CN113020735B - Preparation method of silicon nitride ceramic/stainless steel braze welding joint with corrosion resistance and stress relief - Google Patents
Preparation method of silicon nitride ceramic/stainless steel braze welding joint with corrosion resistance and stress relief Download PDFInfo
- Publication number
- CN113020735B CN113020735B CN202110303142.5A CN202110303142A CN113020735B CN 113020735 B CN113020735 B CN 113020735B CN 202110303142 A CN202110303142 A CN 202110303142A CN 113020735 B CN113020735 B CN 113020735B
- Authority
- CN
- China
- Prior art keywords
- brazing
- stainless steel
- joint
- silicon nitride
- solder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/0008—Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/008—Soldering within a furnace
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/20—Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/02—Iron or ferrous alloys
- B23K2103/04—Steel or steel alloys
- B23K2103/05—Stainless steel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
- B23K2103/52—Ceramics
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Ceramic Products (AREA)
Abstract
一种具有抗腐蚀和应力缓解的氮化硅陶瓷/不锈钢钎焊接头的制备方法,涉及一种氮化硅陶瓷/不锈钢钎焊接头的制备方法。本发明是要解决现有的氮化硅陶瓷与金属的活性金属钎焊时因钎料以及金属母材自身的膨胀系数过大,导致氮化硅陶瓷因承受较大残余应力而开裂,且钎料自身并不耐腐蚀的技术问题。本发明拟以钎料AgCuTi和AgCu为基础,研制出适合连接氮化硅陶瓷与316L不锈钢的复合钎料层,AgCuTi钎料和Ag箔、AgCu钎料和Ag箔发生互溶,在Mo两侧都形成Ag基固溶体,可降低接头的残余应力以及提高接头整体耐蚀性,腐蚀之后整个焊缝区没有较大的孔洞出现,整体接头呈现出较好的耐蚀性。
A preparation method of a silicon nitride ceramic/stainless steel brazing joint with corrosion resistance and stress relief relates to a preparation method of a silicon nitride ceramic/stainless steel brazing joint. The invention is to solve the problem that the existing silicon nitride ceramics and active metals of metals are brazed due to the excessive expansion coefficient of the brazing filler metal and the metal base material itself, which causes the silicon nitride ceramics to be cracked due to the large residual stress, and the brazing The technical problem that the material itself is not resistant to corrosion. The invention intends to develop a composite brazing filler metal layer suitable for connecting silicon nitride ceramics and 316L stainless steel on the basis of the brazing filler metals AgCuTi and AgCu. The formation of Ag-based solid solution can reduce the residual stress of the joint and improve the overall corrosion resistance of the joint. After corrosion, there are no large holes in the entire weld area, and the overall joint shows better corrosion resistance.
Description
技术领域technical field
本发明涉及一种氮化硅陶瓷/不锈钢钎焊接头的制备方法。The invention relates to a preparation method of a silicon nitride ceramic/stainless steel brazing joint.
背景技术Background technique
氮化硅陶瓷(Si3N4)是一种高强度、高硬度、耐磨、抗氧化并能自润滑的高温陶瓷,成为最有希望在高科技领域中能得到广泛应用的候选材料,并且Si3N4具有优异的耐腐蚀性能,如耐酸、熔盐的腐蚀等,因此可服役于较为苛刻的腐蚀环境中。但由于Si3N4陶瓷本身脆性大,限制了它的发展,而金属材料具有优良的室温强度和延展性,如果能将两种材料结合起来,制造出满足要求的复杂构件,将会使Si3N4陶瓷的应用获得重大突破,国内外的学者对此进行了广泛的研究和探讨。316L不锈钢(022Cr17Ni12Mo2)属于18-8型奥氏体不锈钢的衍生钢种,添加有2%~3%的Mo元素,因其优异的耐腐蚀性在化工行业有着广泛的应用,316L的Mo含量使得该钢种拥有优异的抗点蚀能力,可以安全的应用于含Cl-等卤素离子环境,是海洋环境下常选材料。由于316L不锈钢具有良好的可加工性,因此如果实现Si3N4陶瓷与316L不锈钢的连接,充分发挥两者的优点,制成可靠的复合构件,可以极大的扩展这两者的应用,尤其是在海洋环境条件下的使用。因此Si3N4/316L复合构件有望代替纯316L不锈钢构件,提高构件使用寿命,降低生产成本。Silicon nitride ceramics (Si 3 N 4 ) are high-temperature ceramics with high strength, high hardness, wear resistance, oxidation resistance and self-lubricating properties. Si 3 N 4 has excellent corrosion resistance, such as acid resistance, molten salt corrosion, etc., so it can be used in harsh corrosive environments. However, due to the brittleness of Si 3 N 4 ceramic itself, its development is limited, while metal materials have excellent room temperature strength and ductility. If the two materials can be combined to manufacture complex components that meet the requirements, it will make Si A major breakthrough has been made in the application of 3 N 4 ceramics, and scholars at home and abroad have conducted extensive research and discussion on this. 316L stainless steel (022Cr17Ni12Mo2) is a derivative of 18-8 type austenitic stainless steel. It is added with 2% to 3% Mo element. Because of its excellent corrosion resistance, it is widely used in the chemical industry. This steel has excellent resistance to pitting corrosion and can be safely used in environments containing Cl- and other halogen ions, and is a commonly used material in marine environments. Since 316L stainless steel has good machinability, if the connection between Si 3 N 4 ceramics and 316L stainless steel is realized, the advantages of the two can be fully utilized, and a reliable composite component can be made, which can greatly expand the application of the two, especially is for use in marine environmental conditions. Therefore, the Si 3 N 4 /316L composite component is expected to replace the pure 316L stainless steel component, improve the service life of the component and reduce the production cost.
有关氮化硅陶瓷与金属的连接包括活性金属钎焊、瞬时液相连接、扩散焊、氧化物玻璃连接以及氧氮玻璃连接等方法。目前的研究结果表明,采用活性金属钎焊的方法最为常用,钎料Ag69Cu28Ti3(wt.%)和Ag28Cu(wt.%)作为两种普适商用钎料,虽然连接效果好,但往往因钎料以及金属母材自身的膨胀系数过大,导致氮化硅陶瓷因承受较大残余应力而开裂,且钎料自身并不耐腐蚀。为此,研制出适合陶瓷和金属连接的复合钎料层十分有必要。The connection between silicon nitride ceramics and metal includes active metal brazing, transient liquid phase connection, diffusion welding, oxide glass connection and oxynitride glass connection. The current research results show that active metal brazing is the most commonly used method. The brazing filler metals Ag69Cu28Ti3 (wt.%) and Ag28Cu (wt.%) are two common commercial brazing filler metals. And the expansion coefficient of the metal base metal itself is too large, which causes the silicon nitride ceramic to crack due to the large residual stress, and the brazing material itself is not corrosion-resistant. For this reason, it is necessary to develop a composite solder layer suitable for ceramic and metal connections.
发明内容SUMMARY OF THE INVENTION
本发明是要解决现有的氮化硅陶瓷与金属的活性金属钎焊时因钎料以及金属母材自身的膨胀系数过大,导致氮化硅陶瓷因承受较大残余应力而开裂,且钎料自身并不耐腐蚀的技术问题,而提供一种具有抗腐蚀和应力缓解的氮化硅陶瓷/不锈钢钎焊接头的制备方法。The invention is to solve the problem that the existing silicon nitride ceramics and active metals of metals are brazed due to the excessive expansion coefficient of the brazing filler metal and the metal base material itself, which causes the silicon nitride ceramics to be cracked due to the large residual stress, and the brazing In order to solve the technical problem that the material itself is not corrosion-resistant, a preparation method of a silicon nitride ceramic/stainless steel brazing joint with corrosion resistance and stress relief is provided.
本发明的具有抗腐蚀和应力缓解的氮化硅陶瓷/不锈钢钎焊接头的制备方法如下:The preparation method of the silicon nitride ceramic/stainless steel brazing joint with corrosion resistance and stress relief of the present invention is as follows:
一、将母材Si3N4陶瓷的待焊接面依次用300#金相砂纸、600#金相砂纸和1000#金相砂纸打磨至光滑,在丙酮中超声震荡3min~5min,然后放入烘箱中烘干;1. Grind the surface to be welded of the base metal Si 3 N 4 ceramic with 300# metallographic sandpaper, 600# metallographic sandpaper and 1000# metallographic sandpaper in turn to smoothness, ultrasonically vibrate in acetone for 3min-5min, and then put it in an oven medium drying;
二、将母材316L不锈钢依次用600#SiC砂纸和#1000SiC砂纸打磨去除表面氧化层,然后依次用800#金相砂纸和1000#金相砂纸进行打磨至光亮,之后在丙酮中超声震荡清洗3min~5min,最后将材料放入烘箱中烘干;2. Grind the
对X金属箔片、Ag箔片、钎料AgCuTi和钎料AgCu分别重复步骤二中上述的操作;所述的X金属箔片中的X为Mo、W、Cr或Nb;Repeat the above operations in step 2 for X metal foil, Ag foil, solder AgCuTi and solder AgCu respectively; X in the X metal foil is Mo, W, Cr or Nb;
三、将步骤一和步骤二中烘干好的材料按照母材316L不锈钢/AgCu/Ag/X/Ag/AgCuTi/母材Si3N4陶瓷的结构进行装配,在进行装配时每两层之间用有机胶进行粘结,自然放置待有机胶凝固;3. Assemble the dried materials in
四、将步骤三制备的接头放入石墨磨具中,母材Si3N4陶瓷位于上方,在母材Si3N4陶瓷的上表面放置石墨块进行物理加压;4. Put the joint prepared in
五、将步骤四的石墨模具放到真空钎焊炉中,抽真空至真空度保持在6×10-6Pa以上,然后在45min~50min内升温至300℃~350℃并保稳20min~25min,然后以7.5℃/min~8℃/min升温至钎焊温度并且保温10min~15min,最后以5℃/min~6℃/min降低到280℃~300℃,随炉冷却,即完成连接;5. Put the graphite mold in step 4 into the vacuum brazing furnace, evacuate until the vacuum degree is kept above 6×10 -6 Pa, and then raise the temperature to 300℃~350℃ within 45min~50min and keep it stable for 20min~25min , then heat up to the brazing temperature at 7.5℃/min~8℃/min and keep it for 10min~15min, and finally reduce it to 280℃~300℃ at 5℃/min~6℃/min, and cool with the furnace to complete the connection;
所述的钎焊温度为900℃~950℃。The brazing temperature is 900°C to 950°C.
本发明拟以钎料AgCuTi和AgCu为基础,研制出适合连接氮化硅陶瓷与316L不锈钢的复合钎料层,AgCuTi钎料和Ag箔、AgCu钎料和Ag箔发生互溶,在Mo两侧都形成Ag基固溶体,可降低接头的残余应力以及提高接头整体耐蚀性。The invention intends to develop a composite brazing filler metal layer suitable for connecting silicon nitride ceramics and 316L stainless steel on the basis of the brazing filler metals AgCuTi and AgCu. The formation of Ag-based solid solution can reduce the residual stress of the joint and improve the overall corrosion resistance of the joint.
X金属箔片以Mo箔片为例,Mo箔片的厚度应根据不同焊件尺寸大小进行调整。陶瓷侧残余应力因Mo箔片厚度的增大而减小(陶瓷侧残余应力与其他金属做中间层的厚度关系应进行有限元模拟,在做出厚度选择)。X metal foil takes Mo foil as an example. The thickness of Mo foil should be adjusted according to the size of different weldments. The residual stress on the ceramic side decreases with the increase of the thickness of the Mo foil (the relationship between the residual stress on the ceramic side and the thickness of other metals as the intermediate layer should be simulated by finite element, and the thickness is selected).
附图说明Description of drawings
图1为试验一的步骤三制备的接头的装配示意图,1为Si3N4陶瓷,2为钎料AgCuTi,3为Ag箔片,4为Mo箔片,5为钎料AgCu,6为316L不锈钢;Figure 1 is a schematic diagram of the assembly of the joint prepared in
图2为试验一的步骤五制备的接头SEM图;Fig. 2 is the SEM image of the joint prepared in
图3为试验一的步骤五制备的接头腐蚀后的SEM图;Fig. 3 is the SEM image after corrosion of the joint prepared in
图4为传统AgCuTi作为钎料,钎焊Si3N4和316L不锈钢接头的残余应力仿真云图;Figure 4 shows the residual stress simulation cloud diagram of the traditional AgCuTi as the brazing material, brazing Si 3 N 4 and 316L stainless steel joints;
图5为试验一的步骤五制备的接头的残余应力仿真云图。Fig. 5 is a simulation cloud diagram of residual stress of the joint prepared in
具体实施方式Detailed ways
具体实施方式一:本实施方式为一种具有抗腐蚀和应力缓解的氮化硅陶瓷/不锈钢钎焊接头的制备方法,具体过程如下:Embodiment 1: This embodiment is a preparation method of a silicon nitride ceramic/stainless steel brazing joint with corrosion resistance and stress relief, and the specific process is as follows:
一、将母材Si3N4陶瓷的待焊接面依次用300#金相砂纸、600#金相砂纸和1000#金相砂纸打磨至光滑,在丙酮中超声震荡3min~5min,然后放入烘箱中烘干;1. Grind the surface to be welded of the base metal Si 3 N 4 ceramic with 300# metallographic sandpaper, 600# metallographic sandpaper and 1000# metallographic sandpaper in turn to smoothness, ultrasonically vibrate in acetone for 3min-5min, and then put it in an oven medium drying;
二、将母材316L不锈钢依次用600#SiC砂纸和#1000SiC砂纸打磨去除表面氧化层,然后依次用800#金相砂纸和1000#金相砂纸进行打磨至光亮,之后在丙酮中超声震荡清洗3min~5min,最后将材料放入烘箱中烘干;2. Grind the
对X金属箔片、Ag箔片、钎料AgCuTi和钎料AgCu分别重复步骤二中上述的操作;所述的X金属箔片中的X为Mo、W、Cr或Nb;Repeat the above operations in step 2 for X metal foil, Ag foil, solder AgCuTi and solder AgCu respectively; X in the X metal foil is Mo, W, Cr or Nb;
三、将步骤一和步骤二中烘干好的材料按照母材316L不锈钢/AgCu/Ag/X/Ag/AgCuTi/母材Si3N4陶瓷的结构进行装配,在进行装配时每两层之间用有机胶进行粘结,自然放置待有机胶凝固;3. Assemble the dried materials in
四、将步骤三制备的接头放入石墨磨具中,母材Si3N4陶瓷位于上方,在母材Si3N4陶瓷的上表面放置石墨块进行物理加压;4. Put the joint prepared in
五、将步骤四的石墨模具放到真空钎焊炉中,抽真空至真空度保持在6×10-6Pa以上,然后在45min~50min内升温至300℃~350℃并保稳20min~25min,然后以7.5℃/min~8℃/min升温至钎焊温度并且保温10min~15min,最后以5℃/min~6℃/min降低到280℃~300℃,随炉冷却,即完成连接;5. Put the graphite mold in step 4 into the vacuum brazing furnace, evacuate until the vacuum degree is kept above 6×10 -6 Pa, and then raise the temperature to 300℃~350℃ within 45min~50min and keep it stable for 20min~25min , then heat up to the brazing temperature at 7.5℃/min~8℃/min and keep it for 10min~15min, and finally reduce it to 280℃~300℃ at 5℃/min~6℃/min, and cool with the furnace to complete the connection;
所述的钎焊温度为900℃~950℃。The brazing temperature is 900°C to 950°C.
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一中所述的超声震荡是在超声震荡仪中进行。其他与具体实施方式一相同。Embodiment 2: The difference between this embodiment and
具体实施方式三:本实施方式与具体实施方式一或二不同的是:步骤一中所述的超声震荡的频率为40KHz。其他与具体实施方式一或二相同。Embodiment 3: The difference between this embodiment and
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤一中所述的烘干为在80℃烘干2h。其他与具体实施方式一至三之一相同。Embodiment 4: The difference between this embodiment and one of
具体实施方式五:本实施方式与具体实施方式四不同的是:步骤二中所述的超声震荡是在超声震荡仪中进行。其他与具体实施方式四相同。Embodiment 5: This embodiment is different from Embodiment 4 in that the ultrasonic oscillation described in step 2 is performed in an ultrasonic oscillator. Others are the same as the fourth embodiment.
具体实施方式六:本实施方式与具体实施方式四不同的是:步骤二中所述的超声震荡的频率为40KHz。其他与具体实施方式四相同。Embodiment 6: This embodiment is different from Embodiment 4 in that the frequency of the ultrasonic oscillation described in step 2 is 40KHz. Others are the same as the fourth embodiment.
具体实施方式七:本实施方式与具体实施方式四不同的是:步骤二中所述的烘干为在80℃烘干2h。其他与具体实施方式四相同。Embodiment 7: This embodiment is different from Embodiment 4 in that the drying described in step 2 is drying at 80° C. for 2 hours. Others are the same as the fourth embodiment.
具体实施方式八:本实施方式与具体实施方式四不同的是:步骤二中所述的钎料AgCuTi为Ag69Cu28Ti3(wt.%)。其他与具体实施方式四相同。Embodiment 8: This embodiment is different from Embodiment 4 in that the brazing filler metal AgCuTi described in step 2 is Ag69Cu28Ti3 (wt.%). Others are the same as the fourth embodiment.
具体实施方式九:本实施方式与具体实施方式四不同的是:步骤二中所述的钎料AgCu为Ag28Cu(wt.%)。其他与具体实施方式四相同。Embodiment 9: The difference between this embodiment and Embodiment 4 is that the brazing filler metal AgCu described in step 2 is Ag28Cu (wt.%). Others are the same as the fourth embodiment.
具体实施方式十:本实施方式与具体实施方式四不同的是:步骤三中所述的有机胶为502胶。其他与具体实施方式四相同。Embodiment 10: The difference between this embodiment and the fourth embodiment is that the organic glue described in
具体实施方式十一:本实施方式与具体实施方式四不同的是:步骤五中将步骤四的石墨模具放到真空钎焊炉中,抽真空至真空度保持在6×10-6Pa以上,然后在45min内升温至300℃并保稳20min,然后以7.5℃/min升温至钎焊温度并且保温10min,最后以5℃/min降低到300℃,随炉冷却,即完成连接。其他与具体实施方式四相同。Embodiment 11: The difference between this embodiment and Embodiment 4 is that: in
具体实施方式十二:本实施方式与具体实施方式四不同的是:当步骤五的钎焊温度为950℃时,步骤二所述的钎料AgCuTi和钎料AgCu的厚度均为100μm,Ag箔片的厚度为2031.11μm,X金属箔片的厚度为100μm~500μm。其他与具体实施方式四相同。Embodiment 12: The difference between this embodiment and Embodiment 4 is that when the brazing temperature in
具体实施方式十三:本实施方式与具体实施方式四不同的是:当步骤五的钎焊温度为900℃时,步骤二所述的钎料AgCuTi和钎料AgCu的厚度均为100μm,Ag箔片的厚度为305.47μm,X金属箔片的厚度为100μm~500μm。其他与具体实施方式四相同。Embodiment 13: The difference between this embodiment and Embodiment 4 is that when the brazing temperature in
用以下试验对本发明进行验证:The present invention was verified with the following experiments:
试验一:本试验为一种具有抗腐蚀和应力缓解的氮化硅陶瓷/不锈钢钎焊接头的制备方法,具体过程如下:Test 1: This test is a preparation method of a silicon nitride ceramic/stainless steel brazing joint with corrosion resistance and stress relief. The specific process is as follows:
一、将母材Si3N4陶瓷的待焊接面依次用300#金相砂纸、600#金相砂纸和1000#金相砂纸打磨至光滑,在丙酮中超声震荡3min,然后放入烘箱中烘干;步骤一中所述的超声震荡是在超声震荡仪中进行;步骤一中所述的超声震荡的频率为40KHz;步骤一中所述的烘干为在80℃烘干2h;1. The surface to be welded of the base metal Si 3 N 4 ceramic is polished to smooth with 300# metallographic sandpaper, 600# metallographic sandpaper and 1000# metallographic sandpaper in turn, ultrasonically oscillated in acetone for 3 minutes, and then placed in an oven to dry Drying; the ultrasonic vibration described in the
二、将母材316L不锈钢依次用600#SiC砂纸和#1000SiC砂纸打磨去除表面氧化层,然后依次用800#金相砂纸和1000#金相砂纸进行打磨至光亮,之后在丙酮中超声震荡清洗3min,最后将材料放入烘箱中烘干;步骤二中所述的超声震荡是在超声震荡仪中进行;步骤二中所述的超声震荡的频率为40KHz;步骤二中所述的烘干为在80℃烘干2h;步骤二中所述的钎料AgCuTi为Ag69Cu28Ti3(wt.%);步骤二中所述的钎料AgCu为Ag28Cu(wt.%);步骤二所述的钎料AgCuTi和钎料AgCu的厚度均为100μm,Ag箔片的厚度为305.47μm,Mo箔片的厚度为500μm;2. Grind the
对Mo箔片、Ag箔片、钎料AgCuTi和钎料AgCu分别重复步骤二中上述的操作;Repeat the above operations in step 2 for Mo foil, Ag foil, solder AgCuTi and solder AgCu respectively;
三、将步骤一和步骤二中烘干好的材料按照母材316L不锈钢/AgCu/Ag/Mo/Ag/AgCuTi/母材Si3N4陶瓷的结构进行装配,在进行装配时为了钎料层装配稳定,每两层之间用502胶进行粘结,自然放置待502胶凝固;3. Assemble the dried materials in
四、将步骤三制备的接头放入石墨磨具中,母材Si3N4陶瓷位于上方,在母材Si3N4陶瓷的上表面放置石墨块进行物理加压,避免升温过程中因金属钎料融化而导致母材脱离原先位置,致使焊接效果大打折扣;4. Put the joint prepared in
五、将步骤四的石墨模具放到真空钎焊炉中,抽真空至真空度保持在6×10-6Pa以上,然后在45min内升温至300℃并保稳20min,以便将接头中的有机胶挥发干净,然后以7.5℃/min升温至钎焊温度并且保温10min,最后以5℃/min降低到300℃,随炉冷却,即完成连接;5. Put the graphite mold in step 4 into the vacuum brazing furnace, vacuumize until the vacuum degree is kept above 6×10 -6 Pa, and then raise the temperature to 300°C within 45min and keep it stable for 20min, so as to remove the organic matter in the joint. The glue volatilizes cleanly, then it is heated up to the brazing temperature at 7.5°C/min and kept for 10 minutes, and finally lowered to 300°C at 5°C/min, and the connection is completed by cooling with the furnace;
所述的钎焊温度为900℃。The brazing temperature is 900°C.
对试验一的步骤五制备的接头性能进行剪切强度评价,得到的接头室温强度为80.31MPa。The shear strength of the joint prepared in
图2为试验一的步骤五制备的接头SEM图,可以观察到AgCuTi钎料和Ag箔、AgCu钎料和Ag箔发生互溶,在Mo两侧都形成Ag基固溶体。Figure 2 is the SEM image of the joint prepared in
为了观察接头腐蚀后的形貌,对试验一的步骤五制备的接头进行腐蚀:采用动电位极化的方法对接头进行加速腐蚀,所使用的仪器为电化学工作站,其中铂电极作为对电极,接头为工作电极,饱和甘汞电极为标准电极,3.5wt.%的NaCl水溶液为电解溶液,所测试接头的横截面积为4×8mm2,测试电压范围为-0.3V~0.3V,扫描速率为5mV/s。腐蚀之后的SEM形貌如图3所示,整个焊缝区没有较大的孔洞出现,整体接头呈现出较好的耐蚀性。In order to observe the morphology of the joint after corrosion, the joint prepared in
图4为传统AgCuTi作为钎料,钎焊Si3N4和316L不锈钢接头的残余应力仿真云图;Figure 4 shows the residual stress simulation cloud diagram of the traditional AgCuTi as the brazing material, brazing Si 3 N 4 and 316L stainless steel joints;
图5为试验一的步骤五制备的接头的残余应力仿真云图。可以看到采用试验一的AgCu/Ag/Mo/Ag/AgCuTi复合钎料焊接Si3N4和316L不锈钢接头的最大残余应力(165.4MPa)要明显小于传统AgCuTi作为钎料的接头最大残余应力(303.4MPa)。Fig. 5 is a simulation cloud diagram of residual stress of the joint prepared in
试验二:本试验与试验一不同的是:步骤五中的钎焊温度为950℃,步骤二所述的Ag箔片的厚度为2031.11μm。其它与试验一相同。Test 2: The difference between this test and
对试验二的步骤五制备的接头性能进行剪切强度评价,得到的接头室温强度为63.36MPa。The shear strength of the joint prepared in
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110303142.5A CN113020735B (en) | 2021-03-22 | 2021-03-22 | Preparation method of silicon nitride ceramic/stainless steel braze welding joint with corrosion resistance and stress relief |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110303142.5A CN113020735B (en) | 2021-03-22 | 2021-03-22 | Preparation method of silicon nitride ceramic/stainless steel braze welding joint with corrosion resistance and stress relief |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113020735A CN113020735A (en) | 2021-06-25 |
CN113020735B true CN113020735B (en) | 2022-06-21 |
Family
ID=76472393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110303142.5A Expired - Fee Related CN113020735B (en) | 2021-03-22 | 2021-03-22 | Preparation method of silicon nitride ceramic/stainless steel braze welding joint with corrosion resistance and stress relief |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113020735B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115194275B (en) * | 2022-06-02 | 2023-06-13 | 哈尔滨工业大学 | Method for brazing dissimilar metals of titanium alloy and nickel-based superalloy |
CN115991609A (en) * | 2023-01-09 | 2023-04-21 | 南京理工大学 | A ceramic-metal discharge plasma connection method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4763828A (en) * | 1983-12-20 | 1988-08-16 | Mitsubishi Jukogyo Kabushiki Kaisha | Method for bonding ceramics and metals |
CN1167742A (en) * | 1995-05-17 | 1997-12-17 | 东芝株式会社 | Ceramic-metal binding material, ceramic-metal bound article making method and vacuum seal container |
KR20010066092A (en) * | 1999-12-31 | 2001-07-11 | 이계안 | Rocker arm and Manufacturing method for improving high efficiency of large diesel vehicle |
CN104798195A (en) * | 2012-11-20 | 2015-07-22 | 同和金属技术有限公司 | Metal-ceramic bonded substrate and method for producing same |
CN105436741A (en) * | 2015-12-11 | 2016-03-30 | 中国航空工业集团公司北京航空材料研究院 | Silver-copper-indium-titanium middle-temperature brazing filler metal |
CN106862694A (en) * | 2017-04-06 | 2017-06-20 | 爱迪森自动化科技(昆山)有限公司 | A kind of method of functionally gradient material (FGM) method soldering stainless steel and hard alloy |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7947933B2 (en) * | 2003-11-25 | 2011-05-24 | Kyocera Corporation | Ceramic heater and method for manufacture thereof |
US8777088B2 (en) * | 2011-09-16 | 2014-07-15 | Baker Hughes Incorporated | Methods for attaching cutting elements to earth-boring tools using tapered surfaces |
FR2984781B1 (en) * | 2011-12-22 | 2014-01-24 | Commissariat Energie Atomique | PROCESS FOR THE BRAZING ASSEMBLY OF A SUBSTRATE COMPRISING PYROCARBON WITH PARTS COMPRISING PYROCARBON |
CN108213771B (en) * | 2018-01-15 | 2020-05-22 | 合肥工业大学 | Composite brazing filler metal for brazing silicon carbide ceramic in vacuum and brazing process thereof |
-
2021
- 2021-03-22 CN CN202110303142.5A patent/CN113020735B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4763828A (en) * | 1983-12-20 | 1988-08-16 | Mitsubishi Jukogyo Kabushiki Kaisha | Method for bonding ceramics and metals |
CN1167742A (en) * | 1995-05-17 | 1997-12-17 | 东芝株式会社 | Ceramic-metal binding material, ceramic-metal bound article making method and vacuum seal container |
KR20010066092A (en) * | 1999-12-31 | 2001-07-11 | 이계안 | Rocker arm and Manufacturing method for improving high efficiency of large diesel vehicle |
CN104798195A (en) * | 2012-11-20 | 2015-07-22 | 同和金属技术有限公司 | Metal-ceramic bonded substrate and method for producing same |
CN105436741A (en) * | 2015-12-11 | 2016-03-30 | 中国航空工业集团公司北京航空材料研究院 | Silver-copper-indium-titanium middle-temperature brazing filler metal |
CN106862694A (en) * | 2017-04-06 | 2017-06-20 | 爱迪森自动化科技(昆山)有限公司 | A kind of method of functionally gradient material (FGM) method soldering stainless steel and hard alloy |
Non-Patent Citations (2)
Title |
---|
Ag-Cu基复合钎料钎焊SiC陶瓷;蔡淑娟等;《热加工工艺》;20201231(第07期);43-46 * |
航空铝合金机箱真空钎焊技术分析;李文刚;《科学技术创新》;20180105(第01期);55-56 * |
Also Published As
Publication number | Publication date |
---|---|
CN113020735A (en) | 2021-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103252572B (en) | Transient liquid phase diffusion bonding process of molybdenum copper alloy and stainless steel | |
CN113020735B (en) | Preparation method of silicon nitride ceramic/stainless steel braze welding joint with corrosion resistance and stress relief | |
CN102699558A (en) | Flexible composite middle layer brazing alloy and method of utilizing brazing ceramic and metal | |
CN108672965A (en) | A method of alleviating ceramics and solder bonding metal connector residual stress | |
CN105537712A (en) | Ceramic and metal brazing composite component and preparing method thereof | |
CN101941106B (en) | High temperature brazing process of super nickel laminated material and Cr18-Ni8 stainless steel | |
CN105728981B (en) | Weld Si3N4The solder and its method for welding of ceramics-stainless steel | |
CN114346346B (en) | Method for connecting high-entropy carbide ceramics by adopting high-entropy alloy brazing | |
CN102489813A (en) | Vacuum active brazing process of molybdenum-copper alloys and stainless steel | |
CN107414279B (en) | A connection method for thick plate TiNi alloy and titanium alloy dissimilar materials | |
CN105149717A (en) | Silicon-based ceramic surface metallization method | |
CN112620850A (en) | High-temperature brazing connection method for graphite and stainless steel | |
CN113478040B (en) | An active brazing method for improving the joint performance of graphite/copper dissimilar materials | |
CN112620851A (en) | Method for connecting graphite and stainless steel through high-temperature brazing of composite gradient interlayer | |
CN111347146A (en) | Tungsten and heat sink material connector and preparation method thereof | |
CN105254321A (en) | Ceramic/metal connecting method based on Ni-B/Ti instant liquid phase in-situ reaction | |
CN106041350A (en) | Tungsten/copper or tungsten/steel connector and method for preparing same | |
CN106862693A (en) | A kind of tungsten/copper or tungsten/steel joint and preparation method thereof | |
CN104772542B (en) | The hard alloy of WC particle In-sltu reinforcement and the ultrasonic brazing method of steel | |
CN103341675A (en) | A kind of method utilizing Ti-Co-Nb solder to braze Cf/SiC composite material and metal Nb | |
CN105965176B (en) | For soldering tungsten-copper alloy and the Ni base chilling solders and soldering processes of stainless steel | |
CN105921839B (en) | A kind of kovar alloy and ceramic material ultrasonic brazing method | |
CN111515515A (en) | Vacuum diffusion welding connection method for molybdenum-based high-temperature alloy honeycomb structure | |
CN105081503A (en) | Soldering method for achieving connection of SiC-based composite ceramic and Invar alloy by means of NiCrSi | |
CN106378506B (en) | A kind of technique that SiC based composites are brazed using brazing material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220621 |
|
CF01 | Termination of patent right due to non-payment of annual fee |