CN113059193B - A device for studying the evolution process of laser selective melting melt pool - Google Patents
A device for studying the evolution process of laser selective melting melt pool Download PDFInfo
- Publication number
- CN113059193B CN113059193B CN202110285814.4A CN202110285814A CN113059193B CN 113059193 B CN113059193 B CN 113059193B CN 202110285814 A CN202110285814 A CN 202110285814A CN 113059193 B CN113059193 B CN 113059193B
- Authority
- CN
- China
- Prior art keywords
- laser
- glass sheet
- studying
- evolution process
- selective melting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 230000008569 process Effects 0.000 title claims abstract description 38
- 238000002844 melting Methods 0.000 title claims abstract description 27
- 230000008018 melting Effects 0.000 title claims abstract description 27
- 239000011521 glass Substances 0.000 claims abstract description 71
- 239000000843 powder Substances 0.000 claims abstract description 45
- 239000002184 metal Substances 0.000 claims abstract description 38
- 229910052751 metal Inorganic materials 0.000 claims abstract description 38
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 17
- 238000003825 pressing Methods 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 3
- 230000003993 interaction Effects 0.000 abstract description 9
- 239000007769 metal material Substances 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 4
- 238000011160 research Methods 0.000 abstract description 4
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229910000601 superalloy Inorganic materials 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
技术领域technical field
本发明涉及金属增材制造技术领域,具体为一种用于研究激光选区熔化熔池演化过程的装置。The invention relates to the technical field of metal additive manufacturing, in particular to a device for studying the evolution process of laser selective melting molten pools.
背景技术Background technique
激光选区熔化(SLM)技术是一种利用连续激光或脉冲激光作为热源,依据CAD三维模型有选择性的熔化金属粉末,逐层叠加,实现实体零件成型的增材制造方式。该技术具有成形材料范围广、成形件力学性能优异、致密度高、成形零件精度高、可成型几何复杂的零件等优点,在航空航天、汽车、军工等领域得到广泛应用。Selective Laser Melting (SLM) technology is an additive manufacturing method that uses continuous laser or pulsed laser as a heat source to selectively melt metal powder according to the CAD three-dimensional model, and superimposes it layer by layer to realize the molding of solid parts. This technology has the advantages of a wide range of forming materials, excellent mechanical properties of formed parts, high density, high precision of forming parts, and the ability to form parts with complex geometry. It has been widely used in aerospace, automotive, military and other fields.
自激光问世以来,激光与连续介质的相互作用研究已得到长足发展,如在激光加工领域里,激光与块体金属材料的相互作用,有大量相关的文献和专著。而激光选区熔化的特点是激光辐照金属粉末并使之熔化形成熔池,金属粉末尺寸与激光光斑相当,对于激光而言金属粉末属于离散介质。激光和离散介质之间的相互作用明显有别于连续介质。例如金属粉末在堆积和铺放过程中存在孔隙,激光在粉末之间会发生多次反射,这意味着激光输入粉末金属材料的作用机制和块体金属材料有本质的区别。Since the advent of the laser, the research on the interaction between the laser and the continuum has been greatly developed. For example, in the field of laser processing, there are a large number of related literature and monographs on the interaction between the laser and the bulk metal material. The characteristic of laser selective melting is that the laser irradiates the metal powder and melts it to form a molten pool. The size of the metal powder is equivalent to the laser spot. For the laser, the metal powder is a discrete medium. The interaction between laser light and discrete media differs significantly from that of continuous media. For example, there are pores in the metal powder during the accumulation and laying process, and the laser will reflect multiple times between the powders, which means that the mechanism of laser input into powder metal materials is fundamentally different from that of bulk metal materials.
在激光选区熔化成型过程中,常见的缺陷有球化、孔隙、裂纹、飞溅等,成型后的零件组织也容易存在从nm到μm尺度的元素和结构分布不均匀。要分析解决这些问题,必须研究粉末金属材料与激光的作用机制问题。具体而言,在SLM成型过程中,需要研究其最小结构单元,即熔池的形成和凝固过程。In the laser selective melting process, common defects include spheroidization, pores, cracks, splashes, etc., and the formed part structure is also prone to uneven distribution of elements and structures from nm to μm scale. To analyze and solve these problems, it is necessary to study the interaction mechanism between powder metal materials and laser. Specifically, in the SLM forming process, it is necessary to study the formation and solidification process of its smallest structural unit, that is, the molten pool.
受限于SLM快热快冷的技术特点,目前主流的研究熔池的方式是数值模拟和组织表征,前者缺乏原位研究单个熔池形成过程的资料,后者无法得知单个熔池形成过程的细节,因为SLM中存在熔池的重熔情况以及随之产生的组织,成分的变化,意味着组织表征不能得到的熔池刚形成时所包含的熔池组织、成分等信息。Limited by the technical characteristics of fast heating and fast cooling of SLM, the current mainstream methods of studying molten pools are numerical simulation and microstructure characterization. The former lacks data on the formation process of a single molten pool in situ, and the latter cannot know the formation process of a single molten pool. Because of the remelting of the molten pool in SLM and the resulting changes in structure and composition, it means that the structure and composition of the molten pool cannot be obtained when the molten pool is just formed.
研究激光与粉末金属的相互作用特点可以了解激光能量如何输入粉末金属以及熔池形成的具体过程,进而从源头上了解SLM中组织形成过程,各种缺陷产生的机制,这对SLM技术的发展有至关重要的作用。但是目前缺乏针对单个熔池形成过程的有效研究手段。Studying the interaction characteristics of laser and powder metal can understand how laser energy is input into powder metal and the specific process of molten pool formation, and then understand the structure formation process in SLM and the mechanism of various defects from the source, which is of great significance to the development of SLM technology. Crucial role. However, there is currently a lack of effective research methods for the formation process of a single molten pool.
发明内容Contents of the invention
本发明的目的在于提供一种用于研究激光选区熔化熔池演化过程的装置,可用于研究当前技术中飞溅、裂纹、腐蚀等方面,对优化工艺参数,提升产品质量具有较强的可操作性。The purpose of the present invention is to provide a device for studying the evolution process of the laser selective melting pool, which can be used to study aspects such as splashing, cracks and corrosion in the current technology, and has strong operability for optimizing process parameters and improving product quality .
为实现上述目的,本发明实施例提供如下技术方案:一种用于研究激光选区熔化熔池演化过程的装置,包括带有可填装金属粉末的小孔的第一玻璃片、覆盖于所述第一玻璃片上的第二玻璃片、用于夹持所述第一玻璃片和所述第二玻璃片的夹具以及用于定位可熔化所述小孔中的金属粉末的激光系统,所述小孔开设于所述第一玻璃片与所述第二玻璃片贴合的面上。In order to achieve the above object, the embodiment of the present invention provides the following technical solution: a device for studying the evolution process of laser selective melting molten pool, comprising a first glass sheet with a small hole that can be filled with metal powder, covering the A second glass sheet on a first glass sheet, a clamp for holding said first glass sheet and said second glass sheet, and a laser system for positioning a metal powder that can melt in said small hole, said small Holes are opened on the surface where the first glass sheet and the second glass sheet are bonded.
进一步,所述夹具包括卡槽,所述卡槽具有供贴合在一起的所述第一玻璃片和所述第二玻璃片整体卡入的凹槽,所述凹槽具有将所述第一玻璃片和所述第二玻璃片压紧的抵压面。Further, the clamp includes a slot, and the slot has a groove for the first glass sheet and the second glass sheet that are bonded together to be snapped in as a whole, and the groove has the first glass sheet The glass sheet and the pressing surface on which the second glass sheet is pressed.
进一步,还包括用于驱使所述夹具移动的步进电机。Further, a stepping motor for driving the clamp to move is also included.
进一步,所述夹具包括可与所述步进电机的驱动端连接的连杆,所述连杆远离所述步进电机的一端连接在所述夹具上。Further, the clamp includes a connecting rod connectable to the driving end of the stepping motor, and an end of the connecting rod far away from the stepping motor is connected to the clamp.
进一步,所述激光系统包括激光器以及用于控制激光的运动路径的扫描振镜。Further, the laser system includes a laser and a scanning galvanometer for controlling the movement path of the laser.
进一步,还包括用于定位的水平工作平台,所述夹具悬设于所述水平工作平台的上方且与所述水平工作平台平行。Further, a horizontal working platform for positioning is also included, and the clamp is suspended above the horizontal working platform and parallel to the horizontal working platform.
进一步,所述水平工作平台上设有定位标记。Further, positioning marks are provided on the horizontal working platform.
进一步,所述小孔的数量有多个,且多个所述小孔呈矩阵形式排列。Further, there are multiple small holes, and the multiple small holes are arranged in a matrix.
进一步,所述小孔为半球形小孔。Further, the small hole is a hemispherical small hole.
进一步,所述第一玻璃片和所述第二玻璃片均为石英玻璃片。Further, both the first glass sheet and the second glass sheet are quartz glass sheets.
与现有技术相比,本发明的有益效果是:通过本装置可以实现对SLM过程中单个熔池的“捕获”,操作简单,所需时间少,可重复多次操作,装置寿命长,带小孔的玻璃片可以填充各种不同的金属材料,意味着本装置可以用于研究多个材料体系;采用石英玻璃,对激光选择没有影响,激光波长可选择性强,可以采用连续激光和脉冲激光,研究不同特性激光和金属粉末的相互作用特点;另外通过调整激光参数和改变激光特性作用于金属粉末,可观察熔池从无到有的过程,这对于研究如何控制SLM中激光能量输入,从而控制熔池演化规律,调控组织形成有重要意义。Compared with the prior art, the beneficial effect of the present invention is that the "capture" of a single molten pool in the SLM process can be realized through the device, the operation is simple, the time required is less, the operation can be repeated many times, the device has a long service life, and the The glass sheet with small holes can be filled with various metal materials, which means that this device can be used to study multiple material systems; the use of quartz glass has no effect on laser selection, and the laser wavelength is highly selective, and continuous laser and pulse can be used Laser, to study the interaction characteristics of lasers with different characteristics and metal powders; in addition, by adjusting laser parameters and changing laser characteristics to act on metal powders, the process of melting pools from scratch can be observed, which is useful for studying how to control laser energy input in SLM, Therefore, it is of great significance to control the evolution law of molten pool and regulate the formation of tissue.
附图说明Description of drawings
图1为本发明实施例提供的一种用于研究激光选区熔化熔池演化过程的装置的示意图;Fig. 1 is a schematic diagram of a device for studying the evolution process of laser selective melting molten pool provided by an embodiment of the present invention;
图2为本发明实施例提供的一种用于研究激光选区熔化熔池演化过程的装置的第一玻璃片的示意图(单个小孔时);Fig. 2 is a schematic diagram of the first glass sheet of a device for studying the evolution process of laser selective melting molten pool provided by the embodiment of the present invention (in the case of a single small hole);
图3为本发明实施例提供的一种用于研究激光选区熔化熔池演化过程的装置的第一玻璃片的示意图(多个小孔时);Fig. 3 is a schematic diagram of the first glass sheet of a device for studying the evolution process of laser selective melting molten pool provided by an embodiment of the present invention (when there are multiple small holes);
图4为本发明实施例提供的一种用于研究激光选区熔化熔池演化过程的装置的夹具的示意图;Fig. 4 is a schematic diagram of a fixture of a device for studying the evolution process of laser selective melting molten pool provided by an embodiment of the present invention;
图5为本发明实施例提供的一种用于研究激光选区熔化熔池演化过程的装置的夹具、第一玻璃片以及第二玻璃片的配合示意图;Fig. 5 is a schematic diagram of the cooperation of the fixture, the first glass sheet and the second glass sheet of a device for studying the evolution process of the laser selective melting molten pool provided by the embodiment of the present invention;
图6为本发明实施例提供的一种用于研究激光选区熔化熔池演化过程的装置的实际效果图;Fig. 6 is an actual effect diagram of a device for studying the evolution process of laser selective melting molten pool provided by the embodiment of the present invention;
附图标记中:1-步进电机;2-连杆;3-卡槽;40-第一玻璃片;41-第二玻璃片;5-水平工作平台;6-扫描振镜;7-光路系统;8-激光器;9-计算机控制系统。Among the reference signs: 1-stepping motor; 2-connecting rod; 3-card slot; 40-first glass sheet; 41-second glass sheet; 5-horizontal working platform; 6-scanning vibrating mirror; 7-optical path System; 8-laser; 9-computer control system.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
请参阅图1至图5,本发明实施例提供一种用于研究激光选区熔化熔池演化过程的装置,包括带有可填装金属粉末的小孔的第一玻璃片40、覆盖于所述第一玻璃片40上的第二玻璃片41、用于夹持所述第一玻璃片40和所述第二玻璃片41的夹具以及用于定位可熔化所述小孔中的金属粉末的激光系统,所述小孔开设于所述第一玻璃片40与所述第二玻璃片41贴合的面上。如图6 所示,在本实施例中,小孔尺寸为500微米,与熔池尺寸相当,通过本装置能完成金属粉末的装填,如图6所示。本实例中采用的激光光斑为10微米,其热影响区如白框所示,金属粉末已经被激光烧结成黑色,与相邻部位的金属光泽相比区别显著,白框内金属粉末烧结颈清晰可见。因此,通过调整激光功率、小孔尺寸等参数,本装置可以实现对SLM过程中单个熔池的“捕获”,操作简单,所需时间少,可重复多次操作,装置寿命长,带小孔的玻璃片可以填充各种不同的金属材料,意味着本装置可以用于研究多个材料体系。另外通过调整激光参数和改变激光特性作用于金属粉末,可观察熔池从无到有的过程,这对于研究如何控制SLM中激光能量输入,从而控制熔池演化规律,调控组织形成有重要意义。具体地,将金属粉末设在两层玻璃片之间,激光系统发出的激光可以熔化金属粉末,进而将小孔变为熔池,再通过更换金属粉末、发出激光等外在因素,即可进行研究。而在熔化前,通过夹具夹持第一玻璃片40和第二玻璃片41可以确保第一玻璃片40和第二玻璃片41紧密地贴合,也能保证二者的位置不变。优选的,所述小孔为半球形小孔。Please refer to Fig. 1 to Fig. 5, the embodiment of the present invention provides a kind of device for studying the evolution process of laser selective melting melt pool, comprising the
作为本发明实施例的优化方案,请参阅图1至图5,所述夹具包括卡槽3,所述卡槽3具有供贴合在一起的所述第一玻璃片40和所述第二玻璃片41整体卡入的凹槽,所述凹槽具有将所述第一玻璃片40和所述第二玻璃片41压紧的抵压面。在本实施例中,细化上述的夹具,夹具包括卡槽3,该卡槽3具有凹槽,可以供第一玻璃片40和第二玻璃片41滑入,而通过抵压面可以确保第一玻璃片40和第二玻璃片41压紧。在卡槽3内可以设两道平行的凹槽,以分别供两块玻璃片滑入,可以设定好两个凹槽之间的间距,以及每个凹槽的尺寸,确保两块玻璃片滑入后能够紧贴彼此。As an optimization scheme of the embodiment of the present invention, please refer to Fig. 1 to Fig. 5, the clamp includes a
作为本发明实施例的优化方案,请参阅图1至图5,本装置还包括用于驱使所述夹具移动的步进电机1。在本实施例中,在进行熔化作业前,会先通过步进电机1来将夹具的位置调整好,以方便激光射过来。具体地,可以通过齿轮、齿条等将步进电机1的旋转动力转换成线性动力。As an optimized solution of the embodiment of the present invention, please refer to FIG. 1 to FIG. 5 , the device further includes a stepping
进一步优化上述方案,请参阅图1至图5,所述夹具包括可与所述步进电机1的驱动端连接的连杆2,所述连杆2远离所述步进电机1的一端连接在所述夹具上。在本实施例中,步进电机1的驱动可以通过连杆2来传递动力。To further optimize the above solution, please refer to FIGS. 1 to 5, the clamp includes a connecting
作为本发明实施例的优化方案,请参阅图1,所述激光系统包括激光器8 以及用于控制激光的运动路径的扫描振镜6。在本实施例中,激光在扫描振镜 6的作用下移动至小孔处并熔化金属粉末。可以通过控制扫描振镜6的运动方向和速度来控制激光的方向和移动速度。优选的,激光系统为本领域常规技术手段,它还可以包括光路系统7、计算机控制系统9等。As an optimized solution of the embodiment of the present invention, please refer to FIG. 1 , the laser system includes a
作为本发明实施例的优化方案,请参阅图1至图5,本装置还包括用于定位的水平工作平台5,所述夹具悬设于所述水平工作平台5的上方且与所述水平工作平台5平行。优选的,所述水平工作平台5上设有定位标记。在本实施例中,夹具不与水平工作平台5接触,以防止夹具移动的过程中因为摩擦而产生抖动。As an optimized solution of the embodiment of the present invention, please refer to Fig. 1 to Fig. 5, the device also includes a
作为本发明实施例的优化方案,请参阅图1至图5,所述小孔的数量有多个,且多个所述小孔呈矩阵形式排列。在本实施例中,可以设多个小孔,同时放入金属粉末,然后通过上述的扫描振镜6来设定激光移动的路径来进行连贯的演化。As an optimization scheme of the embodiment of the present invention, please refer to FIG. 1 to FIG. 5 , there are multiple small holes, and the multiple small holes are arranged in a matrix. In this embodiment, a plurality of small holes can be set, metal powder can be put in at the same time, and then the path of the laser beam can be set through the above-mentioned
作为本发明实施例的优化方案,请参阅图1至图5,所述第一玻璃片40 和所述第二玻璃片41均为石英玻璃片。在本实施例中,采用石英玻璃,对激光选择没有影响,激光波长可选择性强,可以采用连续激光和脉冲激光,研究不同特性激光和金属粉末的相互作用特点。As an optimized solution of the embodiment of the present invention, please refer to FIG. 1 to FIG. 5 , the
接下来详细说明具体的操作步骤:Next, the specific operation steps are described in detail:
当有一个小孔时:When there is a small hole:
步骤一:如图1所示,在计算机上确定一个激光初始点O1,O1点为激光开始运动的点,使得该点的位置对应到水平加工平台右侧边中点处,所述水平工作台的尺寸为20cm*20cm,平台左下角顶点为原点O,水平向右为X方向,竖直向上为Y方向,设定激光的移动方向为-X,无Y轴速度分量。Step 1: As shown in Figure 1, determine an initial laser point O 1 on the computer, and O 1 point is the point where the laser starts to move, so that the position of this point corresponds to the midpoint on the right side of the horizontal processing platform, and the horizontal The size of the workbench is 20cm*20cm, the apex of the lower left corner of the platform is the origin O, the horizontal direction to the right is the X direction, and the vertical upward direction is the Y direction. The moving direction of the laser is set to -X, and there is no Y-axis velocity component.
所用激光为连续激光,激光光斑半径为50μm,移动速度为10mm/s,功率150w,功率密度为1.9*106W/cm2。The laser used is a continuous laser with a laser spot radius of 50 μm, a moving speed of 10 mm/s, a power of 150 W, and a power density of 1.9*10 6 W/cm 2 .
步骤二:将金属镍基高温合金粉末均匀铺在带一个小孔的的石英玻璃上,其尺寸规格为10mm*10mm*2mm,使得半径为50um的半球形小孔中填满金属粉末,利用刮刀将玻璃片上除小孔外所有粉末清除,再将另一片相同规格不带小孔的石英玻璃置于已填充好粉末的石英玻璃片上,两者保持完全重合。Step 2: Evenly spread the metal nickel-based superalloy powder on the quartz glass with a small hole, the size of which is 10mm*10mm*2mm, so that the hemispherical small hole with a radius of 50um is filled with metal powder, and use a scraper Remove all the powder on the glass sheet except the small holes, and then place another piece of quartz glass of the same specification without small holes on the quartz glass sheet filled with powder, and keep the two completely overlapped.
将保持重合的两石英玻璃片置于卡槽3内腔中,如图4所示。卡槽3外腔尺寸为14mm*14mm*6mm。连杆2长15cm,宽6mm。Place the two quartz glass sheets that keep overlapping in the inner cavity of the
步骤三:将装配好石英玻璃片的连杆2与步进电机1原点相连接,卡槽3 与水平加工平台保持平行,距离平台5cm。设置电机进给值为10cm,使夹具移动到相应位置,保证光斑路径与半球小孔重合。Step 3: Connect the connecting
步骤四:操作计算机控制激光沿着规划好的路径运动,调整激光的功率和光斑半径,直至金属粉末熔化形成熔池。Step 4: Operate the computer to control the laser to move along the planned path, adjust the power of the laser and the radius of the spot until the metal powder is melted to form a molten pool.
采用上述步骤,可在石英玻璃孔中观察到熔化的金属粉末,熔池尺寸的具体数值与设置的激光功率、扫描速度等参数有关。Using the above steps, the molten metal powder can be observed in the quartz glass hole, and the specific value of the molten pool size is related to the set laser power, scanning speed and other parameters.
当有多个小孔时:When there are multiple small holes:
步骤一:在计算机上确定一个原点O2,O2点为激光开始运动的点,使得该点的位置对应到水平加工平台右侧边中点处,该水平工作台的尺寸为 20cm*20cm,设定激光的移动方向为-x,无y轴速度分量。Step 1: Determine an origin O 2 on the computer. The O 2 point is the point where the laser starts to move, so that the position of this point corresponds to the midpoint on the right side of the horizontal processing platform. The size of the horizontal working table is 20cm*20cm. Set the moving direction of the laser to -x, without the y-axis velocity component.
所用激光为脉冲激光,脉宽为400ns,峰值功率为55W,重复频率为20kHz,光斑半径50um,移动速率为10mm/s,通过计算得到能量密度为0.11J/cm2。The laser used is a pulsed laser with a pulse width of 400ns, a peak power of 55W, a repetition rate of 20kHz, a spot radius of 50um, and a moving speed of 10mm/s. The energy density is calculated to be 0.11J/cm 2 .
步骤二:将金属镍基高温合金粉末均匀铺在带多个小孔的石英玻璃上,两小孔之间的距离为3mm,其尺寸规格为20mm*20mm*2mm。使得半径为 50um的半球形小孔中填满金属粉末,利用刮刀将玻璃片上除小孔外所有粉末清除,再将另一片相同。规格不带小孔的石英玻璃置于已填充好粉末的石英玻璃片上,两者保持完全重合。将保持重合的两石英玻璃片置于卡槽3内腔中。夹具装置中卡槽3外腔尺寸为24mm*24mm*6mm。连杆2长15cm,宽 6mm。Step 2: Evenly spread the metal nickel-based superalloy powder on the quartz glass with a plurality of small holes, the distance between the two small holes is 3mm, and the size specification is 20mm*20mm*2mm. Make the hemispherical hole with a radius of 50um filled with metal powder, use a scraper to remove all the powder on the glass sheet except the small hole, and then make the other sheet the same. Specifications Quartz glass without pinholes is placed on a quartz glass sheet filled with powder, and the two keep completely coincident. Place the two quartz glass sheets that keep overlapping in the inner cavity of the
步骤三:将装配好石英玻璃片的连杆2与步进电机1原点相连接,卡槽3 与水平加工平台保持平行,距离平台5cm。设置电机进给值为10cm,使夹具移动相应位置,保证光斑路径经过中心位置的小孔。Step 3: Connect the connecting
步骤四:操作计算机控制激光沿着规划好的路径运动,调整激光的功率和光斑半径,直至金属粉末熔化形成熔池。进一步的,通过小孔之间的距离重新规划激光路径,可将多个小孔中的金属粉末熔化,形成多个单独的熔池。Step 4: Operate the computer to control the laser to move along the planned path, adjust the power of the laser and the radius of the spot until the metal powder is melted to form a molten pool. Further, by re-planning the laser path through the distance between the small holes, the metal powder in multiple small holes can be melted to form multiple separate molten pools.
采用上述步骤,可得到多个独立的熔池,每个熔池的形成都可以采用不同的激光参数,极大提高了本装置用于研究激光与粉末相互作用特点的效率和应用空间。Using the above steps, multiple independent molten pools can be obtained, and different laser parameters can be used for the formation of each molten pool, which greatly improves the efficiency and application space of this device for studying the interaction characteristics of laser and powder.
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。Although the embodiments of the present invention have been shown and described, those skilled in the art can understand that various changes, modifications and substitutions can be made to these embodiments without departing from the principle and spirit of the present invention. and modifications, the scope of the invention is defined by the appended claims and their equivalents.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110285814.4A CN113059193B (en) | 2021-03-17 | 2021-03-17 | A device for studying the evolution process of laser selective melting melt pool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110285814.4A CN113059193B (en) | 2021-03-17 | 2021-03-17 | A device for studying the evolution process of laser selective melting melt pool |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113059193A CN113059193A (en) | 2021-07-02 |
CN113059193B true CN113059193B (en) | 2022-11-25 |
Family
ID=76560952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110285814.4A Active CN113059193B (en) | 2021-03-17 | 2021-03-17 | A device for studying the evolution process of laser selective melting melt pool |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113059193B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107907482A (en) * | 2017-12-28 | 2018-04-13 | 西安铂力特增材技术股份有限公司 | Molten bath status real time monitor device and method in a kind of SLM forming processes |
CN108327255A (en) * | 2017-01-20 | 2018-07-27 | 通用电气公司 | The system and method for additivity the manufacture built-in assessment and correction of laser alignment precision for multi-laser system |
CN111375765A (en) * | 2020-03-18 | 2020-07-07 | 东南大学 | A molten pool temperature detection system and method for a selective laser melting 3D printer |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9925715B2 (en) * | 2014-06-30 | 2018-03-27 | General Electric Company | Systems and methods for monitoring a melt pool using a dedicated scanning device |
-
2021
- 2021-03-17 CN CN202110285814.4A patent/CN113059193B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108327255A (en) * | 2017-01-20 | 2018-07-27 | 通用电气公司 | The system and method for additivity the manufacture built-in assessment and correction of laser alignment precision for multi-laser system |
CN107907482A (en) * | 2017-12-28 | 2018-04-13 | 西安铂力特增材技术股份有限公司 | Molten bath status real time monitor device and method in a kind of SLM forming processes |
CN111375765A (en) * | 2020-03-18 | 2020-07-07 | 东南大学 | A molten pool temperature detection system and method for a selective laser melting 3D printer |
Non-Patent Citations (2)
Title |
---|
Mesoscopic study of thermal behavior, fluid dynamics and surface morphology during selective laser melting of Ti-based composites;Donghua Dai等;《Computational Materials Science》;20200531;第177卷;109598 * |
激光透射连接硅与玻璃熔池研究;王霄等;《中国激光》;20130630;第40卷(第6期);第06030071-7页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113059193A (en) | 2021-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109926584B (en) | A method and device for simultaneous processing of additive manufacturing and surface polishing | |
CN104827664B (en) | A kind of 3D printer | |
CN105855546B (en) | Twin-laser two-region metal melting sinter molding 3D printing device and Method of printing | |
CN103726049B (en) | A kind of laser gain material manufacture method and equipment of metal parts | |
CN109622954B (en) | Laminated molding device and method for manufacturing laminated molded article | |
US11278988B2 (en) | Additive manufacturing method using large and small beam sizes | |
CN203843168U (en) | Equipment for high-energy-beam additive manufacturing large-size metal parts | |
CN104890240B (en) | Nano powder laser selective melting additive manufacturing system and method | |
CN105562688B (en) | Production of components by selective laser melting | |
CN104470703B (en) | For hierarchically manufacturing the apparatus and method of three-dimensional body | |
JP6882508B2 (en) | Equipment and methods for manufacturing 3D workpieces | |
CN110267796B (en) | Additive manufacturing system and method | |
CN104001915A (en) | Equipment for manufacturing large-size metal part in high energy beam additive manufacturing mode and control method of equipment | |
CN202291409U (en) | Selective laser melting rapid molding equipment for directly fabricating large-sized parts | |
CN109332697B (en) | A selective laser melting additive manufacturing equipment | |
CN106735220A (en) | A kind of many material laser selective melting shaped devices and method | |
CN204712462U (en) | A 3D printer | |
CN109261966A (en) | A kind of mobile pressure-vaccum cigarette precinct laser fusion intelligence equipment of large scale | |
CN103978685B (en) | A device for 3D printing polymer materials with precise temperature control using nanosecond laser | |
CN106975750A (en) | A kind of lf deposition modeling device and its operation method | |
US20190134891A1 (en) | Dmlm build platform and surface flattening | |
CN209139822U (en) | A kind of precinct laser fusion increasing material manufacturing equipment | |
CN109202081A (en) | Copper alloy based on the forming of electron beam powdering increases the preparation method of material | |
CN111992877A (en) | A composite manufacturing device for high-precision laser addition and subtraction of materials | |
CN106624826A (en) | Micro-plasma 3D printing and milling combined processing device and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |