CN113037508B - 一种下电控制电路以及下电控制方法 - Google Patents
一种下电控制电路以及下电控制方法 Download PDFInfo
- Publication number
- CN113037508B CN113037508B CN201911387123.4A CN201911387123A CN113037508B CN 113037508 B CN113037508 B CN 113037508B CN 201911387123 A CN201911387123 A CN 201911387123A CN 113037508 B CN113037508 B CN 113037508B
- Authority
- CN
- China
- Prior art keywords
- voltage
- circuit
- pse
- power
- comparison circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/10—Current supply arrangements
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Continuous-Control Power Sources That Use Transistors (AREA)
Abstract
本申请提供的下电控制电路及下电控制方法通过电流检测电路获取PSE电源的电流并转换为电压,根据该电压通过第二过流比较电路控制第二PSE芯片,从而控制与第二PSE芯片对应的PD上下电。当第二PSE芯片对应的PD下电后,第二过流比较电路的输出端通过电压控制电路将合适比较电压输入至第一过流比较电路的第二输入端,使得第一过流比较电路可以根据该电压控制第一PSE芯片,从而控制与第一PSE芯片对应的PD上下电。因此,本申请能够先让部分PD下电,在部分PD下电后,再控制另一部分PD上下电,实现了PD下电的分级控制,当负载异变时,本申请可以控制不重要的PD先下电,让重要的PD最后接受控制,减少影响。
Description
技术领域
本申请实施例涉及电路供电技术领域,尤其涉及一种下电控制电路以及下电控制方法。
背景技术
随着现代技术的发展,以太网供电(power over Ethernet,PoE)的应用越来越广泛,越来越多设备支持PoE,这些支持PoE的设备可以通过PoE获得电能,不需要再外接电源,十分方便。PoE指的是在现有的以太网第五类(Cat.5)布线基础架构不作任何改动的情况下,在为一些终端(如IP电话机、无线局域网接入点(access point,AP)、网络摄像机等)传输数据信号的同时,还能为此类设备提供直流供电的技术。PoE也被称为基于局域网供电(power over LAN,PoL)或有源以太网(active Ethernet),有时也被简称为以太网供电。其中,提供供电的设备为供电设备(power sourcing equipment,PSE),接受供电的设备为受电设备(powered device,PD)。
当一个PSE为多个PD供电时,若多个PD的功率当前功耗加起来超过PSE的电源输出功率,则会导致PSE因电源过流停止供电,导致连接该PSE的所有PD一起断电,影响应用。
发明内容
本申请实施例提供了一种下电控制电路以及下电控制方法,能够让一部分PD先下电,一部分PD后下电,减轻下电带来的负面影响。
第一方面,本申请实施例提供了一种下电控制电路,包括:电流检测电路、第一过流比较电路、第二过流比较电路以及电压控制电路;
所述电流检测电路的输入端与供电设备PSE电源耦合,所述电流检测电路的输出端与所述第一过流比较电路的第一输入端、所述第二过流比较电路的第一输入端耦合;
所述第一过流比较电路的输出端与所述PSE的第一PSE芯片的控制端耦合;
所述第二过流比较电路的输出端与所述PSE的第二PSE芯片的控制端耦合;
所述电压控制电路的输入端与所述第二过流比较电路的输出端耦合,所述电压控制电路的输出端与所述第一过流比较电路的第二输入端耦合;
所述电压控制电路包括分压电源、第一电阻和第二电阻;
所述分压电源与所述电压控制电路的输出端之间耦合所述第一电阻;
所述电压控制电路的输出端与所述电压控制电路的输入端之间耦合所述第二电阻。
在一种可能的实现方式中,所述第二电阻并联有第一电容。
在一种可能的实现方式中,所述第一PSE芯片的使能端与接地电容耦合。
在一种可能的实现方式中,该电路还包括信号放大电路;
所述电流检测电路的输出端与所述信号放大电路的输入端耦合,所述信号放大电路的输出端与所述第一过流比较电路的第一输入端、所述第二过流比较电路的第一输入端耦合;或
所述电流检测电路的输出端与两个所述信号放大电路的输入端耦合,一个所述信号放大电路的输出端与所述第一过流比较电路的第一输入端耦合,另一个所述信号放大电路的输出端与所述第二过流比较电路的第一输入端耦合。
在一种可能的实现方式中,所述第二过流比较电路的第二输入端与稳压电路的输出端耦合;
所述稳压电路包括稳压电源和分压电阻;
所述稳压电源的输出端通过所述分压电阻接地;
所述稳压电路的输出端耦合于所述分压电阻之间。
在一种可能的实现方式中,所述电流检测电路包括采样电阻、运算放大器;
所述采样电阻的两端与所述PSE电源耦合;
所述采样电阻的两端还与所述运算放大器的输入端耦合;
所述运算放大器的输出端与所述运算放大器的输入端耦合。
在一种可能的实现方式中,所述第一PSE芯片的输入端和所述第一PSE芯片的输出端之间耦合有开关电路;
所述第一PSE芯片的控制端与所述开关电路耦合,用于控制所述第一PSE芯片的输入端和所述第一PSE芯片的输出端之间导通和断开。
第二方面,本申请实施例提供了一种下电控制方法,应用于下电控制电路,所述下电控制电路包括电流检测电路、第一过流比较电路、第二过流比较电路以及电压控制电路,所述方法包括:
通过所述电流检测电路根据供电设备PSE的电源电流输出第一电压,所述PSE通过第一PSE芯片和第二PSE芯片供电;
通过所述第二过流比较电路将所述第一电压与第二电压比较;
当所述第一电压小于所述第二电压时,通过所述第二过流比较电路输出高电平,控制所述第二PSE芯片供电;
当所述第一电压大于所述第二电压时,通过所述第二过流比较电路输出低电平,控制所述第二PSE芯片停止供电;
通过所述电压控制电路根据所述第二过流比较电路输出的低电平生成第三电压;
通过所述第一过流比较电路将所述第一电压与所述第三电压比较;
当所述第一电压小于所述第三电压时,通过所述第一过流比较电路输出高电平,控制所述第一PSE芯片供电;
当所述第一电压大于所述第三电压时,通过所述第一过流比较电路输出低电平,控制所述第一PSE芯片停止供电。
在一种可能的实现方式中,所述通过所述第一过流比较电路将所述第一电压与所述第三电压比较之前,所述方法还包括:
通过第一电容延迟第一时间。
在一种可能的实现方式中,所述通过所述第一过流比较电路输出低电平之后,所述控制所述第一PSE芯片停止供电之前,所述方法还包括:
通过接地电容延迟第二时间。
在一种可能的实现方式中,所述通过所述电流检测电路根据供电设备PSE的电源电流输出第一电压之后,所述通过所述第二过流比较电路将所述第一电压与第二电压比较之前,所述方法还包括:
通过信号放大电路放大所述第一电压。
在一种可能的实现方式中,所述方法还包括:
通过稳压电路输出所述第二电压。
在一种可能的实现方式中,所述控制所述第一PSE芯片供电具体包括:
通过开关电路根据所述第一过流比较电路输出的高电平控制所述第一PSE芯片供电。
所述控制所述第一PSE芯片停止供电具体包括:
通过所述开关电路根据所述第一过流比较电路输出的低电平控制所述第一PSE芯片停止供电。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请提供的下电控制电路通过电流检测电路获取PSE电源的电流并转换为电压,根据该电压通过第二过流比较电路控制第二PSE芯片,从而控制与第二PSE芯片对应的PD上下电。当第二PSE芯片对应的PD下电后,第二过流比较电路的输出端通过电压控制电路将合适比较电压输入至第一过流比较电路的第二输入端,使得第一过流比较电路可以根据该电压控制第一PSE芯片,从而控制与第一PSE芯片对应的PD上下电。因此,本申请能够先让部分PD下电,在部分PD下电后,再控制另一部分PD上下电,实现了PD下电的分级控制,当负载异变时,本申请可以控制不重要的PD先下电,让重要的PD最后接受控制,减少影响。
附图说明
图1为本申请实施例中PSE与PD的系统模型示例;
图2为本申请实施例中PSE内部的示例图;
图3为本申请实施例中下电控制电路的示例图;
图4为本申请实施例中电流检测电路的一种示例图;
图5为本申请实施例中电压控制电路的一种示例图;
图6为本申请实施例中下电控制电路的另一种示例图;
图7为本申请实施例中下电控制电路的另一种示例图;
图8为本申请实施例中下电控制电路的另一种示例图;
图9为本申请实施例中下电控制电路的另一种示例图;
图10为本申请实施例中信号放大电路及过流比较电路的示例图;
图11为本申请实施例中开关电路的一种示例图;
图12为本申请实施例中一种下电控制方法的示例图。
具体实施方式
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“对应于”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
为了下述各实施例的描述清楚简洁,首先给出相关技术的简要介绍:
图1为本申请实施例中PSE与PD的系统模型示例。在本申请实施例中,PSE和PD可以通过RJ-45双绞线连接,在实际应用中,还可以通过其他合适的线缆连接,本申请实施例对此不做限定。
表1
表1为本申请实施例中,PSE与PD连接的参数示例。可见,PSE与PD连接时需要符合相关的参数,若不符合相关参数,则会出现连接异常,以下将介绍PSE与PD连接的一般步骤。
1、检测是否有设备连接。
在本申请实施例中,PSE可以检测RJ-45双绞线是否有PD连接。若有PD连接,则RJ-45双绞线能够有对应的信号反馈。
2、检测对方是否是标准PD。
在本申请实施例中,PSE可以通过RJ-45双绞线向PD发送信号,使得PD向PSE反馈信息,该信息可以表示PD是否为标准PD。在一些实施例中,该信息还可以表示如表1中的802.3af、802.3at等标准。
3、检测对方受电功率等级。
在本申请实施例中,PSE可以通过RJ-45双绞线向PD发送信号,使得PD向PSE反馈信息,该信息可以表示PD的受电功率等级。可以理解的是,受电功率等级可以是表1中的分级。
4、按功率供电。
可以理解的是,在本申请实施例中,PSE一般是通过RJ-45双绞线进行供电。
5、检测对方是否离开或短路等异常情况。
在一些实施例中,PSE可以要求PD每隔一段时间返回一个心跳信号,若PD没有按时返回心跳信号,则PSE可以判断PD离开或出现异常。在另一些实施例中,PSE和PD之间的连接参数出现异常也可以判断为出现异常情况。例如,RJ-45双绞线中的某些端口的电压范围超过限定范围等,本申请实施例对此不做限定。
6、停止供电并回到第一步(步骤1)。
在本申请实施例中,当PD出现异常情况时,PSE停止向PD供电。当PD恢复正常后,PSE可以重新进行步骤1以重新给PD上电。
在本申请实施例中,上电是指PSE向PD供电,下电是指PSE停止向PD供电。
图2为本申请实施例中PSE内部的示例图。可见,PSE中可以包括多个PSE芯片,例如,PSE_0、PSE_1、PSE_2…PSE_n。每个PSE芯片可以连接有多个PD。PSE可以通过微控制单元(micro controller unit,MCU)控制各个PSE芯片。PSE芯片一般具有一个控制端(也可以称为使能端)。在一些实施例中,当控制端的输入为高电平时,PSE芯片控制与其连接的PD正常供电,当控制端的输入转为低电平时,PSE芯片控制与其连接的PD下电。在实际应用中,还可能是高电平使得PSE芯片控制与其连接的PD下电,本申请实施例对此不做限定。
如图2的PSE在安装有较多PD时,例如,PSE同时为24个PD供电,每个PD需要30W的供电,则PSE设备按照标准要求,预留给每个PD设备足够供电能力,那么总电源输出功率W=24*30W+PSE设备本身功耗>720W。这种方案可以确保每个端口有充足的供电。然而,该方案虽然能够保证每个端口有充足的供电,但是因为实际上电源的使用效率很低,给组网增加了很大的成本浪费。
在实际应用中,由于PSE不一定安装满24个PD,并且,每个PD不一定按照30W的功耗运行,一般PD的功耗大概只有几W,因此实际上PSE的功耗一般不会到达720W。所以,在实际应用中,为了降低成本,为24个PD供电的PSE的总功率一般设置在380W左右。在负载异变时,例如,每个PD的功率都增大,使得各个PD总功率加起来大于380W,则PSE电源会出现验证过流状态,并且由于电源过流,会出现设备下电等情况,影响应用。
为解决上述设备下电的技术问题,本申请实施例提供了一种下电控制电路,如图3所示,包括:电流检测电路301、第一过流比较电路302、第二过流比较电路303以及电压控制电路304。
其中,电流检测电路301的输入端与PSE的电源耦合,用于检测PSE的电源的电流,并转换为电压参数。本申请实施例可以采用多种电路实现上述功能,本申请实施例对电流检测电路301的具体实现方式不做限定,但本申请实施例提供其中一种示例如图4所示。
图4为本申请实施例中电流检测电路的一种示例图。该电流检测电路包括采样电阻R1以及运算放大器。该采样电阻R1的两端与PSE电源耦合,具体耦合在PSE电源的正极RTN_POE与PSE电源的负极-48V_POE之间。采样电阻R1的大小可以为0.05欧姆,本申请实施例对采样电阻R1的大小不做限制。运算放大器的第一端接地,第二端和第三段与采样电阻R1耦合,第四端和第七端耦合电源,第五端接地,第六端为电流检测电路的输出端V0。根据电路原理,电流检测电路的输出端V0=R1*Is。在电流检测电路中的适当的位置可以耦合一些电阻,本申请实施例对此不做限定。在本申请实施例中,电流检测电路301的输出端与第一过流比较电路302的第一输入端耦合,且电流检测电路301的输出端还与第二过流比较电路303的第一输入端耦合,用于将转换后的电压传输至第一过流比较电路302或第二过流比较电路303进行电压比较。
第一过流比较电路302的输出端与PSE内部的第一PSE芯片的控制端耦合,用于根据电压比较情况控制第一PSE芯片,使得与第一PSE芯片耦合的PD上电或下电;
第二过流比较电路303的输出端与PSE内部的第二PSE芯片的控制端耦合,用于根据电压比较情况控制第二PSE芯片,使得与第二PSE芯片耦合的PD上电或下电;
电压控制电路304的输入端与第二过流比较电路303的输出端耦合,电压控制电路304的输出端与第一过流比较电路302的第二输入端耦合,用于根据第二过流比较电路303的电压比较情况控制第一过流比较电路302的电压比较。具体地,在一些实施例中,电压控制电路304的内部如图5所示。
图5为本申请实施例中电压控制电路304的一种示例图。该电压控制电路至少包括电源V33、电阻R1和电阻R2。第二过流比较电路303的输出端电压为VPSE2_EN,第一过流比较电路302的第二输入端的电压为Vref1,则通过电路原理可知:
Vref1=(V33-VPSE2_EN)*R2/(R1+R2)+VPSE2_EN;
根据上式可知,当第二过流比较电路303的输出端电压变化时,第一过流比较电路302的第二输入端的电压也随之变化,因此可以实现第一过流比较电路302在第二过流比较电路303检测到电源负载超过极限时才进行合适的电压检测。在实际应用中,电阻R1、电阻R2以及电源V33设置合适的数值可以实现分级控制。
为清楚描述本申请实施例实施过程,本申请实施例给出两种电路设计过程。其中一种电路设计过程为:
设定电源V33为3.3V电源,电阻R1为2.1K欧姆,电阻R2为1.2K欧姆,则当第二过流比较电路输出端电压为0V时,根据电路原理,第一过流比较电路302的第二输入端电压Vref1=(V33-VPSE2_EN)*R2/(R1+R2)+VPSE2_EN=(3.3-0)*1.2K/(2.1K+1.2K)+0=1.2V。当二过流比较电路输出端电压为3.3V时,根据电路原理,第一过流比较电路302的第二输入端电压Vref1=(V33-VPSE2_EN)*R2/(R1+R2)+VPSE2_EN=(3.3-3.3)*1.2K/(2.1K+1.2K)+3.3=3.3V。并且第二过流比较电路303的第二输入端电压Vref2设定为1.2V。
因此,当PSE电源正常运行时,电流检测电路301的输出端电压小于1.2V,第二过流比较电路303输出3.3V,PSE_2芯片正常工作,与PSE_2芯片连接的PD不用下电。并且根据电路原理,第一过流比较电路302的第二输入端电压Vref1=3.3V,即使PSE电源负载突变,电流检测电路301的输出端电压突然大于1.2V,在一般情况下也不会大于3.3V,因此可以认为第一过流比较电路302恒输出高电平,PSE_1芯片正常工作,与PSE_1芯片连接的PD不用下电。
当PSE电源由正常运行变为超过负载时,电流检测电路301的输出端电压超过1.2V,经第二过流比较电路303比较后,第二过流比较电路303的输出端电压输出0V,使得PSE_2芯片控制与其连接的PD下电。而由于第二过流比较电路303的输出端电压变化为0V,根据电路原理,第一过流比较电路302的第二输入端电压Vref1也相继变化为1.2V,因此,第一过流比较电路302可以在与PSE_2芯片连接的PD下电后,继续对电流检测电路301的输出端电压进行检测,若电流检测电路301的输出端电压还是超过1.2V,则第一过流比较电路302输出低电平,使得与PSE_1芯片连接的PD下电。
其中另一种设计过程为,首先设定电流检测电路301,使得当电流检测电路301的输出端电压大于1.2V时,表示PSE电源电流超过负载极限,需要给部分PD下电。当电流检测电路301的输出端电压小于1.2V时,表示PSE电源电流在合适负载范围内,无需给PD下电。因此,第一过流比较电路302和第二过流比较电路303需要给电流检测电路301的输出端电压进行电压比较,该电压比较所用的电压应该均设定为1.2V。其中,第二过流比较电路303的第二输入端电压Vref2可以直接连接1.2V电源或者通过电源分压得到稳定的1.2V电压。而第一过流比较电路302需要在第二过流比较电路303检测到电流检测电路301的输出端电压超过1.2V后才开始进行合适的检测。在本申请实施例中,当第二过流比较电路303检测到电流检测电路301的输出端电压超过1.2V后,第二过流比较电路303的输出端输出电压VPSE2_EN为0V,此时第一过流比较电路302的第二输入端电压Vref1应该为1.2V,则可以设定电源V33输出电压为3.3V,电阻R1为2.1K欧姆、电阻R2为1.2K欧姆。根据电路原理可以计算得到Vref1=(V33-VPSE2_EN)*R2/(R1+R2)+VPSE2_EN=(3.3-0)*1.2K/(2.1K+1.2K)+0=1.2V。
在一些实施例中,电阻R2还可以并联有电容C1,使得第二过流比较电路303的输出端输出电压VPSE2_EN转换时,由于电容C1的充电过程,第一过流比较电路302的第二输入端电压Vref1经过延时时间才到达合适的电压。这种延时设计可以让与PSE_2芯片连接的PD经过一段时间下电后,再对电流检测电路301的输出端电压进行检测。例如,当第二过流比较电路303的输出端输出电压VPSE2_EN由3.3V转换为0V时,第一过流比较电路302的第二输入端电压Vref1经过一段延时时间才到达1.2V。
在实际应用中,不同的过流比较电路可以设置不同采用不同的比较电压。例如,第一过流比较电路302的第二输入端电压Vref1设定为2V,第二过流比较电路303的第二输入端电压Vref2设定为1.2V,本申请实施例对此不做限制。
如图6所示,在一些实施例中,本申请实施例还设置有更多的过流比较电路,其中第一个额外的过流比较电路(在图6中为第三过流比较电路)的第一输入端可以与电流检测电路301的输出端耦合,其第二输入端可以通过与电压控制电路304类似的电压控制电路与第一过流比较电路302的输出端耦合,其输出端可以与PSE芯片的控制端耦合。第二个额外的过流比较电路的第一输入端可以与电流检测电路301的输出端耦合,其第二输入端可以通过与电压控制电路304类似的电压控制电路与上一个额外的过流比较电路的输出端耦合,其输出端可以与PSE芯片的控制端耦合。以此类推,本申请实施例可以根据实际情况额外设置若干个过流比较电路,本申请实施例对此数量不做限定。
在实际应用中,可以设置一个稳压电源与某一个PSE芯片的控制端耦合,使得该PSE芯片连接的PD受到稳压电源的控制不会下电。如图6中的稳压电源VCC连接了PSE_0芯片,则PSE_0芯片控制的PD一般不会下电。工作人员可以将特别重要的PD连接到PSE_0芯片上,保证其供电稳定。
在一些实施例中,电流检测电路301的输出端具体通过信号放大电路与第一过流比较电路302的第一输入端以及第二过流比较电路303的第一输入端耦合。图7为本申请实施例中下电控制电路的一种示例图。可见,电流检测电路301的输出端与信号放大电路305的输入端耦合,信号放大电路305的输出端与第一过流比较电路302的第一输入端以及第二过流比较电路303的第一输入端耦合。本申请实施例采用信号放大电路放大电压,能够更准确地对PSE电源的负载情况进行判断。
在另一种实施例中,电流检测电路301的输出端具体通过两个信号放大电路分别与第一过流比较电路302的第一输入端以及第二过流比较电路303的第一输入端耦合。图8为本申请实施例中下电控制电路的另一种示例图。可见电流检测电路301的输出端分别与信号放大电路3051的输入端、信号放大电路3052的输入端耦合。信号放大电路3051的输出端与第一过流比较电路302的第一输入端耦合。信号放大电路3052的输出端与第二过流比较电路303的第一输入端耦合。
图9为本申请实施例中下电控制电路的另一种示例图。当本申请实施例采用多个信号放大电路时,多个信号放大电路可以采用不同的放大倍数,则对应的过流检测电路可以采用不同的检测电压,即过流检测电路的第二输入端可以设定不同的电压。
本申请实施例通过多个过流比较电路实现了分级控制,当第二过流比较电路303检测到过流后,再采用第一过流比较电路302进行比较,实现了分级控制,能够控制部分PD按照预设的顺序下电。本申请实施例采用硬件电路的方式进行下电控制,相较于通过MCU控制的方式更加迅速,能够达到ns级的响应。
图10为本申请实施例中信号放大电路及过流比较电路的示例图。图10中共有两个信号放大电路,这两个信号放大电路的输入电压均为V0。输入电压V0经过信号放大电路的放大后,输出电压分别为V1=(R10/R18)*V0,V2=(R20/R28)*V0。信号放大电路的放大倍数可以通过设置R10、R18、R20、R28的值来实现,本申请实施例对信号放大电路的放大倍数不做限制。其中,稳压电源V33经过R22、R23、R24分压后稳定输出电压1.2V,则输出电压V2通过第二过流比较电路与电压1.2V进行比较。
当输出电压V2小于1.2V时,第二过流比较电路输出高电平,PORT_EN_PSE2=3.3V,使得PSE2供电。Vref1=V33=PORT_EN_PSE2=3.3V。此时在第一过流比较电路中,V1恒小于Vref1,第一过流比较电路输出高电平,使得PSE1供电。
当输出电压V2大于1.2V时,第二过流比较电路输出低电平,PORT_EN_PSE2=0V,使得PSE2停止供电。如图10下电控制电路的示例中,电阻R26=1.2K欧姆,电阻R27=2.1K欧姆,因此Vref1=V33*R26/(R27+R26)=3.3V*1.2k/(2.1k+1.2k)=1.2V。在第一过流比较电路中,输出电压V1与Vref1=1.2V进行电压比较。当输出电压V1小于1.2V时,第一过流比较电路输出高电平,使得PSE1供电。当输出电压V1大于1.2V时,第一过流比较电路输出低电平,使得PSE1停止供电。
图10所示的电路中还设置有电容C21,电容C21使得当第二过流比较电路的输出PORT_EN_PSE2由3.3V转变为1.2V时,经历电容的充电过程,使得Vref1由3.3V逐渐变为1.2V,而不是瞬间变为1.2V。从而使得PSE2停止供电后延时一段时间,第一过流比较电路将输出电压V1与1.2V电压进行比较。因此能够保证在PSE电源超负载时,PSE2和PSE1能够按顺序停止供电。
图10所示的电路中还设置有C20,电容C20能够与电容C21配合,使得第二过流比较电路的输出PORT_EN_PSE2由3.3V转变为1.2V时,电容C20进行放电,第二过流比较电路的输出PORT_EN_PSE2逐渐由3.3V转变为1.2V,而不是瞬间由3.3V转变为1.2V。同理,电路中的其他电容也有类似的作用,此处不再赘述。
在一种可能的实施例中,第一PSE芯片的输入端和第一PSE芯片的输出端之间耦合有开关电路;第一PSE芯片的控制端与开关电路耦合,用于控制第一PSE芯片的输入端和第一PSE芯片的输出端之间导通和断开。图11为本申请实施例中开关电路的一种示例图。其中,PORT_EN_PSE为第一PSE芯片的控制端,RTN_PSE为PSE芯片的电源端,RTN_PSE_OUT为PSE芯片的输出端。当PORT_EN_PSE为高电平时,芯片Q2导通,使得RTN_PSE能够输出到RTN_PSE_OUT,对应的PD能够受电。当PORT_EN_PSE为低电平时,芯片Q2断开,使得RTN_PSE不能输出到RTN_PSE_OUT,对应的PD停止受电。在实际应用中,开关电路还可以通过其他电子元器件实现开关功能,本申请实施例对此不做限定。
图12为本申请实施例中一种下电控制方法的示例图。该方法应用于如图3、图5、图6、图7、图8或图9的下电控制电路。该方法包括:
1201、通过电流检测电路根据供电设备PSE的电源电流输出第一电压。
在本申请实施例中,电流检测电路可以获取PSE电源的电流,并将PSE电源的电流转换为第一电压(即电流检测电路的输出电压)。该过程与前述实施例中电流检测电路的描述类似,此处不再赘述。
1202、通过第二过流比较电路将第一电压与第二电压比较。
在本申请实施例中,第二过流比较电路可以是比较器等将两个电压进行比较的电路,其中,第二电压可以是稳压电路输出的电压,例如1.2V。第二过流比较电路进行电压比较与前述实施例中第二过流比较电路的描述类似,此处不再赘述。
1203、当第一电压小于第二电压时,通过第二过流比较电路输出高电平,控制第二PSE芯片供电。
在本申请实施例中,当第一电压小于第二电压时,第二过流比较电路输出高电平。高电平可以是大于或等于1的电压,例如1V、3.3V等,在本申请实施例中一般是3.3V。本申请实施例对高电平的具体电压不做限定。
高电平输入第二PSE芯片的控制端(或者是第二PSE芯片的使能端)后,第二PSE芯片可以根据该高电平进行供电。第二PSE芯片一般连接有多个PD,则该第二PSE芯片实际上是给与其连接的多个PD供电。
步骤1203的其他情况与前述实施例中第二过流比较电路和第二PSE芯片相关的描述类似,此处不再赘述。
1204、当第一电压大于第二电压时,通过第二过流比较电路输出低电平,控制第二PSE芯片停止供电。
在本申请实施例中,当第一电压大于第二电压时,第二过流比较电路输出低电平。低电平一般是0V,本申请实施例对此不做限定。
低电平输入第二PSE芯片的控制端(或者是第二PSE芯片的使能端)后,第二PSE芯片可以根据该低电平停止供电,即停止对与其连接的多个PD供电。
步骤1204的其他情况与前述实施例中第二过流比较电路和第二PSE芯片相关的描述类似,此处不再赘述。
1205、通过电压控制电路根据第二过流比较电路输出的低电平生成第三电压。
在本申请实施例中,当第一电压大于第二电压时,第二过流比较电路输出低电平,则可以执行步骤1205,通过电压控制电路根据第二过流比较电路输出的低电平生成第三电压。
在一种可能的实施例中,电压控制电路可以是一种调压电路,提供电源以及电阻等,将第二过流比较电路输出的低电平提高到合适的电压,作为第三电压。例如,电压控制电路可以将第二过流比较电路输出的0V电压提高到1.2V。电压控制电路具体可以参阅前述实施例中的描述,此处不再赘述。
1206、通过第一过流比较电路将第一电压与第三电压比较。
在本申请实施例中,第一电压和第三电压可以输入到第一过流比较电路。第一过流比较电路可以是一种比较器,将第一电压和第三电压进行比较,若第一电压小于第三电压则第一过流比较电路输出高电平,若第一电压大于第三电压则第一过流比较电路输出低电平。第一过流比较电路具体可以参阅前述实施例中的描述,此处不再赘述。
1207、当第一电压小于第三电压时,通过第一过流比较电路输出高电平,控制第一PSE芯片供电。
在本申请实施例中,当第一电压小于第三电压时,第一过流比较电路输出高电平。高电平输入第一PSE芯片的控制端或使能端,使得第一PSE芯片对与其连接的多个PD供电。具体可参照前述实施例中第一过流比较电路和第一PSE芯片的描述,本申请实施例对此不再赘述。
1208、当第一电压大于第三电压时,通过第一过流比较电路输出低电平,控制第一PSE芯片停止供电。
在本申请实施例中,当第一电压大于第三电压时,第一过流比较电路输出低电平。低电平输入第一PSE芯片的控制端或使能端,使得第一PSE芯片对与其连接的多个PD停止供电。具体可参照前述实施例中第一过流比较电路和第一PSE芯片的描述,本申请实施例对此不再赘述。
在本申请实施例中,下电控制电路先通过所述第二过流比较电路将所述第一电压与第二电压比较。当所述第一电压大于所述第二电压时,下电控制电路可以通过所述第一过流比较电路将所述第一电压与所述第三电压比较。因此,在第二过流比较电路使得第二PSE芯片停止供电之后,下电控制电路在判断第一PSE芯片是否需要停止供电,可以实现在PSE电源超负载时,先对其中一部分PD下电,再对另一部分PD下电,减少PD下电带来的负面影响。
在一种可能的实施例中,该方法还可以包括:通过第一电容延迟第一时间。对应地,在下电控制电路中,可以在合适位置设置第一电容,如图5对应的电容C1,来延迟一段时间。该第一时间可以与第一电容的参数相关,本申请实施例对此不做限定。
在一种可能的实施例中,该方法还可以包括:通过接地电容延迟第二时间。对应地,在下电控制电路中,在第一过流比较电路或第二过流比较电路的输出端可以增加接地电容,如图10对应的电容C20、电容C10,以延迟第二时间。第二时间的长短可以与接地电容的参数相关,本申请实施例对此不做限定。
在一种可能的实施例中,该方法还可以包括通过信号放大电路放大第一电压。对应地,在下电控制电路中,在电流检测电路与第一过流比较电路,或电流检测电路与第二过流比较电路之间可以设置信号放大电路,如图7、图8或图9所示,以放大第一电压。本申请实施例对信号放大电路的放大倍数不做限定。
在一种可能的实施例中,该方法还可以包括通过稳压电路输出第二电压。对应地,在下电控制电路中,第二过流比较电路的输入端Vref2可以连接稳压电路,该稳压电路输出第二电压,例如输出1.2V电压。本申请实施例对此不做限制。
在一种可能的实施例中,该方法还可以包括通过开关电路根据第一过流比较电路输出的高电平控制第一PSE芯片供电,通过开关电路根据第一过流比较电路输出的低电平控制第一PSE芯片停止供电。开关电路与前述图11对应的实施例类似,此处不再赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
Claims (13)
1.一种下电控制电路,其特征在于,包括:电流检测电路、第一过流比较电路、第二过流比较电路以及电压控制电路;
所述电流检测电路的输入端与供电设备PSE电源耦合,所述电流检测电路的输出端与所述第一过流比较电路的第一输入端、所述第二过流比较电路的第一输入端耦合;
所述第一过流比较电路的输出端与所述PSE的第一PSE芯片的控制端耦合;
所述第二过流比较电路的输出端与所述PSE的第二PSE芯片的控制端耦合;
所述电压控制电路的输入端与所述第二过流比较电路的输出端耦合,所述电压控制电路的输出端与所述第一过流比较电路的第二输入端耦合;
所述电压控制电路包括分压电源、第一电阻和第二电阻;
所述分压电源与所述电压控制电路的输出端之间耦合所述第一电阻;
所述电压控制电路的输出端与所述电压控制电路的输入端之间耦合所述第二电阻。
2.根据权利要求1所述的电路,其特征在于,所述第二电阻并联有第一电容。
3.根据权利要求1至2任意一项所述的电路,其特征在于,所述第一PSE芯片的使能端与接地电容耦合。
4.根据权利要求1至2任意一项所述的电路,其特征在于,还包括信号放大电路;
所述电流检测电路的输出端与所述信号放大电路的输入端耦合,所述信号放大电路的输出端与所述第一过流比较电路的第一输入端、所述第二过流比较电路的第一输入端耦合;或
所述电流检测电路的输出端与两个所述信号放大电路的输入端耦合,一个所述信号放大电路的输出端与所述第一过流比较电路的第一输入端耦合,另一个所述信号放大电路的输出端与所述第二过流比较电路的第一输入端耦合。
5.根据权利要求1至2任意一项所述的电路,其特征在于,所述第二过流比较电路的第二输入端与稳压电路的输出端耦合;
所述稳压电路包括稳压电源和分压电阻;
所述稳压电源的输出端通过所述分压电阻接地;
所述稳压电路的输出端耦合于所述分压电阻之间。
6.根据权利要求1至2任意一项所述的电路,其特征在于,所述电流检测电路包括采样电阻、运算放大器;
所述采样电阻的两端与所述PSE电源耦合;
所述采样电阻的两端还与所述运算放大器的输入端耦合;
所述运算放大器的输出端与所述运算放大器的输入端耦合。
7.根据权利要求1至2任意一项所述的电路,其特征在于,所述第一PSE芯片的输入端和所述第一PSE芯片的输出端之间耦合有开关电路;
所述第一PSE芯片的控制端与所述开关电路耦合,用于控制所述第一PSE芯片的输入端和所述第一PSE芯片的输出端之间导通和断开。
8.一种下电控制方法,其特征在于,应用于下电控制电路,所述下电控制电路包括电流检测电路、第一过流比较电路、第二过流比较电路以及电压控制电路,所述方法包括:
通过所述电流检测电路根据供电设备PSE的电源电流输出第一电压,所述PSE通过第一PSE芯片和第二PSE芯片供电;
通过所述第二过流比较电路将所述第一电压与第二电压比较,所述第二电压包括稳压电路的输出电压;
当所述第一电压小于所述第二电压时,通过所述第二过流比较电路输出高电平,控制所述第二PSE芯片供电;
当所述第一电压大于所述第二电压时,通过所述第二过流比较电路输出低电平,控制所述第二PSE芯片停止供电;
通过所述电压控制电路根据所述第二过流比较电路输出的低电平生成第三电压;
通过所述第一过流比较电路将所述第一电压与所述第三电压比较;
当所述第一电压小于所述第三电压时,通过所述第一过流比较电路输出高电平,控制所述第一PSE芯片供电;
当所述第一电压大于所述第三电压时,通过所述第一过流比较电路输出低电平,控制所述第一PSE芯片停止供电。
9.根据权利要求8所述的方法,其特征在于,所述通过所述第一过流比较电路将所述第一电压与所述第三电压比较之前,所述方法还包括:
通过第一电容延迟第一时间。
10.根据权利要求8或9所述的方法,其特征在于,所述通过所述第一过流比较电路输出低电平之后,所述控制所述第一PSE芯片停止供电之前,所述方法还包括:
通过接地电容延迟第二时间。
11.根据权利要求8或9所述的方法,其特征在于,所述通过所述电流检测电路根据供电设备PSE的电源电流输出第一电压之后,所述通过所述第二过流比较电路将所述第一电压与第二电压比较之前,所述方法还包括:
通过信号放大电路放大所述第一电压。
12.根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
通过所述稳压电路输出所述第二电压。
13.根据权利要求8或9所述的方法,其特征在于,所述控制所述第一PSE芯片供电具体包括:
通过开关电路根据所述第一过流比较电路输出的高电平控制所述第一PSE芯片供电;
所述控制所述第一PSE芯片停止供电具体包括:
通过所述开关电路根据所述第一过流比较电路输出的低电平控制所述第一PSE芯片停止供电。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911387123.4A CN113037508B (zh) | 2019-12-24 | 2019-12-24 | 一种下电控制电路以及下电控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911387123.4A CN113037508B (zh) | 2019-12-24 | 2019-12-24 | 一种下电控制电路以及下电控制方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113037508A CN113037508A (zh) | 2021-06-25 |
CN113037508B true CN113037508B (zh) | 2022-10-25 |
Family
ID=76458529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911387123.4A Active CN113037508B (zh) | 2019-12-24 | 2019-12-24 | 一种下电控制电路以及下电控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113037508B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113572621B (zh) * | 2021-07-08 | 2024-01-30 | 浙江大华技术股份有限公司 | Poe供电系统以及poe供电方法 |
CN115801478A (zh) * | 2022-11-17 | 2023-03-14 | 浙江大华技术股份有限公司 | 一种poe控制器、交换机和供电方法 |
CN117135001B (zh) * | 2023-10-26 | 2024-02-06 | 茂睿芯(深圳)科技有限公司 | 保持功率特征控制方法、系统及可读存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006287399A (ja) * | 2005-03-31 | 2006-10-19 | Nec Corp | 過電流保護回路 |
CN104978287A (zh) * | 2014-04-14 | 2015-10-14 | 华为技术有限公司 | 供电设备芯片,供电设备,以太网供电系统和方法 |
CN110572044A (zh) * | 2019-10-11 | 2019-12-13 | 珠海格力电器股份有限公司 | 一种电源控制电路及电器设备 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3101998B2 (ja) * | 1997-06-26 | 2000-10-23 | 富士電機株式会社 | 過電流検出回路 |
JP3537317B2 (ja) * | 1998-07-02 | 2004-06-14 | 松下電器産業株式会社 | 過電流保護制御装置 |
US8074084B2 (en) * | 2004-11-03 | 2011-12-06 | Cisco Technology, Inc. | Powered device classification in a wired data telecommunications network |
CN101820348A (zh) * | 2010-03-09 | 2010-09-01 | 武汉烽火网络有限责任公司 | 一种poe系统中对设备进行过载保护的方法和装置 |
TW201108548A (en) * | 2010-07-15 | 2011-03-01 | Ke Jun Yan | Power supply control module device |
CN103715750B (zh) * | 2012-10-08 | 2017-02-08 | 中兴通讯股份有限公司 | 下电电路、直流组合电源系统及下电控制方法 |
CN103368750B (zh) * | 2013-06-24 | 2016-08-10 | 华为技术有限公司 | 一种电源时序电路及供电方法 |
CN105323076A (zh) * | 2014-06-27 | 2016-02-10 | 中兴通讯股份有限公司 | Pse设备为受电设备供电的方法及以太网pse设备 |
-
2019
- 2019-12-24 CN CN201911387123.4A patent/CN113037508B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006287399A (ja) * | 2005-03-31 | 2006-10-19 | Nec Corp | 過電流保護回路 |
CN104978287A (zh) * | 2014-04-14 | 2015-10-14 | 华为技术有限公司 | 供电设备芯片,供电设备,以太网供电系统和方法 |
CN110572044A (zh) * | 2019-10-11 | 2019-12-13 | 珠海格力电器股份有限公司 | 一种电源控制电路及电器设备 |
Also Published As
Publication number | Publication date |
---|---|
CN113037508A (zh) | 2021-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1842321B1 (en) | Power sourcing equipment having auto-zero circuit for determining and controlling output current | |
JP4876078B2 (ja) | 通信リンクを通じて電力を提供するためのシステムにおける受電側機器の電力要件に基づく電流制限しきい値の調整 | |
US7831844B2 (en) | Integrated powered device connector in system for supplying power over communication link | |
US7856561B2 (en) | Detecting legacy powered device in power over ethernet system | |
EP1961152B1 (en) | Power sourcing equipment having bipolar junction transistor for controlling supply and supporting ac disconnect-detection function | |
WO2006081111A2 (en) | Utilization of power delivered to powered device during detection and classification mode | |
CN113037508B (zh) | 一种下电控制电路以及下电控制方法 | |
US20060212724A1 (en) | System and method for supporting operations of advanced power over ethernet system | |
CN101124771A (zh) | 具有自动调零电路用于确定和控制输出电流的供电设备 | |
US20060164773A1 (en) | Adjusting current limit thresholds based on output voltage of power supply device in system for providing power over communication link | |
KR101341877B1 (ko) | 유도성 부하가 연결될 때 폴드백 전류 제한을 갖는 시스템에서의 오실레이션 감소 | |
US20200044874A1 (en) | Power Consumption Sensing for Power over Ethernet (PoE) Power Sourcing Equipment (PSE) System | |
CN110994973B (zh) | 一种供电电源和服务器 | |
CN107196770B (zh) | 通过信号线进行供电的系统 | |
US9083536B2 (en) | Method of monitoring the powering of a remote device through a LAN line and relative circuit | |
CN117435017A (zh) | 一种计算设备 | |
KR20110064525A (ko) | 클래스 저항을 구비하는 전력 소비 장치 및 부가 장치 | |
JP2004032634A (ja) | 電源供給装置 | |
KR20090061549A (ko) | Poe 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |