CN113059808B - Method for selectively processing 3D printing model by functionalized digital light - Google Patents
Method for selectively processing 3D printing model by functionalized digital light Download PDFInfo
- Publication number
- CN113059808B CN113059808B CN202110390306.2A CN202110390306A CN113059808B CN 113059808 B CN113059808 B CN 113059808B CN 202110390306 A CN202110390306 A CN 202110390306A CN 113059808 B CN113059808 B CN 113059808B
- Authority
- CN
- China
- Prior art keywords
- model
- photosensitive resin
- digital light
- light processing
- functional material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010146 3D printing Methods 0.000 title claims abstract description 41
- 238000012545 processing Methods 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims abstract description 25
- 229920005989 resin Polymers 0.000 claims abstract description 66
- 239000011347 resin Substances 0.000 claims abstract description 66
- 239000000178 monomer Substances 0.000 claims abstract description 49
- 239000000463 material Substances 0.000 claims abstract description 47
- 239000006185 dispersion Substances 0.000 claims abstract description 33
- 230000007935 neutral effect Effects 0.000 claims abstract description 28
- 239000007788 liquid Substances 0.000 claims abstract description 15
- 125000002091 cationic group Chemical group 0.000 claims abstract description 12
- 239000003945 anionic surfactant Substances 0.000 claims abstract description 11
- 239000003085 diluting agent Substances 0.000 claims abstract description 10
- 238000013461 design Methods 0.000 claims abstract description 7
- 238000004140 cleaning Methods 0.000 claims abstract description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 19
- 239000002041 carbon nanotube Substances 0.000 claims description 16
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 15
- 238000007306 functionalization reaction Methods 0.000 claims description 15
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 12
- FHLPGTXWCFQMIU-UHFFFAOYSA-N [4-[2-(4-prop-2-enoyloxyphenyl)propan-2-yl]phenyl] prop-2-enoate Chemical class C=1C=C(OC(=O)C=C)C=CC=1C(C)(C)C1=CC=C(OC(=O)C=C)C=C1 FHLPGTXWCFQMIU-UHFFFAOYSA-N 0.000 claims description 10
- 239000002202 Polyethylene glycol Substances 0.000 claims description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 9
- 229920001223 polyethylene glycol Polymers 0.000 claims description 9
- INQDDHNZXOAFFD-UHFFFAOYSA-N 2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOC(=O)C=C INQDDHNZXOAFFD-UHFFFAOYSA-N 0.000 claims description 8
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical group [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 claims description 8
- 238000001179 sorption measurement Methods 0.000 claims description 8
- GUCYFKSBFREPBC-UHFFFAOYSA-N [phenyl-(2,4,6-trimethylbenzoyl)phosphoryl]-(2,4,6-trimethylphenyl)methanone Chemical group CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C(=O)C1=C(C)C=C(C)C=C1C GUCYFKSBFREPBC-UHFFFAOYSA-N 0.000 claims description 7
- LEJBBGNFPAFPKQ-UHFFFAOYSA-N 2-(2-prop-2-enoyloxyethoxy)ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOC(=O)C=C LEJBBGNFPAFPKQ-UHFFFAOYSA-N 0.000 claims description 6
- XFCMNSHQOZQILR-UHFFFAOYSA-N 2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOC(=O)C(C)=C XFCMNSHQOZQILR-UHFFFAOYSA-N 0.000 claims description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 6
- HWSSEYVMGDIFMH-UHFFFAOYSA-N 2-[2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOCCOC(=O)C(C)=C HWSSEYVMGDIFMH-UHFFFAOYSA-N 0.000 claims description 5
- AMFGWXWBFGVCKG-UHFFFAOYSA-N Panavia opaque Chemical compound C1=CC(OCC(O)COC(=O)C(=C)C)=CC=C1C(C)(C)C1=CC=C(OCC(O)COC(=O)C(C)=C)C=C1 AMFGWXWBFGVCKG-UHFFFAOYSA-N 0.000 claims description 5
- 125000004386 diacrylate group Chemical group 0.000 claims description 5
- LGPAKRMZNPYPMG-UHFFFAOYSA-N (3-hydroxy-2-prop-2-enoyloxypropyl) prop-2-enoate Chemical compound C=CC(=O)OC(CO)COC(=O)C=C LGPAKRMZNPYPMG-UHFFFAOYSA-N 0.000 claims description 4
- 150000001252 acrylic acid derivatives Chemical class 0.000 claims description 4
- FSYNWQTYZZDUEN-UHFFFAOYSA-N anisole;2-hydroxy-1,2-diphenylethanone Chemical compound COC1=CC=CC=C1.C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 FSYNWQTYZZDUEN-UHFFFAOYSA-N 0.000 claims description 4
- FZGFBJMPSHGTRQ-UHFFFAOYSA-M trimethyl(2-prop-2-enoyloxyethyl)azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CCOC(=O)C=C FZGFBJMPSHGTRQ-UHFFFAOYSA-M 0.000 claims description 4
- RRHXZLALVWBDKH-UHFFFAOYSA-M trimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azanium;chloride Chemical group [Cl-].CC(=C)C(=O)OCC[N+](C)(C)C RRHXZLALVWBDKH-UHFFFAOYSA-M 0.000 claims description 4
- XMLYCEVDHLAQEL-UHFFFAOYSA-N 2-hydroxy-2-methyl-1-phenylpropan-1-one Chemical compound CC(C)(O)C(=O)C1=CC=CC=C1 XMLYCEVDHLAQEL-UHFFFAOYSA-N 0.000 claims description 3
- FIHBHSQYSYVZQE-UHFFFAOYSA-N 6-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCCOC(=O)C=C FIHBHSQYSYVZQE-UHFFFAOYSA-N 0.000 claims description 3
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 claims description 3
- 125000001931 aliphatic group Chemical group 0.000 claims description 3
- ZGCZDEVLEULNLJ-UHFFFAOYSA-M benzyl-dimethyl-(2-prop-2-enoyloxyethyl)azanium;chloride Chemical compound [Cl-].C=CC(=O)OCC[N+](C)(C)CC1=CC=CC=C1 ZGCZDEVLEULNLJ-UHFFFAOYSA-M 0.000 claims description 3
- CRGOPMLUWCMMCK-UHFFFAOYSA-M benzyl-dimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azanium;chloride Chemical compound [Cl-].CC(=C)C(=O)OCC[N+](C)(C)CC1=CC=CC=C1 CRGOPMLUWCMMCK-UHFFFAOYSA-M 0.000 claims description 3
- VFHVQBAGLAREND-UHFFFAOYSA-N diphenylphosphoryl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 VFHVQBAGLAREND-UHFFFAOYSA-N 0.000 claims description 3
- 229910021389 graphene Inorganic materials 0.000 claims description 3
- 230000008676 import Effects 0.000 claims description 3
- 239000008204 material by function Substances 0.000 claims description 3
- 229920005650 polypropylene glycol diacrylate Polymers 0.000 claims description 3
- 229920005651 polypropylene glycol dimethacrylate Polymers 0.000 claims description 3
- -1 sodium alkyl sulfonate Chemical class 0.000 claims description 3
- SBVZUUHTUKLFQO-UHFFFAOYSA-M trimethyl(4-oxohex-5-enyl)azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CCCC(=O)C=C SBVZUUHTUKLFQO-UHFFFAOYSA-M 0.000 claims description 3
- OIFLLGNCLZLPAF-UHFFFAOYSA-M trimethyl-(5-methyl-4-oxohex-5-enyl)azanium;chloride Chemical compound [Cl-].CC(=C)C(=O)CCC[N+](C)(C)C OIFLLGNCLZLPAF-UHFFFAOYSA-M 0.000 claims description 3
- CYIGRWUIQAVBFG-UHFFFAOYSA-N 1,2-bis(2-ethenoxyethoxy)ethane Chemical compound C=COCCOCCOCCOC=C CYIGRWUIQAVBFG-UHFFFAOYSA-N 0.000 claims description 2
- 238000007654 immersion Methods 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 239000011734 sodium Substances 0.000 claims description 2
- ZNAAXKXXDQLJIX-UHFFFAOYSA-N bis(2-cyclohexyl-3-hydroxyphenyl)methanone Chemical compound C1CCCCC1C=1C(O)=CC=CC=1C(=O)C1=CC=CC(O)=C1C1CCCCC1 ZNAAXKXXDQLJIX-UHFFFAOYSA-N 0.000 claims 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims 1
- 238000007639 printing Methods 0.000 abstract description 6
- 238000002360 preparation method Methods 0.000 abstract description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 239000002042 Silver nanowire Substances 0.000 description 6
- 239000008367 deionised water Substances 0.000 description 6
- 229910021641 deionized water Inorganic materials 0.000 description 6
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000002904 solvent Substances 0.000 description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 3
- YFPJFKYCVYXDJK-UHFFFAOYSA-N Diphenylphosphine oxide Chemical compound C=1C=CC=CC=1[P+](=O)C1=CC=CC=C1 YFPJFKYCVYXDJK-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N acetone Substances CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- QUZSUMLPWDHKCJ-UHFFFAOYSA-N bisphenol A dimethacrylate Chemical class C1=CC(OC(=O)C(=C)C)=CC=C1C(C)(C)C1=CC=C(OC(=O)C(C)=C)C=C1 QUZSUMLPWDHKCJ-UHFFFAOYSA-N 0.000 description 2
- 239000012459 cleaning agent Substances 0.000 description 2
- 238000011960 computer-aided design Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Chemical compound CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- DAJSVUQLFFJUSX-UHFFFAOYSA-M sodium;dodecane-1-sulfonate Chemical compound [Na+].CCCCCCCCCCCCS([O-])(=O)=O DAJSVUQLFFJUSX-UHFFFAOYSA-M 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- XVZXOLOFWKSDSR-UHFFFAOYSA-N Cc1cc(C)c([C]=O)c(C)c1 Chemical group Cc1cc(C)c([C]=O)c(C)c1 XVZXOLOFWKSDSR-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Chemical group CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- PNGBYKXZVCIZRN-UHFFFAOYSA-M sodium;hexadecane-1-sulfonate Chemical compound [Na+].CCCCCCCCCCCCCCCCS([O-])(=O)=O PNGBYKXZVCIZRN-UHFFFAOYSA-M 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- MDDUHVRJJAFRAU-YZNNVMRBSA-N tert-butyl-[(1r,3s,5z)-3-[tert-butyl(dimethyl)silyl]oxy-5-(2-diphenylphosphorylethylidene)-4-methylidenecyclohexyl]oxy-dimethylsilane Chemical compound C1[C@@H](O[Si](C)(C)C(C)(C)C)C[C@H](O[Si](C)(C)C(C)(C)C)C(=C)\C1=C/CP(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 MDDUHVRJJAFRAU-YZNNVMRBSA-N 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 229960000834 vinyl ether Drugs 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/379—Handling of additively manufactured objects, e.g. using robots
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
- B33Y40/20—Post-treatment, e.g. curing, coating or polishing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Robotics (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
Abstract
Description
技术领域technical field
本发明属于增材制造技术领域,具体涉及基于静电吸附的选择性功能化数字光处理3D打印模型的方法。The invention belongs to the technical field of additive manufacturing, and in particular relates to a method for selectively functionalizing digital light processing 3D printing models based on electrostatic adsorption.
背景技术Background technique
增材制造(也称为3D打印)是指一组以逐层方式直接从计算机辅助设计(CAD)模型中制造三维物体的技术,几乎任何任意复杂的物体都可以以简单和低成本的方式生产。如今已经开发出许多3D打印技术,如熔融沉积(FDM)、选择激光熔融(SLM)、立体光固化成型(SLA)、数字光处理(DLP),这些技术在金属零件、航空航天、生物医学工程、传感器和微电子等领域中有重大应用。其中数字光处理3D打印技术的基本原理是数字光源以面光的形式在液态光敏树脂表面进行层层投影,层层固化成型。DLP-3D打印较其他类型的3D打印技术有其独特的优势:没有移动光束,振动偏差小没有活动喷头,完全没有材料阻塞问题,没有加热部件,提高了电气安全性,打印准备时间短,节省能源,首次耗材添加量远少于其他设备,节省用户成本。Additive manufacturing (also known as 3D printing) refers to a set of techniques for fabricating three-dimensional objects directly from a computer-aided design (CAD) model in a layer-by-layer fashion, allowing almost any arbitrarily complex object to be produced in a simple and low-cost manner . Many 3D printing technologies have been developed today, such as Fused Deposition (FDM), Selective Laser Melting (SLM), Stereolithography (SLA), Digital Light Processing (DLP), which are used in metal parts, aerospace, biomedical engineering It has important applications in the fields of , sensors and microelectronics. The basic principle of digital light processing 3D printing technology is that the digital light source performs layer-by-layer projection on the surface of the liquid photosensitive resin in the form of surface light, and the layers are cured and formed. DLP-3D printing has its unique advantages over other types of 3D printing technologies: no moving beam, small vibration deviation, no moving nozzles, no material blocking problems at all, no heating parts, improved electrical safety, short print preparation time, saving Energy, the amount of consumables added for the first time is far less than other equipment, saving user costs.
对于电子设备的3D打印,功能化的步骤必不可少,对于数字光处理3D打印模型的功能化,主要可以分为两种路线:一是将功能材料混入树脂原料中直接打印出模型,但是会有分散不均匀、打印质量不佳的缺点;二是利用原料打印出模型后再制备活性层,操作复杂、成本高且无法选择性地进行功能化。For the 3D printing of electronic devices, the functionalization step is essential. For the functionalization of digital light processing 3D printing models, there are mainly two routes: one is to mix functional materials into resin raw materials to directly print the model, but it will It has the disadvantages of uneven dispersion and poor printing quality; the second is to use raw materials to print out the model and then prepare the active layer, which is complicated in operation, high in cost and cannot be selectively functionalized.
因此,需要一种简单高效且成本低的选择性功能化数字光处理3D打印模型的方法。Therefore, a simple, efficient and low-cost method for selectively functionalizing digital light processing 3D printed models is needed.
发明内容SUMMARY OF THE INVENTION
本发明是为了解决现有技术中存在的问题而完成的,其目的是提供一种简单高效且成本低的基于静电吸附的数字光处理3D打印模型选择性功能化的方法。The present invention is accomplished in order to solve the problems existing in the prior art, and its purpose is to provide a simple, efficient and low-cost method for selectively functionalizing 3D printing models based on electrostatic adsorption by digital light processing.
为了达到上述目的,发明人先配制中性光敏树脂和带正电荷基团的光敏树脂并分别装入数字光处理3D打印机的物料盒中,再将三维绘图软件绘制的模型导入数字光处理3D打印机,利用两种光敏树脂通过数字光处理3D打印机打印出模型,接着使用阴离子分散剂分散功能材料得到带负电荷的功能材料分散液,最后将所得的模型浸入分散液中,使功能材料通过静电吸附(正负电荷的吸附)结合至模型中由带正电荷基团的光敏树脂固化成型的部分,由此能够简便且高效地将数字光处理3D打印模型功能化,从而完成了本发明。In order to achieve the above purpose, the inventor first prepared neutral photosensitive resin and photosensitive resin with positively charged groups and put them into the material box of the digital light processing 3D printer, and then imported the model drawn by the three-dimensional drawing software into the digital light processing 3D printer. , using two photosensitive resins to print the model by digital light processing 3D printer, then dispersing the functional material with an anionic dispersant to obtain a negatively charged functional material dispersion, and finally immersing the obtained model in the dispersion, so that the functional material is electrostatically adsorbed (Adsorption of positive and negative charges) is bonded to the part of the model that is cured and molded by the photosensitive resin with positively charged groups, so that the digital light processing 3D printing model can be functionalized easily and efficiently, thereby completing the present invention.
本发明的选择性功能化数字光处理3D打印模型的方法包括以下步骤:The method for selectively functionalizing digital light processing 3D printing models of the present invention comprises the following steps:
准备包含可光固化单体(A)的中性光敏树脂;Prepare a neutral photosensitive resin containing a photocurable monomer (A);
准备包含阳离子单体、稀释剂和可光固化单体(B)的带正电荷基团的光敏树脂;preparing a photosensitive resin with positively charged groups comprising a cationic monomer, a diluent and a photocurable monomer (B);
将需要打印的模型导入数字光处理3D打印机中,根据模型的设计分别利用上述中性光敏树脂和上述带正电荷基团的光敏树脂打印和固化,得到模型;The model to be printed is imported into a digital light processing 3D printer, and the above-mentioned neutral photosensitive resin and the above-mentioned photosensitive resin with positively charged groups are used to print and cure respectively according to the design of the model to obtain the model;
清洗得到的上述模型,去除未固化的单体;The above-mentioned model obtained is cleaned to remove uncured monomers;
将功能材料分散在含有阴离子表面活性剂的溶液中,得到带负电荷的功能材料分散液;Disperse the functional material in a solution containing an anionic surfactant to obtain a negatively charged functional material dispersion;
将上述模型浸入上述功能材料分散液中,经规定时间后取出。The above-mentioned model is immersed in the above-mentioned functional material dispersion liquid, and is taken out after a predetermined period of time.
在一些优选的实施方式中,上述可光固化单体(A)是选自聚乙二醇二丙烯酸酯、聚乙二醇二甲基丙烯酸酯、聚丙二醇二丙烯酸酯、聚丙二醇二甲基丙烯酸酯、1,6-己二醇二丙烯酸酯、及三羟甲基丙烷三丙烯酸酯中的至少一种。对于柔性器件,可光固化单体(A)更优选使用脂肪族单官能团丙烯酸酯,例如EBECRYL 113、EBECRYL 114。In some preferred embodiments, the above-mentioned photocurable monomer (A) is selected from polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, polypropylene glycol diacrylate, polypropylene glycol dimethacrylate At least one of ester, 1,6-hexanediol diacrylate, and trimethylolpropane triacrylate. For flexible devices, the photocurable monomer (A) more preferably uses aliphatic monofunctional acrylates such as EBECRYL 113, EBECRYL 114.
在一些优选的实施方式中,上述阳离子单体是选自甲基丙烯酰氧乙基三甲基氯化铵、丙烯酰氧乙基三甲基氯化铵、甲基丙烯酰丙基三甲基氯化铵、丙烯酰丙基三甲基氯化铵、甲基丙烯酰氧乙基苄基二甲基氯化铵、及丙烯酰氧乙基苄基二甲基氯化铵中的至少一种。In some preferred embodiments, the above-mentioned cationic monomer is selected from the group consisting of methacryloyloxyethyltrimethylammonium chloride, acryloyloxyethyltrimethylammonium chloride, methacryloylpropyltrimethylammonium chloride At least one of ammonium chloride, acryloylpropyltrimethylammonium chloride, methacryloyloxyethylbenzyldimethylammonium chloride, and acryloyloxyethylbenzyldimethylammonium chloride .
在一些优选的实施方式中,上述稀释剂是选自二乙二醇二甲基丙烯酸酯、二乙二醇二丙烯酸酯、三乙二醇二甲基丙烯酸酯、三乙二醇二丙烯酸酯、及三(乙二醇)二乙烯基醚中的至少一种。In some preferred embodiments, the above-mentioned diluent is selected from diethylene glycol dimethacrylate, diethylene glycol diacrylate, triethylene glycol dimethacrylate, triethylene glycol diacrylate, and at least one of tri(ethylene glycol) divinyl ether.
在一些优选的实施方式中,上述可光固化单体(B)是选自双酚A丙三醇二甲基丙烯酸酯、双酚A丙三醇二丙烯酸酯、乙氧基化双酚A二丙烯酸酯、丙氧基化双酚A二丙烯酸酯、丙氧基化乙氧基化双酚A二丙烯酸酯、乙氧基化双酚A二甲基丙烯酸酯中的任一种。In some preferred embodiments, the above-mentioned photocurable monomer (B) is selected from the group consisting of bisphenol A glycerol dimethacrylate, bisphenol A glycerol diacrylate, ethoxylated bisphenol A diacrylate Any of acrylates, propoxylated bisphenol A diacrylate, propoxylated ethoxylated bisphenol A diacrylate, ethoxylated bisphenol A dimethacrylate.
在一些优选的实施方式中,上述中性光敏树脂及上述带正电荷基团的光敏树脂中还包含光引发剂,上述光引发剂是选自苯基双(2,4,6-三甲基苯甲酰基)氧化膦、(2,4,6-三甲基苯甲酰基)二苯基氧化膦、1-羟基环己基苯基甲酮、2-羟基-2-甲基-1-苯基-1-丙酮、安息香苯甲醚中的至少一种。In some preferred embodiments, the above-mentioned neutral photosensitive resin and the above-mentioned photosensitive resin with positively charged groups further comprise a photoinitiator, and the above-mentioned photoinitiator is selected from phenylbis(2,4,6-trimethyl) Benzoyl) phosphine oxide, (2,4,6-trimethylbenzoyl) diphenyl phosphine oxide, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl -At least one of 1-acetone and benzoin anisole.
在一些优选的实施方式中,上述阴离子表面活性剂是十二烷基硫酸钠、十二烷基磺酸钠、十六烷基磺酸钠中的至少一种。In some preferred embodiments, the above-mentioned anionic surfactant is at least one of sodium dodecyl sulfate, sodium dodecyl sulfonate, and sodium hexadecyl sulfonate.
在一些优选的实施方式中,上述功能材料为碳纳米管、石墨烯、纳米银线、铜纳米线中的任一种。In some preferred embodiments, the above-mentioned functional material is any one of carbon nanotubes, graphene, nanosilver wires, and copper nanowires.
在一些优选的实施方式中,使用数字光处理3D打印机进行打印时,曝光参数设置为7~10。In some preferred embodiments, when printing using a digital light processing 3D printer, the exposure parameters are set to 7-10.
在一些优选的实施方式中,将上述模型浸入在上述功能材料分散液时,浸渍时间为10~30分钟。In some preferred embodiments, when the above-mentioned model is immersed in the above-mentioned functional material dispersion liquid, the immersion time is 10-30 minutes.
在一些优选的实施方式中,使用清洗剂对上述模型进行清洗,该清洗剂优选为选自乙醇、丙醇或丙酮的至少一种。In some preferred embodiments, the above-mentioned model is cleaned with a cleaning agent, and the cleaning agent is preferably at least one selected from ethanol, propanol or acetone.
在一些优选的实施方式中,将模型从功能材料分散液取出后,使用去离子水进行清洗。In some preferred embodiments, deionized water is used for cleaning after removing the model from the functional material dispersion.
发明效果Invention effect
根据本发明,将配制的中性光敏树脂和带正电荷基团的光敏树脂利用数字光处理3D打印机固化成型,得到部分带正电荷的模型,接着将所得的模型浸入带负电荷的功能材料分散液中,使功能材料通过静电吸附结合至模型中由带正电荷基团的光敏树脂固化成型的部分,从而在模型特定区域形成导电层,由此提供一种便捷高效且低成本的基于静电吸附的选择性功能化数字光处理3D打印模型的方法。According to the present invention, the prepared neutral photosensitive resin and the photosensitive resin with positively charged groups are cured and molded using a digital light processing 3D printer to obtain a partially positively charged model, and then the obtained model is immersed in the negatively charged functional material to disperse In the liquid, the functional material is combined into the part of the model cured by the photosensitive resin with positively charged groups through electrostatic adsorption, so as to form a conductive layer in a specific area of the model, thereby providing a convenient, efficient and low-cost electrostatic adsorption-based A method for selectively functionalizing digital light processed 3D printed models.
本发明的其他有益效果将在下述本发明的详细描述中进一步说明。Other beneficial effects of the present invention will be further illustrated in the following detailed description of the present invention.
附图说明Description of drawings
图1是本发明的选择性功能化DLP-3D打印模型的流程图,其中图1(a)显示的是一个由数字光处理3D打印机打印的叉指电极,其叉指部分由带正电荷基团的光敏树脂打印,衬底部分由中性光敏树脂打印,图1(b)显示将叉指电极浸入带负电荷的功能材料分散液中进行选择性功能化,图1(c)显示选择性功能化之后的模型,叉指部分形成有功能材料层。Fig. 1 is a flow chart of the selectively functionalized DLP-3D printing model of the present invention, wherein Fig. 1(a) shows an interdigital electrode printed by a digital light processing 3D printer. Photosensitive resin printing of agglomerates, the substrate part is printed with neutral photosensitive resin, Fig. 1(b) shows the selective functionalization of the interdigital electrodes immersed in the negatively charged functional material dispersion, Fig. 1(c) shows the selective functionalization In the functionalized model, a functional material layer is formed on the interdigital portion.
图2是本发明通过DLP-3D打印的表面带正电荷的模型和带负电荷功能材料(CNT)分散液在不同pH下的zeta电位。Figure 2 is the zeta potential of the positively charged surface model and negatively charged functional material (CNT) dispersion liquid printed by DLP-3D of the present invention at different pH.
图3是本发明实施例1制备的DLP-3D打印模型经碳纳米管选择性功能化之后的表面的SEM图像(图3a)及S元素的EDS图像(图3b)。FIG. 3 is an SEM image ( FIG. 3 a ) and an EDS image of S element ( FIG. 3 b ) of the surface of the DLP-3D printing model prepared in Example 1 of the present invention after being selectively functionalized with carbon nanotubes.
图4是本发明实施例2制备的DLP-3D打印模型经纳米银线选择性功能化之后的表面的SEM图像。FIG. 4 is a SEM image of the surface of the DLP-3D printing model prepared in Example 2 of the present invention after being selectively functionalized with silver nanowires.
具体实施方式Detailed ways
以下结合优选的实施方式及附图说明本发明的技术特征,这旨在说明本发明而不是限制本发明。附图被大大简化以用于进行说明,但不一定按比例绘制。The technical features of the present invention are described below with reference to the preferred embodiments and the accompanying drawings, which are intended to illustrate the present invention rather than limit it. The drawings are greatly simplified for illustrative purposes and are not necessarily drawn to scale.
应当了解,附图中所示的仅仅是本发明的较佳实施例,其并不构成对本发明的范围的限制。本领域的技术人员可以在附图所示的实施例的基础上对本发明进行各种显而易见的修改、变型、等效替换,并且在不相矛盾的前提下,在以下所描述的不同实施方式中的技术特征可以任意组合,而这些都落在本发明的保护范围之内。It should be understood that the accompanying drawings are merely preferred embodiments of the present invention, which are not intended to limit the scope of the present invention. Those skilled in the art can make various obvious modifications, variations and equivalent replacements to the present invention on the basis of the embodiments shown in the accompanying drawings, and under the premise of no contradiction, in the different embodiments described below The technical features can be combined arbitrarily, and these all fall within the protection scope of the present invention.
本发明的选择性功能化数字光处理3D打印模型的方法包括以下步骤:The method for selectively functionalizing digital light processing 3D printing models of the present invention comprises the following steps:
(1)准备包含可光固化单体(A)的中性光敏树脂;(1) preparing a neutral photosensitive resin containing the photocurable monomer (A);
(2)准备包含阳离子单体、稀释剂和可光固化单体(B)的带正电荷基团的光敏树脂;(2) preparing a photosensitive resin containing a cationic monomer, a diluent and a positively charged group of the photocurable monomer (B);
(3)将需要打印的模型导入数字光处理3D打印机中,根据模型的设计分别利用所述中性光敏树脂和所述带正电荷基团的光敏树脂打印,得到模型;(3) import the model to be printed into a digital light processing 3D printer, and use the neutral photosensitive resin and the photosensitive resin with positively charged groups to print according to the design of the model to obtain a model;
(3)清洗得到的所述模型,去除未固化的单体;(3) cleaning the obtained model to remove uncured monomer;
(4)将功能材料分散在含有阴离子表面活性剂的溶液中,得到带负电荷的功能材料分散液;(4) dispersing the functional material in a solution containing an anionic surfactant to obtain a negatively charged functional material dispersion;
(5)将所述模型浸入所述功能材料分散液中,经规定时间后取出。(5) The mold is immersed in the functional material dispersion liquid, and taken out after a predetermined period of time.
中性光敏树脂Neutral photosensitive resin
本发明涉及的中性光敏树脂包含可光固化单体(A)及光引发剂。该中性光敏树脂用于形成模型的衬底等不需要进行功能化的部分。The neutral photosensitive resin according to the present invention contains a photocurable monomer (A) and a photoinitiator. This neutral photosensitive resin is used to form a substrate of a model and other parts that do not need to be functionalized.
作为上述可光固化单体(A),可使用分子中带有羟基或醚键的(甲基)丙烯酸酯单体,例如可例举聚乙二醇二丙烯酸酯、聚乙二醇二甲基丙烯酸酯、聚丙二醇二丙烯酸酯、聚丙二醇二甲基丙烯酸酯、1,6-己二醇二丙烯酸酯、及三羟甲基丙烷三丙烯酸酯,这些单体可以单独使用一种,也可以将两种以上的单体组合使用,其中优选使用聚乙二醇二丙烯酸酯、聚乙二醇二甲基丙烯酸酯。对于柔性器件可以选用脂肪族单官能团丙烯酸酯,如EBECRYL113、EBECRYL 114。。中性光敏树脂中的可光固化单体(A)的含有比例优选在80重量%以上,进一步优选为85~95重量%。As the above-mentioned photocurable monomer (A), a (meth)acrylate monomer having a hydroxyl group or an ether bond in the molecule can be used, for example, polyethylene glycol diacrylate, polyethylene glycol dimethyl Acrylate, polypropylene glycol diacrylate, polypropylene glycol dimethacrylate, 1,6-hexanediol diacrylate, and trimethylolpropane triacrylate, these monomers may be used alone or in combination Two or more monomers are used in combination, and among them, polyethylene glycol diacrylate and polyethylene glycol dimethacrylate are preferably used. For flexible devices, aliphatic monofunctional acrylates, such as EBECRYL113 and EBECRYL 114, can be used. . The content ratio of the photocurable monomer (A) in the neutral photosensitive resin is preferably 80% by weight or more, more preferably 85 to 95% by weight.
在不影响中性光敏树脂的带电特性的情况下,中性光敏树脂可以包含其他聚合性单体,例如烯烃类、环氧类树脂等。其他聚合性单体在中性光敏树脂中的含有比例优选在10重量%以下,进一步优选在5重量%以下。The neutral photosensitive resin may contain other polymerizable monomers, such as olefins, epoxy resins, and the like, without affecting the charging characteristics of the neutral photosensitive resin. The content ratio of other polymerizable monomers in the neutral photosensitive resin is preferably 10% by weight or less, more preferably 5% by weight or less.
作为上述光引发剂,优选使用紫外光引发剂,例如可例举苯基双(2,4,6-三甲基苯甲酰基)氧化膦、(2,4,6-三甲基苯甲酰基)二苯基氧化膦、1-羟基环己基苯基甲酮、2-羟基-2-甲基-1-苯基-1-丙酮、安息香苯甲醚。这些光引发剂可以单独使用一种,也可以将两种以上的单体组合使用,特别优选使用苯基双(2,4,6-三甲基苯甲酰基)氧化膦、或(2,4,6-三甲基苯甲酰基)二苯基氧化膦。在中性光敏树脂中,光引发剂的含有比例优选在5重量%以下,优选1~5重量%,进一步优选为1~3重量%。As the above-mentioned photoinitiator, an ultraviolet photoinitiator is preferably used, and examples thereof include phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide, (2,4,6-trimethylbenzoyl) ) diphenylphosphine oxide, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-1-propanone, benzoin anisole. These photoinitiators may be used alone or in combination of two or more, but phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide or (2,4) is particularly preferred. , 6-trimethylbenzoyl) diphenylphosphine oxide. In the neutral photosensitive resin, the content of the photoinitiator is preferably 5% by weight or less, preferably 1 to 5% by weight, and more preferably 1 to 3% by weight.
在一些优选的实施方式中,在制备上述中性光敏树脂时,将光引发剂添加到可光固化单体(A)中,然后使用振荡器振荡1~10分钟,混合均匀后静置消泡。In some preferred embodiments, when preparing the above-mentioned neutral photosensitive resin, a photoinitiator is added to the photocurable monomer (A), and then shaken for 1-10 minutes by a shaker, and then left to stand for defoaming after mixing uniformly. .
带正电荷基团的光敏树脂Photosensitive resin with positively charged groups
本发明涉及的带正电荷基团的光敏树脂包含阳离子单体、稀释剂、可光固化单体(B)及光引发剂的带正电荷基团的光敏树脂。通过使用该带正电荷基团的光敏树脂进行3D打印,可形成3D打印模型中的需要进行功能化的部分,如下所述,带正电荷基团的光敏树脂进行光固化后,其中的阳离子单体通过聚合结合到交联聚合物基体中,使其表面带有正电荷,可以与带负电荷的功能材料通过静电吸附而结合,实现表面功能化。The photosensitive resin with a positively charged group involved in the present invention comprises a photosensitive resin with a positively charged group of a cationic monomer, a diluent, a photocurable monomer (B) and a photoinitiator. By using the photosensitive resin with positively charged groups for 3D printing, the part of the 3D printing model that needs to be functionalized can be formed. As described below, after the photosensitive resin with positively charged groups is photocured, the cationic monomer The polymer is incorporated into the cross-linked polymer matrix through polymerization, so that its surface is positively charged, and can be combined with negatively charged functional materials through electrostatic adsorption to achieve surface functionalization.
作为上述阳离子单体,可使用能够产生阳离子且具有不饱和键的聚合单体,特别优选使用水溶性的具有丙烯酰基的聚合单体的季铵盐,具体可例举甲基丙烯酰氧乙基三甲基氯化铵、丙烯酰氧乙基三甲基氯化铵、甲基丙烯酰丙基三甲基氯化铵、丙烯酰丙基三甲基氯化铵、甲基丙烯酰氧乙基苄基二甲基氯化铵、及丙烯酰氧乙基苄基二甲基氯化铵,这些单体可以单独使用一种,也可以将两种以上的单体组合使用。其中,优选使用甲基丙烯酰氧乙基三甲基氯化铵、或丙烯酰氧乙基三甲基氯化铵。阳离子单体优选以水溶液的形式掺合到光敏树脂中,其水溶液浓度可以是60~85重量%,优选为80重量%。As the cationic monomer, a polymerizable monomer capable of generating a cation and having an unsaturated bond can be used, and it is particularly preferable to use a water-soluble quaternary ammonium salt of a polymerizable monomer having an acryloyl group, and specific examples thereof include methacryloyloxyethyl Trimethylammonium chloride, acryloyloxyethyltrimethylammonium chloride, methacryloylpropyltrimethylammonium chloride, acryloylpropyltrimethylammonium chloride, methacryloyloxyethyl Benzyldimethylammonium chloride and acryloyloxyethylbenzyldimethylammonium chloride may be used alone or in combination of two or more. Among them, methacryloyloxyethyltrimethylammonium chloride or acryloyloxyethyltrimethylammonium chloride is preferably used. The cationic monomer is preferably blended into the photosensitive resin in the form of an aqueous solution, and the concentration of the aqueous solution may be 60 to 85% by weight, preferably 80% by weight.
上述稀释剂是为了降低光敏树脂的粘度而添加的,可以是二醇类丙烯酸酯,具体可例举二乙二醇二甲基丙烯酸酯、二乙二醇二丙烯酸酯、三乙二醇二甲基丙烯酸酯、三乙二醇二丙烯酸酯、及三(乙二醇)二乙烯基醚等,它们可以单独使用一种,也可以将两种以上的单体组合使用。其中,特别优选使用三乙二醇二甲基丙烯酸酯、或三乙二醇二丙烯酸酯。在带正电荷基团的光敏树脂中,稀释剂的含有比率优选为10~35重量%,进一步优选为20~30重量%。The above-mentioned diluent is added in order to reduce the viscosity of the photosensitive resin, and can be a glycol acrylate, specifically diethylene glycol dimethacrylate, diethylene glycol diacrylate, triethylene glycol dimethyl acrylate. Monoacrylate, triethylene glycol diacrylate, tris(ethylene glycol) divinyl ether, etc., these may be used individually by 1 type, and may be used in combination of 2 or more types of monomers. Among them, triethylene glycol dimethacrylate or triethylene glycol diacrylate is particularly preferably used. In the photosensitive resin having a positively charged group, the content ratio of the diluent is preferably 10 to 35% by weight, more preferably 20 to 30% by weight.
上述可光固化单体(B)是用于制造具有韧性和耐热性的光固化物的单体,优选具有双酚A骨架的(甲基)丙烯酸酯,具体可例举双酚A丙三醇二甲基丙烯酸酯、双酚A丙三醇二丙烯酸酯、乙氧基化双酚A二丙烯酸酯、丙氧基化双酚A二丙烯酸酯、丙氧基化乙氧基化双酚A二丙烯酸酯、乙氧基化双酚A二甲基丙烯酸酯。它们可以单独使用一种,也可以将两种以上的单体组合使用。其中,特别优选双酚A丙三醇二甲基丙烯酸酯、或双酚A丙三醇二丙烯酸酯。在带正电荷基团的光敏树脂中,可光固化单体(B)的含有比率优选为20~40重量%,进一步优选为30~40重量%。The above-mentioned photocurable monomer (B) is a monomer for producing a photocured product having toughness and heat resistance, preferably a (meth)acrylate having a bisphenol A skeleton, and specific examples thereof include bisphenol A glycerol Alcohol Dimethacrylate, Bisphenol A Glycerol Diacrylate, Ethoxylated Bisphenol A Diacrylate, Propoxylated Bisphenol A Diacrylate, Propoxylated Ethoxylated Bisphenol A Diacrylate, ethoxylated bisphenol A dimethacrylate. These may be used individually by 1 type, and may be used in combination of 2 or more types of monomers. Among them, bisphenol A glycerol dimethacrylate or bisphenol A glycerol diacrylate is particularly preferable. In the photosensitive resin having a positively charged group, the content ratio of the photocurable monomer (B) is preferably 20 to 40% by weight, more preferably 30 to 40% by weight.
作为带正电荷基团的光敏树脂中的光引发剂,优选使用紫外光引发剂,例如可例举苯基双(2,4,6-三甲基苯甲酰基)氧化膦、(2,4,6-三甲基苯甲酰基)二苯基氧化膦、1-羟基环己基苯基甲酮、2-羟基-2-甲基-1-苯基-1-丙酮、安息香苯甲醚。这些光引发剂可以单独使用一种,也可以将两种以上的单体组合使用,特别优选使用苯基双(2,4,6-三甲基苯甲酰基)氧化膦、或(2,4,6-三甲基苯甲酰基)二苯基氧化膦。在带正电荷基团的光敏树脂中,光引发剂的含有比例优选在5重量%以下,优选1~5重量%,进一步优选为1~3重量%。As the photoinitiator in the photosensitive resin with a positively charged group, an ultraviolet photoinitiator is preferably used, for example, phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide, (2,4 , 6-trimethylbenzoyl) diphenylphosphine oxide, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-1-propanone, benzoin anisole. These photoinitiators may be used alone or in combination of two or more, but phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide or (2,4) is particularly preferred. , 6-trimethylbenzoyl) diphenylphosphine oxide. In the photosensitive resin with a positively charged group, the content ratio of the photoinitiator is preferably 5% by weight or less, preferably 1 to 5% by weight, and more preferably 1 to 3% by weight.
在一些优选的实施方式中,在制备带正电荷基团的光敏树脂时,将可光固化单体(B)、稀释剂、和阳离子单体的水溶液按规定的比例投入烧杯中,使用玻璃棒搅拌混合均匀,再加入规定量的光引发剂,使用磁力搅拌器在500-800rpm的转速下搅拌1~2小时,充分混合后静置消泡。In some preferred embodiments, when preparing the photosensitive resin with positively charged groups, the aqueous solution of the photocurable monomer (B), diluent, and cationic monomer is put into a beaker in a prescribed proportion, and a glass rod is used. Stir and mix evenly, then add a prescribed amount of photoinitiator, use a magnetic stirrer to stir at a speed of 500-800 rpm for 1 to 2 hours, fully mix and let stand for defoaming.
数字光处理3D打印Digital Light Processing 3D Printing
本发明使用数字光处理3D打印机进行模型的3D打印和固化成型。利用3D数字建模软件设计需要打印的模型,将其导入数字光处理3D打印机中,根据模型的设计分别利用上述制备的中性光敏树脂和带正电荷基团的光敏树脂进行打印、固化,得到包括由中性光敏树脂形成的不需要功能化的部分(例如衬底)和由带正电荷基团的光敏树脂形成的需要功能化的部分的模型。The present invention uses a digital light processing 3D printer to perform 3D printing and curing of the model. Use 3D digital modeling software to design the model to be printed, import it into a digital light processing 3D printer, and use the above-prepared neutral photosensitive resin and photosensitive resin with positively charged groups for printing and curing according to the design of the model. A model including a portion formed from a neutral photosensitive resin that does not require functionalization (eg, a substrate) and a portion formed from a photosensitive resin with positively charged groups that does not require functionalization.
在一些优选的实施方式中,作为上述数字光处理3D打印机,可使用B9Core530DLP-3D打印机(B9Creations公司),所使用的紫外光波长为405nm,曝光参数设置为7~10。通过采用该设备和条件,可以简便、快速地进行模型的3D打印。In some preferred embodiments, as the above-mentioned digital light processing 3D printer, a B9Core530DLP-3D printer (B9Creations Company) can be used, the wavelength of ultraviolet light used is 405 nm, and the exposure parameters are set to 7-10. By using this equipment and conditions, the 3D printing of the model can be carried out simply and quickly.
在一些优选的实施方式中,在取出模型后,使用无水乙醇或异丙醇等溶剂冲洗,将模型中未固化的单体溶解去除,最后用氮气吹净。In some preferred embodiments, after the model is taken out, it is rinsed with a solvent such as absolute ethanol or isopropanol to dissolve and remove uncured monomers in the model, and finally blow out with nitrogen.
带负电荷的功能材料分散液Negatively charged functional material dispersions
本发明涉及的带负电荷的功能材料分散液通过将功能材料分散在含有阴离子表面活性剂的溶液中而得到。The negatively charged functional material dispersion liquid according to the present invention is obtained by dispersing the functional material in a solution containing an anionic surfactant.
作为上述的阴离子表面活性剂,没有特别限定,只要能附着在功能材料的表面并使功能材料带负电荷即可,例如可例举十二烷基硫酸钠、十二烷基磺酸钠、十六烷基磺酸钠等,这些阴离子表面活性剂可单独使用一种,也可以将两种以上组合使用。其中,特别优选使用十二烷基硫酸钠。The above-mentioned anionic surfactant is not particularly limited, as long as it can adhere to the surface of the functional material and make the functional material negatively charged, for example, sodium dodecyl sulfate, sodium dodecyl sulfonate, ten Sodium hexaalkylsulfonate, etc., these anionic surfactants may be used individually by 1 type, and may be used in combination of 2 or more types. Among them, sodium lauryl sulfate is particularly preferably used.
作为上述功能材料,优选具有优异导电性的纳米材料,例如可以是选自碳纳米管、石墨烯、纳米银线、纳米铜线中的任一种。作为用于分散功能材料的溶剂,可以使用去离子水、乙醇、或异丙醇,其中,作为碳纳米管的分散溶剂,特别优选使用去离子水,作为纳米银线的分散溶剂,特别优选使用异丙醇。As the above-mentioned functional material, a nanomaterial having excellent electrical conductivity is preferable, and for example, it may be any one selected from the group consisting of carbon nanotube, graphene, nanosilver wire, and nanocopper wire. As the solvent for dispersing the functional material, deionized water, ethanol, or isopropanol can be used. Among them, deionized water is particularly preferably used as a dispersion solvent for carbon nanotubes, and as a dispersion solvent for silver nanowires, it is particularly preferably used isopropyl alcohol.
在一些优选的实施方式中,以功能材料的浓度为0.1~2.0质量%、阴离子表面活性剂的浓度为0.2~1.0质量%的条件将功能材料和阴离子表面活性剂添加到分散溶剂中,超声分散1~2小时后静置,取上清液备用。In some preferred embodiments, the functional material and the anionic surfactant are added to the dispersing solvent under the condition that the concentration of the functional material is 0.1-2.0 mass % and the concentration of the anionic surfactant is 0.2-1.0 mass %, and ultrasonic dispersion is carried out. After 1 to 2 hours, let it stand, and take the supernatant for use.
在一些优选的实施方式中,将上述得到的3D打印模型浸入功能材料分散液(上清液)中10~30分钟,然后将模型取出,使用去离子水冲洗,用氮气吹净。In some preferred embodiments, the 3D printing model obtained above is immersed in the functional material dispersion (supernatant) for 10-30 minutes, and then the model is taken out, rinsed with deionized water, and blown with nitrogen.
通过将3D打印模型浸入功能材料分散液中,可以使带负电荷的功能材料与模型中由带正电荷基团的光敏树脂形成的部分通过静电作用而牢固结合,从而在模型表面形成由功能材料构成的功能化层(例如导电层)。另一方面,由于由中性光敏树脂形成的不需要功能化的部分不带有电荷,即使将其浸入功能材料分散液中也不能形成功能材料层,从而可以实现对模型进行选择性的功能化。By immersing the 3D printed model in the functional material dispersion, the negatively charged functional material can be firmly combined with the part of the model formed by the photosensitive resin with positively charged groups through electrostatic action, thereby forming a functional material on the surface of the model. Constructed functionalized layers (eg, conductive layers). On the other hand, since the portion that does not need to be functionalized formed of neutral photosensitive resin has no electric charge, a functional material layer cannot be formed even if it is immersed in the functional material dispersion liquid, so that the selective functionalization of the model can be realized. .
参照图1对模型的选择性功能化过程进行示例说明,其中,图1(a)显示通过数字光处理3D打印得到的叉指电极,包括由中性光敏树脂形成的不需要功能化的部分2(衬底)和由带正电荷基团的光敏树脂形成的需要功能化的部分3(叉指部分)的模型1的示意图;图1(b)显示将模型1浸入功能材料分散液4中;图1(c)显示最终得到的表面形成有功能化层3’的叉指电极。应注意,图1(a)~(c)只是为了便于理解本发明的选择性功能化过程而举出的示例,其不构成对本发明的保护范围的限定。The selective functionalization process of the model is exemplified with reference to Fig. 1, wherein Fig. 1(a) shows an interdigital electrode obtained by 3D printing by digital light processing, including the portion formed by neutral photosensitive resin that does not require functionalization 2 (substrate) and a schematic diagram of the
实施例Example
以下通过实施例进一步说明本发明的方法及其优点,但应知晓,以下实施例只是实施本发明的例示,并不构成对本发明的保护范围的限定。The method and advantages of the present invention are further described below through the examples, but it should be known that the following examples are only examples of implementing the present invention, and do not constitute a limitation on the protection scope of the present invention.
实施例1Example 1
在95质量份的聚乙二醇二丙烯酸酯中添加5质量份的作为光引发剂的苯基双(2,4,6-三甲基苯甲酰基)氧化膦,使用振荡器振荡5分钟,混合均匀后静置消泡,制得中性光敏树脂。5 parts by mass of phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide as a photoinitiator was added to 95 parts by mass of polyethylene glycol diacrylate, and shaken for 5 minutes using a shaker, After mixing evenly, stand for defoaming to obtain neutral photosensitive resin.
将40质量份的双酚A丙三醇二甲基丙烯酸酯(BisGMA)、30质量份的三乙二醇二甲基丙烯酸酯、和30质量份的甲基丙烯酰氧乙基三甲基氯化铵的80%水溶液投入烧杯中,使用玻璃棒搅拌混合均匀,再加入5质量份的作为光引发剂的苯基双(2,4,6-三甲基苯甲酰基)氧化膦,使用磁力搅拌器在800rpm的转速下搅拌2小时,充分混合后静置消泡,制得带正电荷基团的光敏树脂。40 parts by mass of bisphenol A glycerol dimethacrylate (BisGMA), 30 parts by mass of triethylene glycol dimethacrylate, and 30 parts by mass of methacryloyloxyethyltrimethyl chloride The 80% aqueous solution of ammonium chloride was put into the beaker, stirred and mixed evenly with a glass rod, and then 5 parts by mass of phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide as a photoinitiator was added, and a magnetic force was used. The stirrer was stirred at a rotational speed of 800 rpm for 2 hours, and after thorough mixing, it was left to stand for defoaming to obtain a photosensitive resin with a positively charged group.
将需要打印的模型利用三维建模软件设计绘制完成后导入B9 Core 530DLP-3D打印机中,根据模型的设计分别利用上述制备的中性光敏树脂和带正电荷基团的光敏树脂进行打印、固化,其中紫外光波长设为405nm、曝光量设为7,得到所需的模型。取出模型后,使用无水乙醇清洗模型,将其中未固化的单体溶解去除,最后用氮气吹净、干燥。The model to be printed is designed and drawn by 3D modeling software and imported into the B9 Core 530DLP-3D printer. According to the design of the model, the neutral photosensitive resin prepared above and the photosensitive resin with positively charged groups are used for printing and curing. The wavelength of ultraviolet light was set to 405 nm and the exposure amount was set to 7 to obtain the desired model. After taking out the model, use anhydrous ethanol to clean the model to dissolve and remove the uncured monomer, and finally blow it with nitrogen and dry it.
接着,将0.3g碳纳米管(CNT)和0.4g十二烷基硫酸钠加入100g去离子水中,超声分散1小时后静置,得到碳纳米管分散液,取上清液备用。Next, 0.3 g of carbon nanotubes (CNTs) and 0.4 g of sodium dodecyl sulfate were added to 100 g of deionized water, ultrasonically dispersed for 1 hour, and then left to stand to obtain a carbon nanotube dispersion, and the supernatant was taken for later use.
将清洗后的3D打印模型浸入上述碳纳米管分散液(上清液)中30分钟,然后将模型取出,使用去离子水冲洗,用氮气吹净、干燥。The cleaned 3D printed model was immersed in the above carbon nanotube dispersion (supernatant) for 30 minutes, then the model was taken out, rinsed with deionized water, blown with nitrogen, and dried.
为了表征由带正电荷的光敏树脂打印出的样品的带正电特性及用阴离子分散剂分散的碳纳米管的带负电特性,分别对其进行了不同pH(6、7、8)下的zeta电位测试,将其结果示于图2。图2中,zeta电位值的正负反应电荷种类,绝对值大小反应带电量多少。从图2可以看出,由带正电荷的光敏树脂打印出的样品的zeta电位(图中实线)都为正值且绝对值大于30mV以上,表明其表面带有一定数量的正电荷;碳纳米管分散液的zeta电位(图中虚线)都为负值且绝对值大于20mV,表明分散液中碳纳米管表面带有一定数量的负电荷。这一结果表明利用静电吸附来完成选择性功能化具有可行性。In order to characterize the positively charged properties of the samples printed from the positively charged photosensitive resin and the negatively charged properties of the carbon nanotubes dispersed with an anionic dispersant, zeta tests at different pH (6, 7, 8) were carried out, respectively. Potential test, the results are shown in Figure 2. In Figure 2, the positive and negative values of the zeta potential value reflect the type of charge, and the magnitude of the absolute value reflects the amount of charge. It can be seen from Figure 2 that the zeta potential (solid line) of the samples printed from the positively charged photosensitive resin is positive and the absolute value is greater than 30mV, indicating that the surface has a certain amount of positive charges; carbon The zeta potentials of the nanotube dispersions (dotted lines in the figure) are all negative and the absolute value is greater than 20mV, indicating that the surface of the carbon nanotubes in the dispersion has a certain amount of negative charges. This result indicates the feasibility of using electrostatic adsorption to complete the selective functionalization.
对最终得到的DLP-3D打印模型的表面进行表征,图3a的SEM图像中示出了DLP-3D打印模型经碳纳米管选择性功能化之后的表面的SEM图像,为了更加清楚地展示选择性功能化,对拍摄SEM的区域表面进行S元素的EDS面扫图像表征(图3b)。选择S元素进行EDS面扫是因为CNT利用SDS(含有S)分散,且SDS缠绕在CNT上,因此只有吸附上CNT的部分才有S,所以S的EDS图像可以清晰地反应功能化的情况及其选择性,从图3b的S元素的EDS图像可以看出,右半部分含有大量S元素,说明表面吸附了大量碳纳米管,而左半部分只有零星的S元素分布,几乎没有碳纳米管残留。The surface of the final DLP-3D printed model was characterized. The SEM image of Figure 3a shows the SEM image of the surface of the DLP-3D printed model after the selective functionalization of carbon nanotubes. In order to show the selectivity more clearly For functionalization, the EDS surface scan image characterization of S element was performed on the surface of the area photographed by SEM (Fig. 3b). S element is selected for EDS surface scanning because CNTs are dispersed by SDS (containing S), and SDS is wound around CNTs, so only the part where CNTs are adsorbed has S, so the EDS image of S can clearly reflect the situation of functionalization and Its selectivity, as can be seen from the EDS image of S element in Figure 3b, the right half contains a large amount of S element, indicating that a large number of carbon nanotubes are adsorbed on the surface, while the left half has only sporadic S element distribution and almost no carbon nanotubes. residue.
实施例2Example 2
除了使用纳米银线(AgNWs)作为功能材料以外,与实施例1同样地制造了在模型的表面选择性结合有纳米银线的3D打印模型。其中,作为纳米银线分散液,使用纳米银线的浓度为2.0质量%的异丙醇分散液。A 3D printing model in which silver nanowires were selectively bound to the surface of the model was produced in the same manner as in Example 1, except that silver nanowires (AgNWs) were used as the functional material. Among them, as the nano-silver wire dispersion liquid, an isopropanol dispersion liquid having a concentration of 2.0 mass % of the nano-silver wire was used.
对最终得到3D打印模型进行SEM分析,从图4可以看出,在DLP-3D打印模型表面形成了选择性功能化区域(有AgNWs)和未功能化区域(无AgNWs),且边界清晰可见,由此可知,通过本发明的方法,能够简便地在3D打印模型表面选择性地形成纳米银线层。The SEM analysis of the final 3D printing model is carried out. It can be seen from Figure 4 that a selectively functionalized area (with AgNWs) and an unfunctionalized area (without AgNWs) are formed on the surface of the DLP-3D printed model, and the boundaries are clearly visible. It can be seen that, by the method of the present invention, the nano-silver wire layer can be selectively formed on the surface of the 3D printing model simply and conveniently.
最后,应当理解,上述实施方式及实施例的说明在所有方面均为例示,不构成限制,在不背离本发明的精神的范围内可进行各种改进。本发明的范围是由权利要求书来表示的,而不是由上述实施方式或实施例来表示的。此外本发明的范围包括与权利要求书等同的意思和范围内的所有变更。Finally, it should be understood that the descriptions of the above-described embodiments and examples are illustrative in all respects and not restrictive, and various modifications can be made without departing from the spirit of the present invention. The scope of the present invention is indicated by the claims, not by the above-described embodiments or examples. In addition, the scope of the present invention includes all modifications within the meaning and scope equivalent to the claims.
工业中的可利用性Availability in Industry
本发明的选择性功能化数字光处理3D打印模型的方法操作简单,能够以低成本对3D打印模型选择性地功能化。本发明得到的功能化的DLP-3D打印模型具有优异的电化学性能、机械性能,这种优异的性能在在3D打印电子器件的制备、生物医疗、机器人等领域有广泛的应用前景。The method for selectively functionalizing a digital light processing 3D printing model of the present invention is simple to operate, and can selectively functionalize the 3D printing model at low cost. The functionalized DLP-3D printing model obtained by the present invention has excellent electrochemical properties and mechanical properties, and such excellent properties have wide application prospects in the fields of 3D printing electronic device preparation, biomedicine, robotics and the like.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110390306.2A CN113059808B (en) | 2021-04-12 | 2021-04-12 | Method for selectively processing 3D printing model by functionalized digital light |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110390306.2A CN113059808B (en) | 2021-04-12 | 2021-04-12 | Method for selectively processing 3D printing model by functionalized digital light |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113059808A CN113059808A (en) | 2021-07-02 |
CN113059808B true CN113059808B (en) | 2022-07-26 |
Family
ID=76566451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110390306.2A Active CN113059808B (en) | 2021-04-12 | 2021-04-12 | Method for selectively processing 3D printing model by functionalized digital light |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113059808B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114559649B (en) * | 2022-01-12 | 2023-07-21 | 西安理工大学 | Multi-material surface exposure 3D printing method for lattice structure capacitive devices |
CN115284608A (en) * | 2022-08-08 | 2022-11-04 | 北京航空航天大学 | A multi-material solid 3D printing device and method based on electric field assistance |
CN116001268B (en) * | 2022-10-25 | 2024-12-17 | 中国科学院兰州化学物理研究所 | Preparation method of mold containing release agent |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103127919A (en) * | 2013-03-19 | 2013-06-05 | 北京师范大学 | Method for preparing titanium-based graphene coating for solid phase microextraction |
CN104409172B (en) * | 2014-05-31 | 2017-01-18 | 福州大学 | 3D manufacturing method of latticed conducting array |
CN107107494A (en) * | 2014-10-05 | 2017-08-29 | Eos有限公司电镀光纤系统 | 3D printer and the raw material for 3D printer |
CN105300574B (en) * | 2015-11-13 | 2018-04-17 | 常州二维碳素科技股份有限公司 | Graphene pressure sensor and its preparation method and application |
WO2018026909A1 (en) * | 2016-08-05 | 2018-02-08 | Jabil Inc. | Apparatus, system and method of providing a fff printing nozzle |
EP3524400A1 (en) * | 2018-02-13 | 2019-08-14 | Universitat Politécnica De Catalunya | A method of manufacturing a three-dimensional model and a three-dimensional model obtained thereby |
CN211843223U (en) * | 2020-03-23 | 2020-11-03 | 陕西省石油化工研究设计院 | A photomask rapid prototyping 3D printing device |
-
2021
- 2021-04-12 CN CN202110390306.2A patent/CN113059808B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113059808A (en) | 2021-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113059808B (en) | Method for selectively processing 3D printing model by functionalized digital light | |
CN111423536A (en) | High-tensile conductive hydrogel for photocuring 3D printing and preparation method thereof | |
Ge et al. | Projection micro stereolithography based 3D printing and its applications | |
CN105238007B (en) | A kind of flexible polymer conductor and its preparation method and application | |
Lim et al. | High-resolution and electrically conductive three-dimensional printing of carbon nanotube-based polymer composites enabled by solution intercalation | |
CN108585544B (en) | A method for surface modification of substrate materials based on carbon nanotube assembly composites | |
Potnuru et al. | Investigation of polylactide and carbon nanocomposite filament for 3D printing | |
CN113956409B (en) | Conductive resin for 3D printing technology and preparation method and application thereof | |
Xiao et al. | All digital light processing‐3D printing of flexible sensor | |
CN113458389B (en) | Composite powder, alloy slurry, preparation method and stereolithography printing method of polystyrene-coated aluminum alloy | |
CN105073912A (en) | Photosensitive paint composition, paint conductive film using photosensitive paint composition, and method for forming paint conductive film | |
CN112795235B (en) | Preparation of a nanocomposite hydrogel ink and its application in 3D printing | |
CN109850885A (en) | One kind clicking addition chemical modification white graphite alkene and preparation method thereof based on sulfydryl-alkene | |
CN111647202B (en) | Modified conductive filler, photocuring slurry and application in preparation of flexible device | |
Tang et al. | Electrically assisted vat photopolymerization of bioinspired hierarchical structures with controllable roughness for hydrophobicity enhancement using photocurable resin/carbon nanotube | |
CN118795732A (en) | A 4D photoresist and its preparation method and application | |
CN112876598B (en) | Preparation method of multi-response and anisotropic magnetic hydrogel | |
CN118440537A (en) | Preparation method and application of polypyrrole nanocomposite ink for direct-writing 3D printing | |
Peng et al. | Electrostatic‐Assembly of Carbon Nanotubes (CNTs) and Polymer Particles in Water: a Facile Approach to Improve the Dispersion of CNTs in Thermoplastics | |
CN114891165B (en) | Piezoelectric composite photosensitive resin material for three-dimensional photocuring molding printing and preparation method and application thereof | |
Zhang et al. | Preparation, characterization, and surface conductivity of nanocomposites with hollow graphitic carbon nanospheres as fillers in polymethylmethacrylate matrix | |
Safdari | A computational and experimental study on the electrical and thermal properties of hybrid nanocomposites based on carbon nanotubes and graphite nanoplatelets | |
Chen et al. | Charge manipulation based selective functionalization of 3D printed structures for functional devices | |
CN116426019B (en) | Method for preparing flexible conductive composite material based on 3D printing technology and application | |
CN106554467A (en) | Epoxy radicals crosslinked microsphere and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |