. The desired signal of the played white noise propagating to the microphone is d(n), and its power spectrum is shown in Figure 4. In order to increase the nonlinear components in the system, poor performance speakers and microphones are used. Comparing Figures 3 and 4, it can be seen that the desired signal d(n) is severely lost at high frequencies relative to the input signal x(n).

将x(n)和d(n)分别代入自适应算法和本发明添加非线性拟合的自适应算法,将得到的y(n)、yl(n)、ynl(n)求出均方误差(MSE),即

Figure BDA0002977154830000101
得到如图5所示的MSE收敛曲线对比图。Substitute x(n) and d(n) into the self-adaptive algorithm and the self-adaptive algorithm of the present invention adding nonlinear fitting respectively, and obtain the average values of the obtained y(n), y l (n), and y nl (n). The squared error (MSE), which is
Figure BDA0002977154830000101
The MSE convergence curve comparison chart shown in Figure 5 is obtained.

其中,in,

曲线3表示:自适应算法中,N取值3072,μ取值0.001的MSE收敛曲线,收敛的降噪量为7.59dB;Curve 3 represents: in the adaptive algorithm, the MSE convergence curve with N value of 3072 and μ value of 0.001, the converged noise reduction amount is 7.59dB;

曲线4表示:自适应算法中,N取值2048,μ取值0.001的MSE收敛曲线,收敛的降噪量为9.28dB;Curve 4 represents: in the adaptive algorithm, the MSE convergence curve with N value of 2048 and μ value of 0.001, the converged noise reduction amount is 9.28dB;

曲线5表示:添加非线性拟合的自适应算法中,N取值2048,M取值1024,μl取值0.001,μnl取值0.001,非线性变换采取平方运算的MSE收敛曲线,收敛的降噪量为11.48dB。Curve 5 represents: in the adaptive algorithm with nonlinear fitting added, N is 2048, M is 1024, μl is 0.001, μnl is 0.001, the nonlinear transformation adopts the MSE convergence curve of square operation, the convergent The amount of noise reduction is 11.48dB.

曲线6表示:添加非线性拟合的自适应算法中,N取值2048,M取值1024,μl取值0.001,μnl取值0.001,非线性变换采取负值置零运算的MSE收敛曲线,收敛的降噪量为11.87dB。Curve 6 represents: in the adaptive algorithm with nonlinear fitting added, N is 2048, M is 1024, μl is 0.001, μnl is 0.001, and the nonlinear transformation adopts the MSE convergence curve of negative value zeroing operation. , the convergent noise reduction is 11.87dB.

由此可见,添加非线性拟合的自适应算法得到的MSE收敛曲线降噪量得到明显提升,其可以有效提升自适应滤波器对非线性系统的建模能力。It can be seen that the noise reduction of the MSE convergence curve obtained by adding the adaptive algorithm of nonlinear fitting is significantly improved, which can effectively improve the modeling ability of the adaptive filter for nonlinear systems.

以上所述仅为本发明较佳的实施例,并非因此限制本发明的实施方式及保护范围,对于本领域技术人员而言,应当能够意识到凡运用本发明说明书及图示内容所作出的等同替换和显而易见的变化所得到的方案,均应当包含在本发明的保护范围内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the embodiments and protection scope of the present invention. Those skilled in the art should be aware of the equivalents made by using the description and illustrations of the present invention. The solutions obtained by substitution and obvious changes shall all be included in the protection scope of the present invention.

Claims (10)

1.一种添加非线性拟合的自适应算法,其特征在于,包括:1. an adaptive algorithm for adding nonlinear fitting, is characterized in that, comprises: 步骤S1,输入信号获取:将自适应滤波器线性滤波模块中添加非线性滤波模块,采集自适应滤波器接收到的输入信号,并将所述输入信号进行截取处理得到非线性滤波模块的输入信号;Step S1, input signal acquisition: adding a nonlinear filter module to the linear filter module of the adaptive filter, collecting the input signal received by the adaptive filter, and intercepting the input signal to obtain the input signal of the nonlinear filter module ; 步骤S2,非线性变换:对所述非线性滤波模块的输入信号进行非线性变换,得到非线性变换信号;Step S2, nonlinear transformation: performing nonlinear transformation on the input signal of the nonlinear filtering module to obtain a nonlinear transformation signal; 步骤S3,信号滤波:根据所述非线性变换信号以及所述非线性滤波模块权系数,滤波得到非线性滤波模块的输出信号,同时滤波得到线性滤波模块的输出信号;Step S3, signal filtering: filter to obtain the output signal of the nonlinear filter module according to the nonlinear transformation signal and the weight coefficient of the nonlinear filter module, and simultaneously filter to obtain the output signal of the linear filter module; 步骤S4,误差信号计算:根据所述线性滤波模块的输出信号、非线性滤波模块的输出信号以及输出时刻的期望信号,得到所述输出时刻的误差信号。Step S4, error signal calculation: according to the output signal of the linear filter module, the output signal of the nonlinear filter module, and the expected signal at the output time, the error signal at the output time is obtained. 步骤S5,滤波器更新值计算:计算每次滤波器更新的梯度值,对线性模块和非线性模块的滤波器系数进行更新,其中,滤波器更新值的推导原理是,将所述误差信号函数取平方、求期望得到损失函数,将所述损失函数分别对线性滤波模块权系数和非线性滤波模块权系数求偏导运算,得到线性滤波模块权系数的梯度更新值和非线性滤波模块权系数的梯度更新值;Step S5, filter update value calculation: calculate the gradient value of each filter update, update the filter coefficients of the linear module and the nonlinear module, wherein, the derivation principle of the filter update value is, the error signal function Take the square, find the expected loss function, and obtain the partial derivative operation of the loss function on the weight coefficient of the linear filter module and the weight coefficient of the nonlinear filter module respectively, and obtain the gradient update value of the weight coefficient of the linear filter module and the weight coefficient of the nonlinear filter module. The gradient update value of ; 步骤S6,滤波器更新:根据所述线性滤波模块权系数的梯度更新值,采用梯度下降法,得到线性滤波模块权系数的更新公式,根据所述线性滤波模块权系数的更新公式反复运算得到线性滤波模块收敛权系数;根据所述非线性滤波模块权系数的梯度更新值,采用梯度下降法,得到非线性滤波模块权系数的更新公式,根据所述非线性滤波模块权系数的更新公式反复运算得到非线性滤波模块收敛权系数;Step S6, filter update: according to the gradient update value of the weight coefficient of the linear filter module, the gradient descent method is used to obtain the update formula of the weight coefficient of the linear filter module, and the linear filter module is repeatedly calculated according to the update formula of the weight coefficient of the linear filter module. Filtering module convergence weight coefficient; according to the gradient update value of the nonlinear filter module weight coefficient, adopt the gradient descent method to obtain the update formula of the nonlinear filter module weight coefficient, and repeat the calculation according to the update formula of the nonlinear filter module weight coefficient Obtain the nonlinear filter module convergence weight coefficient; 步骤S7,分别将所述线性滤波模块收敛权系数和非线性滤波模块收敛权系数进行滤波运算,得到线性滤波模块输出信号和非线性滤波模块输出信号,上述两项输出信号叠加后能够高度拟合所述期望信号。In step S7, the linear filtering module convergence weight coefficient and the nonlinear filtering module convergence weight coefficient are respectively subjected to filtering operation to obtain the output signal of the linear filtering module and the output signal of the non-linear filtering module. The above two output signals can be highly fitted after being superimposed the desired signal. 2.根据权利要求1所述的添加非线性拟合的自适应算法,其特征在于:所述步骤S2中,所述非线性变换信号为:2. The adaptive algorithm adding nonlinear fitting according to claim 1, wherein: in the step S2, the nonlinear transformation signal is: u(n)=f(xcut(n))u(n)=f(x cut (n)) 其中,in, xcut(n)=[x(n),x(n-1),…,x(n-M+1)]T,x(n)=[x(n),x(n-1),…,x(n-N+1)]T,M用于表示非线性滤波模块阶数,N用于表示线性滤波模块阶数,且M<N,上标T用于表示转置操作,x(n)用于表示线性滤波模块的输入信号输入信号,xcut(n)用于表示非线性滤波模块的输入信号;x cut (n)=[x(n), x(n-1),...,x(n-M+1)] T , x(n)=[x(n), x(n-1), ..., x(n-N+1)] T , M is used to represent the order of the nonlinear filter module, N is used to represent the order of the linear filter module, and M<N, the superscript T is used to represent the transpose operation, x (n) is used to represent the input signal input signal of the linear filtering module, and x cut (n) is used to represent the input signal of the nonlinear filtering module; n用于表示时刻;n is used to represent the time; f用于表示非线性变换;f is used to represent nonlinear transformation; u(n)用于表示非线性变换信号。u(n) is used to represent the nonlinear transform signal. 3.根据权利要求2所述的添加非线性拟合的自适应算法,其特征在于:所述非线性变换中,f可采取如下取平方非线性变换,其对单频信号可以产生一个二次谐波频率,用于对非线性系统建模,如下所示:3. The adaptive algorithm of adding nonlinear fitting according to claim 2, characterized in that: in the nonlinear transformation, f can take the following square nonlinear transformation, which can generate a quadratic to the single-frequency signal Harmonic frequencies, used to model nonlinear systems as follows:
Figure FDA0002977154820000021
Figure FDA0002977154820000021
其中,in, ω用于表示非线性滤波模块的输入信号的频率;ω is used to represent the frequency of the input signal of the nonlinear filtering module; 2ω用于表示非线性变换后产生的二次谐波频率;2ω is used to represent the second harmonic frequency generated after nonlinear transformation; ()2用于表示取平方运算。() 2 is used to represent the square operation.
4.根据权利要求2所述的添加非线性拟合的自适应算法,其特征在于,所述非线性变换中,f可采取如下RELU非线性变换,其对单频信号可以产生各偶次谐波成分,用于对非线性系统建模,如下所示:4. the self-adaptive algorithm of adding nonlinear fitting according to claim 2, is characterized in that, in described nonlinear transformation, f can adopt following RELU nonlinear transformation, it can produce each even harmonic to single frequency signal Wave components, used to model nonlinear systems, as follows:
Figure FDA0002977154820000022
Figure FDA0002977154820000022
其中,in, ωt用于表示非线性滤波模块的一个频率;ωt is used to represent a frequency of the nonlinear filter module; 2ωt用于表示非线性滤波模块的另一个频率;2ωt is used to represent another frequency of the nonlinear filter module; n用于表示时刻;n is used to represent the time; RELU用于表示信号负值置零运算。RELU is used to represent the zero-setting operation of the negative value of the signal.
5.根据权利要求3或4所述的添加非线性拟合的自适应算法,其特征在于,所述步骤S3中,所述滤波得到的线性滤波模块输出信号和非线性滤波模块的输出信号根据如下公式计算得到:5. The adaptive algorithm of adding nonlinear fitting according to claim 3 or 4, wherein in the step S3, the linear filter module output signal obtained by the filtering and the output signal of the nonlinear filter module are based on It is calculated by the following formula: yl(n)=x(n)Twl(n)y l (n)=x(n) T w l (n) ynl(n)=u(n)Twnl(n)y nl (n)=u(n) T w nl (n) 其中,in, x(n)用于表示线性滤波模块的输入信号;x(n) is used to represent the input signal of the linear filtering module; wl(n)用于表示线性滤波模块权系数;w l (n) is used to represent the linear filter module weight coefficient; u(n)用于表示非线性滤波模块的非线性变换信号;u(n) is used to represent the nonlinear transformation signal of the nonlinear filtering module; wnl(n)用于表示非线性滤波模块权系数;w nl (n) is used to represent the weight coefficient of the nonlinear filter module; n用于表示时刻;n is used to represent the time; 上标T用于表示转置操作;The superscript T is used to represent the transpose operation; yl(n)用于表示线性滤波模块的输出信号。y l (n) is used to represent the output signal of the linear filter block. ynl(n)用于表示非线性滤波模块的输出信号。y nl (n) is used to represent the output signal of the nonlinear filter block. 6.根据权利要求5所述的添加非线性拟合的自适应算法,其特征在于:所述步骤S4中,所述输出时刻的误差信号根据如下公式计算得到:6. The adaptive algorithm of adding nonlinear fitting according to claim 5, wherein: in the step S4, the error signal at the output moment is calculated according to the following formula: e(n)=d(n)+yl(n)+ynl(n)e(n)=d(n)+y l (n)+y nl (n) 其中,in, d(n)用于表示输出时刻的期望信号;d(n) is used to represent the expected signal at the output moment; e(n)表示输出时刻的误差信号。e(n) represents the error signal at the output time. 7.根据权利要求6所述的添加非线性拟合的自适应算法,其特征在于,所述步骤S5中,所述损失函数根据如下公式计算得到:7. The adaptive algorithm of adding nonlinear fitting according to claim 6, wherein, in the step S5, the loss function is calculated according to the following formula: J=E(e2(n))J=E(e 2 (n)) 其中,in, E用于表示期望运算。E is used to denote an expectation operation. 8.根据权利要求7所述的添加非线性拟合的自适应算法,其特征在于,所述步骤S5中,所述线性滤波模块权系数的梯度更新值和非线性滤波模块权系数的梯度更新值分别为:8 . The adaptive algorithm for adding nonlinear fitting according to claim 7 , wherein, in the step S5 , the gradient update value of the weight coefficients of the linear filtering module and the gradient update value of the weight coefficients of the nonlinear filtering module are updated 8 . The values are:
Figure FDA0002977154820000031
Figure FDA0002977154820000031
Figure FDA0002977154820000032
Figure FDA0002977154820000032
其中,in, x(n)用于表示线性滤波模块的输入信号;x(n) is used to represent the input signal of the linear filtering module; u(n)用于表示非线性滤波模块的非线性变换信号;u(n) is used to represent the nonlinear transformation signal of the nonlinear filtering module;
Figure FDA0002977154820000033
用于表示线性滤波模块权系数的梯度更新值;
Figure FDA0002977154820000033
The gradient update value used to represent the weight coefficients of the linear filter module;
Figure FDA0002977154820000034
用于表示非线性滤波模块权系数的梯度更新值;
Figure FDA0002977154820000034
The gradient update value used to represent the weight coefficients of the nonlinear filter module;
上标T用于表示转置操作。The superscript T is used to denote the transpose operation.
9.根据权利要求8所述的添加非线性拟合的自适应算法,其特征在于,所述线性滤波模块权系数的梯度更新值和非线性滤波模块权系数的梯度更新值,根据如下公式获得:9. The adaptive algorithm of adding nonlinear fitting according to claim 8, wherein the gradient update value of the weight coefficient of the linear filter module and the gradient update value of the weight coefficient of the nonlinear filter module are obtained according to the following formula :
Figure FDA0002977154820000041
Figure FDA0002977154820000041
Figure FDA0002977154820000042
Figure FDA0002977154820000042
其中,in,
Figure FDA0002977154820000043
用于表示对线性滤波模块权系数进行偏导运算;
Figure FDA0002977154820000043
It is used to represent the partial derivative operation on the weight coefficients of the linear filter module;
Figure FDA0002977154820000044
用于表示对非线性滤波模块权系数进行偏导运算;
Figure FDA0002977154820000044
It is used to indicate that the partial derivative operation is performed on the weight coefficients of the nonlinear filter module;
N用于表示线性滤波模块阶数;N is used to represent the linear filter module order; M用于表示非线性滤波模块阶数,且M<N;M is used to represent the order of the nonlinear filter module, and M<N; 上标T用于表示转置操作。The superscript T is used to denote the transpose operation.
10.根据权利要求9所述的添加非线性拟合的自适应算法,其特征在于,所述步骤S6中,所述线性模块滤波器权系数的更新公式和非线性模块滤波器权系数的更新公式分别如下:10. The adaptive algorithm for adding nonlinear fitting according to claim 9, characterized in that, in the step S6, the update formula of the linear module filter weight coefficient and the update of the nonlinear module filter weight coefficient The formulas are as follows: wl(n+1)=wl(n)-2μle(n)x(n)T w l (n+1)=w l (n)-2μ l e(n)x(n) T wnl(n+1)=wnl(n)-2μnle(n)u(n)T w nl (n+1)=w nl (n)-2μ nl e(n)u(n) T 其中,in, wl(n)用于表示线性滤波模块权系数;w l (n) is used to represent the linear filter module weight coefficient; wnl(n)用于表示非线性滤波模块权系数;w nl (n) is used to represent the weight coefficient of the nonlinear filter module; μl用于表示线性模块梯度下降法中控制收敛速度的迭代步长;μ l is used to represent the iterative step size that controls the convergence rate in the linear modular gradient descent method; μnl用于表示非线性模块梯度下降法中控制收敛速度的迭代步长;μ nl is used to represent the iterative step size that controls the convergence rate in the nonlinear modular gradient descent method; e(n)表示输出时刻的误差信号;e(n) represents the error signal at the output moment; x(n)用于表示线性滤波模块的输入信号;x(n) is used to represent the input signal of the linear filtering module; u(n)用于表示非线性滤波模块的非线性变换信号。u(n) is used to represent the nonlinear transform signal of the nonlinear filter module.
CN202110277276.4A 2021-03-15 2021-03-15 Add adaptive algorithm for nonlinear fitting Active CN113078884B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110277276.4A CN113078884B (en) 2021-03-15 2021-03-15 Add adaptive algorithm for nonlinear fitting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110277276.4A CN113078884B (en) 2021-03-15 2021-03-15 Add adaptive algorithm for nonlinear fitting

Publications (2)

Publication Number Publication Date
CN113078884A true CN113078884A (en) 2021-07-06
CN113078884B CN113078884B (en) 2023-06-20

Family

ID=76612728

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110277276.4A Active CN113078884B (en) 2021-03-15 2021-03-15 Add adaptive algorithm for nonlinear fitting

Country Status (1)

Country Link
CN (1) CN113078884B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113676157A (en) * 2021-08-11 2021-11-19 武汉理工大学 Self-adaptive filtering algorithm for counteracting DC bias
CN114531176A (en) * 2022-01-14 2022-05-24 山东梅格彤天电气有限公司 Carrier communication quality optimization method, device and storage medium

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4843583A (en) * 1985-10-15 1989-06-27 Rockwell International Corporation Nonlinear adaptive filter
EP0896428A2 (en) * 1997-07-29 1999-02-10 Deutsche Thomson-Brandt Gmbh Method for adaptation of FIR filters
US6351740B1 (en) * 1997-12-01 2002-02-26 The Board Of Trustees Of The Leland Stanford Junior University Method and system for training dynamic nonlinear adaptive filters which have embedded memory
US20030007553A1 (en) * 2001-07-06 2003-01-09 Koninklijke Philips Electronics N.V. Receiver having an adaptive filter and method of optimising the filter
US7012772B1 (en) * 1998-09-02 2006-03-14 Cirrus Logic, Inc. Sampled amplitude read channel employing an adaptive non-linear correction circuit for correcting non-linear distortions in a read signal
WO2009045414A1 (en) * 2007-10-04 2009-04-09 Optichron, Inc. System and method for adaptive nonlinear filtering
US20120086504A1 (en) * 2009-07-06 2012-04-12 Panasonic Corporation Nonlinear distortion compensating receiver and nonlinear distortion compensation method
US20130044791A1 (en) * 2011-08-18 2013-02-21 Qualcomm Incorporated Joint linear and non-linear cancellation of transmit self-jamming interference
US20130162348A1 (en) * 2011-12-21 2013-06-27 Telefonaktiebolaget L M Ericsson (Publ) Adaptive predistortion for a non-linear subsystem based on a model as a concatenation of a non-linear model followed by a linear model
CN110233607A (en) * 2019-05-28 2019-09-13 西安交通大学 Hammerstein type non-linear spline adaptive filter method based on minimal error entropy
CN110492868A (en) * 2019-06-24 2019-11-22 东南大学 A kind of new multi-parameter variable step- size LMS adaptive filter method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4843583A (en) * 1985-10-15 1989-06-27 Rockwell International Corporation Nonlinear adaptive filter
EP0896428A2 (en) * 1997-07-29 1999-02-10 Deutsche Thomson-Brandt Gmbh Method for adaptation of FIR filters
US6351740B1 (en) * 1997-12-01 2002-02-26 The Board Of Trustees Of The Leland Stanford Junior University Method and system for training dynamic nonlinear adaptive filters which have embedded memory
US7012772B1 (en) * 1998-09-02 2006-03-14 Cirrus Logic, Inc. Sampled amplitude read channel employing an adaptive non-linear correction circuit for correcting non-linear distortions in a read signal
US20030007553A1 (en) * 2001-07-06 2003-01-09 Koninklijke Philips Electronics N.V. Receiver having an adaptive filter and method of optimising the filter
WO2009045414A1 (en) * 2007-10-04 2009-04-09 Optichron, Inc. System and method for adaptive nonlinear filtering
US20120086504A1 (en) * 2009-07-06 2012-04-12 Panasonic Corporation Nonlinear distortion compensating receiver and nonlinear distortion compensation method
US20130044791A1 (en) * 2011-08-18 2013-02-21 Qualcomm Incorporated Joint linear and non-linear cancellation of transmit self-jamming interference
US20130162348A1 (en) * 2011-12-21 2013-06-27 Telefonaktiebolaget L M Ericsson (Publ) Adaptive predistortion for a non-linear subsystem based on a model as a concatenation of a non-linear model followed by a linear model
CN110233607A (en) * 2019-05-28 2019-09-13 西安交通大学 Hammerstein type non-linear spline adaptive filter method based on minimal error entropy
CN110492868A (en) * 2019-06-24 2019-11-22 东南大学 A kind of new multi-parameter variable step- size LMS adaptive filter method

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
XIAOXU WANG: "Model Fitting Filter", 《2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC)》 *
XIAOXU WANG: "Model Fitting Filter", 《2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC)》, 2018081, pages 5479 - 5484 *
庞启: "基于非线性滤波器的FBG解调系统的研究", 《光电子.激光》 *
庞启: "基于非线性滤波器的FBG解调系统的研究", 《光电子.激光》, 15 November 2013 (2013-11-15), pages 2096 - 2101 *
苗慧: "《应用高等数学 理工类》", 31 July 2019, pages: 165 - 168 *
董长虹: "《神经网络与应用》", 31 January 2005, pages: 36 - 38 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113676157A (en) * 2021-08-11 2021-11-19 武汉理工大学 Self-adaptive filtering algorithm for counteracting DC bias
CN114531176A (en) * 2022-01-14 2022-05-24 山东梅格彤天电气有限公司 Carrier communication quality optimization method, device and storage medium

Also Published As

Publication number Publication date
CN113078884B (en) 2023-06-20

Similar Documents

Publication Publication Date Title
Kuo et al. Nonlinear adaptive bilinear filters for active noise control systems
CN101976560B (en) Method for improving performance of feedforward narrow-band active noise control system
CN111883095B (en) Active noise reduction method, device, system and related equipment
CN103634726B (en) A kind of Automatic loudspeaker equalization method
CN108428445A (en) A kind of adaptive active denoising method of error free microphone
CN106531145B (en) Recurrence active noise control method based on M estimator
CN113078884B (en) Add adaptive algorithm for nonlinear fitting
CN105976806B (en) Active noise control method based on maximum entropy
CN111933102A (en) Nonlinear active noise control method based on fractional order gradient
CN110166880A (en) A kind of modified form adaptive noise reduction earphone and its noise-reduction method
CN111326134B (en) Active noise reduction method based on EMFNL filter offline modeling secondary channel
Shi et al. Compensation for nonlinearity in a Hammerstein system using the coherence function with application to nonlinear acoustic echo cancellation
CN103929704B (en) The method and system that a kind of adaptive acoustic feedback based on transform domain is eliminated
Emeruwa et al. Improved algorithm of equation error model of active noise control
CN112584276A (en) Parametric array loudspeaker sound distortion frequency domain correction method and system
CN102724152A (en) Multinomial adaptive active noise cancellation method based on Laguerre structure
WO2023040025A1 (en) Feedback-type active noise control system and method based on secondary channel online identification
CN111193497A (en) A Secondary Channel Modeling Method Based on EMFNL Filter
CN113676157B (en) An Adaptive Filtering Algorithm for Canceling DC Offset
CN113096629B (en) Relative path virtual sensing method for single-channel feedback active noise control system
CN110599997B (en) Impact noise active control method with strong robustness
Wang et al. Simplified fast transversal filter algorithms for multichannel active noise control
Dhubkarya et al. Comparative Performance Analysis of Adaptive Algorithms for Simulation & Hardware Implementation of an ECG Signal
US20240203391A1 (en) Tools and methods for designing filters for use in active noise cancelling systems
CN117831498A (en) Active noise control method based on generalized entropy and used for Euclidean direction search

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant