[go: up one dir, main page]

CN112992964B - Light-emitting diode structure and manufacturing method thereof - Google Patents

Light-emitting diode structure and manufacturing method thereof Download PDF

Info

Publication number
CN112992964B
CN112992964B CN202110317555.9A CN202110317555A CN112992964B CN 112992964 B CN112992964 B CN 112992964B CN 202110317555 A CN202110317555 A CN 202110317555A CN 112992964 B CN112992964 B CN 112992964B
Authority
CN
China
Prior art keywords
semiconductor layer
layer
led
led unit
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110317555.9A
Other languages
Chinese (zh)
Other versions
CN112992964A (en
Inventor
庄永漳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laiyu Optoelectronic Technology Suzhou Co ltd
Original Assignee
Laiyu Optoelectronic Technology Suzhou Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/162,515 external-priority patent/US12224304B2/en
Application filed by Laiyu Optoelectronic Technology Suzhou Co ltd filed Critical Laiyu Optoelectronic Technology Suzhou Co ltd
Publication of CN112992964A publication Critical patent/CN112992964A/en
Application granted granted Critical
Publication of CN112992964B publication Critical patent/CN112992964B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H29/00Integrated devices, or assemblies of multiple devices, comprising at least one light-emitting semiconductor element covered by group H10H20/00
    • H10H29/10Integrated devices comprising at least one light-emitting semiconductor component covered by group H10H20/00
    • H10H29/14Integrated devices comprising at least one light-emitting semiconductor component covered by group H10H20/00 comprising multiple light-emitting semiconductor components
    • H10H29/142Two-dimensional arrangements, e.g. asymmetric LED layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • H10D86/441Interconnections, e.g. scanning lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/011Manufacture or treatment of bodies, e.g. forming semiconductor layers
    • H10H20/018Bonding of wafers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/032Manufacture or treatment of electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/034Manufacture or treatment of coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/036Manufacture or treatment of packages
    • H10H20/0364Manufacture or treatment of packages of interconnections
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/811Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
    • H10H20/812Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/83Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/83Electrodes
    • H10H20/831Electrodes characterised by their shape
    • H10H20/8314Electrodes characterised by their shape extending at least partially onto an outer side surface of the bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/84Coatings, e.g. passivation layers or antireflective coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/8506Containers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/857Interconnections, e.g. lead-frames, bond wires or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/03Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10H20/00
    • H01L25/0753Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10H20/00 the devices being arranged next to each other

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

The application discloses a light emitting diode structure and a manufacturing method thereof. The light emitting diode structure includes a substrate and a plurality of LED units formed on the substrate. Each LED unit includes: a bonding layer formed on the substrate; a first doping type semiconductor layer formed on the bonding layer; a second doping type semiconductor layer formed on the first doping type semiconductor layer; a passivation layer formed on the second doping type semiconductor layer and a portion of the first doping type semiconductor layer; and an electrode layer formed on a portion of the passivation layer and in contact with the second doping type semiconductor layer. The plurality of LED units includes a first LED unit and a second LED unit adjacent to the first LED unit. The first doping type semiconductor layer of the first LED unit horizontally extends to the first doping type semiconductor layer of the second LED unit adjacent to the first LED unit, and the first LED unit and the second LED unit are independently operable LED units.

Description

发光二极管结构及其制造方法Light-emitting diode structure and manufacturing method thereof

相关申请的交叉引用Cross References to Related Applications

本申请要求2020年4月9日提交的,标题为“半导体阵列和单片集成方法(Semiconductor Array and Method of Monolithic Integration)”的美国临时专利申请第 63/007,829号的优先权,同时要求了2021年1月29日提交的,标题为“发光二极管结构及其制造方法(LIGHT EMITTING DIODE STRUCTURE AND METHOD FOR MANUFACTURING THESAME)”的美国正式专利申请第17/162,515号的优先权,其公开内容在此通过引用以整体并入。This application claims priority to U.S. Provisional Patent Application No. 63/007,829, filed April 9, 2020, entitled "Semiconductor Array and Method of Monolithic Integration," and also claims 2021 Priority to U.S. Official Patent Application No. 17/162,515, entitled "LIGHT EMITTING DIODE STRUCTURE AND METHOD FOR MANUFACTURING THESAME," filed January 29, 2011, the disclosure of which is hereby adopted References are incorporated in their entirety.

技术领域technical field

本申请涉及一种发光二极管(LED)结构和一种制造该LED结构的方法,更具体地,涉及一种具有多个可单独工作的LED单元且同时共享掺杂层的LED结构及其制造方法。The present application relates to a light-emitting diode (LED) structure and a method of manufacturing the LED structure, and more particularly, to an LED structure having a plurality of individually operable LED units while sharing a doped layer and a method of manufacturing the same .

背景技术Background technique

近年来,LED已经在照明应用中变得流行。作为光源,LED具有许多优点,包括更高的光效率、更低的能耗、更长的使用寿命、更小的尺寸以及更快的开关速度。In recent years, LEDs have become popular in lighting applications. As a light source, LEDs have many advantages, including higher light efficiency, lower energy consumption, longer lifetime, smaller size, and faster switching speed.

微型LED显示器具有多个单像素元件的微型LED(micro-LEDs)阵列。像素可以是显示屏上的微小照明区域,可以由许多像素构成图像。换句话说,像素可以是小的离散元素,它们一起构成显示器上的图像。像素通常以二维(2D)矩阵排列,并使用点、正方形、矩形或其他形状表示。像素可以是显示器或数字图像的基本单元,并具有几何坐标。Micro-LED displays have arrays of micro-LEDs (micro-LEDs) with multiple single-pixel elements. A pixel is a tiny illuminated area on a display screen, and many pixels can make up an image. In other words, pixels can be small discrete elements that together make up an image on a display. Pixels are usually arranged in a two-dimensional (2D) matrix and represented using dots, squares, rectangles, or other shapes. A pixel can be the basic unit of a display or a digital image and has geometric coordinates.

当制造微型LED时,经常使用诸如干法蚀刻或湿法蚀刻工艺来使各个微型LED电学隔离。为了产生多个完全隔离的功能性微型LED像素,常规过程通常完全蚀刻掉连续的功能性外延层。然而,当将传统的微型LED像素转移到基板(诸如驱动电路基板)上或在转移之后,由于微型LED像素的粘附性弱,所以完全隔离的功能性微型LED像素可能容易从基板上剥离。当微型LED像素变得更小时,这个问题变得更加严重。此外,在隔离微型LED像素的常规蚀刻过程中,微型LED像素的侧壁可能被损坏并影响LED结构的光学和电学性质。When manufacturing micro-LEDs, processes such as dry etching or wet etching are often used to electrically isolate individual micro-LEDs. In order to produce multiple fully isolated functional micro-LED pixels, conventional processes typically completely etch away the continuous functional epitaxial layer. However, when transferring conventional Micro LED pixels onto a substrate such as a driving circuit substrate or after transfer, completely isolated functional Micro LED pixels may be easily peeled off from the substrate due to weak adhesion of the Micro LED pixels. This problem gets worse when Micro LED pixels get smaller. Furthermore, during the conventional etching process to isolate the Micro-LED pixels, the sidewalls of the Micro-LED pixels may be damaged and affect the optical and electrical properties of the LED structure.

本申请的实施例通过在共享掺杂层或键合层的同时提供具有多个可单独工作的LED 单元的LED结构及其制造方法来解决上述问题。Embodiments of the present application solve the above-mentioned problems by providing an LED structure having a plurality of individually operable LED units and a method of manufacturing the same while sharing a doped layer or a bonding layer.

发明内容Contents of the invention

本申请公开了一种LED结构和形成该LED结构的方法的实施例。Embodiments of an LED structure and a method of forming the LED structure are disclosed herein.

在一个实施例中,公开了一种LED结构。该LED结构包括基板和形成在基板上的多个LED单元。每个LED单元包括:键合层,其形成在基板上;第一掺杂型半导体层,其形成在键合层上;第二掺杂型半导体层,其形成在第一掺杂型半导体层上;钝化层,其形成在第二掺杂型半导体层上和第一掺杂型半导体层的一部分上;以及电极层,其形成在钝化层的一部分上并与第二掺杂型半导体层接触。多个LED单元包括第一LED单元和与第一LED单元相邻的第二LED单元。第一LED单元的第一掺杂型半导体层水平地延伸并物理地连接至与第一LED单元相邻的第二LED单元的第一掺杂型半导体层,并且第一 LED单元和第二LED单元是可单独工作的LED单元。In one embodiment, an LED structure is disclosed. The LED structure includes a substrate and a plurality of LED units formed on the substrate. Each LED unit includes: a bonding layer formed on the substrate; a first doped semiconductor layer formed on the bonding layer; a second doped semiconductor layer formed on the first doped semiconductor layer on; a passivation layer formed on the second doping type semiconductor layer and a part of the first doping type semiconductor layer; and an electrode layer formed on a part of the passivation layer and connected to the second doping type semiconductor layer layer contact. The plurality of LED units includes a first LED unit and a second LED unit adjacent to the first LED unit. The first doped semiconductor layer of the first LED unit extends horizontally and is physically connected to the first doped semiconductor layer of the second LED unit adjacent to the first LED unit, and the first LED unit and the second LED Units are LED units that work individually.

在另一实施例中,公开了一种LED结构。该LED结构包括基板和形成在基板上的多个LED单元。每个LED单元包括:p-n二极管层,其形成在基板上;钝化层,其形成在 p-n二极管层上;以及电极层,其形成在钝化层上并与p-n二极管层接触。多个LED单元包括第一LED单元和与第一LED单元相邻的第二LED单元。第一LED单元和第二LED 单元具有公共阳极,并且第一LED单元和第二LED单元是可单独工作的LED单元。In another embodiment, an LED structure is disclosed. The LED structure includes a substrate and a plurality of LED units formed on the substrate. Each LED unit includes: a p-n diode layer formed on the substrate; a passivation layer formed on the p-n diode layer; and an electrode layer formed on the passivation layer and in contact with the p-n diode layer. The plurality of LED units includes a first LED unit and a second LED unit adjacent to the first LED unit. The first LED unit and the second LED unit have a common anode, and the first LED unit and the second LED unit are individually operable LED units.

在进一步的实施例中,公开了一种用于制造LED结构的方法,包括:In a further embodiment, a method for fabricating an LED structure is disclosed, comprising:

在第一基板上形成半导体层,所述半导体层包括第一掺杂型半导体层和第二掺杂型半导体层;forming a semiconductor layer on the first substrate, the semiconductor layer including a first doped type semiconductor layer and a second doped type semiconductor layer;

执行第一蚀刻操作以去除第二掺杂型半导体层的一部分并暴露第一掺杂型半导体层的一部分;performing a first etching operation to remove a portion of the second doped semiconductor layer and expose a portion of the first doped semiconductor layer;

执行第二蚀刻操作以去除第一掺杂型半导体层的一部分并使第一基板的具有像素电路触点的一部分暴露;performing a second etching operation to remove a portion of the first doped semiconductor layer and expose a portion of the first substrate having a pixel circuit contact;

在第二掺杂型半导体层上和暴露的第一掺杂型半导体层上形成钝化层;forming a passivation layer on the second doped semiconductor layer and the exposed first doped semiconductor layer;

执行第三蚀刻操作以在第二掺杂型半导体层上的钝化层上形成第一开口,并在具有像素电路触点的第一基板上的钝化层上形成第二开口;performing a third etching operation to form a first opening on the passivation layer on the second doped semiconductor layer, and forming a second opening on the passivation layer on the first substrate having pixel circuit contacts;

在覆盖第一开口并接触第二掺杂型半导体层以及覆盖第二开口并接触第二掺杂型半导体层的钝化层上形成电极层。An electrode layer is formed on the passivation layer covering the first opening and contacting the second doping type semiconductor layer and covering the second opening and contacting the second doping type semiconductor layer.

附图说明Description of drawings

结合在本说明书中并构成说明书一部分的附图示出了本申请的实施方式,并且与说明书一起进一步用于解释本申请,并使本领域技术人员能够制造和使用本申请。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the application and together with the description serve to further explain the application and enable those skilled in the art to make and use the application.

图1示出了根据本申请的一些实施方式的例证性LED结构的顶视图。Figure 1 shows a top view of an illustrative LED structure according to some embodiments of the present application.

图2示出了根据本申请的一些实施方式的例证性LED结构的横截面图。Figure 2 shows a cross-sectional view of an illustrative LED structure according to some embodiments of the present application.

图3示出了根据本申请的一些实施方式的例证性LED结构的另一横截面图。Figure 3 shows another cross-sectional view of an illustrative LED structure according to some embodiments of the present application.

图4示出了根据本申请的一些实施方式的例证性LED结构的另一顶视图。Figure 4 shows another top view of an illustrative LED structure according to some embodiments of the present application.

图5示出了根据本申请的一些实施方式的另一例证性LED结构的顶视图。5 shows a top view of another illustrative LED structure according to some embodiments of the present application.

图6A至图6H示出了根据本申请的一些实施方式的处于制造过程的不同阶段的例证性LED结构的横截面图。6A-6H show cross-sectional views of illustrative LED structures at various stages of the fabrication process, according to some embodiments of the present application.

图7是根据本申请的一些实施方式的用于制造LED结构的例证性方法的流程图。7 is a flowchart of an illustrative method for fabricating an LED structure according to some embodiments of the present application.

如下将参考附图描述本申请的实施方式。Embodiments of the present application will be described below with reference to the drawings.

具体实施方式Detailed ways

尽管讨论了具体的配置和布置,但是应理解,这样做仅出于说明的目的。因此,在不脱离本申请的范围的情况下,可以使用其他配置和布置。而且,本申请也可以在多种其他应用中采用。在本申请中描述的功能和结构特征可以彼此并以附图中未具体示出的多种方式结合、调整和修改,使得这些组合、调整和修改在本申请的范围内。While specific configurations and arrangements are discussed, it should be understood that this is done for illustration purposes only. Accordingly, other configurations and arrangements may be used without departing from the scope of the present application. Moreover, the present application may be employed in a variety of other applications as well. Functional and structural features described in this application may be combined, adjusted and modified with each other and in various ways not specifically shown in the drawings, so that these combinations, adjustments and modifications are within the scope of this application.

通常,可以至少部分地根据上下文的用法来理解术语。例如,本文所使用的术语“一个或多个”至少部分地取决于上下文,可以用于以单数形式描述任何部件、结构或特征,或者可用于以复数形式描述部件、结构或特征的组合。类似地,诸如“一”、“一个”或“该”的术语也可以至少部分地取决于上下文理解为传达单数用法或传达复数用法。另外,术语“基于…”可以理解为不一定旨在传达一组排他的因素,而是至少部分地取决于上下文可以代替地允许存在不一定必须明确描述的附加因素。In general, terms can be understood at least in part from contextual usage. For example, the term "one or more" as used herein may be used to describe any component, structure or feature in the singular or a combination of components, structures or features in the plural, depending at least in part on the context. Similarly, terms such as "a", "an" or "the" may also be read to convey singular usage or to convey plural usage, depending at least in part on the context. Additionally, the term "based on" may be understood as not necessarily intended to convey an exclusive set of factors, but may instead allow for the presence of additional factors that do not necessarily have to be explicitly described, depending at least in part on the context.

应容易理解,本申请中的“在…上”、“在…之上”和“在…上面”的含义应该以最广义的方式解释,使得“在…上”不仅意味着“直接在某物上”,而且还意味着包括存在两者之间的中间部件或层的“在某物上”,并且“在某物之上”或“在某物上面”不仅意味着“在某物之上”或“在某物上面”的含义,而且也包括不存在两者之间的中间部件或层的“在某物之上”或“在某物上面”的含义。It should be readily understood that the meanings of "on", "over" and "over" in this application should be interpreted in the broadest possible manner, so that "on" does not only mean "directly on something "on", but also means "on something" that includes an intermediate component or layer that exists between the two, and "on something" or "on something" not only means "on something " or "on something", but also includes the meaning of "on something" or "over something" in which there is no intermediate component or layer in between.

此外,为了便于描述,本文中可能使用诸如“在…下面”、“在…之下”、“下部”、“在…之上”、“上部”等空间相对术语来描述一个元件或部件与附图中所示的另一元件或部件的关系。除了在图中描述的方位之外,空间相对术语还意图涵盖装置在使用或操作中的不同方位。设备可以以其他方式定向(旋转90。或以其他定向),并且在本文中使用的空间相对描述语可以被同样地相应地解释。In addition, for the convenience of description, spatially relative terms such as "below", "beneath", "lower", "above", "upper", etc. may be used herein to describe an element or part and an accompanying relationship to another element or component shown in the figure. Spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The device may be otherwise oriented (rotated 90° or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.

本文中所使用的术语“层”是指包括具有一定厚度的区域的材料部分。层可以在整个下层或上层结构上延伸,或者可以具有小于下层或上层结构的范围的程度。此外,层可以是均质或不均质连续结构的区域,其厚度小于连续结构的厚度。例如,层可以位于连续结构的顶表面和底表面之间或在其之间的任何一对水平平面之间。层可以水平地、垂直地和/或沿着锥形表面延伸。基板可以是一层,可以在其中包括一个或多个层,和/或可以在其上、之上和/或之下具有一个或多个层。一层可以包括多层。例如,半导体层可以包括一个或多个掺杂或未掺杂的半导体层,并且可以具有相同或不同的材料。The term "layer" as used herein refers to a portion of material comprising a region having a certain thickness. A layer may extend across the entire underlying or superstructure, or may have an extent that is less than the extent of the underlying or superstructure. Furthermore, a layer may be a region of a homogeneous or heterogeneous continuous structure, the thickness of which is less than that of the continuous structure. For example, a layer may be located between the top and bottom surfaces of the continuous structure or between any pair of horizontal planes therebetween. Layers may extend horizontally, vertically and/or along the tapered surface. A substrate can be one layer, can include one or more layers therein, and/or can have one or more layers thereon, above, and/or below. A layer can include multiple layers. For example, a semiconductor layer may comprise one or more doped or undoped semiconductor layers, and may be of the same or different materials.

本文中使用的术语“基板”是指在其上添加后续材料层的材料。基板本身可以被图案化。添加到基板顶部的材料可以被图案化或可以保持未图案化。此外,基板可以包括各种各样的半导体材料,诸如硅、碳化硅、氮化镓、锗、砷化镓、磷化铟等。可替选地,基板可以由非导电材料制成,诸如玻璃、塑料或蓝宝石晶片。进一步可替选地,基板可以具有在其中形成的半导体装置或电路。As used herein, the term "substrate" refers to a material onto which subsequent layers of material are added. The substrate itself can be patterned. Materials added to the top of the substrate can be patterned or can remain unpatterned. Additionally, the substrate may include a wide variety of semiconductor materials, such as silicon, silicon carbide, gallium nitride, germanium, gallium arsenide, indium phosphide, and the like. Alternatively, the substrate may be made of a non-conductive material such as glass, plastic or a sapphire wafer. Further alternatively, the substrate may have semiconductor devices or circuits formed therein.

本文中使用的术语“微型”LED、“微型”p-n二极管或“微型”装置是指根据本申请的实施方式的某些装置或结构的描述性尺寸。本文中使用的术语“微型”装置或结构旨在表示0.1 至100μm的规模。然而,应明白,本申请的实施方式不一定限于此,并且实施方式的某些方面可以适用于更大的以及可能更小的尺寸规模。As used herein, the terms "micro" LED, "miniature" p-n diode, or "micro" device refer to descriptive dimensions of certain devices or structures according to embodiments of the application. As used herein, the term "micro" device or structure is intended to mean the scale of 0.1 to 100 μm. It should be understood, however, that embodiments of the present application are not necessarily so limited, and that certain aspects of the embodiments may be applicable to larger and possibly smaller scales.

本申请的实施方式描述了LED结构或微型LED结构以及一种用于制造该结构的方法。为了制造微型LED显示器,将外延层键合到接收基板。接收基板例如可以是但不限于包括CMOS背板或TFT玻璃基板的显示基板。然后,外延层在接收基板上形成有微型LED 阵列。当在接收基板上形成微型LED时,由于细小功能性像素在接收基板上的粘附力较弱,并且与像素大小成正比,因此多个细小功能性像素可能会从接收基板上剥离,从而在制造过程期间导致显示器故障(失效像素)。为了解决上述问题,本申请引入了一种解决方案,其中功能外延层被部分地图案化/蚀刻,并且允许保留薄的连续功能层和键合层以避免潜在的功能性像素剥离。另外,本申请中所述的制造方法可以进一步减少功能性像素的侧壁物理损伤,减少作为LED的发光区域的量子阱结构的损坏,并改善功能性像素的光学和电学性质。Embodiments of the present application describe LED structures or micro-LED structures and a method for fabricating the structures. To fabricate micro-LED displays, the epitaxial layer is bonded to a receiving substrate. The receiving substrate may be, for example but not limited to, a display substrate including a CMOS backplane or a TFT glass substrate. The epitaxial layer is then formed with a micro LED array on the receiving substrate. When micro-LEDs are formed on a receiving substrate, since the adhesion of small functional pixels on the receiving substrate is weak and proportional to the pixel size, multiple small functional pixels may be peeled off from the receiving substrate, resulting in Causes display failures (dead pixels) during the manufacturing process. To address the above issues, the present application introduces a solution in which the functional epitaxial layer is partially patterned/etched and allows a thin continuous functional layer and bonding layer to remain to avoid potential functional pixel lift-off. In addition, the manufacturing method described in this application can further reduce the physical damage of the sidewall of the functional pixel, reduce the damage of the quantum well structure as the light emitting region of the LED, and improve the optical and electrical properties of the functional pixel.

图1示出了根据本申请的一些实施方式的例证性LED结构100的顶视图,图2示出了根据本申请的一些实施方式的沿线A-A’的例证性LED结构100的横截面图。为了更好地解释本申请,将一起描述图1中的LED结构100的顶视图和图2中的LED结构100的横截面图。LED结构100包括第一基板102和多个LED单元116(例如,如图2中所示的LED单元116-1、116-2、116-3以及116-4)。LED单元116通过键合层104键合在第一基板102上。在一些实施方式中,第一基板102可以包括半导体材料,诸如硅、碳化硅、氮化镓、锗、砷化镓、磷化铟。在一些实施方式中,第一基板102可以由非导电材料制成,诸如玻璃、塑料或蓝宝石晶片。在一些实施方式中,第一基板102可以具有在其中形成的驱动电路,并且第一基板102可以是CMOS背板或TFT玻璃基板。驱动电路将电信号提供给LED单元116以控制亮度。在一些实施方式中,驱动电路可以包括有源矩阵驱动电路,其中,每个单独的LED单元116都相应于独立的驱动器。在一些实施方式中,驱动电路可以包括无源矩阵驱动电路,其中,多个LED单元116排列成阵列并且连接到由驱动电路驱动的数据线和扫描线。1 shows a top view of an exemplary LED structure 100 according to some embodiments of the present application, and FIG. 2 shows a cross-sectional view of an exemplary LED structure 100 along line AA' according to some embodiments of the present application. . In order to better explain the present application, the top view of the LED structure 100 in FIG. 1 and the cross-sectional view of the LED structure 100 in FIG. 2 will be described together. The LED structure 100 includes a first substrate 102 and a plurality of LED units 116 (eg, LED units 116-1, 116-2, 116-3, and 116-4 as shown in FIG. 2). The LED unit 116 is bonded on the first substrate 102 through the bonding layer 104 . In some embodiments, the first substrate 102 may include a semiconductor material, such as silicon, silicon carbide, gallium nitride, germanium, gallium arsenide, indium phosphide. In some implementations, the first substrate 102 may be made of a non-conductive material, such as glass, plastic, or a sapphire wafer. In some embodiments, the first substrate 102 may have a driving circuit formed therein, and the first substrate 102 may be a CMOS backplane or a TFT glass substrate. The drive circuit provides an electrical signal to the LED unit 116 to control brightness. In some embodiments, the driver circuit may comprise an active matrix driver circuit, wherein each individual LED unit 116 corresponds to an independent driver. In some embodiments, the driving circuit may include a passive matrix driving circuit, wherein a plurality of LED units 116 are arranged in an array and connected to data lines and scan lines driven by the driving circuit.

键合层104是形成在第一基板102上以键合第一基板102和LED单元116的粘合材料层。在一些实施方式中,键合层104可以包括导电材料,诸如金属或金属合金。在一些实施方式中,键合层104可以包括Au、Sn、In、Cu或Ti。在一些实施方式中,键合层104 可以包括非导电材料,诸如聚酰亚胺(PI)、聚二甲基硅氧烷(PDMS)。在一些实施方式中,键合层104可以包括光刻胶,诸如SU-8光刻胶。在一些实施方式中,键合层104 可以是氢倍半硅氧烷(HSQ)或二乙烯基硅氧烷-双-苯并环丁烯(DVS-BCB)。应理解,对键合层104的材料的描述仅是示例性的,而不是限制性的,本领域技术人员可以根据要求进行改变,所有这些改变都在本申请的范围内。The bonding layer 104 is an adhesive material layer formed on the first substrate 102 to bond the first substrate 102 and the LED unit 116 . In some implementations, the bonding layer 104 may include a conductive material, such as a metal or metal alloy. In some embodiments, the bonding layer 104 may include Au, Sn, In, Cu, or Ti. In some embodiments, the bonding layer 104 may include a non-conductive material, such as polyimide (PI), polydimethylsiloxane (PDMS). In some implementations, the bonding layer 104 may include a photoresist, such as SU-8 photoresist. In some embodiments, the bonding layer 104 can be hydrogen silsesquioxane (HSQ) or divinylsiloxane-bis-benzocyclobutene (DVS-BCB). It should be understood that the description of the material of the bonding layer 104 is only exemplary rather than limiting, and those skilled in the art may make changes according to requirements, and all these changes are within the scope of the present application.

参考图2,每个LED单元116包括部分的键合层104、第一掺杂型半导体层106以及第二掺杂型半导体层108。第一掺杂型半导体层106形成在键合层104上。在一些实施方式中,第一掺杂型半导体层106和第二掺杂型半导体层108可以包括基于II-VI材料(诸如ZnSe或ZnO)或III-V氮化物材料(诸如GaN、AlN、InN、InGaN、GaP、AlInGaP、 AlGaAs及其合金)的一个或多个层。Referring to FIG. 2 , each LED unit 116 includes part of the bonding layer 104 , the first doped semiconductor layer 106 and the second doped semiconductor layer 108 . The first doped semiconductor layer 106 is formed on the bonding layer 104 . In some implementations, the first doped semiconductor layer 106 and the second doped semiconductor layer 108 may include materials based on II-VI materials (such as ZnSe or ZnO) or III-V nitride materials (such as GaN, AlN, InN , InGaN, GaP, AlInGaP, AlGaAs and their alloys) one or more layers.

在一些实施方式中,第一掺杂型半导体层106可以是跨多个LED单元116(例如,如图2中所示的四个LED单元116)延伸并形成这些LED单元116的公共阳极的p型半导体层。例如,LED单元116-2的第一掺杂型半导体层106延伸到其相邻的LED单元116-1 和116-3,类似地,LED单元116-3的第一掺杂型半导体层106延伸到其相邻的LED单元 116-2和116-4。在一些实施方式中,跨LED单元延伸的第一掺杂型半导体层106可以相对的薄。在一些实施方式中,第一掺杂型半导体层106的厚度可以在大约0.05μm至大约 1μm之间。在一些其他实施方式中,第一掺杂型半导体层106的厚度可以在大约0.05μm 至大约0.7μm之间。在一些替选实施方式中,第一掺杂型半导体层106的厚度可以在约 0.05μm与约0.5μm之间。通过在各个LED单元上的具有连续的第一掺杂型半导体的薄层,基板102与多个LED单元116之间的键合区域不仅限于第二掺杂型半导体层108下方的区域,还延伸至各个LED单元之间的区域。换句话说,通过具有连续的第一掺杂型半导体106的薄层,键合层104的面积增大。因此,增强了基板102与多个LED单元116之间的键合强度,并且可以降低LED结构100剥离的风险。In some embodiments, the first doped semiconductor layer 106 can be p type semiconductor layer. For example, the first doped semiconductor layer 106 of the LED unit 116-2 extends to its adjacent LED units 116-1 and 116-3, similarly, the first doped semiconductor layer 106 of the LED unit 116-3 extends to its adjacent LED units 116-2 and 116-4. In some embodiments, the first doped semiconductor layer 106 extending across the LED unit can be relatively thin. In some embodiments, the thickness of the first doped semiconductor layer 106 may be between about 0.05 μm and about 1 μm. In some other embodiments, the thickness of the first doped semiconductor layer 106 may be between about 0.05 μm and about 0.7 μm. In some alternative embodiments, the thickness of the first doped semiconductor layer 106 may be between about 0.05 μm and about 0.5 μm. By having a continuous thin layer of the first doped semiconductor on each LED unit, the bonding area between the substrate 102 and the plurality of LED units 116 is not limited to the area under the second doped semiconductor layer 108, but also extends to the area between the individual LED units. In other words, by having a continuous thin layer of the first doped type semiconductor 106, the area of the bonding layer 104 is increased. Therefore, the bonding strength between the substrate 102 and the plurality of LED units 116 is enhanced, and the risk of delamination of the LED structure 100 can be reduced.

在一些实施方式中,第一掺杂型半导体层106可以是p型GaN。在一些实施方式中,可以通过在GaN中掺杂镁(Mg)来形成第一掺杂型半导体层106。在一些实施方式中,第一掺杂型半导体层106可以是p型InGaN。在一些实施方式中,第一掺杂型半导体层106 可以是p型AlInGaP。每个LED单元116都具有连接到驱动电路的阳极和阴极,例如,驱动电路形成在基板102中(图中未明确示出驱动电路)。例如,每个LED单元116都具有连接到恒压源的阳极并且具有连接到驱动电路的源极/漏极的阴极。换句话说,通过跨各个LED单元116形成连续的第一掺杂型半导体106,多个LED单元116具有由第一掺杂型半导体层106和键合层104形成的公共阳极。In some embodiments, the first doped semiconductor layer 106 may be p-type GaN. In some embodiments, the first doped semiconductor layer 106 may be formed by doping GaN with magnesium (Mg). In some embodiments, the first doped semiconductor layer 106 may be p-type InGaN. In some embodiments, the first doped semiconductor layer 106 may be p-type AlInGaP. Each LED unit 116 has an anode and a cathode connected to a driving circuit, for example, formed in the substrate 102 (the driving circuit is not explicitly shown in the figure). For example, each LED unit 116 has an anode connected to a constant voltage source and a cathode connected to a source/drain of a driver circuit. In other words, by forming a continuous first doped semiconductor 106 across each LED unit 116 , multiple LED units 116 have a common anode formed by the first doped semiconductor layer 106 and the bonding layer 104 .

在一些实施方式中,第二掺杂型半导体层108可以是n型半导体层并且形成每个LED 单元116的阴极。在一些实施方式中,第二掺杂型半导体层108可以是n型GaN。在一些实施方式中,第二掺杂型半导体层108可以是n型InGaN。在一些实施方式中,第二掺杂型半导体层108可以是n型AlInGaP。不同LED单元116的第二掺杂型半导体层108被电隔离,因而每个LED单元116都可以具有与其他单元不同的电压电平的阴极。作为所公开的实施方式的结果,形成多个可单独工作的LED单元116,其第一掺杂型半导体层 106跨相邻的LED单元水平地延伸,并且其第二掺杂型半导体层108在相邻的LED单元之间电隔离。In some embodiments, the second doped semiconductor layer 108 can be an n-type semiconductor layer and forms the cathode of each LED unit 116 . In some embodiments, the second doped semiconductor layer 108 may be n-type GaN. In some embodiments, the second doped semiconductor layer 108 may be n-type InGaN. In some embodiments, the second doped semiconductor layer 108 may be n-type AlInGaP. The second doped semiconductor layer 108 of different LED units 116 are electrically isolated so that each LED unit 116 can have a cathode at a different voltage level than the other units. As a result of the disclosed embodiments, a plurality of individually operable LED units 116 are formed whose first doped semiconductor layer 106 extends horizontally across adjacent LED units and whose second doped semiconductor layer 108 Adjacent LED units are electrically isolated.

每个LED单元116进一步包括在第一掺杂型半导体层106和第二掺杂型半导体层108 之间形成的多量子阱(MQW)层110。MQW层110是LED单元116的有源区。在一些实施方式中,包括第一掺杂型半导体层106和第二掺杂型半导体层108的厚度可以在大约 0.3μm至大约5μm之间。在一些其他实施方式中,包括第一掺杂型半导体层106、MQW 层110和第二掺杂型半导体层108的厚度可以在大约0.4μm至大约4μm之间。在一些替选实施方式中,包括第一掺杂型半导体层106、MQW层110和第二掺杂型半导体层108 的厚度可以在大约0.5μm与大约3μm之间。Each LED unit 116 further includes a multiple quantum well (MQW) layer 110 formed between the first doped semiconductor layer 106 and the second doped semiconductor layer 108 . The MQW layer 110 is the active area of the LED unit 116 . In some embodiments, the thickness including the first doped semiconductor layer 106 and the second doped semiconductor layer 108 may be between about 0.3 μm and about 5 μm. In some other embodiments, the thickness including the first doped semiconductor layer 106 , the MQW layer 110 and the second doped semiconductor layer 108 may be between about 0.4 μm and about 4 μm. In some alternative embodiments, the thickness including the first doped semiconductor layer 106 , the MQW layer 110 and the second doped semiconductor layer 108 may be between about 0.5 μm and about 3 μm.

如图2中所示,在第二掺杂型半导体层108和第一掺杂型半导体层106的一部分上形成钝化层112。钝化层112可以用于保护和隔离LED单元116。在一些实施方式中,钝化层112可以包括SiO2、Al2O3、SiN或其他合适的材料。在一些实施方式中,钝化层112 可包含聚酰亚胺、SU-8光刻胶或其他可光图案化的聚合物。电极层114形成在钝化层112 的一部分上,并且电极层114通过钝化层112上的开口电连接第二掺杂型半导体层108。在一些实施方式中,电极层114可以是导电材料,诸如铟锡氧化物(ITO)、Cr、Ti、Pt、 Au、Al、Cu、Ge或Ni。As shown in FIG. 2 , a passivation layer 112 is formed on a portion of the second doped semiconductor layer 108 and the first doped semiconductor layer 106 . Passivation layer 112 may serve to protect and isolate LED unit 116 . In some embodiments, the passivation layer 112 may include SiO 2 , Al 2 O 3 , SiN, or other suitable materials. In some embodiments, passivation layer 112 may comprise polyimide, SU-8 photoresist, or other photo-patternable polymers. The electrode layer 114 is formed on a part of the passivation layer 112 , and the electrode layer 114 is electrically connected to the second doped semiconductor layer 108 through the opening on the passivation layer 112 . In some embodiments, the electrode layer 114 may be a conductive material such as indium tin oxide (ITO), Cr, Ti, Pt, Au, Al, Cu, Ge, or Ni.

图3示出了根据本申请的一些实施方式的沿线B-B’的例证性LED结构100的另一横截面图。第一基板102具有形成在其中的用于驱动LED单元116的驱动电路。驱动电路的触点118暴露在两个LED单元116之间,并且触点118通过电极层114与第二掺杂型半导体层108电连接。换句话说,第二掺杂型半导体层108和驱动电路的触点118的电连接由电极层114完成。如上所述,第二掺杂型半导体层108形成每个LED单元116的阴极,因此触点118通过电极层114从驱动电路向第二掺杂型半导体层108提供对每个LED 单元116的阴极的驱动电压。Figure 3 shows another cross-sectional view of an illustrative LED structure 100 along line B-B' according to some embodiments of the present application. The first substrate 102 has a driving circuit for driving the LED unit 116 formed therein. The contact 118 of the driving circuit is exposed between the two LED units 116 , and the contact 118 is electrically connected to the second doped semiconductor layer 108 through the electrode layer 114 . In other words, the electrical connection between the second doped semiconductor layer 108 and the contact 118 of the driving circuit is completed by the electrode layer 114 . As mentioned above, the second doped semiconductor layer 108 forms the cathode of each LED unit 116, so the contact 118 provides the cathode for each LED unit 116 from the driving circuit to the second doped semiconductor layer 108 through the electrode layer 114. the drive voltage.

图4示出了根据本申请的一些实施方式的LED结构100的另一顶视图。在图4中,为了解释的目的,用虚线示出了电极层114和钝化层112下方的层。在图4中,LED结构 100包括16个LED单元116。每个LED单元116包括由第一掺杂型半导体层106和第二掺杂型半导体层108以及多量子阱110形成的p-n二极管层。钝化层112形成在p-n二极管上,并且电极层114形成在钝化层112上。FIG. 4 shows another top view of an LED structure 100 according to some embodiments of the application. In FIG. 4, the electrode layer 114 and the layers below the passivation layer 112 are shown with dashed lines for explanatory purposes. In FIG. 4 , the LED structure 100 includes 16 LED units 116 . Each LED unit 116 includes a p-n diode layer formed by the first doped semiconductor layer 106 and the second doped semiconductor layer 108 and the multiple quantum well 110 . A passivation layer 112 is formed on the p-n diode, and an electrode layer 114 is formed on the passivation layer 112 .

在暴露第二掺杂型半导体层108的钝化层112上形成开口120,并且在暴露触点118的钝化层112上形成开口122。在钝化层112的覆盖开口120和开口122的部分上形成电极层114,因此,电极层114与第二掺杂型半导体层108和触点118电连接。在图4例证性地示出,开口120位于每个LED单元116的中心处,并且开口122位于相邻LED单元 116的间隙处。应理解,开口120、开口122和电极层114的位置和设计(诸如形状和尺寸)可以基于要求偏离图4中所示的示例,并且不限于此。An opening 120 is formed on the passivation layer 112 exposing the second doped semiconductor layer 108 , and an opening 122 is formed on the passivation layer 112 exposing the contact 118 . The electrode layer 114 is formed on the portion of the passivation layer 112 covering the opening 120 and the opening 122 , and thus, the electrode layer 114 is electrically connected to the second doped semiconductor layer 108 and the contact 118 . As shown illustratively in FIG. 4 , opening 120 is located at the center of each LED unit 116 and opening 122 is located at the gap between adjacent LED units 116 . It should be understood that the location and design (such as shape and size) of the openings 120, 122, and electrode layer 114 may deviate from the example shown in FIG. 4 based on requirements, and are not limited thereto.

在图4中,LED结构100包括16个LED单元116,并且每个LED单元116都可独立地工作。第一掺杂型半导体层106位于第二掺杂型半导体层108和钝化层112之下,并且第一掺杂型半导体层106是这16个LED单元116的公共阳极。根据本申请,当这些LED单元(例如,16个LED单元16)的第一掺杂型半导体层106不仅在形成LED结构 100的制造过程期间而且在制造过程之后电连接,并且每个LED单元都可以被不同的驱动电路独立驱动时,多个LED单元被称为“可独立地工作”。In FIG. 4, the LED structure 100 includes 16 LED units 116, and each LED unit 116 can work independently. The first doped semiconductor layer 106 is located under the second doped semiconductor layer 108 and the passivation layer 112 , and the first doped semiconductor layer 106 is a common anode of the 16 LED units 116 . According to the present application, when the first doped semiconductor layers 106 of these LED units (for example, 16 LED units 16) are electrically connected not only during the manufacturing process of forming the LED structure 100 but also after the manufacturing process, and each LED unit Multiple LED units are said to be "independently operable" when they can be independently driven by different driving circuits.

图5示出了根据本申请的一些实施方式的另一LED结构500的顶视图。在图5中的顶视图中,第二掺杂型半导体层108的形状为圆形的,这与图4中所示的LED结构100 的顶视图中的第二掺杂型半导体层108的形状不同。应理解,在一些实施方式中,顶视图中的第二掺杂型半导体层108的位置和形状可以根据各种设计或应用而改变,并且顶视图中的第二掺杂型半导体层108或LED单元116的形状并不限于此。在一些实施方式中,顶视图中的开口120、开口122、电极层114或触点118的位置和形状也可以根据各种设计和应用而改变,并且不限于此。FIG. 5 shows a top view of another LED structure 500 according to some embodiments of the application. In the top view in FIG. 5, the shape of the second doped semiconductor layer 108 is circular, which is the same as the shape of the second doped semiconductor layer 108 in the top view of the LED structure 100 shown in FIG. different. It should be understood that, in some embodiments, the position and shape of the second doped semiconductor layer 108 in the top view can be changed according to various designs or applications, and the second doped semiconductor layer 108 in the top view or the LED The shape of the unit 116 is not limited thereto. In some embodiments, the positions and shapes of the opening 120 , the opening 122 , the electrode layer 114 or the contact 118 in the top view may also vary according to various designs and applications, and are not limited thereto.

图6A至图6H示出了根据本申请的一些实施方式的在制造过程期间的例证性LED结构100的横截面图,图7是根据本申请的一些实施方式的用于制造LED结构100的例证性方法700的流程图。为了更好地解释本申请,将一起描述图6A至图6H以及图7中的流程图。在图6A中,在第一基板102中形成驱动电路,并且该驱动电路包括触点118。例如,该驱动电路可以包括在硅晶片上制造的CMOS装置,并且一些晶片级封装层或扇出结构堆叠在CMOS装置上以形成触点118。对于另一示例,驱动电路可以包括在玻璃基板上制造的TFT,并且一些晶片级封装层或扇出结构堆叠在TFT上以形成触点118。半导体层在第二基板124上形成,并且该半导体层包括第一掺杂型半导体层106、第二掺杂型半导体层108和MQW层110。6A-6H show cross-sectional views of an exemplary LED structure 100 during a fabrication process according to some embodiments of the present application, and FIG. 7 is an illustration for fabricating an LED structure 100 according to some embodiments of the present application. A flowchart of the method 700. In order to better explain the present application, the flowcharts in FIGS. 6A to 6H and FIG. 7 will be described together. In FIG. 6A , a driving circuit is formed in the first substrate 102 and includes contacts 118 . For example, the drive circuit may include a CMOS device fabricated on a silicon wafer, and some wafer-level packaging layers or fan-out structures are stacked on the CMOS device to form contacts 118 . For another example, the driving circuit may include TFTs fabricated on a glass substrate, and some wafer-level packaging layers or fan-out structures are stacked on the TFTs to form contacts 118 . A semiconductor layer is formed on the second substrate 124 , and the semiconductor layer includes the first doped semiconductor layer 106 , the second doped semiconductor layer 108 and the MQW layer 110 .

在一些实施方式中,第一基板102或第二基板124可以包括半导体材料,诸如硅、碳化硅、氮化镓、锗、砷化镓、磷化铟。在一些实施方式中,第一基板102或第二基板124 可以由非导电材料制成,诸如玻璃、塑料或蓝宝石晶片。在一些实施方式中,第一基板102 可以具有在其中形成的驱动电路,并且第一基板102可以包括CMOS背板或TFT玻璃基板。在一些实施方式中,第一掺杂型半导体层106和第二掺杂型半导体层108可以包括基于II-VI材料(诸如ZnSe或ZnO)或III-V氮化物材料(诸如GaN、AlN、InN、InGaN、 GaP、AlInGaP、AlGaAs及其合金)的一个或多个层。在一些实施方式中,第一掺杂型半导体层106可以包括p型半导体层,并且第二掺杂型半导体层108可以包括n型半导体层。In some embodiments, the first substrate 102 or the second substrate 124 may include a semiconductor material such as silicon, silicon carbide, gallium nitride, germanium, gallium arsenide, indium phosphide. In some embodiments, the first substrate 102 or the second substrate 124 may be made of a non-conductive material, such as glass, plastic, or a sapphire wafer. In some embodiments, the first substrate 102 may have a driving circuit formed therein, and the first substrate 102 may include a CMOS backplane or a TFT glass substrate. In some implementations, the first doped semiconductor layer 106 and the second doped semiconductor layer 108 may include materials based on II-VI materials (such as ZnSe or ZnO) or III-V nitride materials (such as GaN, AlN, InN , InGaN, GaP, AlInGaP, AlGaAs and their alloys) one or more layers. In some embodiments, the first doped semiconductor layer 106 may include a p-type semiconductor layer, and the second doped semiconductor layer 108 may include an n-type semiconductor layer.

在图6B中,键合层104在第一基板102上形成。在一些实施方式中,键合层104可以包括导电材料,诸如金属或金属合金。在一些实施方式中,键合层104可以包括Au、 Sn、In、Cu或Ti。在一些实施方式中,键合层104可以包括非导电材料,诸如聚酰亚胺 (PI)、聚二甲基硅氧烷(PDMS)。在一些实施方式中,键合层104可以包括光刻胶,诸如SU-8光刻胶。在一些实施方式中,键合层104可以是氢倍半硅氧烷(HSQ)或二乙烯基硅氧烷-双-苯并环丁烯(DVS-BCB)。在一些实施方式中,导电层126可以形成覆盖第一掺杂型半导体层106的公共电极。在一些实施方式中,导电层126可以在第一掺杂型半导体层106上形成欧姆触点。在一些实施方式中,在之后的操作中,导电层126和键合层104可以被统称为一层。In FIG. 6B , a bonding layer 104 is formed on the first substrate 102 . In some implementations, the bonding layer 104 may include a conductive material, such as a metal or metal alloy. In some embodiments, the bonding layer 104 may include Au, Sn, In, Cu, or Ti. In some embodiments, the bonding layer 104 may include a non-conductive material, such as polyimide (PI), polydimethylsiloxane (PDMS). In some implementations, the bonding layer 104 may include a photoresist, such as SU-8 photoresist. In some embodiments, the bonding layer 104 can be hydrogen silsesquioxane (HSQ) or divinylsiloxane-bis-benzocyclobutene (DVS-BCB). In some implementations, the conductive layer 126 may form a common electrode covering the first doped semiconductor layer 106 . In some embodiments, the conductive layer 126 can form an ohmic contact on the first doped semiconductor layer 106 . In some embodiments, the conductive layer 126 and the bonding layer 104 may be collectively referred to as one layer in subsequent operations.

参考图6C以及图7的操作702,将第二基板124以及包括第一掺杂型半导体层106、第二掺杂型半导体层108和MQW层110的半导体层翻转并通过键合层104和导电层126 键合至第一基板102。然后,可以从半导体层移除第二基板124。图6C示出了在第一基板 102和第一掺杂型半导体层106之间的键合层104。然而,在一些实施方式中,键合层104 可以包括一个或多个层以键合第一基板102和第一掺杂型半导体层106。例如,键合层104 可以包括单个导电或非导电层。对于另一示例,键合层104可以包括粘合材料和导电或非导电层。在一些实施方式中,在操作702之后,键合层104和导电层126可以被统称为一层。应理解,对键合层104的材料的描述仅是说明性的而不是限制性的,并且本领域技术人员可以根据要求改变,所有这些改变都在本申请的范围之内。Referring to FIG. 6C and operation 702 of FIG. 7, the second substrate 124 and the semiconductor layers including the first doped semiconductor layer 106, the second doped semiconductor layer 108 and the MQW layer 110 are turned over and passed through the bonding layer 104 and the conductive Layer 126 is bonded to first substrate 102 . Then, the second substrate 124 may be removed from the semiconductor layer. FIG. 6C shows the bonding layer 104 between the first substrate 102 and the first doped semiconductor layer 106. However, in some embodiments, the bonding layer 104 may include one or more layers to bond the first substrate 102 and the first doped semiconductor layer 106 . For example, bonding layer 104 may include a single conductive or non-conductive layer. For another example, the bonding layer 104 may include an adhesive material and a conductive or non-conductive layer. In some implementations, after operation 702, bonding layer 104 and conductive layer 126 may be collectively referred to as one layer. It should be understood that the description of the material of the bonding layer 104 is only illustrative rather than restrictive, and those skilled in the art may make changes according to requirements, and all such changes are within the scope of the present application.

在图6D中,可以在第二掺杂型半导体层108上执行减薄操作以去除第二掺杂型半导体层108的一部分。在一些实施方式中,减薄操作可以包括干法蚀刻或湿法蚀刻操作。在一些实施方式中,减薄操作可以包括化学机械抛光(CMP)操作。在一些实施方式中,包括第一掺杂型半导体层106、MQW层110和第二掺杂型半导体层108的厚度可以在大约 0.3μm至大约5μm之间。在一些其他实施方式中,包括第一掺杂型半导体层106、MQW 层110和第二掺杂型半导体层108的厚度可以在大约0.4μm至大约4μm之间。在一些替选实施方式中,包括第一掺杂型半导体层106、MQW层110和第二掺杂型半导体层108 的厚度可以在大约0.5μm至大约3μm之间。In FIG. 6D , a thinning operation may be performed on the second doped semiconductor layer 108 to remove a portion of the second doped semiconductor layer 108 . In some embodiments, the thinning operation may include a dry etching or a wet etching operation. In some embodiments, the thinning operation may include a chemical mechanical polishing (CMP) operation. In some embodiments, the thickness including the first doped semiconductor layer 106 , the MQW layer 110 and the second doped semiconductor layer 108 may be between about 0.3 μm and about 5 μm. In some other embodiments, the thickness including the first doped semiconductor layer 106 , the MQW layer 110 and the second doped semiconductor layer 108 may be between about 0.4 μm and about 4 μm. In some alternative embodiments, the thickness including the first doped semiconductor layer 106 , the MQW layer 110 and the second doped semiconductor layer 108 may be between about 0.5 μm and about 3 μm.

参考图6E以及图7的操作704,可以执行第一蚀刻操作以去除第二掺杂型半导体层108的一部分并且暴露第一掺杂型半导体层106的一部分。第一掺杂型半导体层106的一部分被暴露,直到预定义厚度的第一掺杂型半导体层106保留在第一基板102上。在一些实施方式中,剩余的第一掺杂型半导体层106水平地跨LED结构100中的多个LED单元 116(诸如图6E中所示的四个LED单元116)延伸。在一些实施方式中,第一掺杂型半导体层106的预定义厚度可以在大约0.05μm至大约1μm之间。在一些实施方式中,第一掺杂型半导体层106的预定义厚度可以在大约0.05μm至大约0.7μm之间。在一些替选实施方式中,第一掺杂型半导体层106的预定义厚度可以在大约0.05μm至大约0.5μm之间。在操作704之后,每个LED单元116的第二掺杂类型半导体层108和MQW层110可以被电分离,并且相邻LED单元116(诸如LED单元116-1、116-2、116-3和116-4)的第一掺杂类型半导体层106可以被电连接。Referring to FIG. 6E and operation 704 of FIG. 7 , a first etching operation may be performed to remove a portion of the second doping type semiconductor layer 108 and expose a portion of the first doping type semiconductor layer 106 . A portion of the first doped semiconductor layer 106 is exposed until a predefined thickness of the first doped semiconductor layer 106 remains on the first substrate 102 . In some embodiments, the remaining first doped semiconductor layer 106 extends horizontally across a plurality of LED units 116 in the LED structure 100, such as the four LED units 116 shown in Figure 6E. In some embodiments, the predefined thickness of the first doped semiconductor layer 106 may be between about 0.05 μm and about 1 μm. In some embodiments, the predefined thickness of the first doped semiconductor layer 106 may be between about 0.05 μm and about 0.7 μm. In some alternative embodiments, the predefined thickness of the first doped semiconductor layer 106 may be between about 0.05 μm and about 0.5 μm. After operation 704, the second doping type semiconductor layer 108 and the MQW layer 110 of each LED unit 116 may be electrically separated, and adjacent LED units 116 (such as LED units 116-1, 116-2, 116-3, and 116-4) of the first doping type semiconductor layer 106 may be electrically connected.

在一些实施方式中,在操作704期间,可以执行第一蚀刻操作以去除第二掺杂型半导体层108的一部分并暴露MQW层110的一部分。暴露MQW层110的一部分直到预定义厚度的第一掺杂型半导体层106和MQW层110保留在第一基板102上。在一些实施方式中,剩余的第一掺杂型半导体层106和MQW层110水平地跨LED结构100中的多个LED 单元116(诸如图6E中所示的四个LED单元116)延伸。在一些实施方式中,第一掺杂类型半导体层106和MQW层110的预定义厚度可以在大约0.05μm至大约1μm之间。在一些实施方式中,第一掺杂类型半导体层106和MQW层110的预定义厚度可以在大约 0.05μm至大约0.7μm之间。在一些替选实施方式中,第一掺杂类型半导体层106和MQW 层110的预定义厚度可以在大约0.05μm至大约0.5μm之间。在操作704之后,每个LED 单元116的第二掺杂型半导体层108都可以被电分离,并且相邻LED单元116(诸如LED 单元116-1、116-2、116-3和116-4)的第一掺杂型半导体层106和MQW层110可以电连接。In some embodiments, during operation 704 , a first etching operation may be performed to remove a portion of the second doped semiconductor layer 108 and expose a portion of the MQW layer 110 . A portion of the MQW layer 110 is exposed until a predetermined thickness of the first doped type semiconductor layer 106 and the MQW layer 110 remain on the first substrate 102 . In some embodiments, the remaining first doped semiconductor layer 106 and the MQW layer 110 extend horizontally across a plurality of LED units 116 in the LED structure 100 , such as the four LED units 116 shown in FIG. 6E . In some embodiments, the predefined thicknesses of the first doping type semiconductor layer 106 and the MQW layer 110 may be between about 0.05 μm and about 1 μm. In some embodiments, the predefined thicknesses of the first doping type semiconductor layer 106 and the MQW layer 110 may be between about 0.05 μm and about 0.7 μm. In some alternative embodiments, the predefined thicknesses of the first doping type semiconductor layer 106 and the MQW layer 110 may be between about 0.05 μm and about 0.5 μm. After operation 704, the second doped semiconductor layer 108 of each LED unit 116 can be electrically separated, and adjacent LED units 116 (such as LED units 116-1, 116-2, 116-3, and 116-4 ) of the first doped semiconductor layer 106 and the MQW layer 110 may be electrically connected.

参考图6F,可以执行第二蚀刻操作以去除第一掺杂型半导体层106的一部分并暴露触点118。第二蚀刻操作可以是干法蚀刻或湿法蚀刻操作。在干法蚀刻操作或湿法蚀刻操作中,可以通过光刻过程在第二掺杂型半导体层108和第一掺杂型半导体层106的一部分上形成硬掩模(例如,光刻胶)。然后,通过干法刻蚀等离子体或湿法刻蚀溶液去除第一掺杂型半导体层106的未被覆盖部分,以暴露触点118。Referring to FIG. 6F , a second etching operation may be performed to remove a portion of the first doped type semiconductor layer 106 and expose the contact 118 . The second etching operation may be a dry etching or a wet etching operation. In a dry etching operation or a wet etching operation, a hard mask (eg, photoresist) may be formed on a portion of the second doped type semiconductor layer 108 and the first doped type semiconductor layer 106 through a photolithography process. Then, the uncovered portion of the first doped semiconductor layer 106 is removed by dry etching plasma or wet etching solution to expose the contact 118 .

参考图6G以及图7的操作706,在第二掺杂型半导体层108、暴露的第一掺杂型半导体层106和暴露的触点118上形成钝化层112。在一些实施方式中,钝化层112可以包括SiO2、Al2O3、SiN或其他合适的材料以进行隔离和保护。在一些实施方式中,钝化层112 可包含聚酰亚胺、SU-8光刻胶或其他可光图案化的聚合物。在图7的操作708中,如图 6G中所示,形成开口120和开口122。开口120暴露第二掺杂型半导体层108地一部分,并且开口122暴露触点118。在一些实施方式中,操作708可以通过第三蚀刻操作执行,以去除钝化层112的一部分并形成开口120和开口122。在一些进一步的实施方式中,通过光敏材料(例如,聚酰亚胺、SU-8光刻胶或其他可光图案化的聚合物)形成所提供的钝化层112,操作708可以通过光刻操作执行,以图案化钝化层112并暴露开口120和开口122。Referring to FIG. 6G and operation 706 of FIG. 7 , a passivation layer 112 is formed on the second doped semiconductor layer 108 , the exposed first doped semiconductor layer 106 and the exposed contacts 118 . In some embodiments, the passivation layer 112 may include SiO 2 , Al 2 O 3 , SiN, or other suitable materials for isolation and protection. In some embodiments, passivation layer 112 may comprise polyimide, SU-8 photoresist, or other photo-patternable polymers. In operation 708 of FIG. 7 , opening 120 and opening 122 are formed, as shown in FIG. 6G . The opening 120 exposes a portion of the second doped semiconductor layer 108 , and the opening 122 exposes the contact 118 . In some implementations, operation 708 may be performed by a third etch operation to remove a portion of passivation layer 112 and form opening 120 and opening 122 . In some further embodiments, the provided passivation layer 112 is formed by a photosensitive material (eg, polyimide, SU-8 photoresist, or other photopatternable polymer), and operation 708 may be performed by photolithography Operations are performed to pattern passivation layer 112 and expose opening 120 and opening 122 .

参考图6H以及图7的操作710,电极层114形成在覆盖开口120和开口122的钝化层112上。因此,电极层114将第二掺杂型半导体层108和触点118电连接,并形成电路径以将LED单元与基板102中的驱动电路连接。驱动电路可以通过触点118和电极层114 来控制第二掺杂型半导体层108的电压和电流电平。在一些实施方式中,电极层114可以包括导电材料,诸如铟锡氧化物(ITO)、Cr、Ti、Pt、Au、Al、Cu、Ge或Ni等。Referring to FIG. 6H and operation 710 of FIG. 7 , an electrode layer 114 is formed on the passivation layer 112 covering the opening 120 and the opening 122 . Therefore, the electrode layer 114 electrically connects the second doped semiconductor layer 108 and the contact 118 , and forms an electrical path to connect the LED unit with the driving circuit in the substrate 102 . The driving circuit can control the voltage and current level of the second doped semiconductor layer 108 through the contact 118 and the electrode layer 114 . In some embodiments, the electrode layer 114 may include a conductive material, such as indium tin oxide (ITO), Cr, Ti, Pt, Au, Al, Cu, Ge, or Ni, among others.

本申请提供了一种LED结构和一种用于制造该LED结构的方法,其中,部分地图案化/蚀刻诸如第一掺杂型半导体层106和第二掺杂型半导体层108的功能外延层,以允许薄连续功能层(诸如第一掺杂型半导体层106)保留以免潜在剥离。此外,本申请提供了另一种选项来将MQW层保留在第一掺杂型半导体层106上。另外,本申请中引入的制造方法可以进一步减少功能性像素(诸如LED单元116)的侧壁的物理损坏,减少作为LED 发光区域的量子阱结构的损坏,并改善了功能性像素的光学和电学特性。The present application provides an LED structure and a method for manufacturing the LED structure, wherein the functional epitaxial layers such as the first doped type semiconductor layer 106 and the second doped type semiconductor layer 108 are partially patterned/etched , to allow a thin continuous functional layer (such as the first doped type semiconductor layer 106 ) to remain from potential peeling off. In addition, the present application provides another option to keep the MQW layer on the first doped semiconductor layer 106 . In addition, the manufacturing method introduced in this application can further reduce the physical damage of the sidewall of the functional pixel (such as the LED unit 116), reduce the damage of the quantum well structure as the LED light-emitting area, and improve the optical and electrical properties of the functional pixel. characteristic.

根据本申请的一方面,公开了一种LED结构。LED结构包括基板和形成在基板上的多个LED单元。每个LED单元包括形成在基板上的键合层、形成在键合层上的第一掺杂型半导体层、形成在第一掺杂型半导体层上的第二掺杂型半导体层、形成在第二掺杂型半导体层以及第一掺杂型半导体层的一部分上的钝化层;和形成在钝化层的一部分上并与第二掺杂型半导体层接触的电极层。多个LED单元包括第一LED单元和与第一LED单元相邻的第二LED单元。第一LED单元的第一掺杂型半导体层水平地延伸至与第一LED 单元相邻的第二LED单元的第一掺杂型半导体层,并且第一LED单元和第二LED单元是可单独工作的LED单元。According to an aspect of the present application, an LED structure is disclosed. The LED structure includes a substrate and a plurality of LED units formed on the substrate. Each LED unit includes a bonding layer formed on the substrate, a first doped semiconductor layer formed on the bonding layer, a second doped semiconductor layer formed on the first doped semiconductor layer, and a second doped semiconductor layer formed on the a passivation layer on a part of the second doping type semiconductor layer and the first doping type semiconductor layer; and an electrode layer formed on a part of the passivation layer and in contact with the second doping type semiconductor layer. The plurality of LED units includes a first LED unit and a second LED unit adjacent to the first LED unit. The first doped semiconductor layer of the first LED unit extends horizontally to the first doped semiconductor layer of the second LED unit adjacent to the first LED unit, and the first LED unit and the second LED unit can be independently Working LED unit.

在一些实施方式中,第一LED单元的第二掺杂型半导体层与第二LED单元的第二掺杂型半导体层电隔离。在一些实施方式中,每个LED单元都进一步包括在第一掺杂型半导体层和第二掺杂型半导体层之间形成的多量子阱(MQW)层。In some embodiments, the second doped semiconductor layer of the first LED unit is electrically isolated from the second doped semiconductor layer of the second LED unit. In some embodiments, each LED unit further includes a multiple quantum well (MQW) layer formed between the first doped semiconductor layer and the second doped semiconductor layer.

在一些实施方式中,第一掺杂型半导体层是p型半导体层,并且是第一LED单元和第二LED单元的公共阳极。在一些实施方式中,第二掺杂型半导体层是n型半导体层,并且是第一LED单元和第二LED单元的阴极。In some embodiments, the first doped semiconductor layer is a p-type semiconductor layer and is a common anode of the first LED unit and the second LED unit. In some embodiments, the second doped semiconductor layer is an n-type semiconductor layer and is a cathode of the first LED unit and the second LED unit.

在一些实施方式中,基板包括驱动电路以驱动多个LED单元。在一些实施方式中,每个LED单元的电极层都通过第一掺杂型半导体层上的开口连接到驱动电路。In some embodiments, the substrate includes driver circuitry to drive the plurality of LED units. In some embodiments, the electrode layer of each LED unit is connected to the driving circuit through the opening on the first doped semiconductor layer.

根据本申请的另一方面,公开了一种LED结构。LED结构包括基板和形成在基板上的多个LED单元。每个LED单元包括形成在基板上的p-n二极管层、形成在p-n二极管层上的钝化层,以及形成在钝化层上并与p-n二极管层接触的电极层。多个LED单元包括第一LED单元和与第一LED单元相邻的第二LED单元。第一LED单元和第二LED 单元具有公共阳极,并且第一LED单元和第二LED单元是可单独工作的LED单元。According to another aspect of the present application, an LED structure is disclosed. The LED structure includes a substrate and a plurality of LED units formed on the substrate. Each LED unit includes a p-n diode layer formed on a substrate, a passivation layer formed on the p-n diode layer, and an electrode layer formed on the passivation layer and in contact with the p-n diode layer. The plurality of LED units includes a first LED unit and a second LED unit adjacent to the first LED unit. The first LED unit and the second LED unit have a common anode, and the first LED unit and the second LED unit are individually operable LED units.

在一些实施方式中,p-n二极管层包括p-掺杂层、n-掺杂层以及在p-掺杂层和n-掺杂层之间形成的多量子阱(MQW)层。在一些实施方式中,p掺杂层是第一LED单元和第二LED单元的公共阳极。在一些实施方式中,第一LED单元和第二LED单元的n掺杂层被电隔离。In some embodiments, the p-n diode layer includes a p-doped layer, an n-doped layer, and a multiple quantum well (MQW) layer formed between the p-doped layer and the n-doped layer. In some embodiments, the p-doped layer is a common anode of the first LED unit and the second LED unit. In some embodiments, the n-doped layers of the first LED unit and the second LED unit are electrically isolated.

在一些实施方式中,每个LED单元都进一步包括形成在基板和p-n二极管层之间的键合层。在一些实施方式中,基板包括驱动电路以驱动多个LED单元。在一些实施方式中,每个LED单元的电极层都通过p-n二极管层上的开口连接到驱动电路。In some embodiments, each LED unit further includes a bonding layer formed between the substrate and the p-n diode layer. In some embodiments, the substrate includes driver circuitry to drive the plurality of LED units. In some embodiments, the electrode layer of each LED unit is connected to the driver circuit through an opening in the p-n diode layer.

根据本申请的进一步方面,公开了一种用于制造LED结构的方法。在第一基板上形成半导体层。半导体层包括第一掺杂型半导体层和第二掺杂型半导体层。执行第一蚀刻操作以去除第二掺杂型半导体层的一部分并暴露第一掺杂型半导体层的一部分。在第二掺杂型半导体层和暴露的第一掺杂型半导体层上形成钝化层。在钝化层上形成第一开口。在覆盖第一开口并接触第二掺杂型半导体层的钝化层上形成电极层。According to a further aspect of the present application, a method for fabricating an LED structure is disclosed. A semiconductor layer is formed on the first substrate. The semiconductor layer includes a first doped type semiconductor layer and a second doped type semiconductor layer. A first etching operation is performed to remove a portion of the second doped type semiconductor layer and expose a portion of the first doped type semiconductor layer. A passivation layer is formed on the second doped semiconductor layer and the exposed first doped semiconductor layer. A first opening is formed on the passivation layer. An electrode layer is formed on the passivation layer covering the first opening and contacting the second doped semiconductor layer.

在一些实施方式中,执行第一蚀刻操作进一步包括去除第二掺杂型半导体层的一部分,以及暴露第一掺杂型半导体层的一部分,直到预定义厚度的第一掺杂型半导体层保留在第一基板上。剩余的第一掺杂型半导体层水平地跨LED结构的多个LED单元延伸。In some embodiments, performing the first etching operation further includes removing a portion of the second doped type semiconductor layer, and exposing a portion of the first doped type semiconductor layer, until a predefined thickness of the first doped type semiconductor layer remains on the on the first substrate. The remaining first doped semiconductor layer extends horizontally across the plurality of LED cells of the LED structure.

在一些实施方式中,在第一基板上形成半导体层进一步包括通过键合层将半导体层键合到第一基板上。在一些实施方式中,在第一基板上形成半导体层进一步包括:在第一基板中形成驱动电路;在第二基板上形成半导体层;通过键合层将半导体层接合到第一基板上;以及去除第二基板。In some embodiments, forming the semiconductor layer on the first substrate further includes bonding the semiconductor layer to the first substrate through a bonding layer. In some embodiments, forming the semiconductor layer on the first substrate further includes: forming a driving circuit in the first substrate; forming a semiconductor layer on the second substrate; bonding the semiconductor layer to the first substrate through a bonding layer; and Remove the second substrate.

在一些实施方式中,在钝化层上形成第一开口进一步包括在钝化层上形成第二开口以暴露驱动电路的触点。在一些实施方式中,在覆盖第一开口并接触第二掺杂型半导体层的钝化层上形成电极层进一步包括在覆盖第一开口和第二开口的钝化层上形成电极层,以电连接第二掺杂型半导体层和驱动电路的触点。In some embodiments, forming the first opening on the passivation layer further includes forming a second opening on the passivation layer to expose contacts of the driving circuit. In some embodiments, forming an electrode layer on the passivation layer covering the first opening and contacting the second doped semiconductor layer further includes forming an electrode layer on the passivation layer covering the first opening and the second opening to electrically Connecting the second doped semiconductor layer with the contact of the driving circuit.

具体实施方式的上述描述可以容易地针对各种应用修改和/或改编。因此,基于本文提出的教导和指导,这样的改编和修改有意在所公开的实施方式的等效物的含义和范围内。The above description of specific embodiments can be readily modified and/or adapted for various applications. Therefore, such adaptations and modifications are intended to be within the meaning and range of equivalents of the disclosed embodiments, based on the teaching and guidance presented herein.

本申请的广度和范围不应由任何上述例证性实施方式限制,而是应仅根据所附权利要求及其等效物来限定。The breadth and scope of the present application should not be limited by any of the above-described illustrative embodiments, but should be defined only in accordance with the appended claims and their equivalents.

Claims (7)

1.一种微型LED显示器,其特征在于,包括:1. A micro-LED display, characterized in that, comprising: 基板,所述基板包括驱动电路以及驱动电路的触点;a substrate comprising a drive circuit and contacts of the drive circuit; 多个LED单元,所述多个LED单元形成在所述基板上,每个LED单元是一个功能性微型LED像素,并且包括:A plurality of LED units, the plurality of LED units are formed on the substrate, each LED unit is a functional micro-LED pixel, and includes: 键合层,所述键合层形成在所述基板上;a bonding layer formed on the substrate; 第一掺杂型半导体层,所述第一掺杂型半导体层形成在所述键合层上;a first doped semiconductor layer, the first doped semiconductor layer is formed on the bonding layer; 第二掺杂型半导体层,所述第二掺杂型半导体层形成在所述第一掺杂型半导体层上;a second doped semiconductor layer, the second doped semiconductor layer is formed on the first doped semiconductor layer; 多量子阱层,所述多量子阱层形成在所述第一掺杂型半导体层和所述第二掺杂型半导体层之间;a multiple quantum well layer formed between the first doped semiconductor layer and the second doped semiconductor layer; 钝化层,所述钝化层形成在所述第二掺杂型半导体层上和所述第一掺杂型半导体层的一部分上;以及a passivation layer formed on the second doping type semiconductor layer and on a part of the first doping type semiconductor layer; and 电极层,所述电极层形成在所述钝化层的一部分上并与所述第二掺杂型半导体层接触,an electrode layer formed on a portion of the passivation layer and in contact with the second doped semiconductor layer, 其中,所述多个LED单元包括第一LED单元和与所述第一LED单元相邻的第二LED单元,其中,所述第一LED单元的所述第一掺杂型半导体层水平地延伸至与所述第一LED单元相邻的所述第二LED单元的所述第一掺杂型半导体层,并且所述第一LED单元和所述第二LED单元是可单独工作的LED单元;Wherein, the plurality of LED units include a first LED unit and a second LED unit adjacent to the first LED unit, wherein the first doped semiconductor layer of the first LED unit extends horizontally to the first doped semiconductor layer of the second LED unit adjacent to the first LED unit, and the first LED unit and the second LED unit are independently operable LED units; 所述驱动电路用于驱动所述LED单元,所述驱动电路的触点通过电极层与相应LED单元的第二掺杂型半导体层电连接,并且每个所述触点暴露在相邻两个LED单元之间;The drive circuit is used to drive the LED unit, the contacts of the drive circuit are electrically connected to the second doped semiconductor layer of the corresponding LED unit through the electrode layer, and each of the contacts is exposed to two adjacent between LED units; 并且,每个LED单元的所述电极层都通过所述第一掺杂型半导体层上的开口连接到所述驱动电路。Moreover, the electrode layer of each LED unit is connected to the driving circuit through the opening on the first doped semiconductor layer. 2.根据权利要求1所述的微型LED显示器,其特征在于,所述第一LED单元的所述第二掺杂型半导体层与所述第二LED单元的所述第二掺杂型半导体层电隔离。2. The micro-LED display according to claim 1, wherein the second doped semiconductor layer of the first LED unit and the second doped semiconductor layer of the second LED unit Galvanic isolation. 3.根据权利要求1所述的微型LED显示器,其特征在于,所述第一掺杂型半导体层是p型半导体层,并且是所述第一LED单元和所述第二LED单元的公共阳极。3. The micro-LED display according to claim 1, wherein the first doped semiconductor layer is a p-type semiconductor layer, and is a common anode of the first LED unit and the second LED unit . 4.根据权利要求1所述的微型LED显示器,其特征在于,所述第二掺杂型半导体层是n型半导体层,并且是所述第一LED单元和所述第二LED单元的阴极。4. The micro-LED display according to claim 1, wherein the second doped semiconductor layer is an n-type semiconductor layer, and is a cathode of the first LED unit and the second LED unit. 5.一种微型LED显示器,其特征在于,包括:5. A micro-LED display, characterized in that it comprises: 基板,所述基板包括驱动电路以及驱动电路的触点;a substrate comprising a drive circuit and contacts of the drive circuit; 多个LED单元,所述多个LED单元形成在所述基板上,每个LED单元是一个功能性微型LED像素,并且包括:A plurality of LED units, the plurality of LED units are formed on the substrate, each LED unit is a functional micro-LED pixel, and includes: p-n二极管层,所述p-n二极管层形成在所述基板上,所述p-n二极管层包括p掺杂层、n掺杂层以及在所述p掺杂层和所述n掺杂层之间形成的多量子阱层;A p-n diode layer, the p-n diode layer is formed on the substrate, the p-n diode layer includes a p-doped layer, an n-doped layer, and a layer formed between the p-doped layer and the n-doped layer Multiple quantum well layers; 钝化层,所述钝化层形成在所述p-n二极管层上;以及a passivation layer formed on the p-n diode layer; and 电极层,所述电极层形成在所述钝化层上并与所述p-n二极管层接触,an electrode layer formed on the passivation layer and in contact with the p-n diode layer, 键合层,所述键合层形成在所述基板与所述p掺杂层之间;a bonding layer formed between the substrate and the p-doped layer; 其中,所述多个LED单元包括第一LED单元和与所述第一LED单元相邻的第二LED单元,其中,所述p掺杂层水平地跨所述多个LED单元延伸并作为所述第一LED单元和所述第二LED单元的公共阳极,并且所述第一LED单元和所述第二LED单元是可单独工作的LED单元,所述驱动电路用于驱动所述LED单元,所述驱动电路的触点通过电极层与相应LED单元的n掺杂层电连接;Wherein, the plurality of LED units includes a first LED unit and a second LED unit adjacent to the first LED unit, wherein the p-doped layer extends horizontally across the plurality of LED units and serves as the The common anode of the first LED unit and the second LED unit, and the first LED unit and the second LED unit are LED units that can work independently, and the driving circuit is used to drive the LED unit, The contacts of the drive circuit are electrically connected to the n-doped layer of the corresponding LED unit through the electrode layer; 每个LED单元的所述电极层都通过所述p-n二极管层上的开口连接到所述驱动电路。The electrode layer of each LED unit is connected to the driving circuit through an opening in the p-n diode layer. 6.根据权利要求5所述的微型LED显示器,其特征在于,所述第一LED单元和所述第二LED单元的所述n掺杂层电隔离。6. The micro-LED display according to claim 5, wherein the n-doped layer of the first LED unit and the second LED unit are electrically isolated. 7.一种用于制造微型LED显示器的方法,其特征在于,包括:7. A method for manufacturing a micro-LED display, comprising: 在第一基板上形成驱动电路以及驱动电路的触点;forming a driving circuit and contacts of the driving circuit on the first substrate; 在第二基板上形成半导体层,所述半导体层包括第一掺杂型半导体层、第二掺杂型半导体层以及位于所述第一掺杂型半导体层和所述第二掺杂型半导体层之间的多量子阱层;A semiconductor layer is formed on the second substrate, and the semiconductor layer includes a first doped semiconductor layer, a second doped semiconductor layer, and Multiple quantum well layers between; 通过键合层将所述半导体层键合到所述第一基板上;bonding the semiconductor layer to the first substrate via a bonding layer; 去除所述第二基板;removing the second substrate; 执行第一蚀刻操作,包括:去除所述第二掺杂型半导体层的一部分,并暴露所述第一掺杂型半导体层的一部分,直到预定义厚度的所述第一掺杂型半导体层保留在所述第一基板上,以形成多个LED单元,其中每个LED单元是一个功能性微型LED像素,并且所述保留的第一掺杂型半导体层水平地跨所述微型LED显示器的多个LED单元延伸;performing a first etching operation, comprising: removing a portion of the second doped type semiconductor layer, and exposing a portion of the first doped type semiconductor layer until a predetermined thickness of the first doped type semiconductor layer remains A plurality of LED units are formed on the first substrate, wherein each LED unit is a functional micro-LED pixel, and the remaining first doped semiconductor layer spans horizontally across multiple micro-LED displays. LED unit extension; 在所述第二掺杂型半导体层上和所述暴露的第一掺杂型半导体层上形成钝化层;forming a passivation layer on the second doped semiconductor layer and on the exposed first doped semiconductor layer; 在所述钝化层上形成暴露所述第二掺杂型半导体层的第一开口和暴露所述驱动电路的触点的第二开口;以及forming a first opening exposing the second doped type semiconductor layer and a second opening exposing a contact of the driving circuit on the passivation layer; and 在覆盖所述第一开口并接触所述第二掺杂型半导体层的所述钝化层上形成电极层,从而将所述驱动电路的触点与相应LED单元的第二掺杂型半导体层电连接,进而使多个LED单元可单独工作。An electrode layer is formed on the passivation layer covering the first opening and contacting the second doped semiconductor layer, so as to connect the contact of the driving circuit with the second doped semiconductor layer of the corresponding LED unit. Electrically connected so that multiple LED units can work independently.
CN202110317555.9A 2020-04-09 2021-03-25 Light-emitting diode structure and manufacturing method thereof Active CN112992964B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202063007829P 2020-04-09 2020-04-09
US63/007,829 2020-04-09
US17/162,515 2021-01-29
US17/162,515 US12224304B2 (en) 2020-04-09 2021-01-29 Light emitting diode structure with individual fuctionable LED units and method for manufacturing the same

Publications (2)

Publication Number Publication Date
CN112992964A CN112992964A (en) 2021-06-18
CN112992964B true CN112992964B (en) 2023-07-07

Family

ID=76333624

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110317555.9A Active CN112992964B (en) 2020-04-09 2021-03-25 Light-emitting diode structure and manufacturing method thereof

Country Status (4)

Country Link
EP (1) EP4133536A4 (en)
JP (2) JP2023525439A (en)
KR (1) KR20220139993A (en)
CN (1) CN112992964B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114023861A (en) * 2021-11-01 2022-02-08 镭昱光电科技(苏州)有限公司 Micro-LED chip structure and manufacturing method thereof
CN114497333B (en) * 2021-12-21 2024-12-17 镭昱光电科技(苏州)有限公司 Micro-LED Micro display chip and manufacturing method thereof
CN114784034A (en) * 2022-02-24 2022-07-22 镭昱光电科技(苏州)有限公司 Micro-LED Micro display chip and manufacturing method thereof
CN114628563B (en) * 2022-05-12 2022-09-09 镭昱光电科技(苏州)有限公司 Micro LED display chip and preparation method thereof
CN114759130B (en) * 2022-06-15 2022-09-02 镭昱光电科技(苏州)有限公司 A kind of Micro-LED display chip and preparation method thereof
CN115472641B (en) 2022-11-01 2023-03-24 镭昱光电科技(苏州)有限公司 Micro display chip and preparation method thereof
CN115498089B (en) * 2022-11-16 2023-02-17 镭昱光电科技(苏州)有限公司 Microdisplay device and manufacturing method
WO2024130132A1 (en) * 2022-12-16 2024-06-20 Lumileds Llc Modular device for addressable light emitting diode arrays
WO2025091231A1 (en) * 2023-10-31 2025-05-08 Jade Bird Display (shanghai) Limited Micro-led array layer and micro-led display panel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005039041A (en) * 2003-07-14 2005-02-10 Sanyo Electric Co Ltd Light emitting diode array and optical print head
WO2014017427A1 (en) * 2012-07-27 2014-01-30 株式会社ブイ・テクノロジー Semiconductor light-emitting device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4916120B2 (en) * 2005-03-24 2012-04-11 株式会社沖データ Semiconductor composite device, semiconductor composite device manufacturing method, LED head, and image forming apparatus
KR100867541B1 (en) * 2006-11-14 2008-11-06 삼성전기주식회사 Manufacturing method of vertical light emitting device
US8642363B2 (en) * 2009-12-09 2014-02-04 Nano And Advanced Materials Institute Limited Monolithic full-color LED micro-display on an active matrix panel manufactured using flip-chip technology
CN202332853U (en) * 2011-10-19 2012-07-11 贵州大学 Large-power inverse array LED (Light-Emitting Diode) chip
US9153548B2 (en) * 2013-09-16 2015-10-06 Lux Vue Technology Corporation Adhesive wafer bonding with sacrificial spacers for controlled thickness variation
JP6097682B2 (en) * 2013-12-27 2017-03-15 株式会社沖データ Semiconductor light emitting device, image forming apparatus, image display device, and method for manufacturing semiconductor light emitting device
US10297722B2 (en) * 2015-01-30 2019-05-21 Apple Inc. Micro-light emitting diode with metal side mirror
CN109417082B (en) * 2016-03-18 2023-08-01 Lg伊诺特有限公司 Semiconductor device and display apparatus including the same
JP6815129B2 (en) * 2016-08-26 2021-01-20 株式会社沖データ Semiconductor devices, optical printheads, and image forming devices
CN106876406B (en) * 2016-12-30 2023-08-08 上海君万微电子科技有限公司 LED full-color display device structure based on III-V nitride semiconductor and preparation method thereof
CN117558739A (en) * 2017-03-30 2024-02-13 维耶尔公司 Vertical solid state device
KR102422386B1 (en) * 2017-04-21 2022-07-20 주식회사 루멘스 Micro led display apparatus and method for fabricating the same
TWI689092B (en) * 2017-06-09 2020-03-21 美商晶典有限公司 Micro led display module having light transmissive substrate and manufacturing method thereof
US10177178B1 (en) * 2017-07-05 2019-01-08 Gloablfoundries Inc. Assembly of CMOS driver wafer and LED wafer for microdisplay
JP7268972B2 (en) * 2017-09-07 2023-05-08 キヤノン株式会社 Light-emitting thyristor, light-emitting thyristor array, exposure head, and image forming apparatus
KR102456882B1 (en) * 2017-11-24 2022-10-21 주식회사 루멘스 method for making high efficiency micro LED module
CN108598104A (en) * 2018-06-25 2018-09-28 广东省半导体产业技术研究院 A kind of micro- LED array of parallel connection and preparation method thereof
CN109713089A (en) * 2018-12-28 2019-05-03 映瑞光电科技(上海)有限公司 GaN base LED white light thin-film LED and preparation method thereof
CN109920814B (en) * 2019-03-12 2022-10-04 京东方科技集团股份有限公司 Display substrate, manufacturing method, and display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005039041A (en) * 2003-07-14 2005-02-10 Sanyo Electric Co Ltd Light emitting diode array and optical print head
WO2014017427A1 (en) * 2012-07-27 2014-01-30 株式会社ブイ・テクノロジー Semiconductor light-emitting device

Also Published As

Publication number Publication date
JP2024059811A (en) 2024-05-01
EP4133536A4 (en) 2024-05-08
EP4133536A1 (en) 2023-02-15
CN112992964A (en) 2021-06-18
JP2023525439A (en) 2023-06-16
KR20220139993A (en) 2022-10-17

Similar Documents

Publication Publication Date Title
CN112992964B (en) Light-emitting diode structure and manufacturing method thereof
CN112864290B (en) Micro LED display and manufacturing method thereof
CN109564930B (en) Method for producing an optoelectronic device comprising a plurality of gallium nitride diodes
US8557616B2 (en) Method for manufacturing a monolithic LED micro-display on an active matrix panel using flip-chip technology and display apparatus having the monolithic LED micro-display
CN114188459B (en) Micro light-emitting diode display device and manufacturing method thereof
CN110896084B (en) Method of manufacturing an optoelectronic device comprising a plurality of diodes
US12113091B2 (en) Full color light emitting diode structure and method for manufacturing the same
WO2023116154A1 (en) Miniature light-emitting diode display device and manufacturing method therefor
WO2022217648A1 (en) Light emitting diode structure and method for manufacturing thereof
CN115498089B (en) Microdisplay device and manufacturing method
WO2023103606A1 (en) Micro-display led chip structure and manufacturing method therefor
WO2021203987A1 (en) Light emitting diode structure and method for manufacturing thereof
CN116666515A (en) Micro light-emitting diode display chip and manufacturing method
CN116565103A (en) Micro LED micro display chip and manufacturing method thereof
US20210320234A1 (en) Light emitting diode structure and method for manufacturing the same
KR102545077B1 (en) Epitaxy die for semiconductor light emitting devices, semiconductor light emitting devices including the same and manufacturing method thereof
US11817535B2 (en) Light emitting diode structure and method for manufacturing the same
US20220140217A1 (en) Light emitting diode structure and method for manufacturing the same
US20240363823A1 (en) Light emitting diode structure and method for manufacturing the same
US20230369552A1 (en) Light emitting diode structure and method for manufacturing the same
US20240379908A1 (en) Semiconductor structure and method of forming the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant