CN110599997B - Impact noise active control method with strong robustness - Google Patents
Impact noise active control method with strong robustness Download PDFInfo
- Publication number
- CN110599997B CN110599997B CN201910909005.9A CN201910909005A CN110599997B CN 110599997 B CN110599997 B CN 110599997B CN 201910909005 A CN201910909005 A CN 201910909005A CN 110599997 B CN110599997 B CN 110599997B
- Authority
- CN
- China
- Prior art keywords
- noise
- filter
- signal
- value
- moment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000004364 calculation method Methods 0.000 claims abstract description 7
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 3
- 230000005236 sound signal Effects 0.000 claims description 3
- 230000008030 elimination Effects 0.000 claims description 2
- 238000003379 elimination reaction Methods 0.000 claims description 2
- 230000009467 reduction Effects 0.000 abstract description 6
- 238000001914 filtration Methods 0.000 abstract description 4
- 238000004088 simulation Methods 0.000 description 11
- 230000035939 shock Effects 0.000 description 10
- 238000004422 calculation algorithm Methods 0.000 description 8
- 238000009826 distribution Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000012814 acoustic material Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/175—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
- G10K11/178—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
- G10K11/1781—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
- G10K11/17821—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
- G10K11/17823—Reference signals, e.g. ambient acoustic environment
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/175—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
- G10K11/178—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
- G10K11/1781—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
- G10K11/17821—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
- G10K11/17825—Error signals
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/175—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
- G10K11/178—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
- G10K11/1785—Methods, e.g. algorithms; Devices
- G10K11/17853—Methods, e.g. algorithms; Devices of the filter
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/175—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
- G10K11/178—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
- G10K11/1787—General system configurations
- G10K11/17879—General system configurations using both a reference signal and an error signal
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K2210/00—Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
- G10K2210/30—Means
- G10K2210/301—Computational
- G10K2210/3028—Filtering, e.g. Kalman filters or special analogue or digital filters
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种有源噪声控制方法,尤其涉及一种冲击噪声有源控制方法。The present invention relates to an active noise control method, in particular to an active control method of impulse noise.
背景技术Background technique
随着现代工业的迅速发展,形式各异的噪声,如汽车引擎噪声、列车运行中的噪声、变压器噪声等,逐渐成为人们日常生活及生产中的一项不可忽视的干扰因素。过高的噪声会影响人们的正常生活,降低劳动生产率,危害人体健康,甚至直接导致某些疾病的发生。因此,如何有效的降低环境噪声成为一个亟待解决的问题。With the rapid development of modern industry, various forms of noise, such as automobile engine noise, train noise, transformer noise, etc., have gradually become a non-negligible interference factor in people's daily life and production. Excessive noise will affect people's normal life, reduce labor productivity, endanger human health, and even directly lead to the occurrence of certain diseases. Therefore, how to effectively reduce the environmental noise has become an urgent problem to be solved.
传统的降低噪声技术为无源噪声控制(PNC),多为使用声学材料对声波进行反射与吸收,这种方式虽被广泛使用,但是仅对高频的噪声有好的作用,而对于低频噪声作用不大。对于变压器噪声,电机噪声等低频噪声,需要新型的噪声控制方式。The traditional noise reduction technology is passive noise control (PNC), which mostly uses acoustic materials to reflect and absorb sound waves. Although this method is widely used, it only has a good effect on high-frequency noise and low-frequency noise. not so useful. For low-frequency noise such as transformer noise and motor noise, a new noise control method is required.
有源噪声控制(ANC)的原理是,在噪声源处通过参考麦克风采集源噪声,并通过模数转换器将输入噪声转换为数字信号,再通过自适应控制算法运算后,通过电路及扬声器发出与噪声幅值频率相同而相位相反的次级声波。次级声波与源噪声的波形相消,实现噪声的控制。The principle of active noise control (ANC) is to collect the source noise through the reference microphone at the noise source, and convert the input noise into a digital signal through an analog-to-digital converter, and then through the adaptive control algorithm, the circuit and the speaker send out the noise. A secondary sound wave with the same frequency and opposite phase as the noise amplitude. The secondary sound wave cancels the waveform of the source noise to achieve noise control.
最小化残差的均方(FxLMS)滤波算法,以其计算成本低、结构紧凑等特点,成为有源噪声控制的主要算法,在普通的高斯噪声环境中得到了广泛的应用。但对幅度大、变化剧烈的冲击噪声,最小化残差均方(残差的二阶矩) (FxLMS)滤波算法对冲击噪声的敏感度高,算法的稳定性低,噪声控制效果较差;最小化残差的p范数滤波算法对冲击噪声的控制效果有着显著改善,如文献1“Leahy R,Zhou Z,Hsu YC.Adaptive filtering of stableprocesses for active attenuation of impulsive noise.in:Proceedings of the1995International Conference on Acoustics,Speech,and Signal Processing,vol.5;1995.pp. 2983-2986.”,它通过最小化残差的p阶矩(p为1-2之间的一个确定的数)对噪声进行抑制,降低了对冲击噪声的敏感度,算法的稳定性得到一定提高;然而针对较强的冲击噪声,该算法的抑制作用有限,扔易发生迭代不收敛、不稳定的情况,其鲁棒性有待改善。Residual-minimized mean square (FxLMS) filtering algorithm has become the main algorithm for active noise control due to its low computational cost and compact structure, and has been widely used in ordinary Gaussian noise environments. But for the shock noise with large amplitude and drastic change, the Minimizing Residual Mean Square (Second Moment of Residual) (FxLMS) filter algorithm has high sensitivity to shock noise, low stability of the algorithm, and poor noise control effect; The p-norm filtering algorithm that minimizes the residual has a significant improvement in the control effect of impulsive noise, such as
发明内容SUMMARY OF THE INVENTION
本发明的目的就是提供一种鲁棒性强的冲击噪声有源控制方法,该方法对于冲击噪声的稳态误差小,鲁棒性强,降噪效果好。The purpose of the present invention is to provide an active control method for impulse noise with strong robustness, which has small steady-state error for impulse noise, strong robustness and good noise reduction effect.
本发明实现其发明目的所采用的技术方案是,一种鲁棒性强的冲击噪声有源控制方法,其步骤如下:The technical solution adopted by the present invention to achieve the object of the invention is a robust active control method for impulse noise, the steps of which are as follows:
A、噪声信号采集A. Noise signal acquisition
噪声源附近的参考麦克风采集到当前时刻n的噪声信号离散值x(n),将当前时刻n到前L-1个时刻的噪声信号离散值x(n),x(n-1),...,x(n-L+1),组成当前时刻n的噪声信号向量X(n),X(n)=[x(n),x(n-1),...,x(n-L+1)]T;其中 L=128,是滤波器的抽头数,上标T代表转置运算;The reference microphone near the noise source collects the noise signal discrete value x(n) at the current time n, and divides the noise signal discrete value x(n), x(n-1), from the current time n to the previous L-1 time. ..,x(n-L+1), constitute the noise signal vector X(n) at the current moment n, X(n)=[x(n),x(n-1),...,x(n -L+1)] T ; Wherein L=128, is the tap number of filter, superscript T represents transpose operation;
B、滤波器系数生成B, filter coefficient generation
滤波器生成当前时刻n和前L-1个时刻的权系数 w(n),w(n-1),…,w(n-L+1),并将这L个权系数构成当前时刻n的权系数向量 W(n),W(n)=[w(n),w(n-1),...,w(n-L+1)];当前时刻n<129时,W(n)=0;The filter generates the weight coefficients w(n), w(n-1),...,w(n-L+1) of the current moment n and the previous L-1 moments, and these L weight coefficients constitute the current moment n The weight coefficient vector W(n) of , W(n)=[w(n),w(n-1),...,w(n-L+1)]; when the current moment n<129, W( n)=0;
C、消噪信号生成C. Denoising signal generation
将当前时刻n的噪声信号向量X(n)输入滤波器,得到滤波器当前时刻n的输出值y(n),y(n)=WT(n)X(n);Input the noise signal vector X(n) of the current moment n into the filter to obtain the output value y(n) of the current moment n of the filter, y(n)=W T (n)X(n);
滤波器的输出值y(n),经过由D/A、重构滤波器、功放、消噪扬声器、和噪声消除点的误差传声器组成的次级通路S(z),在噪声消除点处得到消噪信号y′(n),y′(n)=s(n)*y(n);其中符号*代表卷积运算,s(n)表示次级通路S(z) 的脉冲响应;The output value y(n) of the filter, through the secondary path S(z) composed of D/A, reconstruction filter, power amplifier, noise canceling speaker, and error microphone at the noise canceling point, is obtained at the noise canceling point De-noising signal y'(n), y'(n)=s(n)*y(n); the symbol * represents the convolution operation, and s(n) represents the impulse response of the secondary path S(z);
D、残差信号p阶矩平均值的计算D. Calculation of the average value of the p-order moment of the residual signal
误差传声器采集噪声消除点在当前时刻n的消噪信号y′(n)和当前时刻n 的噪声信号离散值x(n)作用后的声音信号,作为当前时刻n的残差信号e(n),并送滤波器;滤波器由当前时刻n的残差信号e(n),计算出当前时刻n的残差信号的p阶矩在p∈[1,2]区间内的平均值cp(n),式中|e(n)|p表示残差信号e(n)的p阶矩,dp 表示对阶矩p的微分,|e(n)|表示残差信号e(n)的绝对值;The error microphone collects the noise canceling point at the current time n of the noise canceling signal y'(n) and the noise signal discrete value x(n) at the current time n. The sound signal is used as the residual signal e(n) at the current time n. , and send the filter; the filter calculates the average value of the p-order moment of the residual signal at the current time n in the interval p∈[1,2] from the residual signal e(n) of the current time n ( n), where |e(n)| p represents the p-order moment of the residual signal e(n), dp represents the differential to the order moment p, and |e(n)| represents the absolute value of the residual signal e(n);
E、残差信号p阶矩平均值的指数化E. Exponentialization of the mean value of the p-order moment of the residual signal
滤波器计算出当前时刻n的残差信号p阶矩的指数化平均值g(n), g(n)=exp{-ηcp(n)},其中,exp(·)表示指数运算,η为指数化参数,其取值为小于10的正数;The filter calculates the exponential average value g(n) of the p-order moment of the residual signal at the current time n, g(n)=exp{-ηc p (n)}, where exp( ) represents the exponential operation, η is an indexation parameter, and its value is a positive number less than 10;
F、梯度向量的计算F. Calculation of gradient vector
滤波器计算出当前时刻n权值的更新梯度值Δ(n),其中,sign(·)表示符号运算;The filter calculates the updated gradient value Δ(n) of the weight of n at the current moment, Among them, sign( ) represents symbolic operation;
G、权系数向量的更新G. Update of the weight coefficient vector
滤波器根据当前时刻n权值更新梯度值Δ(n),更新得到下一时刻n+1的权系数向量为W(n+1),w(n+1)=w(n)+μΔ(n)X(n);式中,μ为步长因子,其取值范围为0.01~0.1;The filter updates the gradient value Δ(n) according to the weight value of n at the current moment, and the updated weight coefficient vector of n+1 at the next moment is W(n+1), w(n+1)=w(n)+μΔ( n)X(n); in the formula, μ is the step factor, and its value ranges from 0.01 to 0.1;
H、迭代H. Iteration
令n=n+1,重复A~G的步骤,直至噪声控制结束。Let n=n+1, repeat the steps A to G until the noise control ends.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
一、在较强的冲击噪声环境下,残差信号会产生波动,噪声控制对控制方法的稳定性有较高的要求;较之文献1中以残差信号的一个p值确定的p阶矩|e(n)|p作为对噪冲击声估计的基础,本发明采用残差信号在p∈[1,2]区间内所有p值的p阶矩的平均值cp(n),代替文献1的一个p值确定的p阶矩|e(n)|p;所有p值的p阶矩的平均值能适应大多数种类的冲击噪声,其适应性更强;也不需要先验知识进行p值的选择,从而更易于冲击噪声有源控制的实现。1. In a strong impact noise environment, the residual signal will fluctuate, and noise control has higher requirements on the stability of the control method; compared with the p-order moment determined by a p-value of the residual signal in
二、残差信号e(n)的广义最大熵exp(-η|e(n)|p),是映射特征空间中残差信号包括二阶矩的高阶绝对矩。本发明借鉴广义最大熵的映射机理,对残差信号在p∈[1,2]区间内p阶矩的平均值Cp(n)进行类似广义最大熵的操作,得到p阶矩的平均值cp(n)的指数化值g(n),g(n)=exp{-ηCp(n)},并将该指数化值g(n)最小作为噪声估计的准则,得到滤波器权值系数的更新增量值,指数化的更新增量值,既能有效的跟踪冲击噪声环境下的残差信号e(n)变化,对强冲击噪声带来的残差信号e(n)的巨大变化又能有效减缓,明显减少了迭代不收敛、不稳定情况的发生,其鲁棒性强;对冲击噪声的稳态误差小,降噪效果好。2. The generalized maximum entropy exp(-η|e(n)| p ) of the residual signal e(n) is the higher-order absolute moment of the residual signal including the second-order moment in the mapping feature space. The invention draws on the mapping mechanism of generalized maximum entropy, and performs an operation similar to generalized maximum entropy to the average value C p (n) of the p-order moment of the residual signal in the interval p∈[1,2], and obtains the average value of the p-order moment. The indexed value g(n) of c p (n), g(n)=exp{-ηC p (n)}, and the minimum indexed value g(n) is used as the criterion for noise estimation, and the filter weight is obtained. The update increment value of the value coefficient and the exponential update increment value can not only effectively track the change of the residual signal e(n) in the impact noise environment, Great changes can also be effectively slowed down, which significantly reduces the occurrence of non-convergence and instability of iterations, and has strong robustness; the steady-state error to impact noise is small, and the noise reduction effect is good.
下面结合附图和具体实施方式对本发明进行进一步的详细说明。The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.
附图说明Description of drawings
图1(a)为本发明仿真实验中采用的α=1.6的α稳定分布的冲击噪声。FIG. 1( a ) is the shock noise of α stable distribution with α=1.6 adopted in the simulation experiment of the present invention.
图1(b)为本发明仿真实验中采用的α=1.3的α稳定分布的强冲击噪声。Fig. 1(b) is the strong impact noise with α stable distribution of α=1.3 adopted in the simulation experiment of the present invention.
图1(c)为本发明仿真实验中采用的α=1.1的α稳定分布的超强冲击噪声。Fig. 1(c) is the super-strong shock noise with α stable distribution of α=1.1 adopted in the simulation experiment of the present invention.
图2a为图1a的冲击噪声通过文献1和本发明方法的仿真实验处理后的平均噪声残留图。FIG. 2 a is a graph of the average noise residual after the impulse noise of FIG. 1 a is processed by the simulation experiments of
图2b为图1b的初级噪声通过文献1和本发明方法的仿真实验处理后的平均噪声残留图。FIG. 2b is a graph of the average noise residual after the primary noise of FIG. 1b is processed by the simulation experiments of
图2c为图1c的初级噪声通过文献1和本发明方法的仿真实验处理后的平均噪声残留图。FIG. 2c is a graph of the average noise residual after the primary noise of FIG. 1c is processed by the simulation experiments of
具体实施方式Detailed ways
实施例Example
本发明的一种具体实施方式是,一种鲁棒性强的冲击噪声有源控制方法,其步骤如下:A specific embodiment of the present invention is a robust impulse noise active control method, the steps of which are as follows:
A、噪声信号采集A. Noise signal acquisition
噪声源附近的参考麦克风采集到当前时刻n的噪声信号离散值x(n),将当前时刻n到前L-1个时刻的噪声信号离散值x(n),x(n-1),...,x(n-L+1),组成当前时刻n的噪声信号向量X(n),X(n)=[x(n),x(n-1),...,x(n-L+1)]T;其中 L=128,是滤波器的抽头数,上标T代表转置运算;The reference microphone near the noise source collects the noise signal discrete value x(n) at the current time n, and divides the noise signal discrete value x(n), x(n-1), from the current time n to the previous L-1 time. ..,x(n-L+1), constitute the noise signal vector X(n) at the current moment n, X(n)=[x(n),x(n-1),...,x(n -L+1)] T ; Wherein L=128, is the tap number of filter, superscript T represents transpose operation;
B、滤波器系数生成B, filter coefficient generation
滤波器生成当前时刻n和前L-1个时刻的权系数w(n),w(n-1),…,w(n-L+1),并将这L个权系数构成当前时刻n的权系数向量 W(n),W(n)=[w(n),w(n-1),...,w(n-L+1)];当前时刻n<129时,W(n)=0;The filter generates the weight coefficients w(n), w(n-1),...,w(n-L+1) of the current moment n and the previous L-1 moments, and these L weight coefficients constitute the current moment n The weight coefficient vector W(n) of , W(n)=[w(n),w(n-1),...,w(n-L+1)]; when the current moment n<129, W( n)=0;
C、消噪信号生成C. Denoising signal generation
将当前时刻n的噪声信号向量X(n)输入滤波器,得到滤波器当前时刻n的输出值y(n),y(n)=WT(n)X(n);Input the noise signal vector X(n) of the current moment n into the filter to obtain the output value y(n) of the current moment n of the filter, y(n)=W T (n)X(n);
滤波器的输出值y(n),经过由D/A、重构滤波器、功放、消噪扬声器、和噪声消除点的误差传声器组成的次级通路S(z),在噪声消除点处得到消噪信号y′(n),y′(n)=s(n)*y(n);其中符号*代表卷积运算,s(n)表示次级通路S(z) 的脉冲响应;The output value y(n) of the filter, through the secondary path S(z) composed of D/A, reconstruction filter, power amplifier, noise canceling speaker, and error microphone at the noise canceling point, is obtained at the noise canceling point De-noising signal y'(n), y'(n)=s(n)*y(n); the symbol * represents the convolution operation, and s(n) represents the impulse response of the secondary path S(z);
D、残差信号p阶矩平均值的计算D. Calculation of the average value of the p-order moment of the residual signal
误差传声器采集噪声消除点在当前时刻n的消噪信号y′(n)和当前时刻n 的噪声信号离散值x(n)作用后的声音信号,作为当前时刻n的残差信号e(n),并送滤波器;滤波器由当前时刻n的残差信号e(n),计算出当前时刻n的残差信号的p阶矩在p∈[1,2]区间内的平均值cp(n),式中|e(n)|p表示残差信号e(n)的p阶矩,dp 表示对阶矩p的微分,|e(n)|表示残差信号e(n)的绝对值;The error microphone collects the noise canceling point at the current time n of the noise canceling signal y'(n) and the noise signal discrete value x(n) at the current time n. The sound signal is used as the residual signal e(n) at the current time n. , and send the filter; the filter calculates the average value of the p-order moment of the residual signal at the current time n in the interval p∈[1,2] from the residual signal e(n) of the current time n ( n), where |e(n)| p represents the p-order moment of the residual signal e(n), dp represents the differential to the order moment p, and |e(n)| represents the absolute value of the residual signal e(n);
E、残差信号p阶矩平均值的指数化E. Exponentialization of the mean value of the p-order moment of the residual signal
滤波器计算出当前时刻n的残差信号p阶矩的指数化平均值g(n), g(n)=exp{-ηcp(n)},其中,exp(·)表示指数运算,η为指数化参数,其取值为小于10的正数;The filter calculates the exponential average value g(n) of the p-order moment of the residual signal at the current time n, g(n)=exp{-ηc p (n)}, where exp( ) represents the exponential operation, η is an indexation parameter, and its value is a positive number less than 10;
F、更新梯度值的计算F. Calculation of updated gradient values
滤波器计算出当前时刻n权值的更新梯度值Δ(n),其中,sign(·)表示符号运算;The filter calculates the updated gradient value Δ(n) of the weight of n at the current moment, Among them, sign( ) represents symbolic operation;
G、权系数向量的更新G. Update of the weight coefficient vector
滤波器根据当前时刻n权值更新梯度值Δ(n),更新得到下一时刻n+1的权系数向量为W(n+1),w(n+1)=w(n)+μΔ(n)X(n);式中,μ为步长因子,其取值范围为0.01~0.1;The filter updates the gradient value Δ(n) according to the weight value of n at the current moment, and the updated weight coefficient vector of n+1 at the next moment is W(n+1), w(n+1)=w(n)+μΔ( n)X(n); in the formula, μ is the step factor, and its value ranges from 0.01 to 0.1;
H、迭代H. Iteration
令n=n+1,重复A~G的步骤,直至噪声控制结束。Let n=n+1, repeat the steps A to G until the noise control ends.
仿真实验:Simulation:
为了验证本发明的有效性,进行了仿真实验,并与文献1的方法进行对比。In order to verify the effectiveness of the present invention, a simulation experiment is carried out, and the method is compared with the method in
仿真实验的主级通路和次级通路均采用高阶FIR滤波器进行建模。滤波器的阶数L设定为128阶。The primary and secondary paths of the simulation experiment are modeled by high-order FIR filters. The order L of the filter is set to 128.
冲击噪声由标准Alpha稳定分布噪声模型进行建模,Alpha稳定分布的特征函数形如φ(t)=e-|t|α,且α取值越小,冲击噪声越强。The shock noise is modeled by the standard Alpha stable distribution noise model. The characteristic function of the Alpha stable distribution is in the form of φ(t)=e -|t|α , and the smaller the value of α, the stronger the shock noise.
实验分别采用了三个α稳定分布(α=1.6,1.3,1.1)的冲击噪声,如图1(a)、图1(b)、图1(c)所示。The experiment adopts the shock noise of three α stable distributions (α=1.6, 1.3, 1.1), as shown in Fig. 1(a), Fig. 1(b), and Fig. 1(c).
对图1(a)、图1(b)、图1(c)所示的三个冲击噪声通过文献1和本发明方法进行仿真噪声控制后的平均噪声残留(在噪声消除点,噪声控制处理后的残差信号与未经噪声控制处理的冲击噪声之比)如图2a、图2b、图2c所示。图2a、图 2b、图2c中由符号“○”串起的曲线为文献1方法的平均噪声残留曲线,由符号“☆”串起的曲线为本发明方法的平均噪声残留曲线。For the three impulse noises shown in Figure 1(a), Figure 1(b), and Figure 1(c), the average noise residual after the simulation noise control is performed by the method of
由图2a、图2b、图2c的仿真结果可知,本发明的方法对冲击噪声有较好的控制,平均噪声残留远低于文献1的方法;冲击噪声越强,本发明方法的优势越明显;在图2b、图2c中文献1方法甚至无法收敛。由此可见,对冲击噪声本发明方法的鲁棒性强、稳定性好,起稳态误差小,降噪效果好。It can be seen from the simulation results of Fig. 2a, Fig. 2b and Fig. 2c that the method of the present invention has better control over the impact noise, and the average noise residual is much lower than that of the method in
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910909005.9A CN110599997B (en) | 2019-09-25 | 2019-09-25 | Impact noise active control method with strong robustness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910909005.9A CN110599997B (en) | 2019-09-25 | 2019-09-25 | Impact noise active control method with strong robustness |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110599997A CN110599997A (en) | 2019-12-20 |
CN110599997B true CN110599997B (en) | 2022-04-12 |
Family
ID=68863131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910909005.9A Active CN110599997B (en) | 2019-09-25 | 2019-09-25 | Impact noise active control method with strong robustness |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110599997B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111128110A (en) * | 2019-12-26 | 2020-05-08 | 广东精铟海洋工程股份有限公司 | Noise reduction method for interference waves of marine hydraulic pile hammer |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011031707A (en) * | 2009-07-31 | 2011-02-17 | Honda Motor Co Ltd | Active vibration noise control device |
CN104952458A (en) * | 2015-06-09 | 2015-09-30 | 广州广电运通金融电子股份有限公司 | Noise suppression method, device and system |
CN105976806A (en) * | 2016-04-26 | 2016-09-28 | 西南交通大学 | Active noise control method based on maximum entropy |
CN106203386A (en) * | 2016-07-21 | 2016-12-07 | 武汉大学 | The anti-interference adaptive algorithm of power transformer Active noise control using based on compress speech μ rule function |
CN109040499A (en) * | 2018-08-14 | 2018-12-18 | 西南交通大学 | A kind of adaptive echo cancellation method of shock resistance interference |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3182407B1 (en) * | 2015-12-17 | 2020-03-11 | Harman Becker Automotive Systems GmbH | Active noise control by adaptive noise filtering |
-
2019
- 2019-09-25 CN CN201910909005.9A patent/CN110599997B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011031707A (en) * | 2009-07-31 | 2011-02-17 | Honda Motor Co Ltd | Active vibration noise control device |
CN104952458A (en) * | 2015-06-09 | 2015-09-30 | 广州广电运通金融电子股份有限公司 | Noise suppression method, device and system |
CN105976806A (en) * | 2016-04-26 | 2016-09-28 | 西南交通大学 | Active noise control method based on maximum entropy |
CN106203386A (en) * | 2016-07-21 | 2016-12-07 | 武汉大学 | The anti-interference adaptive algorithm of power transformer Active noise control using based on compress speech μ rule function |
CN109040499A (en) * | 2018-08-14 | 2018-12-18 | 西南交通大学 | A kind of adaptive echo cancellation method of shock resistance interference |
Non-Patent Citations (4)
Title |
---|
An Active Impulsive Noise Control Algorithm With Logarithmic Transformation;Lifu Wu;《IEEE Transactions on Audio, Speech, and Language Processing》;20110504;第1041-1044页 * |
Generalized Correntropy for Robust Adaptive Filtering;Badong Chen;《IEEE Transactions on Signal Processing 》;20160307;第3376-3387页 * |
基于FXLMS算法的车内噪声主动控制技术研究;曾文杰;《中国优秀硕士学位论文全文数据库》;20180115(第1期);全文 * |
脉冲噪声主动控制算法研究;田亚雄;《中国优秀硕士学位论文全文数据库》;20161215(第12期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN110599997A (en) | 2019-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104616667B (en) | A kind of active denoising method in automobile | |
CN105976806B (en) | Active noise control method based on maximum entropy | |
CN105575397B (en) | Voice noise reduction method and voice acquisition equipment | |
CN106531145A (en) | Recursion active noise control method based on M estimator | |
CN111933102A (en) | Nonlinear active noise control method based on fractional order gradient | |
CN110191245B (en) | An Adaptive Echo Cancellation Method Based on Time-varying Parameters | |
CN111814515A (en) | Active noise cancellation method based on improved variable-step LMS adaptation | |
CN113114865A (en) | Combined function linkage type kernel self-response nonlinear echo cancellation method | |
CN107333017B (en) | An Adaptive Echo Cancellation Method Using Reuse Weight Exponential Error | |
CN110599997B (en) | Impact noise active control method with strong robustness | |
CN111326134B (en) | Active noise reduction method based on EMFNL filter offline modeling secondary channel | |
Yelwande et al. | Adaptive wiener filter for speech enhancement | |
CN103929704B (en) | The method and system that a kind of adaptive acoustic feedback based on transform domain is eliminated | |
CN111193497B (en) | Secondary channel modeling method based on EMFNL filter | |
CN115248976B (en) | Secondary channel modeling method based on downsampling sparse FIR filter | |
CN113299260A (en) | Active noise reduction method based on EMFNL filter online modeling secondary channel | |
Rahman et al. | Non Stationary Noise Cancellation in Speech Signals using an Efficient Variable step size higher order filter | |
CN115967372A (en) | Low-complexity active impulse noise control method based on recursive minimum robust estimation | |
Ramadan et al. | An adaptive noise canceller using error nonlinearities in the lms adaptation | |
GIRIKA et al. | ADAPTIVE SPEECH ENHANCEMENT TECHNIQUES FOR COMPUTER BASED SPEAKER RECOGNITION. | |
Rahman et al. | Filtering non-stationary noise in speech signals using computationally efficient unbiased and normalized algorithm | |
Caiyun | Study of speech enhancement system using combinational adaptive filtering | |
Liu | Speech noise reduction system based on combined filter | |
Hussain et al. | A modified Filtered-x LMAT algorithm for active noise control of impulsive noise | |
CN117831498A (en) | Active noise control method based on generalized entropy and used for Euclidean direction search |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |