CN112913393B - Crop sowing depth intelligent decision-making system, method, storage medium and equipment - Google Patents
Crop sowing depth intelligent decision-making system, method, storage medium and equipment Download PDFInfo
- Publication number
- CN112913393B CN112913393B CN202110078503.0A CN202110078503A CN112913393B CN 112913393 B CN112913393 B CN 112913393B CN 202110078503 A CN202110078503 A CN 202110078503A CN 112913393 B CN112913393 B CN 112913393B
- Authority
- CN
- China
- Prior art keywords
- soil
- depth
- crop
- layer
- information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000009331 sowing Methods 0.000 title claims abstract description 161
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000003860 storage Methods 0.000 title claims description 28
- 239000002689 soil Substances 0.000 claims abstract description 320
- 230000035784 germination Effects 0.000 claims abstract description 64
- 230000010365 information processing Effects 0.000 claims abstract description 16
- 238000013517 stratification Methods 0.000 claims description 31
- 238000009826 distribution Methods 0.000 claims description 25
- 238000012545 processing Methods 0.000 claims description 25
- 238000004364 calculation method Methods 0.000 claims description 21
- 238000012544 monitoring process Methods 0.000 claims description 18
- 238000005056 compaction Methods 0.000 claims description 9
- 238000004590 computer program Methods 0.000 claims description 4
- 240000008042 Zea mays Species 0.000 description 14
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 14
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 14
- 235000005822 corn Nutrition 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 5
- 230000007226 seed germination Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- 238000013473 artificial intelligence Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000012272 crop production Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009313 farming Methods 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01C—PLANTING; SOWING; FERTILISING
- A01C7/00—Sowing
- A01C7/08—Broadcast seeders; Seeders depositing seeds in rows
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/29—Geographical information databases
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/02—Agriculture; Fishing; Forestry; Mining
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Soil Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Business, Economics & Management (AREA)
- Economics (AREA)
- Mathematical Analysis (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- General Health & Medical Sciences (AREA)
- Algebra (AREA)
- Computational Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Mathematical Optimization (AREA)
- Mining & Mineral Resources (AREA)
- Pure & Applied Mathematics (AREA)
- Marine Sciences & Fisheries (AREA)
- Software Systems (AREA)
- Animal Husbandry (AREA)
- Remote Sensing (AREA)
- Agronomy & Crop Science (AREA)
- Environmental Sciences (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明提供一种农作物播种深度智能决策系统、方法、介质及设备,其系统包括:土壤信息采集模块,用于采集所述农作物播种区域的实际土壤信息;种子信息获取模块,用于获取所述农作物的种子信息并根据所述种子信息获取所述农作物种子发芽所需的土壤信息;信息处理模块,用于获取所述农作物播种区域的实际土壤信息以及所述农作物种子发芽所需的土壤信息,并以所述农作物种子发芽所需的土壤信息为对照,根据所述农作物播种区域的实际土壤信息计算所述农作物播种区域的土壤层上的各深度层的分层值;深度决策模块,用于根据所述土壤层上各深度层的分层值决定所述农作物种子的最佳播种深度层。
The present invention provides an intelligent decision-making system, method, medium and equipment for the sowing depth of crops. The system includes: a soil information collection module for collecting actual soil information in the sowing area of the crops; a seed information acquisition module for obtaining the The seed information of the crops and obtain the soil information required for the germination of the crop seeds according to the seed information; the information processing module is used to obtain the actual soil information of the crop sowing area and the soil information required for the germination of the crop seeds, And with the soil information required for the germination of the crop seeds as a contrast, calculate the layered value of each depth layer on the soil layer of the crop sowing area according to the actual soil information of the crop sowing area; the depth decision module is used for The optimal sowing depth layer of the crop seeds is determined according to the layered values of the depth layers on the soil layer.
Description
技术领域technical field
本发明涉及一种农业信息技术领域,特别是一种农作物播种深度智能决策系统、方法、存储介质与设备。The invention relates to the technical field of agricultural information, in particular to a crop sowing depth intelligent decision-making system, method, storage medium and equipment.
背景技术Background technique
我国是农业大国,玉米等农作物的年产量在世界上排在前列,但是我国玉米等农作物的亩产量与其他发达国家还有很大差距。所以现阶段利用信息化技术提高我国玉米亩产量对我国农业发展以及农户收入提高具有重要意义,而玉米的播种深度对玉米等农作物的生长发芽以及玉米等农作物的亩产量起着重要作用。且对地域的土壤数据的掌握对于农业部门以及农户都有重要意义。my country is a large agricultural country, and the annual output of corn and other crops ranks among the top in the world. However, the per-mu yield of corn and other crops in my country is still far behind that of other developed countries. Therefore, at this stage, the use of information technology to increase the yield per mu of corn in my country is of great significance to the development of agriculture in China and the income of farmers. The sowing depth of corn plays an important role in the growth and germination of crops such as corn and the yield per mu of crops such as corn. And the mastery of regional soil data is of great significance to the agricultural sector and farmers.
目前我国多数地区在土壤数据监测和农作物播种深度的决策方面还存在诸多问题,多数地区对于土壤数据以及播种深度的决策都是凭借人工根据经验的预测,致使相同地域的土地上的农作物亩产量不同。而有些地区为了防止农作物不发芽,会在同一区域播多粒种子,这对土地资源和玉米都是极大的浪费,如何解决这些问题成了现阶段急需解决的问题之一。At present, there are still many problems in soil data monitoring and decision-making of crop sowing depth in most areas of my country. In most areas, the decision-making of soil data and sowing depth is based on manual prediction based on experience, resulting in different yields per mu of crops in the same area. . In some areas, in order to prevent crops from not germinating, multiple seeds will be sown in the same area, which is a great waste of land resources and corn. How to solve these problems has become one of the problems that need to be solved urgently at this stage.
发明内容Contents of the invention
针对现有技术存在的问题,本发明提供一种操作简单、直观方便的农作物播种深度智能决策系统,无论农户还是农业部门均可以随时随地精确并有针对性地掌握某地域下某农田的土壤数据和智能播深决策。Aiming at the problems existing in the prior art, the present invention provides a simple, intuitive and convenient intelligent decision-making system for crop sowing depth, so that both farmers and agricultural departments can accurately and targetedly grasp the soil data of a certain farmland in a certain area anytime and anywhere And intelligent broadcast depth decision.
为实现上述发明目的,本发明提供一种农作物播种深度智能决策系统,包括:In order to achieve the purpose of the above invention, the present invention provides an intelligent decision-making system for crop sowing depth, including:
土壤信息采集模块,用于采集所述农作物播种区域的实际土壤信息;Soil information collection module, used to collect the actual soil information of the crop sowing area;
种子信息获取模块,用于获取所述农作物的种子信息并根据所述种子信息获取所述农作物种子发芽所需的土壤信息;A seed information acquisition module, configured to acquire the seed information of the crops and obtain the soil information required for the germination of the crop seeds according to the seed information;
信息处理模块,用于获取所述农作物播种区域的实际土壤信息以及所述农作物种子发芽所需的土壤信息,并以所述农作物种子发芽所需的土壤信息为对照,根据所述农作物播种区域的实际土壤信息计算所述农作物播种区域土壤层上的各深度层的分层值;The information processing module is used to obtain the actual soil information of the crop sowing area and the soil information required for the germination of the crop seeds, and compare the soil information required for the germination of the crop seeds, according to the soil information of the crop sowing area The actual soil information calculates the stratification value of each depth layer on the soil layer of the crop sowing area;
深度决策模块,用于根据所述土壤层上各深度层的分层值决定所述农作物种子的最佳播种深度层。The depth decision module is used to determine the optimal sowing depth layer of the crop seeds according to the layered values of each depth layer on the soil layer.
在本公开的一种示例性实施例中,所述土壤信息采集模块通信连接于一土壤数据监测站,以从所述土壤数据监测站获取所述农作物播种区域的实际土壤信息。In an exemplary embodiment of the present disclosure, the soil information collection module is communicatively connected to a soil data monitoring station, so as to acquire actual soil information of the crop sowing area from the soil data monitoring station.
在本公开的一种示例性实施例中,所述土壤信息采集模块具有土壤数据传感器,用于从所述农作物播种区域的土壤层采集所述农作物播种区域的实际土壤信息。In an exemplary embodiment of the present disclosure, the soil information collection module has a soil data sensor for collecting actual soil information of the crop sowing area from the soil layer of the crop sowing area.
在本公开的一种示例性实施例中,所述农作物播种区域的实际土壤信息包括所述土壤各深度上的温度T、湿度H、PH值、紧实度D。In an exemplary embodiment of the present disclosure, the actual soil information of the crop sowing area includes temperature T, humidity H, pH value, and compactness D at each depth of the soil.
在本公开的一种示例性实施例中,所述土壤层具有一深度,且所述土壤层在所述深度范围内被划分为多个所述深度层。In an exemplary embodiment of the present disclosure, the soil layer has a depth, and the soil layer is divided into a plurality of depth layers within the depth range.
在本公开的一种示例性实施例中,所述智能决策系统还包括输入模块和存储模块,用户通过所述输入模块输入农作物种子信息,所述种子信息获取模块根据所述农作物种子信息从所述存储模块获取对应的所述农作物种子发芽所需的土壤信息。In an exemplary embodiment of the present disclosure, the intelligent decision-making system further includes an input module and a storage module, and the user inputs crop seed information through the input module, and the seed information acquisition module obtains the crop seed information from the The storage module acquires the corresponding soil information required for the germination of the crop seeds.
在本公开的一种示例性实施例中,所述土壤层的分层值θ的计算公式为:In an exemplary embodiment of the present disclosure, the calculation formula of the stratification value θ of the soil layer is:
其中,T最佳为所述农作物发芽的最佳土壤温度,H最佳为所述农作物发芽的最佳土壤湿度,PH最佳为所述农作物发芽的最佳土壤PH值,D最佳为所述农作物发芽的最佳土壤紧实度。Wherein, the best T is the optimum soil temperature for the germination of the crops, the best H is the optimum soil humidity for the germination of the crops, the best pH is the optimum soil pH value for the germination of the crops, and the best D is the optimum soil pH for the germination of the crops. optimal soil compaction for germination of the crops described above.
在本公开的一种示例性实施例中,所述深度决策模块根据所述土壤层上各深度层的分层值θ确定所述土壤层上各深度层的分层属性,进而根据所述土壤层上各深度层的分层属性得出所述农作物种子的最佳播种深度层。In an exemplary embodiment of the present disclosure, the depth decision module determines the layering attributes of each depth layer on the soil layer according to the layering value θ of each depth layer on the soil layer, and then according to the The hierarchical properties of each depth layer on the layer yields the optimal sowing depth layer for the crop seeds.
在本公开的一种示例性实施例中,所述土壤层上各深度层的分层属性反映在所述深度层上播种所述农作物种子的适宜性;In an exemplary embodiment of the present disclosure, the hierarchical properties of each depth layer on the soil layer reflect the suitability of sowing the crop seeds on the depth layer;
所述深度层的分层值越小,则所述深度层上播种所述农作物种子的适宜性越好。The smaller the stratification value of the depth layer, the better the suitability for sowing the crop seeds on the depth layer.
在本公开的一种示例性实施例中,还包括空间分布处理模块和显示模块,所述空间分布处理模块用于对所述农作物播种区域的实际土壤信息、所述农作物播种区域的土壤层上各深度层的分层属性以及所述农作物种子的最佳播种深度层进行空间分布上的处理,并将处理结果通过所述显示模块显示。In an exemplary embodiment of the present disclosure, it further includes a spatial distribution processing module and a display module, the spatial distribution processing module is used to analyze the actual soil information of the crop sowing area, the soil layer of the crop sowing area The hierarchical attributes of each depth layer and the optimal sowing depth layer of the crop seeds are processed in spatial distribution, and the processing results are displayed through the display module.
在本公开的一种示例性实施例中,所述空间分布处理模块包括GIS单元和引擎单元;In an exemplary embodiment of the present disclosure, the spatial distribution processing module includes a GIS unit and an engine unit;
其中,所述GIS单元用于计算所述农作物播种区域的地理位置,并将所述农作物播种区域的土壤信息、所述农作物播种区域的土壤层上各深度层的分层属性以及所述农作物种子的最佳播种深度层标示于所述地理位置的数字地图上,得到农作物播种深度决策空间分布图,所述引擎单元用于将所述农作物播种深度决策空间分布图发送至所述显示模块。Wherein, the GIS unit is used to calculate the geographic location of the crop sowing area, and combine the soil information of the crop sowing area, the layered attributes of each depth layer on the soil layer of the crop sowing area, and the crop seed The optimal sowing depth layer is marked on the digital map of the geographic location to obtain a decision-making space distribution map of crop sowing depth, and the engine unit is used to send the decision-making space distribution map of crop sowing depth to the display module.
为实现本发明的另一目的,本发明还提供一种农作物播种深度智能决策方法,其特征在于,包括以下步骤:To achieve another object of the present invention, the present invention also provides a method for intelligent decision-making of crop sowing depth, which is characterized in that it comprises the following steps:
土壤信息采集步骤S1,用于采集所述农作物播种区域的实际土壤信息;The soil information collection step S1 is used to collect the actual soil information of the crop sowing area;
种子信息获取步骤S2,用于获取所述农作物的种子信息并根据所述种子信息获取所述农作物种子发芽所需的土壤信息;The seed information obtaining step S2 is used to obtain the seed information of the crop and obtain the soil information required for the germination of the crop seed according to the seed information;
信息处理步骤S3,用于获取所述农作物播种区域的实际土壤信息以及所述农作物种子发芽所需的土壤信息,并以所述农作物种子发芽所需的土壤信息为对照,根据所述农作物播种区域的实际土壤信息计算所述农作物播种区域的土壤层上各深度层的分层值;The information processing step S3 is used to obtain the actual soil information of the crop sowing area and the soil information required for the germination of the crop seeds, and compare the soil information required for the germination of the crop seeds, according to the crop sowing area The actual soil information calculates the layered value of each depth layer on the soil layer of the crop sowing area;
深度决策步骤S4,用于根据所述土壤层上各深度层的分层值决定所述农作物种子的最佳播种深度层。The depth decision step S4 is used to determine the optimal sowing depth layer of the crop seeds according to the layered values of the depth layers on the soil layer.
在本公开的一种示例性实施例中,所述土壤信息采集步骤S1还包括:In an exemplary embodiment of the present disclosure, the soil information collection step S1 further includes:
S11,判断所述农作物播种区域是否隶属于某土壤数据监测站;S11, judging whether the crop sowing area belongs to a certain soil data monitoring station;
S12,若是,则从所述土壤数据监测站直接调用所述农作物播种区域的实际土壤信息;否则,通过土壤数据传感器采集所述农作物播种区域的实际土壤信息。S12. If yes, directly call the actual soil information of the crop sowing area from the soil data monitoring station; otherwise, collect the actual soil information of the crop sowing area through a soil data sensor.
在本公开的一种示例性实施例中,所述农作物播种区域的实际土壤信息包括所述土壤层的各深度层上的土壤温度T、土壤湿度H、土壤PH值、土壤紧实度D。In an exemplary embodiment of the present disclosure, the actual soil information of the crop sowing area includes soil temperature T, soil humidity H, soil pH value, and soil compaction degree D at each depth layer of the soil layer.
在本公开的一种示例性实施例中,所述土壤层具有一深度,且所述土壤层在所述深度范围内被划分为多个所述深度层。In an exemplary embodiment of the present disclosure, the soil layer has a depth, and the soil layer is divided into a plurality of depth layers within the depth range.
在本公开的一种示例性实施例中,所述种子信息获取步骤S2还包括:In an exemplary embodiment of the present disclosure, the step S2 of obtaining seed information further includes:
S21,获取用户输入的农作物种子信息;S21, obtaining the crop seed information input by the user;
S22,根据所述种子信息识别种子类型,并根据所述种子类型查找所述农作物种子发芽所需的土壤信息。S22. Identify the seed type according to the seed information, and search for the soil information required for the germination of the crop seeds according to the seed type.
在本公开的一种示例性实施例中,所述信息处理步骤S3,其特征在于,所述土壤层的分层值θ的计算公式为:In an exemplary embodiment of the present disclosure, the information processing step S3 is characterized in that the calculation formula of the layered value θ of the soil layer is:
其中,T最佳为所述农作物发芽的最佳土壤温度,H最佳为所述农作物发芽的最佳土壤湿度,PH最佳为所述农作物发芽的最佳土壤PH值,D最佳为所述农作物发芽的最佳土壤紧实度。在本公开的一种示例性实施例中,所述深度决策步骤S4包括:Wherein, the best T is the optimum soil temperature for the germination of the crops, the best H is the optimum soil humidity for the germination of the crops, the best pH is the optimum soil pH value for the germination of the crops, and the best D is the optimum soil pH for the germination of the crops. optimal soil compaction for germination of the crops described above. In an exemplary embodiment of the present disclosure, the depth decision step S4 includes:
S41,根据所述土壤层上各深度层的分层值θ确定所述土壤层上各深度层的分层属性;S41. Determine the stratification attribute of each depth layer on the soil layer according to the stratification value θ of each depth layer on the soil layer;
S42,根据所述土壤层上各深度层的分层属性得出所述农作物种子的最佳播种深度层。S42. Obtain an optimal sowing depth layer of the crop seeds according to the layering attributes of each depth layer on the soil layer.
在本公开的一种示例性实施例中,所述土壤层上各深度层的分层属性反映在所述深度层上播种所述农作物种子的适宜性;In an exemplary embodiment of the present disclosure, the hierarchical properties of each depth layer on the soil layer reflect the suitability of sowing the crop seeds on the depth layer;
所述深度层的分层值越小,则所述深度层上播种所述农作物种子的适宜性越好。The smaller the stratification value of the depth layer, the better the suitability for sowing the crop seeds on the depth layer.
在本公开的一种示例性实施例中,还包括空间分布处理步骤,用于对所述农作物播种区域的实际土壤信息、所述农作物播种区域的土壤层上各深度层的分层属性以及所述农作物种子的最佳播种深度层进行空间分布上的处理,并将处理结果通过一显示模块显示。In an exemplary embodiment of the present disclosure, it further includes a spatial distribution processing step for analyzing the actual soil information of the crop sowing area, the hierarchical attributes of each depth layer on the soil layer of the crop sowing area, and the The optimal sowing depth layer of the above-mentioned crop seeds is processed on the spatial distribution, and the processing results are displayed through a display module.
为实现本发明的另一目的,本发明还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一项所述的农作物播种深度智能决策方法。In order to achieve another object of the present invention, the present invention also provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the intelligent decision-making of crop sowing depth described in any one of the above-mentioned items is realized. method.
为实现本发明的另一目的,本发明还提供一种电子设备,包括:To achieve another purpose of the present invention, the present invention also provides an electronic device, comprising:
处理器;以及processor; and
存储器,用于存储所述处理器的可执行指令;a memory for storing executable instructions of the processor;
其中,所述处理器配置为经由执行所述可执行指令来执行上述任一项所述的农作物播种深度智能决策方法。Wherein, the processor is configured to execute the intelligent decision-making method for crop sowing depth described in any one of the above-mentioned methods by executing the executable instructions.
本发明提供的农作物播种深度智能决策系统能够自动获取农田土壤数据以及农作物播种深度决策,无论农户还是农业部门均可以随时随地精确地并有针对性地通过界面显示模块掌握某地域下某农田的土壤数据信息和智能农作物的播种深度决策,而不必亲临各地的农田现场,使得农户能够直接查询自己家分布在不同地域的各农田的土壤数据信息和智能农作物播种深度决策,农业部门可以查看不同地域的各农田的土壤数据信息和智能农作物播种深度决策,以便开展农作物生产的大规模智能分析,故本发明解决了现有技术无法随时随地查看不同地域不同农田土壤数据信息和农作物播种深度决策所导致的问题,结合建模技术,实时展示土壤数据信息和农作物播种深度决策,既能由农业部门使用,也能够推广到基层的农户使用,而且操作简单,直观方便,避免了现有技术依靠人工过往经验预测致使玉米亩产量无法提高的问题,同时由于能够直接获取到农作物播种深度策略,使得农户得到了精确播种专业化指导,避免了随意播种以及农业用土浪费和影响农作物丰收问题,为科学种田提供了关键因素。The crop sowing depth intelligent decision-making system provided by the present invention can automatically obtain farmland soil data and crop sowing depth decision-making, and no matter the farmer or the agricultural department can accurately and pertinently grasp the soil of a certain farmland in a certain area through the interface display module anytime and anywhere Data information and intelligent crop sowing depth decision-making, without having to visit the farmlands in various places, enables farmers to directly query the soil data information and intelligent crop sowing depth decisions of their own farmlands in different regions. The soil data information of each farmland and intelligent crop sowing depth decision-making, in order to carry out large-scale intelligent analysis of crop production, so the present invention solves the problems caused by the inability to view different farmland soil data information and crop sowing depth decisions in different regions anytime and anywhere in the prior art Problems, combined with modeling technology, real-time display of soil data information and crop planting depth decisions, can be used by the agricultural sector, and can also be extended to grass-roots farmers, and the operation is simple, intuitive and convenient, avoiding the existing technology relying on manual past experience Predict the problem that the yield per mu of corn cannot be increased. At the same time, due to the direct access to the crop sowing depth strategy, farmers can get professional guidance on precise sowing, avoiding random sowing and agricultural land waste and affecting crop harvest, and providing scientific farming. The key factor.
以下结合附图和具体实施例对本发明进行详细描述,但不作为对本发明的限定。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments, but not as a limitation of the present invention.
附图说明Description of drawings
图1为本发明一实施例的农作物播种深度智能决策系统的结构示意图。Fig. 1 is a schematic structural diagram of an intelligent decision-making system for crop sowing depth according to an embodiment of the present invention.
图2为本发明一实施例的农作物播种深度智能决策方法的流程图。Fig. 2 is a flowchart of an intelligent decision-making method for crop sowing depth according to an embodiment of the present invention.
具体实施方式detailed description
下面结合附图对本发明的结构原理和工作原理作具体的描述:Below in conjunction with accompanying drawing, structural principle and working principle of the present invention are specifically described:
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本公开的实施方式的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而省略所述特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知技术方案以避免喧宾夺主而使得本公开的各方面变得模糊。Example embodiments will now be described more fully with reference to the accompanying drawings. Example embodiments may, however, be embodied in many forms and should not be construed as limited to the examples set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete and will fully convey the concept of example embodiments to those skilled in the art. The described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided in order to give a thorough understanding of embodiments of the present disclosure. However, those skilled in the art will appreciate that the technical solutions of the present disclosure may be practiced without one or more of the specific details being omitted, or other methods, components, devices, steps, etc. may be adopted. In other instances, well-known technical solutions have not been shown or described in detail to avoid obscuring aspects of the present disclosure.
此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。Furthermore, the drawings are merely schematic illustrations of the present disclosure and are not necessarily drawn to scale. The same reference numerals in the drawings denote the same or similar parts, and thus repeated descriptions thereof will be omitted. Some of the block diagrams shown in the drawings are functional entities and do not necessarily correspond to physically or logically separate entities. These functional entities may be implemented in software, or in one or more hardware modules or integrated circuits, or in different network and/or processor means and/or microcontroller means.
本示例实施方式中首先提供了一种农作物播种深度智能决策系统100,本发明的农作物播种深度智能决策系统可用于多种农作物种子的播种深度的计算,根据不同种子对环境土壤的不同要求以及播种区域的土壤特点,做出合理的判断决策。如图1所示,本实施例的农作物播种深度智能决策系统100首先可以包括土壤信息采集模块110、种子信息获取模块120、信息处理模块130和深度决策模块140。其中,所述信息处理模块130根据农作物的不同类型的种子发芽所需土壤环境数据范围进行土壤分层计算建模,从而建立土壤分层计算模型。为能够具体清晰地介绍本发明的实施方式,本实施例中的农作物以玉米为例。In this example embodiment, a kind of crop sowing depth intelligent decision-making system 100 is firstly provided. The crop sowing depth intelligent decision-making system of the present invention can be used for the calculation of the sowing depth of various crop seeds. Based on the soil characteristics of the region, make reasonable judgment decisions. As shown in FIG. 1 , the crop sowing depth intelligent decision system 100 of this embodiment may firstly include a soil
所述土壤信息采集模块110采集播种区域的实际土壤信息并输入至所述信息处理模块130的土壤分层计算模型,所述种子信息获取模块120通过人工输入农作物种子类型并输入至土壤分层计算模型,所述土壤分层计算模型根据土壤信息采集模块110采集的播种区域的实际土壤信息和种子信息获取模块120确定的此种农作物种子发芽所需的土壤信息,进行土壤分层计算,并将土壤分层计算的结果输入至深度决策模块140;所述深度决策模块140根据土壤分层计算的结果,通过人工智能和决策支持相结合的方式得到最佳播种深度决策。其中,举例来说,农作物种子发芽所需的土壤信息可以包括农作物种子发芽所需要的最佳土壤温度T最佳、最佳土壤湿度H最佳、最佳土壤PH值PH最佳以及最佳土壤紧实度D最佳等。The soil
具体地,在本实施例中,当农户或者农业部门需要了解某块农田的农作物的最佳播种深度时,若此农田隶属于某土壤数据监测站,则可从监测站直接调用土壤数据;若此农田不属于某土壤监测站,或土壤监测站在采集土壤信息时,土壤数据采集模块110都可以进行如下操作:土壤信息采集模块110通过土壤数据传感器对土壤层在一定深度上进行土壤信息采集,而在实际使用中,对土壤层的信息采集到何种深度上,则主要根据所播种的种子的类型来考虑,举例而言,当所要播种的农作物是玉米时,其对土壤层的信息采集为0cm-6cm的深度。Specifically, in this embodiment, when farmers or agricultural departments need to know the optimal sowing depth of crops in a certain farmland, if the farmland belongs to a soil data monitoring station, the soil data can be directly called from the monitoring station; This farmland does not belong to a certain soil monitoring station, or when the soil monitoring station collects soil information, the soil
也就是说,本实施例的土壤信息采集模块110至少存在着三种信息采集的方式,一种是直接通过调用土壤数据监测站所存储的土壤信息,另一种是通过土壤数据传感器对土壤层在一定深度上进行即时的土壤信息采集,第三种则是二者的结合。That is to say, the soil
一般来说,本实施例的土壤信息采集模块110所采集的土壤信息主要包括:土壤温度T、土壤湿度H、土壤PH值、土壤紧实度D。Generally speaking, the soil information collected by the soil
进一步地,本实施例的农作物播种深度智能决策系统100还包括输入模块和存储模块(图中未示出),用户通过所述输入模块输入农作物种子信息,所述种子信息获取模块110根据所述农作物种子信息从所述存储模块获取对应的所述农作物种子发芽所需的土壤信息。也就是说,农户或者农业部门在使用本系统时,需将农作物品种的信息通过输入模块输入,输入模块可根据用户所输入的农作物种子的信息识别种子类型,并根据所述种子类型从本系统所预设的存储模块中查找所述农作物种子发芽所需的土壤信息,并输入至信息处理模块130进行土壤分层建模。当然,本发明并不以此为限。Further, the crop sowing depth intelligent decision-making system 100 of this embodiment also includes an input module and a storage module (not shown in the figure), the user inputs crop seed information through the input module, and the seed
信息处理模块130将种子信息获取模块120所提供的农作物发芽所需的最佳土壤信息作对照,其中,举例来说,农作物种子发芽所需的土壤信息可以包括农作物种子发芽所需要的最佳土壤温度T最佳、最佳土壤湿度H最佳、最佳土壤PH值PH最佳以及最佳土壤紧实度D最佳等。根据土壤信息采集模块110所提供的实际土壤信息,对土壤层的各深度层进行分层值的计算,然后根据分层值对各深度层进行等级划分。如上所述,土壤层具有一深度,例如上述的玉米种子的土壤层的信息采集为0cm-6cm的深度,所述土壤层在所述深度范围内被划分为多个深度层,比如将0cm-6cm深度的土壤层划分为0cm-2cm,2cm-4cm,4cm-6cm三个深度层。在本实施例中,信息处理模块130分别这三个深度层计算其对应的分层值θ,作为对这三个深度层进行等级划分的依据。土壤层的分层值θ的计算方法例如为:The
其中,T最佳为所述农作物发芽的最佳土壤温度,H最佳为所述农作物发芽的最佳土壤湿度,PH最佳为所述农作物发芽的最佳土壤PH值,D最佳为所述农作物发芽的最佳土壤紧实度。Wherein, the best T is the optimum soil temperature for the germination of the crops, the best H is the optimum soil humidity for the germination of the crops, the best pH is the optimum soil pH value for the germination of the crops, and the best D is the optimum soil pH for the germination of the crops. optimal soil compaction for germination of the crops described above.
据此,需要进一步明确的是,在前述土壤信息采集模块110采集播种区域的土壤信息时,则应已便是根据这些土壤层上的深度层进行分别采集的,以便于进一步计算各深度层上的分层值。由于,不同农作物种子对土壤层深度的要求不一,不同种子对应的土壤层的深度层划分也不一样,因此土壤信息采集模块需要根据种子信息获取模块120所获取的种子信息来确定采集的土壤信息,其中,举例来说,农作物种子发芽所需的土壤信息可以包括农作物种子发芽所需要的最佳土壤温度T最佳、最佳土壤湿度H最佳、最佳土壤PH值PH最佳以及最佳土壤紧实度D最佳等。Accordingly, it needs to be further clarified that when the aforementioned soil
进一步地,深度决策模块140比较土壤各深度层的θ值大小,根据各深度层的θ值,确定所述土壤层上各深度层的分层属性,进而根据所述土壤层上各深度层的分层属性得出所述农作物种子的最佳播种深度层。土壤层上各深度层的分层属性反映在所述深度层上播种所述农作物种子的适宜性;所述深度层的分层值越小,则所述深度层上播种所述农作物种子的适宜性越好。Further, the
继续以上述玉米种子为例,土壤层上各深度层的分层属性包括非常适宜、适宜、较适宜和较适宜四种,其中,若0≤θ<100,则将此层等级为非常适宜;若100≤θ<200,则此层等级为适宜;若200≤θ<300,则此层等级为较适宜;若θ≥300,则此层等级为较适宜。例如,计算出0cm-2cm的深度层的分层值θ=225,2cm-4cm的深度层的分层值θ=169,4cm-6cm的深度层的分层值θ=81,则0cm-2cm深度层为较适宜,2cm-4cm深度层为适宜,4cm-6cm深度层为非常适宜,则最佳播种深度层为4cm-6cm。Continuing to take the above-mentioned corn seeds as an example, the stratification attributes of each depth layer on the soil layer include four types: very suitable, suitable, relatively suitable and relatively suitable, among which, if 0≤θ<100, the level of this layer is very suitable; If 100≤θ<200, the grade of this layer is suitable; if 200≤θ<300, then the grade of this layer is more suitable; if θ≥300, then the grade of this layer is more suitable. For example, calculate the layered value θ=225 of the depth layer of 0cm-2cm, the layered value θ=169 of the depth layer of 2cm-4cm, and the layered value θ=81 of the depth layer of 4cm-6cm, then 0cm-2cm The depth layer is more suitable, the 2cm-4cm depth layer is suitable, and the 4cm-6cm depth layer is very suitable, so the best sowing depth layer is 4cm-6cm.
更进一步地,本发明的农作物播种深度智能决策系统100还包括空间分布处理模块150和显示模块160,所述空间分布处理模块150用于对所述农作物播种区域的实际土壤信息、所述农作物播种区域的土壤层上各深度层的分层属性以及所述农作物种子的最佳播种深度层进行空间分布上的处理,并将处理结果通过所述显示模块160显示。Furthermore, the crop sowing depth intelligent decision-making system 100 of the present invention also includes a spatial
空间分布处理模块150包括相互连接的引擎单元152和GIS单元151,GIS单元151分别连接土壤信息采集模块110、信息处理模块130和深度决策模块140,引擎单元152连接显示模块160;GIS单元151提供地图服务信息,优选可以提供比例尺为1:10000的数字地图服务信息,具体为采用GIS技术对不同农田地域不同基地不同农田的地理位置进行不同空间分布处理,对相同农田得到的实际土壤信息、土壤分层计算的结果和播种深度决策的结构进行相同的空间分布处理,也就是将所述农作物播种区域的土壤信息、所述农作物播种区域的土壤层上各深度层的分层属性以及所述农作物种子的最佳播种深度层标示于所述地理位置的数字地图上,得到农作物播种深度决策空间分布图,再由引擎单元152发送至显示模块160显示。The spatial
显示模块160提供浏览器界面实现系统模块的交互以及人机交互,界面显示模块可以为触摸式或者是按键式,并可组建多层级的模块目录结构,使用户操作界面具有表现形式丰富、配置灵活、风格统一的特点,从而保证了整个系统用户操作界面的多样性、一致性,友好的客户化界面,条理清晰,树态逻辑列示的条目一目了然,为用户提供良好的操作体验。界面显示模块显示出各层土壤相对等级,最佳播种深度以及所测土壤的地理位置。The
最终农户或者农业部门可通过界面显示模块查看此块农田各层土壤的相对等级,以及此种玉米在这块农田的最佳播种深度。从而更科学地进行下一步的农作物播种作业。Finally, farmers or agricultural departments can view the relative grades of the soil layers of this farmland and the optimum sowing depth of this kind of corn in this farmland through the interface display module. Thereby, the next crop sowing operation can be carried out more scientifically.
相应地,基于同一发明构思,本发明还提供一种农作物播种深度智能决策方法,如图2所示,包括以下步骤:Correspondingly, based on the same inventive concept, the present invention also provides an intelligent decision-making method for crop sowing depth, as shown in Figure 2, comprising the following steps:
土壤信息采集步骤S1,用于采集所述农作物播种区域的实际土壤信息;The soil information collection step S1 is used to collect the actual soil information of the crop sowing area;
种子信息获取步骤S2,用于获取所述农作物的种子信息并根据所述种子信息获取所述农作物种子发芽所需的土壤信息;The seed information obtaining step S2 is used to obtain the seed information of the crop and obtain the soil information required for the germination of the crop seed according to the seed information;
信息处理步骤S3,用于获取所述农作物播种区域的实际土壤信息以及所述农作物种子发芽所需的土壤信息,并以所述农作物种子发芽所需的土壤信息为对照,根据所述农作物播种区域的实际土壤信息计算所述农作物播种区域的土壤层上各深度层的分层值;The information processing step S3 is used to obtain the actual soil information of the crop sowing area and the soil information required for the germination of the crop seeds, and compare the soil information required for the germination of the crop seeds, according to the crop sowing area The actual soil information calculates the layered value of each depth layer on the soil layer of the crop sowing area;
深度决策步骤S4,用于根据所述土壤层上各深度层的分层值决定所述农作物种子的最佳播种深度层。The depth decision step S4 is used to determine the optimal sowing depth layer of the crop seeds according to the layered values of the depth layers on the soil layer.
该方法根据农作物种子发芽所需土壤环境进行土壤相对等级建模,从而建立土壤相对等级计算模型,同时采集实时土壤数据和农作物种子种类共同输入至土壤相对等级计算模型进行土壤相对等级计算,再通过人工智能和决策支持相结合的方式得到玉米播深决策;将播深决策、采集的土壤数据以及土壤相对等级计算模型进行土壤相对等级计算的结果均进行空间分布处理后进行界面显示,无论农户还是农业部门均可以随时随地精确地并有针对性地通过界面显示模块掌握某地域下某农田的土壤数据信息和智能农作物播深决策,解决了现有技术的弊端,实现了土壤数据信息的远程监测以及科学指导智能农作物播深决策。In this method, soil relative grade modeling is carried out according to the soil environment required for crop seed germination, so as to establish a soil relative grade calculation model. At the same time, real-time soil data and crop seed types are collected and input into the soil relative grade calculation model for soil relative grade calculation, and then through The corn sowing depth decision is obtained by combining artificial intelligence and decision support; the sowing depth decision, the collected soil data, and the soil relative grade calculation results of the soil relative grade calculation model are all spatially distributed and displayed on the interface. The agricultural department can accurately and targetedly grasp the soil data information of a certain farmland in a certain area and the intelligent crop sowing depth decision-making through the interface display module anytime, anywhere, which solves the shortcomings of the existing technology and realizes the remote monitoring of soil data information And scientifically guide the decision-making of intelligent crop sowing depth.
下面,将对本示例实施方式中上述农作物播种深度智能决策方法中的各步骤进行详细的解释以及说明。Next, each step in the above-mentioned method for intelligent decision-making of crop sowing depth in this exemplary embodiment will be explained and described in detail.
在所述土壤信息采集步骤S1中,可以通过土壤数据监测站或者土壤数据传感器采集土壤数据监测所述农作物播种区域的实际土壤信息,具体例如包括以下步骤:In the soil information collection step S1, the soil data can be collected by a soil data monitoring station or a soil data sensor to monitor the actual soil information of the crop sowing area, which specifically includes the following steps:
S11,判断所述农作物播种区域是否隶属于某土壤数据监测站;S11, judging whether the crop sowing area belongs to a certain soil data monitoring station;
S12,若是,则从所述土壤数据监测站直接调用所述农作物播种区域的实际土壤信息;否则,通过土壤数据传感器采集所述农作物播种区域的实际土壤信息。S12. If yes, directly call the actual soil information of the crop sowing area from the soil data monitoring station; otherwise, collect the actual soil information of the crop sowing area through a soil data sensor.
其中,所述农作物播种区域的实际土壤信息包括所述土壤层的各深度层上的土壤温度T、土壤湿度H、土壤PH值、土壤紧实度D。土壤层在一定深度范围内被划分为多个深度层。Wherein, the actual soil information of the crop sowing area includes soil temperature T, soil humidity H, soil pH value, and soil compaction degree D on each depth layer of the soil layer. The soil layer is divided into multiple depth layers within a certain depth range.
在种子信息获取步骤S2中,可以根据输入的种子信息确定种子的具体类型,从而获取相应的种子发芽所需要的土壤信息,具体来说,可以包括以下步骤:In the seed information obtaining step S2, the specific type of the seed can be determined according to the input seed information, so as to obtain the corresponding soil information required for seed germination. Specifically, the following steps can be included:
S21,获取用户输入的农作物种子信息;S21, obtaining the crop seed information input by the user;
S22,根据所述种子信息识别种子类型,并根据所述种子类型查找所述农作物种子发芽所需的土壤信息,其中,举例来说,农作物种子发芽所需的土壤信息可以包括农作物种子发芽所需要的最佳土壤温度、最佳土壤湿度、最佳土壤PH值以及最佳土壤紧实度等。S22. Identify the seed type according to the seed information, and search for the soil information required for the germination of the crop seeds according to the seed type, wherein, for example, the soil information required for the germination of the crop seeds may include the soil information required for the germination of the crop seeds The best soil temperature, the best soil moisture, the best soil PH value and the best soil compaction.
在信息处理步骤S3中,所述土壤层的分层值θ的计算方法例如为:In the information processing step S3, the calculation method of the layered value θ of the soil layer is, for example:
其中,T最佳为所述农作物发芽的最佳土壤温度,H最佳为所述农作物发芽的最佳土壤湿度,PH最佳为所述农作物发芽的最佳土壤PH值,D最佳为所述农作物发芽的最佳土壤紧实度。Wherein, the best T is the optimum soil temperature for the germination of the crops, the best H is the optimum soil humidity for the germination of the crops, the best pH is the optimum soil pH value for the germination of the crops, and the best D is the optimum soil pH for the germination of the crops. optimal soil compaction for germination of the crops described above.
在所述深度决策步骤S4中,可以包括具体步骤:In the depth decision step S4, specific steps may be included:
S41,根据所述土壤层上各深度层的分层值θ确定所述土壤层上各深度层的分层属性;S41. Determine the stratification attribute of each depth layer on the soil layer according to the stratification value θ of each depth layer on the soil layer;
S42,根据所述土壤层上各深度层的分层属性得出所述农作物种子的最佳播种深度层。S42. Obtain an optimal sowing depth layer of the crop seeds according to the layering attributes of each depth layer on the soil layer.
其中,所述土壤层上各深度层的分层属性反映在所述深度层上播种所述农作物种子的适宜性;所述深度层的分层值越小,则所述深度层上播种所述农作物种子的适宜性越好。Wherein, the stratification attribute of each depth layer on the described soil layer reflects the suitability of sowing the crop seeds on the depth layer; the smaller the stratification value of the depth layer is, the more described The better the suitability of the crop seeds.
进一步而言,本发明的农作物播种深度智能决策方法,还可以包括空间分布处理步骤,用于对所述农作物播种区域的实际土壤信息、所述农作物播种区域的土壤层上各深度层的分层属性以及所述农作物种子的最佳播种深度层进行空间分布上的处理,并将处理结果通过一显示模块显示。Further, the intelligent decision-making method for crop sowing depth of the present invention may also include a spatial distribution processing step for analyzing the actual soil information of the crop sowing area, the layering of each depth layer on the soil layer of the crop sowing area The attribute and the optimal sowing depth layer of the crop seeds are processed on the spatial distribution, and the processing results are displayed through a display module.
应当注意,尽管在上文详细描述中提及了用于动作执行的设备的若干模块或者单元,但是这种划分并非强制性的。实际上,根据本公开的实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。It should be noted that although several modules or units of the device for action execution are mentioned in the above detailed description, this division is not mandatory. Actually, according to the embodiment of the present disclosure, the features and functions of two or more modules or units described above may be embodied in one module or unit. Conversely, the features and functions of one module or unit described above can be further divided to be embodied by a plurality of modules or units.
此外,尽管在附图中以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。In addition, although steps of the methods of the present disclosure are depicted in the drawings in a particular order, there is no requirement or implication that the steps must be performed in that particular order, or that all illustrated steps must be performed to achieve the desired result. Additionally or alternatively, certain steps may be omitted, multiple steps may be combined into one step for execution, and/or one step may be decomposed into multiple steps for execution, etc.
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本公开实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、移动终端、或者网络设备等)执行根据本公开实施方式的方法。Through the description of the above implementations, those skilled in the art can easily understand that the example implementations described here can be implemented by software, or by combining software with necessary hardware. Therefore, the technical solutions according to the embodiments of the present disclosure can be embodied in the form of software products, and the software products can be stored in a non-volatile storage medium (which can be CD-ROM, U disk, mobile hard disk, etc.) or on the network , including several instructions to make a computing device (which may be a personal computer, a server, a mobile terminal, or a network device, etc.) execute the method according to the embodiments of the present disclosure.
相应地,基于同一发明构思,本发明还提供一种计算机可读存储介质,其上存储有能够实现本说明书上述方法的程序产品。在一些可能的实施方式中,本发明的各个方面还可以实现为一种程序产品的形式,其包括程序代码,当所述程序产品在终端设备上运行时,所述程序代码用于使所述终端设备执行本说明书上述“示例性方法”部分中描述的根据本发明各种示例性实施方式的步骤。Correspondingly, based on the same inventive concept, the present invention also provides a computer-readable storage medium on which is stored a program product capable of implementing the above-mentioned method in this specification. In some possible implementations, various aspects of the present invention can also be implemented in the form of a program product, which includes program code, and when the program product is run on a terminal device, the program code is used to make the The terminal device executes the steps according to various exemplary embodiments of the present invention described in the "Exemplary Method" section above in this specification.
根据本发明的实施方式的用于实现上述方法的程序产品,其可以采用便携式紧凑盘只读存储器(CD-ROM)并包括程序代码,并可以在终端设备,例如个人电脑上运行。然而,本发明的程序产品不限于此,在本文件中,可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。According to the program product for implementing the above method according to the embodiment of the present invention, it may adopt a portable compact disc read-only memory (CD-ROM) and include program codes, and may run on a terminal device such as a personal computer. However, the program product of the present invention is not limited thereto. In this document, a readable storage medium may be any tangible medium containing or storing a program, and the program may be used by or in combination with an instruction execution system, apparatus or device.
所述程序产品可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以为但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。The program product may reside on any combination of one or more readable media. The readable medium may be a readable signal medium or a readable storage medium. The readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof. More specific examples (non-exhaustive list) of readable storage media include: electrical connection with one or more conductors, portable disk, hard disk, random access memory (RAM), read only memory (ROM), erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the foregoing.
计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。可读信号介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。A computer readable signal medium may include a data signal carrying readable program code in baseband or as part of a carrier wave. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing. A readable signal medium may also be any readable medium other than a readable storage medium that can transmit, propagate, or transport a program for use by or in conjunction with an instruction execution system, apparatus, or device.
可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、有线、光缆、RF等等,或者上述的任意合适的组合。Program code embodied on a readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
可以以一种或多种程序设计语言的任意组合来编写用于执行本发明操作的程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、C++等,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。Program code for carrying out the operations of the present invention may be written in any combination of one or more programming languages, including object-oriented programming languages—such as Java, C++, etc., as well as conventional procedural programming languages. Programming language - such as "C" or a similar programming language. The program code may execute entirely on the user's computing device, partly on the user's device, as a stand-alone software package, partly on the user's computing device and partly on a remote computing device, or entirely on the remote computing device or server to execute. In cases involving a remote computing device, the remote computing device may be connected to the user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device (e.g., using an Internet service provider). business to connect via the Internet).
相应地,基于同一发明构思,本发明还提供一种电子设备。Correspondingly, based on the same inventive concept, the present invention also provides an electronic device.
所属技术领域的技术人员能够理解,本发明的各个方面可以实现为系统、方法或程序产品。因此,本发明的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“系统”。Those skilled in the art can understand that various aspects of the present invention can be implemented as systems, methods or program products. Therefore, various aspects of the present invention can be embodied in the following forms, that is: a complete hardware implementation, a complete software implementation (including firmware, microcode, etc.), or a combination of hardware and software implementations, which can be collectively referred to herein as "circuit", "module" or "system".
本实施方式的电子设备以通用计算设备的形式表现。电子设备的组件可以包括但不限于:上述至少一个处理单元、上述至少一个存储单元、连接不同系统组件(包括存储单元和处理单元)的总线。The electronic device of this embodiment is expressed in the form of a general-purpose computing device. Components of the electronic device may include, but are not limited to: the above at least one processing unit, the above at least one storage unit, and a bus connecting different system components (including the storage unit and the processing unit).
其中,所述存储单元存储有程序代码,所述程序代码可以被所述处理单元执行,使得所述处理单元执行本说明书上述“示例性方法”部分中描述的根据本发明各种示例性实施方式的步骤。Wherein, the storage unit stores program codes, and the program codes can be executed by the processing unit, so that the processing unit executes the various exemplary implementations according to the present invention described in the "Exemplary Methods" section of this specification. A step of.
存储单元可以包括易失性存储单元形式的可读介质,例如随机存取存储单元(RAM)和/或高速缓存存储单元,还可以进一步包括只读存储单元(ROM)。The storage unit may include readable media in the form of volatile storage units, such as random access memory units (RAM) and/or cache storage units, and may further include read only memory units (ROM).
存储单元还可以包括具有一组(至少一个)程序模块的程序/实用工具,这样的程序模块包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。The memory unit may also include programs/utilities having a set (at least one) of program modules including, but not limited to, an operating system, one or more application programs, other program modules, and program data, in which case Each or some combination may include implementations of network environments.
总线可以为表示几类总线结构中的一种或多种,包括存储单元总线或者存储单元控制器、外围总线、图形加速端口、处理单元或者使用多种总线结构中的任意总线结构的局域总线。A bus may represent one or more of several types of bus structures, including a memory cell bus or memory cell controller, a peripheral bus, an accelerated graphics port, a processing unit, or a local bus using any of a variety of bus structures .
电子设备也可以与一个或多个外部设备(例如键盘、指向设备、蓝牙设备等)通信,还可与一个或者多个使得用户能与该电子设备交互的设备通信,和/或与使得该电子设备能与一个或多个其它计算设备进行通信的任何设备(例如路由器、调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口进行。并且,电子设备还可以通过网络适配器与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器通过总线与电子设备的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。The electronic device may also communicate with one or more external devices (e.g., keyboards, pointing devices, Bluetooth devices, etc.), and with one or more devices that enable the user to interact with the electronic device, and/or communicate with the electronic A device communicates with any device (eg, router, modem, etc.) that is capable of communicating with one or more other computing devices. Such communication may occur through input/output (I/O) interfaces. Moreover, the electronic device can also communicate with one or more networks (such as a local area network (LAN), a wide area network (WAN) and/or a public network such as the Internet) through a network adapter. As shown, the network adapter communicates with other modules of the electronic device through a bus. It should be understood that although not shown in the figures, other hardware and/or software modules may be used in conjunction with the electronic device, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives, and Data backup storage system, etc.
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本公开实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、终端装置、或者网络设备等)执行根据本公开实施方式的方法。Through the description of the above implementations, those skilled in the art can easily understand that the example implementations described here can be implemented by software, or by combining software with necessary hardware. Therefore, the technical solutions according to the embodiments of the present disclosure can be embodied in the form of software products, and the software products can be stored in a non-volatile storage medium (which can be CD-ROM, U disk, mobile hard disk, etc.) or on the network , including several instructions to make a computing device (which may be a personal computer, a server, a terminal device, or a network device, etc.) execute the method according to the embodiments of the present disclosure.
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。Certainly, the present invention also can have other multiple embodiments, without departing from the spirit and essence of the present invention, those skilled in the art can make various corresponding changes and deformations according to the present invention, but these corresponding Changes and deformations should belong to the scope of protection of the appended claims of the present invention.
Claims (16)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110078503.0A CN112913393B (en) | 2021-01-20 | 2021-01-20 | Crop sowing depth intelligent decision-making system, method, storage medium and equipment |
PCT/CN2021/115818 WO2022156221A1 (en) | 2021-01-20 | 2021-08-31 | Crop seeding depth intelligent decision-making system and method, storage medium and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110078503.0A CN112913393B (en) | 2021-01-20 | 2021-01-20 | Crop sowing depth intelligent decision-making system, method, storage medium and equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112913393A CN112913393A (en) | 2021-06-08 |
CN112913393B true CN112913393B (en) | 2023-01-03 |
Family
ID=76165316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110078503.0A Active CN112913393B (en) | 2021-01-20 | 2021-01-20 | Crop sowing depth intelligent decision-making system, method, storage medium and equipment |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112913393B (en) |
WO (1) | WO2022156221A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112913393B (en) * | 2021-01-20 | 2023-01-03 | 中国农业机械化科学研究院 | Crop sowing depth intelligent decision-making system, method, storage medium and equipment |
CN118592279B (en) * | 2024-06-13 | 2024-12-20 | 中国农业科学院农业环境与可持续发展研究所 | Intelligent seeding method, intelligent seeding device, intelligent seeding equipment, intelligent seeding storage medium and intelligent seeding computer program product |
CN119270650A (en) * | 2024-12-09 | 2025-01-07 | 农业农村部南京农业机械化研究所 | Intelligent seeding machinery automation control system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104006848A (en) * | 2014-04-28 | 2014-08-27 | 长沙敏源电子有限公司 | Farmland agricultural condition monitoring system capable of being provided with multiple sensors |
US9585301B1 (en) * | 2013-04-15 | 2017-03-07 | Veris Technologies, Inc. | Agricultural planter with automatic depth and seeding rate control |
CN107466507A (en) * | 2017-09-22 | 2017-12-15 | 太仓宇佳食品有限公司 | A kind of intelligent integral implanted device |
CN108398540A (en) * | 2018-01-31 | 2018-08-14 | 昆明大蚯蚓科技有限公司 | Processing method and processing device for soil surveying index |
CN111713385A (en) * | 2020-06-01 | 2020-09-29 | 北京农业智能装备技术研究中心 | Automatic irrigation method and system |
CN112042289A (en) * | 2019-06-06 | 2020-12-08 | 丰疆智能科技股份有限公司 | Rotary blade control system and method for mini-tiller |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6070539A (en) * | 1997-03-21 | 2000-06-06 | Case Corporation | Variable rate agricultural product application implement with multiple inputs and feedback |
CN102722973B (en) * | 2012-06-29 | 2018-02-13 | 深圳市赛格导航科技股份有限公司 | Reading intelligent agriculture operating system and its operational method based on GPS |
US9629304B2 (en) * | 2013-04-08 | 2017-04-25 | Ag Leader Technology | On-the go soil sensors and control methods for agricultural machines |
CN110455340B (en) * | 2019-08-21 | 2020-05-15 | 池州市农产品质量安全监测中心 | A detection system for agricultural product planting environment based on big data |
CN111295987B (en) * | 2020-03-19 | 2023-10-13 | 吉林大学 | A precision agriculture system and method that takes into account both output and input adaptive models |
CN112913393B (en) * | 2021-01-20 | 2023-01-03 | 中国农业机械化科学研究院 | Crop sowing depth intelligent decision-making system, method, storage medium and equipment |
-
2021
- 2021-01-20 CN CN202110078503.0A patent/CN112913393B/en active Active
- 2021-08-31 WO PCT/CN2021/115818 patent/WO2022156221A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9585301B1 (en) * | 2013-04-15 | 2017-03-07 | Veris Technologies, Inc. | Agricultural planter with automatic depth and seeding rate control |
CN104006848A (en) * | 2014-04-28 | 2014-08-27 | 长沙敏源电子有限公司 | Farmland agricultural condition monitoring system capable of being provided with multiple sensors |
CN107466507A (en) * | 2017-09-22 | 2017-12-15 | 太仓宇佳食品有限公司 | A kind of intelligent integral implanted device |
CN108398540A (en) * | 2018-01-31 | 2018-08-14 | 昆明大蚯蚓科技有限公司 | Processing method and processing device for soil surveying index |
CN112042289A (en) * | 2019-06-06 | 2020-12-08 | 丰疆智能科技股份有限公司 | Rotary blade control system and method for mini-tiller |
CN111713385A (en) * | 2020-06-01 | 2020-09-29 | 北京农业智能装备技术研究中心 | Automatic irrigation method and system |
Also Published As
Publication number | Publication date |
---|---|
WO2022156221A1 (en) | 2022-07-28 |
CN112913393A (en) | 2021-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112913393B (en) | Crop sowing depth intelligent decision-making system, method, storage medium and equipment | |
Speelman et al. | A measure for the efficiency of water use and its determinants, a case study of small-scale irrigation schemes in North-West Province, South Africa | |
Hunt et al. | Agronomic data: advances in documentation and protocols for exchange and use | |
BR112020022324A2 (en) | digital visualization of seasonal agricultural fertility prescriptions updated periodically | |
CN106875283A (en) | A kind of system and method for the farmland planting insurance assessment based on agriculture big data | |
CN110309985A (en) | Method and system for predicting crop yield | |
BR112019015401A2 (en) | PLANTATION YIELD ESTIMATE USING AGRONOMIC NEURAL NETWORK | |
CN113874829B (en) | Voice integrated agricultural system | |
Zhou et al. | Experimental research on trade-offs in ecosystem services: The agro-ecosystem functional spectrum | |
US20110010213A1 (en) | Method for capturing and reporting relevant crop genotype-specific performance information to scientists for continued crop genetic improvement | |
CN118095792A (en) | Intelligent agriculture management system based on big data | |
Weisong et al. | WebGIS-based suitability evaluation system for Chinese table grape production | |
CN111708776A (en) | Agricultural data platform based on GIS technology development | |
CN117093876A (en) | Cross-space-time estimation method and related equipment for influence of fertilization behavior on soil properties | |
Li et al. | Global de-trending significantly improves the accuracy of XGBoost-based county-level maize and soybean yield prediction in the Midwestern United States | |
CN102510397A (en) | Device and system for acquiring crop condition information | |
Milla et al. | Kinship rivalry does not trigger specific allocation strategies in Lupinus angustifolius | |
Barman et al. | Synergizing sustainability: a critical review on harnessing agroforestry for biomass, carbon sequestration, and water-food-energy nexus | |
CN113255999A (en) | Multi-model-based crop yield assessment method, device, equipment and medium | |
CN107958085A (en) | A kind of agricultural resource multi-source Spatial Data shared platform and its querying method | |
CN103927687A (en) | Intelligent fertilization system for China firs | |
MORRIS et al. | Using a process-based forest model to estimate the potential productivity of Eucalyptus plantations in southern China | |
US12354345B2 (en) | Methods and systems for visualizing soybean variety placement using variety profile index | |
CN101894354A (en) | Agricultural Remote Information System Based on Embedded Agricultural Database | |
Song et al. | Research on the collection system of foxtail millet phenotypic traits based on Android system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |