[go: up one dir, main page]

CN112973638B - 去除水体中微污染汞的改性MIL-125(Ti)材料制备方法及应用 - Google Patents

去除水体中微污染汞的改性MIL-125(Ti)材料制备方法及应用 Download PDF

Info

Publication number
CN112973638B
CN112973638B CN202110200454.3A CN202110200454A CN112973638B CN 112973638 B CN112973638 B CN 112973638B CN 202110200454 A CN202110200454 A CN 202110200454A CN 112973638 B CN112973638 B CN 112973638B
Authority
CN
China
Prior art keywords
mercury
mil
modified
water
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202110200454.3A
Other languages
English (en)
Other versions
CN112973638A (zh
Inventor
王杰
曹言
李尤亮
张雷
周筱研
王家强
姜亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Institute Of Conservancy And Hydropower Sciences
Original Assignee
Yunnan Institute Of Conservancy And Hydropower Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Institute Of Conservancy And Hydropower Sciences filed Critical Yunnan Institute Of Conservancy And Hydropower Sciences
Priority to CN202110200454.3A priority Critical patent/CN112973638B/zh
Publication of CN112973638A publication Critical patent/CN112973638A/zh
Application granted granted Critical
Publication of CN112973638B publication Critical patent/CN112973638B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/14Diatomaceous earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

去除微污染水体中汞的改性MIL‑125(Ti)材料制备方法及应,涉及一种具有吸附性的天然助剂生物炭及硅藻土MIL‑125(Ti)复合材料的制备方法,以及其在汞吸附中的高效应用。本发明的方法是将MIL‑125(Ti)改性制备而成。与现有技术相比,MIL‑125(Ti)材料的最大吸附容量为300μg.g‑1,改性MIL‑125(Ti)复合材料最大吸附容量为690μg.g‑1,材料的的吸附性能有了一定提高且反应速率也加快。且与传统的吸附除汞材料相比,该材料具有可大规模制备,成本低廉,吸附与催化性能好等特点。

Description

去除水体中微污染汞的改性MIL-125(Ti)材料制备方法及 应用
技术领域
本发明涉及水体中汞的去除处理技术,具体涉及一种具有吸附性的改性MIL-125(Ti)复合材料的制备方法,以及其在汞吸附中的高效应用。
背景技术
汞(Hg)是一种有毒重金属,应用非常广泛,易造成水体汞污染。汞的生物富集现象非常明显,对于人体的危害特别大。目前用于水体中去除汞的方法有很多种,大体上分为物理法、化学法、微生物法。常见的有吸附法、离子交换法、化学沉淀法、微生物法等。根据汞在水中的不同情况,选用的处理方法也不尽相同。
Wilkin等模拟含汞废水,在酸性条件下采用单质铁处理,速率常数达到了0.0042min-1,但是材料投加量高达230g/L。周欣等报道了单质铁去除废水中的汞,反应8小时,去除率大约94.5%。虽然处理效果比较好,但是pH对去除率影响较大,材料只能用于酸性条件下且反应时间过长。Julianne D等对单质铁的粒径大小对吸附去除水体中高浓度汞的影响,以及除汞的机理进行了详细报道。Julianne D等的报道指出,单质铁吸附去除水体中的汞的同时,还会因为单质铁和Hg2+之间的氧化还原作用产生汞蒸气,造成大气污染,这对大气环境和操作人员安全带来很大威胁。
TiO2材料表面具有不饱和性,可有效去除水体中Hg2+。Ghasemi Z等制备了含86.8%金红石型和13.2%锐钛矿型的混晶型的TiO2材料,处理100mg/L的Hg2+溶液。反应420min可达吸附平衡,去除率可达90%以上。但材料对汞的去除率受pH影响非常大,在酸性条件下效果很差。在pH为2时,去除率仅仅为13.7%,而当pH为8时,去除率可高达96%。
S.Necdet等人研究了PHanerochaete chrysosporium干细胞去除水体中无机汞烷基汞进行了研究。结果表明,该菌体对甲基汞和氯化汞的吸附容量分别能够达到79mg/g和61mg/g。但因为微生物通常耐汞能力低,菌种技术要求极其繁琐,菌群之间协调困难等原因,微生物法除汞技术推广十分困难。
目前,对于水体中高浓度汞的去除研究较多,而对于微量汞的去除研究很少。
金属有机骨架化合物(Metal Organic Frameworks),简称MOFs材料,是以金属离子和有机物配体发生配位并以金属离子为中心,有机物配体为骨架经过自组装过程形成的一类具有周期性网状骨架结构的多孔固体材料。Ti基MOF材料因其低毒性、较高的氧化还原活性及光催化活性而被无机化学和有机化学等学科广泛研究并开发应用。
MIL-125(Ti)具有比表面积大、孔隙率高、孔道规则、孔径可调以及拓扑结构多样性等特点,因此MIL-125(Ti)具有较强的吸附能力,可用于吸附水体中的有机污染物、重金属离子等。
发明内容
本发明通过添加天然助剂生物炭及硅藻土对MIL-125(Ti)材料进行改性,提高了水体微量汞的吸附除汞性能。
去除水体中微污染汞的改性MIL-125(Ti)材料制备方法,其特征在于该制备方法具体包括以下步骤:
S1,对苯二甲酸中加入无水N,N-二甲基甲酰胺溶解,100-110℃下搅拌至少30min,使对苯二甲酸完全溶解,同时去除混合溶液中的水分;
每克对苯二甲酸中加入无水N,N-二甲基甲酰胺12-20mL;
S2,在搅拌下往S1中获得的溶液中加入二异丙氧基双乙酰丙酮钛,然后将温度升至105-110℃,并在此温度下继续搅拌,天然助剂生物炭及硅藻土,反应时间22-24h;
每克对苯二甲酸加入二异丙氧基双乙酰丙酮钛0.8-1.5mL;加入天然助剂生物炭及硅藻土各3-6g;
S3,将S2所获得的产物过滤,洗涤后在155-160℃下在N,N-二甲基甲酰胺中回流洗涤10-12小时,滤出后再在无水甲醇中100-110℃温度下回流洗涤10-12小时,然后过滤烘干,便得到了改性的Ti基MIL-125材料。
改性的Ti基MIL-125材料应用于微污染水体中除汞,优选的,水中汞浓度为0.2~600 μg/L,pH=5~8,加入改性Ti基MIL-125材料与水的比例为2g/L,吸附时间1~2 h。
与现有技术相比,MIL-125(Ti)材料的最大吸附容量为300μg.g-1,改性MIL-125(Ti)复合材料最大吸附容量为690 μg.g-1,材料的的吸附性能有了一定提高且反应速率也加快。且与传统的吸附除汞材料相比,该材料具有可大规模制备,成本低廉,吸附与催化性能好等特点,具体列于表1。
表1 :改性MIL-125(Ti)复合材料不同投加方式除汞及处理成本运算表;
Figure DEST_PATH_IMAGE001
附图说明
图1为本发明实施例1改性MIL-125(Ti)复合材料的XRD表征图。
图2为本发明实施例1改性MIL-125(Ti)复合材料的扫描电镜图。
图3为本发明实施例1改性MIL-125(Ti)复合材料的氮气吸附-脱附等温线图。
图4为本发明实施例1改性MIL-125(Ti)复合材料的透射电镜图。
具体实施方式
实施例1:去除水体中微污染汞的改性MIL-125(Ti)材料制备方法,通过添加天然助剂生物炭及硅藻土对MIL-125(Ti)材料进行掺杂改性,具体包括以下步骤:
S1,称取3.73g的对苯二甲酸于圆底烧瓶中,随后加入无水N,N-二甲基甲酰胺56ml溶解,在105℃下维持恒定的搅拌速率搅拌1小时,使对苯二甲酸完全溶解,同时去除混合溶液中的水分。
S2,在搅拌下往S1中获得的溶液中加入1mL二异丙氧基双乙酰丙酮钛,然后将温度升至105℃,并在此温度下继续搅拌,添加天然助剂生物炭及硅藻土15g,反应时间24h。
S3,将S2所获得的产物过滤,洗涤后在155℃温度下在N,N-二甲基甲酰胺中回流洗涤12小时,滤出后再在无水甲醇中100℃温度下回流洗涤12小时,然后过滤烘干,便得到了改性的Ti基MIL-125材料。
取云南自然含汞水体,总汞含量为3.5μg /L,反应体积为100mL,pH为6,反应时间为1h,改性MIL-125(Ti)材料的投加量为200mg,即2g/L,不同反应时间段汞的去除率列于表5中。反应后取水样用0.45μm型号滤头过滤,经过原子荧光检测,反应后溶液的总汞浓度为0.08μg /L。这说明改性MIL-125(Ti)材料具有一定的实际应用能力。
表5:改性MIL-125(Ti)材料自然含汞水体吸附除汞结果;
Figure 418632DEST_PATH_IMAGE002
实施例2:去除水体中微污染汞的改性MIL-125(Ti)材料制备方法,具体步骤如实施例1,获得改性的Ti基MIL-125材料。
取自然含汞水体,总汞含量为555.2μg /L,反应体积为100mL,pH为6,加入改性MIL-125(Ti)材料的量为200mg,即2g/L,反应时间不同,汞的去除率列于表2中。
表2:MIL-125(Ti)复合材料反应时间和汞去除率影响表;
Figure DEST_PATH_IMAGE003
由表2可知,反应时间对吸附除汞影响较小,改性MIL-125(Ti)材料在2h内达到吸附平衡,且30分钟后去除效率达到了96.4%,吸附时间1~2 h能吸附的效率最高。
根据表2结果,选取反应初始浓度为50μg/L,反应时间为2h,对其数据进行线性拟合,以ln(qe-qt)对t作图可得改性MIL-125(Ti)材料吸附除汞的准一级动力学方程曲线,线性拟合方程为:y=2.718-0.001x(R2=0.991),由直线的斜率和截距可算出k1为0.7×10-2min-1,qe,1为580μg /g。以t/qt对t作图可得改性MIL-125(Ti)材料吸附除汞的准二级动力学方程曲线,线性拟合方程为:y=0.0451x+0.6781(R2=0.986),由直线的斜率和截距可算出k2为0.0329g·mg-1·min-1,qe,2为687μg /g。
表4:改性MIL-125(Ti)材料吸附除汞的准一级动力学和准二级动力学模拟比较;
Figure 60354DEST_PATH_IMAGE004
动力学模型是以动力学为理论基础,结合实际或虚拟的课题而作的有形的或无形的模型。固体吸附剂对溶液中溶质的吸附动力学过程可用准一级、准二级、韦伯-莫里斯内扩散模型和班厄姆孔隙扩散模型来进行描述。准一级吸附动力学模型是基于固体吸附量的最常见的速率方程,应用于液相的吸附过程。准二级吸附动力学模型基于假定吸附速率受化学吸附机理的控制,这种化学吸附涉及到吸附剂与吸附质之间的电子共用或电子转移。
由上表数据可知,改性MIL-125(Ti)材料吸附除汞的准一级动力学相关系数为0.991,准二级动力学相关系数为0.986,且准二级动力学计算吸附量与实际吸附量基本吻合,故以准二级拟合作为改性MIL-125(Ti)材料吸附除汞的吸附模型。
实施例3:去除水体中微污染汞的改性MIL-125(Ti)材料制备方法,具体步骤如实施例1,获得改性的Ti基MIL-125材料。
取自然含汞水体,总汞含量为555.2μg /L,反应体积为100mL,调整水体的pH,反应时间1h,并加入改性MIL-125(Ti)材料。水体pH不同,且加入的改性的Ti基MIL-125材料量不同,汞的去除率列于表3中。
表3:改性MIL-125(Ti)复合材料与反应pH影响表。
Figure DEST_PATH_IMAGE005

Claims (1)

1.去除水体中微污染汞的改性MIL-125(Ti)材料制备方法,其特征在于该制备方法具体包括以下步骤:
S1,对苯二甲酸中加入无水N,N-二甲基甲酰胺溶解,100-110℃下搅拌至少30min,使对苯二甲酸完全溶解,同时去除混合溶液中的水分;
每克对苯二甲酸中加入无水N,N-二甲基甲酰胺12-20mL;
S2,在搅拌下往S1中获得的溶液中加入二异丙氧基双乙酰丙酮钛,然后将温度升至105-110℃,并在此温度下继续搅拌,添加天然助剂生物炭及硅藻土,反应时间22-24h;
每克对苯二甲酸加入二异丙氧基双乙酰丙酮钛0.8-1.5mL;加入天然助剂生物炭及硅藻土各3-6g;
S3,将S2所获得的产物过滤,洗涤后在155-160℃下在N,N-二甲基甲酰胺中回流洗涤10-12小时,滤出后再在无水甲醇中100-110℃温度下回流洗涤10-12小时,然后过滤烘干,便得到了改性的Ti基MIL-125材料;
所述的改性的Ti基MIL-125材料应用于微污染水体中除汞,水中汞浓度为0.2~600 μg/L,pH=5~8,加入的改性Ti基MIL-125材料与水的比例为2g/L,吸附时间1~2h。
CN202110200454.3A 2021-02-23 2021-02-23 去除水体中微污染汞的改性MIL-125(Ti)材料制备方法及应用 Expired - Fee Related CN112973638B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110200454.3A CN112973638B (zh) 2021-02-23 2021-02-23 去除水体中微污染汞的改性MIL-125(Ti)材料制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110200454.3A CN112973638B (zh) 2021-02-23 2021-02-23 去除水体中微污染汞的改性MIL-125(Ti)材料制备方法及应用

Publications (2)

Publication Number Publication Date
CN112973638A CN112973638A (zh) 2021-06-18
CN112973638B true CN112973638B (zh) 2023-03-28

Family

ID=76349615

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110200454.3A Expired - Fee Related CN112973638B (zh) 2021-02-23 2021-02-23 去除水体中微污染汞的改性MIL-125(Ti)材料制备方法及应用

Country Status (1)

Country Link
CN (1) CN112973638B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240216890A1 (en) * 2021-08-30 2024-07-04 Lg Chem, Ltd. The organic compound adsorbent and gas blower comprising the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201215693D0 (en) * 2012-09-03 2012-10-17 Univ Liverpool Metal-organic framework
CN107824163A (zh) * 2017-11-23 2018-03-23 浙江海洋大学 一种吸附砷的MIL‑125(Ti)/壳聚糖复合微球
CN109012607A (zh) * 2018-08-10 2018-12-18 南通寰宇博新化工环保科技有限公司 一种纳米复合材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165911A2 (ko) * 2011-06-01 2012-12-06 한국화학연구원 다공성 유무기 혼성체의 제조방법
KR101273877B1 (ko) * 2011-08-16 2013-06-25 한국화학연구원 결정성 하이브리드 나노세공체 분말을 포함하는 복합체 및 그 제조방법
US9597658B2 (en) * 2013-04-01 2017-03-21 Savannah River Nuclear Solutions, Llc Metal-organic framework templated synthesis of porous inorganic materials as novel sorbents
WO2017184991A1 (en) * 2016-04-22 2017-10-26 The Regents Of The University Of California Post-synthetically modified metal-organic frameworks for selective binding of heavy metal ions in water
CN107244706B (zh) * 2017-06-16 2020-08-28 云南大学 一种高氨氮高重金属废水的处理工艺
GB201805261D0 (en) * 2018-03-29 2018-05-16 G20 Water Tech Limited Membranes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201215693D0 (en) * 2012-09-03 2012-10-17 Univ Liverpool Metal-organic framework
CN107824163A (zh) * 2017-11-23 2018-03-23 浙江海洋大学 一种吸附砷的MIL‑125(Ti)/壳聚糖复合微球
CN109012607A (zh) * 2018-08-10 2018-12-18 南通寰宇博新化工环保科技有限公司 一种纳米复合材料及其制备方法

Also Published As

Publication number Publication date
CN112973638A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
Mahmoud et al. Amino-decorated magnetic metal-organic framework as a potential novel platform for selective removal of chromium (Vl), cadmium (II) and lead (II)
Mohammadi et al. Metal-organic framework Uio-66 for adsorption of methylene blue dye from aqueous solutions
Gao et al. Synthesis of mixed-linker Zr-MOFs for emerging contaminant adsorption and photodegradation under visible light
Lv et al. Removal of p-arsanilic acid by an amino-functionalized indium-based metal–organic framework: Adsorption behavior and synergetic mechanism
Lu et al. Selective and superior capture of phosphate by using bimetallic bismuth-based metal-organic frameworks
Fan et al. Adsorption of antimony (III) from aqueous solution by mercapto-functionalized silica-supported organic–inorganic hybrid sorbent: Mechanism insights
Lin et al. Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water
Su et al. Fabrication of lanthanum-modified MOF-808 for phosphate and arsenic (V) removal from wastewater
Liang et al. Synthesis of a novel three-dimensional porous carbon material and its highly selective Cr (VI) removal in wastewater
Zhao et al. Functionalized metal-organic frameworks for effective removal of rocephin in aqueous solutions
CN102908997B (zh) 一种复合水处理剂及其制备方法与应用
Ma et al. Confined growth of MOF in chitosan matrix for removal of trace Pb (Ⅱ) from reclaimed water
Wang et al. Strong adsorption of tetracycline on octahedral Cu2O nanocrystals exposed with {111} facets: Adsorption behavior and mechanism insight
CN106750356A (zh) 一种利用UiO‑66金属有机框架材料净化含硒废水的方法
CN107469765A (zh) 一种硅藻土/铁酸镁复合材料的制备方法
CN105617981A (zh) 一种海泡石的改性方法及改性海泡石在废水处理中的应用
Li et al. Adsorption of heavy metals and antibacterial activity of silicon-doped chitosan composite microspheres loaded with ZIF-8
CN103406092B (zh) 一种胺基功能化介孔γ-Al2O3吸附剂的制备方法
CN102941060B (zh) 用于处理含铅废水的氧化锰硅藻土复合吸附剂及制备方法
CN112979979A (zh) 用于吸附去除水体中微污染汞的改性zif-8材料制备方法及应用
Song et al. Efficient removal of Cr (VI) by Bifunction zinc porphyrin COF: Coupling adsorption with Photocatalysis, performance Evaluation, and mechanism analysis
CN110479204A (zh) 一种高吸附性TiO2气凝胶的制备方法及其吸附水中重金属离子的应用
CN112973638B (zh) 去除水体中微污染汞的改性MIL-125(Ti)材料制备方法及应用
Abdollahi et al. Synthesis, characterization, and application of diethylenetriamine functionalized MIL-53 (Fe) metal-organic framework for efficient As (V) removal from surface and groundwater
Ding et al. High efficiency adsorption of uranium in solution using nano-TiO2 loaded with g-C3N4

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20230328