[go: up one dir, main page]

CN112876257B - 一种SiCf/SiC复合材料两层复合包壳管及其制备方法 - Google Patents

一种SiCf/SiC复合材料两层复合包壳管及其制备方法 Download PDF

Info

Publication number
CN112876257B
CN112876257B CN202110110002.6A CN202110110002A CN112876257B CN 112876257 B CN112876257 B CN 112876257B CN 202110110002 A CN202110110002 A CN 202110110002A CN 112876257 B CN112876257 B CN 112876257B
Authority
CN
China
Prior art keywords
sic
layer
composite
cladding tube
prefabricated part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110110002.6A
Other languages
English (en)
Other versions
CN112876257A (zh
Inventor
张瑞谦
李鸣
何宗倍
付道贵
陈招科
邱绍宇
李志平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Power Institute of China
Original Assignee
Nuclear Power Institute of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Power Institute of China filed Critical Nuclear Power Institute of China
Priority to CN202110110002.6A priority Critical patent/CN112876257B/zh
Publication of CN112876257A publication Critical patent/CN112876257A/zh
Application granted granted Critical
Publication of CN112876257B publication Critical patent/CN112876257B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/6286Carbides
    • C04B35/62863Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62873Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62886Coating the powders or the macroscopic reinforcing agents by wet chemical techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62892Coating the powders or the macroscopic reinforcing agents with a coating layer consisting of particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62894Coating the powders or the macroscopic reinforcing agents with more than one coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种SiCf/SiC复合材料两层复合包壳管及其制备方法,解决了现有的化学气相渗透制备的SiCf/SiC复合材料致密化程度低,出现大孔洞,孔隙率较大且热导率偏低的技术问题。本发明的SiCf/SiC复合材料两层复合包壳管,包括SiCf/SiC复合层和SiC陶瓷层,所述SiCf/SiC复合层包括SiC纤维层、界面层和SiC基体,所述界面层采用化学气相渗透制备。本发明的SiCf/SiC复合材料两层复合包壳管具有密度高、孔隙率低,气密性和导热性好等优点。

Description

一种SiCf/SiC复合材料两层复合包壳管及其制备方法
技术领域
本发明涉及核用SiCf/SiC复合材料技术领域,具体涉及一种SiCf/SiC复合材料两层复合包壳管及其制备方法。
背景技术
燃料元件是核动力反应堆堆芯的核心部件,关系核反应堆运行的安全性与经济性。在现行技术下多采用Zr合金作为商用核电轻水堆燃料元件的包壳材料。但Zr合金作为包壳材料在高温下具有一定的安全性问题,如Zr合金包壳与高温冷却剂水剧烈反应,放出大量热和爆炸气体氢气,导致包壳材料力学性能恶化,产生反应堆氢爆与大量放射性产物外泄等核灾难性后果。所以,下一代及未来先进核电压水堆用燃料元件包壳材料与现用核电Zr合金包壳材料相比,必须具备更好的抗高温水蒸气氧化能力、高温强度及高温稳定性,能够在一定时间内提供更大安全余量以及避免潜在的严重堆芯融化事故。
SiCf/SiC作为一种新兴的战略性结构陶瓷材料,以SiC纤维为第二增强相,增强SiC基体,具有比强度,高比模量,耐高温,耐辐照,良好高温稳定性等特点,同时由于SiC纤维的引入改善了材料的韧性不足,裂纹敏感性高等缺点。在高温环境下SiCf/SiC复合材料其机械性能下降较小,同时热膨胀系数较小,在高温下不会发生严重的变形,是潜力巨大的新一代核反应堆包壳材料。相比于Zr 合金其用作核反应堆包壳材料的有点主要在于(1)碳化硅熔点高,SiCf/SiC复合材料的最高工作温度可达2000摄氏度,不会因为温度过高导致包壳熔化,导致核事故的发生。(2)高温稳定性好,与不会与水蒸气反应导致类似福岛核电站的氢气爆炸事件。(3)SiCf/SiC能够承受更高的工作温度,反应可在相比于 Zr合金更高的温度下进行,提高工作效率。(4)高温耐腐蚀性好,可以大大提高使用寿命,节约更换材料成本。(5)其中子吸收界面低,相同情况下更节约燃。因此SiCf/SiC复合材料是更为优异的核反应堆包壳材料,具有非常高的应用潜力。研究人员对于SiCf/SiC复合材料热导率较低,成型技术,气密性等问题进行了一系列研究,以获得更好的性能。
目前,制备SiCf/SiC复合材料的工艺方法主要包括以下四种:高温熔渗、聚合物浸渍裂解(PIP)、化学气相渗透(CVI)以及纳米浸渍与瞬时共晶相 (Nano-infiltrated-transient-eutectic,NITE)工艺。在诸多方法中CVI工艺是制备核用SiCf/SiC复合材料的基体的最常用工艺,这种方法生产的SiC基体为β-SiC 抗辐照能力好,杂质少,具有近化学计量的碳硅比。所以CVI也是目前制备核用SiCf/SiC复合材料的最佳方法。
但是在应用中CVI工艺也存在一系列问题,例如制备的复合材料孔隙率较大(15~20%),热导率较低,纤维交叉处常常不能致密化,出现大孔洞等问题。
发明内容
本发明所要解决的技术问题是:现有的化学气相渗透制备的SiCf/SiC复合材料致密化程度低,出现大孔洞,孔隙率较大且热导率偏低。
本发明通过下述技术方案实现:
一种SiCf/SiC复合材料两层复合包壳管,包括SiCf/SiC复合层和SiC陶瓷层,所述SiCf/SiC复合层包括SiC纤维层、界面层和SiC基体,所述界面层采用化学气相渗透制备。
本发明制备了SiCf/SiC复合层和SiC陶瓷层的两层复合结构,其中SiCf/SiC 复合层作为所述包壳管的承受载荷的主体层以及增强增韧层;所述外层的SiC陶瓷层作为所述包壳管的防腐蚀层和保障包壳管气密性的功能层。
现有技术证实纤维和基体之间的界面层对于SiCf/SiC复合材料的力学性能有重要的影响。界面层可以阻止纤维被侵蚀,有效地传递纤维和基体之间的载荷,使得纤维发挥承载作用。合适的界面层可以使裂纹偏转、界面脱粘和纤维拔出等增韧机制得以发挥,进而提高复合材料的力学性能。
本发明通过化学共沉积的方法制备界面层,能获得更为致密的界面层,利于提高整个材料的力学性能。
本发明优选一种SiCf/SiC复合材料两层复合包壳管,所述界面层为热解炭层和碳化硅的共沉积层。
本发明通过化学共沉积的方法制备热解炭层和碳化硅的共沉积层,有利于获得更为致密的界面层,从而提高整个材料的力学性能。
本发明优选一种SiCf/SiC复合材料两层复合包壳管,所述SiC纤维层和界面层之间还设置有碳纳米管层,所述碳纳米管层所用的碳纳米管为少壁碳纳米管,优选为单壁碳纳米管。
优选地,SiC纤维层和界面层之间设置多层碳纳米管层,所述碳纳米管层的层数为3-5层,每层碳纳米管层的厚度为100-200nm。
本发明优选一种SiCf/SiC复合材料两层复合包壳管,复合包壳管的外径为 6mm-20mm,管壁的厚度为0.7mm-1.2mm,所述SiCf/SiC复合层厚度为0.5mm~ 1mm,所述SiC陶瓷层厚度为200-500μm,所述SiCf/SiC复合层体积分数大于 50%。
进一步地,所述SiCf/SiC复合层厚度为0.5mm~0.7mm。
进一步地,所述SiCf/SiC复合层的密度为2.50~2.70g/cm3,开孔隙率约3~ 10%。
进一步地,所述界面层的厚度为100-300nm。
进一步地,所述SiC陶瓷层的厚度为300~400μm。
进一步地,所述SiC纤维层采用的是高纯高结晶Ⅲ代SiC纤维制备而成。
这使得复合包壳相比于同厚度的三层复合包壳具有更好的拉伸力学性能,同时合适的复合材料层与陶瓷层的厚度比使得复合包壳在受内压时的应力分布更为均匀,变形更为协调。
一种制备SiCf/SiC复合材料两层复合包壳管的方法,包括如下步骤:
步骤1:SiC纤维预制件包壳管编织
将SiC纤维缠绕或编织在石墨管芯模上,形成SiC包壳管预制件;
步骤2:界面层制备
以丙烯为先驱气体,氢气为还原气体,氩气为稀释气体,利用化学气相渗透方法,在SiC包壳管预制件的SiC纤维表面沉积界面层得到带界面层的SiC包壳管预制件;
步骤3:带界面层的SiC纤维预制件致密化
以三氯甲基硅烷为先驱气体,利用化学气相渗透方法,在带界面层的SiC包壳管预制件中沉积SiC基体,使带界面层的SiC纤维预制件整体致密得到致密化 SiC纤维预制件;
步骤4:致密化SiC纤维预制件的外层SiC陶瓷层制备;
步骤5:去除石墨管芯模;
所述步骤4和步骤5不分先后。
优选地,所述步骤1中的SiC纤维编织方法为:先缠绕,再编织。
具体地,采用滚轴缠绕方法在石墨芯模上缠绕至少1层SiC纤维,再采用平纹、斜纹或浅交弯联编织方法编织1~2层SiC纤维布。
本发明通过先缠绕,再编织的方法,获得的SiC纤维预制件的力学性能更好。
本发明优选的SiCf/SiC复合材料两层复合包壳管的制备方法,所述步骤2 中的界面层为采用化学气相渗透法制备的热解炭和碳化硅的共沉积层,所述热解炭层和碳化硅的共沉积层的先驱气体为丙烯和三氯甲基硅烷的混合气。
本发明采用两种先驱气体进行混合并进行共沉积得到了热解炭和碳化硅的共沉积层,得到了更为致密的界面层,能更好地保护纤维,实现更好的力学性能。
本发明优选的SiCf/SiC复合材料两层复合包壳管的制备方法,所述步骤1 和步骤2之间还包括如下步骤:在编制完成的SiC纤维预制件上多次喷涂碳纳米管悬浮液形成碳纳米管层。
优选地,所述碳纳米管层的制备方法为:采用平均长度为100μm直径为 100nm以下的碳纳米管的乙醇悬浮系,碳纳米管含量为0.4-1g/ml,在所述预制件表面进行喷涂3-5遍,每一遍喷涂完毕后,在氩气气氛保护下,在40-60℃恒温炉中保温5-10min后再进行下一次喷涂,所述碳纳米管为双壁碳纳米管或单壁碳纳米管。
优选地,所述碳纳米管乙醇悬浮液的浓度为0.8g/ml。
本发明优选的SiCf/SiC复合材料两层复合包壳管的制备方法,所述步骤2 中,界面层的沉积条件为:沉积温度1000℃、沉积压力200±50Pa、沉积时间6h、稀释Ar气:400ml/min、丙烷:160ml/min。
本发明优选的SiCf/SiC复合材料两层复合包壳管的制备方法,所述步骤4 中,在沉积SiC外涂层之前先对致密化SiC纤维预制件的表面进行磨削加工,再采用纳米SiC颗粒料桨刷涂方法在磨削后的包壳管表面缺陷位置处涂覆涂层,待干燥后直接进入化学气相渗透炉沉积SiC外涂层。
本发明的外层SiC陶瓷层由料桨刷涂+化学气相沉积复合工艺制备获得,具有高纯、高结晶度、高致密等特征。
优选地,所述料桨刷涂法的制备工艺流程为:SiC纳米粉末球磨→干燥→调制PVB粘结剂→球磨粉末和PVB粘结剂混合搅拌→刷涂→干燥。
优选地,所述步骤3中SiC基体的沉积工艺参数为:沉积温度1000~1100℃、沉积压力(200~2000)±50Pa、载气氢气300~1600ml/min、稀释氢气450~ 2400ml/min、沉积时间200~400h。
优选地,所述石墨管芯模采用等静压高纯石墨制备而成。
优选地,步骤5:去除石墨管芯模由机械挖深孔和氧化两步组成;挖深孔由机床完成,利用尺寸为Φ8.5mm×200mm的钻花,对经外圆磨削的包壳管进行挖深孔,从而仅在SiC两层包壳管中残留1mm厚的石墨管;氧化工序的主要目的为去除挖深孔工序后所残留的1mm厚的石墨管;氧化温度为600~800℃,氧化时间为10h~50h。
本发明具有如下的优点和有益效果:
1、本发明制备了SiCf/SiC复合层和SiC陶瓷层的两层复合结构,其中 SiCf/SiC复合层作为所述包壳管的承受载荷的主体层以及增强增韧层;所述外层的SiC陶瓷层作为所述包壳管的防腐蚀层和保障包壳管气密性的功能层,通过化学气相渗透法制备界面层,获得了致密度更好的界面层,利于保护纤维层和提高复合包壳管的力学性能。
2、本发明通过采用丙烯和三氯甲基硅烷混合气体为先驱气体,采用化学气相渗透法共沉积出了热解炭和碳化硅的共沉积层,进一步提高了界面层的致密度、碳化硅有利于提高界面层的强度和耐腐蚀性,从而更好地保护纤维层和提高复合包壳管的力学性能
3、本发明通过在SiC纤维层上喷涂碳纳米管层,碳纳米管的良好性能以及纳米尺度能进一步提高复合包壳管的抗腐蚀性、导热性以及结构的致密性。
4、本发明在SiC纤维的编织方法上采用先缠绕再编织的方法,提高了SiC 纤维的密度。
5、本发明在去芯模时,采用先机械深挖孔,再氧化的方式,去除效果好。
6、本发明在带界面层的SiC纤维预制件致密化后在其表面进行磨削加工,再采用纳米SiC颗粒料桨刷涂方法在磨削后的包壳管表面缺陷位置处涂覆涂层,待干燥后直接进入化学气相渗透炉沉积SiC陶瓷涂层,能获得更好的SiC陶瓷保护层。
7、本发明能获得密度达到2.90g/cm3以上的两层包壳管,开孔隙率小于5.0%;基体的碳硅比在1.0~1.1、氧含量小于1%的包壳管,且兼顾气密性与结构传热性能,其中气密性可小于10-9Pam3/s,结构径向热阻小于80℃/W。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定。在附图中:
图1为本发明的石墨管芯模的外观图片。
图2为本发明实施例1的SiCf/SiC复合材料复合包壳管的试样外径、内径、壁厚测量状态的图片。
图3为本发明实施例1的SiCf/SiC复合材料复合包壳管的试样微观结构观察显微镜图片。
图4为本发明实施例2的SiCf/SiC复合材料复合包壳管的试样外径、内径、壁厚测量状态的图片。
图5为本发明实施例2的SiCf/SiC复合材料复合包壳管的试样微观结构观察显微镜图片以及复合材料层、外SiC陶瓷层厚度测量状态的图片的对比图。
图6为本发明实施例2的热阻、气密性随陶瓷涂层厚度变化趋势图。
图7为本发明实施例2和实施例3在1200℃高温水蒸气中的氧化实验数据,
图8为本发明实施例2和实施例3在360℃,纯水环境下的水腐蚀性能实验数据。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
实施例1
一种制备SiCf/SiC复合材料两层复合包壳管的方法,包括如下步骤:
步骤1:SiC纤维预制件包壳管编织
采用缠绕方法在石墨芯模上缠绕1层SiC纤维,所述石墨芯模的外径为 10.0mm,再采用平纹编织方法在缠绕了SiC纤维的石墨芯模上编织2层SiC纤维布,使其外径为11.6mm的SiC包壳管预制件。
步骤2:界面层制备
以丙烯为先驱气体,氢气为还原气体,氩气为稀释气体,利用化学气相渗透方法,在SiC包壳管预制件的SiC纤维表面沉积界面层得到带界面层的SiC包壳管预制件,沉积条件为:沉积温度1000℃、沉积压力200±50Pa、沉积时间6h、稀释Ar气的流量为:400ml/min、丙烯的流量为:160ml/min。
步骤3:带界面层的SiC纤维预制件致密化
以三氯甲基硅烷为先驱气体,利用化学气相渗透方法,在带界面层的SiC包壳管预制件中沉积SiC基体,使带界面层的SiC纤维预制件整体致密得到致密化 SiC纤维预制件,所述SiC基体的沉积条件为:沉积温度1050℃、沉积压力 400±50Pa、载气H2:360ml/min、稀释H2:480ml/min、稀释Ar:480ml/min,沉积时间250h;
在沉积250h出炉后,包壳管外径可达到12~13mm利用无芯磨磨床对致密化SiC纤维预制件进行表面磨削加工,以保证表面的圆形度、直线度以及光洁度,磨削加工分为4个道次,使包壳管的外圆直径由13mm逐步下降到12.5mm、12.2mm、12.0mm、11.6mm,利用机械方法以及低温氧化方法去除石墨管芯模,机械方法包括挖深孔,由机床完成,利用尺寸为Φ8.5mm×200mm的钻花,对经外圆磨削的包壳管进行挖深孔,从而仅在SiC两层包壳管中残留1mm厚的石墨管;氧化工序的主要目的为去除挖深孔工序后所残留的1mm厚的石墨管;氧化温度为700℃,氧化时间为20h,去除石墨芯模后采用纳米SiC颗粒料桨刷涂方法在磨削后的包壳管表面缺陷位置处涂覆SiC涂层,并干燥。
步骤4:致密化SiC纤维预制件的外层SiC陶瓷层制备;
将步骤3干燥后的SiC纤维预制件进入采用纳米SiC颗粒料桨刷涂方法在磨削后的包壳管表面缺陷位置处涂覆涂层,所述纳米SiC颗粒料桨的制备方法为:将SiC纳米粉末球磨至200nm,采用100℃干燥,并加入10%的聚乙烯醇缩丁醛 (PVB)粘结剂进行混合,球磨粉末和PVB粘结剂混合搅拌,然后刷涂,并在 100℃条件下干燥。待干燥后直接进入化学气相渗透炉沉积SiC陶瓷涂层,沉积条件为:沉积温度1250℃、沉积压力500±50Pa、载气氢气350ml/min、稀释氢气500ml/min、沉积时间40h,沉积为SiC柱状晶涂层。
沉积SiC陶瓷层之后,利用研磨抛光设备对表面进行抛光,提高包壳管的尺寸精度和光洁度,得到最终的SiCf/SiC复合材料复合包壳管。
采用阿基米德法测定SiCf/SiC复合材料的密度以及孔隙率,其密度达到了2.83g/cm3,开孔隙率仅为5.8%。
利用电镜观察其微观结构,并测量及其外径、内径、壁厚,如图2所示;从图2可以看出,所获得的包壳管圆形度较好,从三个方向测量,其外径均为13.2mm,内径均为10.6mm,壁厚为1.3mm;管件外径、内径、壁厚均无偏差,但壁厚达到了1.3mm。
对其横截面放大观察,如图3所示,从图3可以看出,包壳管主要由复合材料层以及外SiC陶瓷层所组成,是典型的两层复合包壳管;同时,还可发现明显的SiC纳米晶桨料刷涂层,呈块状不连续分布在两层包壳管的CVD外涂层与 SiCf/SiC复合材料层之间。
实施例2
本实施例与实施例1的区别在于,界面层是热解炭和SiC共沉积而成,沉积的先驱气体采用的是丙烯和三氯甲基硅烷的混合气,所述丙烷和三氯甲基硅烷的体积比为1:1,沉积条件与实施例1相同。
本实施例与实施例1的区别还在于,在编制完成的SiC纤维预制件上先四次喷涂碳纳米管悬浮液形成碳纳米管层,再在碳纳米管层上面沉积界面层。
所述碳纳米管层的制备方法为:采用平均长度为100μm,直径为100nm以下的碳纳米管的乙醇悬浮系,碳纳米管含量为0.8g/ml,在所述预制件表面进行4 遍喷涂,每一遍喷涂完毕后,在氩气气氛保护下,在50℃恒温炉中保温8min后再进行下一次喷涂,所述碳纳米管为单壁碳纳米管。
采用阿基米德法测定SiCf/SiC复合材料的密度以及孔隙率,其密度达到了2.95g/cm3,开孔隙率仅为4.8%。利用电镜观察其微观结构,并测量及其外径、内径、壁厚,如图4所示;所获得的包壳管圆形度较好,从三个方向测量,其外径均为12.2mm,内径均为10.3mm,壁厚在0.991~1.060mm之间;管件同一截面的外径最大最小差值<0.1mm,内径尺寸最大最小差值<0.1mm;壁厚尺寸差异性小于0.05mm。
对其横截面放大观察,如图5所示,包壳管主要由复合材料层以及外层SiC 陶瓷涂层所组成,是典型的两层复合包壳管。其中,中间复合材料层厚度约651μm 左右;外涂层厚度约405μm。
图6示出了实施例2热阻、气密性随涂层厚度变化规律,其中,直线表示热阻,而曲线表示氦泄漏率,从图6中可以看出,当SiC陶瓷层厚度在200-500微米时,核泄漏率降低至10-9Pam3/s,而在该厚度范围,热阻也较小,小于80℃/W。
图7和图8示出了实施例2的试样的耐腐蚀性测试结果,从图7在1200℃高温水蒸气中的氧化实验数据可以看出,其在14000S,即约4小时时,其质量变化约为0.3mg,而其初始质量为350mg,即质量变化率小于0.1%。而从图8, 360℃的纯水环境条件下,试样的腐蚀情况是:当腐蚀45天时,其质量变化小于 1%,从而可以看出,本试样具有很好的耐腐蚀性能。
将图2、图3与图4、图5对比可以看到,实施例2的显微结构更为致密,无论是纤维的致密性还行SiC陶瓷层的致密性都比实施例1高,因此,其密度更高,开孔率更低,这说明采用热解炭和SiC共沉淀以及碳纳米管层对整个结构的致密性具有重大贡献。
对比例1
本实施例与实施例2的区别在于,所述SiCf/SiC复合材料两层复合包壳管不制备SiC陶瓷层,从图7和图8的对比结果可以看出,有SiC陶瓷层的复合包壳管的耐腐蚀性能远远好于无SiC陶瓷层的。
本发明的SiCf/SiC复合材料两层复合包壳管密度大、孔隙率小、导热性和气密性好,可用作轻水堆(LWR)燃料包套管以及其他极端辐照环境下的工作组件。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种SiCf/SiC复合材料两层复合包壳管,其特征在于,包括SiCf/SiC复合层和SiC陶瓷层,所述SiCf/SiC复合层包括SiC纤维层、界面层和SiC基体,所述界面层采用化学气相渗透制备;
复合包壳管的外径为6mm-20mm,管壁的厚度为0.7mm-1.2mm,所述SiCf/SiC复合层厚度为0.5mm~1mm,所述SiC陶瓷层厚度为200-500μm;
所述界面层为热解炭层和碳化硅的共沉积层;
所述SiC纤维层和界面层之间还设置有碳纳米管层,所述碳纳米管层所用的碳纳米管为少壁碳纳米管。
2.一种制备如权利要求1所述的SiCf/SiC复合材料两层复合包壳管的方法,其特征在于,包括如下步骤:
步骤1:SiC纤维预制件包壳管编织
将SiC纤维缠绕或编织在石墨管芯模上,形成SiC包壳管预制件;
步骤2:界面层制备
以丙烯和三氯甲基硅烷为先驱气体,氢气为还原气体,氩气为稀释气体,利用化学气相渗透方法,在SiC包壳管预制件的SiC纤维表面沉积界面层得到带界面层的SiC包壳管预制件;
步骤3:带界面层的SiC纤维预制件致密化
以三氯甲基硅烷为先驱气体,利用化学气相渗透方法,在带界面层的SiC包壳管预制件中沉积SiC基体,使带界面层的SiC纤维预制件整体致密得到致密化SiC纤维预制件;
步骤4:致密化SiC纤维预制件的外层SiC陶瓷层制备;
步骤5:去除石墨管芯模;
步骤4和步骤5不分先后;
所述步骤2中的界面层为采用化学气相渗透法制备的热解炭层和碳化硅的共沉积层。
3.根据权利要求2所述的SiCf/SiC复合材料两层复合包壳管的制备方法,其特征在于,所述步骤1和步骤2之间还包括如下步骤:在编制完成的SiC纤维预制件上多次喷涂碳纳米管悬浮液形成碳纳米管层。
4.根据权利要求2所述的SiCf/SiC复合材料两层复合包壳管的制备方法,其特征在于,所述步骤2中,界面层的沉积条件为:沉积温度1000℃、沉积压力200±50Pa、沉积时间6h、稀释Ar气:400ml/min、C3H6:160ml/min。
5.根据权利要求2所述的SiCf/SiC复合材料两层复合包壳管的制备方法,其特征在于,所述步骤4中,在沉积SiC外涂层之前先对致密化SiC纤维预制件的表面进行磨削加工,再采用纳米SiC颗粒料桨刷涂方法在磨削后的包壳管表面缺陷位置处涂覆涂层,待干燥后直接进入化学气相渗透炉沉积SiC外涂层。
6.根据权利要求3所述的SiCf/SiC复合材料两层复合包壳管的制备方法,其特征在于,所述碳纳米管层的制备方法为:采用平均长度为100μm直径为100nm以下的碳纳米管的乙醇悬浮系,碳纳米管含量为0.4-1g/ml,在所述预制件表面进行喷涂3-5遍,每一遍喷涂完毕后,在氩气气氛保护下,在40-60℃恒温炉中保温5-10min后再进行下一次喷涂,所述碳纳米管为双壁碳纳米管或单壁碳纳米管。
CN202110110002.6A 2021-01-27 2021-01-27 一种SiCf/SiC复合材料两层复合包壳管及其制备方法 Active CN112876257B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110110002.6A CN112876257B (zh) 2021-01-27 2021-01-27 一种SiCf/SiC复合材料两层复合包壳管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110110002.6A CN112876257B (zh) 2021-01-27 2021-01-27 一种SiCf/SiC复合材料两层复合包壳管及其制备方法

Publications (2)

Publication Number Publication Date
CN112876257A CN112876257A (zh) 2021-06-01
CN112876257B true CN112876257B (zh) 2022-05-17

Family

ID=76052653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110110002.6A Active CN112876257B (zh) 2021-01-27 2021-01-27 一种SiCf/SiC复合材料两层复合包壳管及其制备方法

Country Status (1)

Country Link
CN (1) CN112876257B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114057502B (zh) * 2021-11-25 2023-03-21 西安鑫垚陶瓷复合材料有限公司 陶瓷基复合材料细长薄壁管件制备方法及基于该方法的陶瓷基复合材料细长薄壁管件与应用
CN115650751B (zh) * 2022-10-13 2023-10-31 广东核电合营有限公司 纤维强韧化的碳化硅包壳及其制备方法
CN117285356A (zh) * 2023-08-25 2023-12-26 中广核研究院有限公司 SiC复合包壳及其成型方法
CN117263692A (zh) * 2023-08-25 2023-12-22 中广核研究院有限公司 碳化硅燃料包壳的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106966731A (zh) * 2016-06-03 2017-07-21 北京航空航天大学 碳纤维表面原位生长碳纳米管界面改性碳‑碳化硅双基体复合材料的制备方法
CN107324828A (zh) * 2017-07-24 2017-11-07 苏州宏久航空防热材料科技有限公司 一种SiCf/SiC陶瓷基复合过滤管及其制备方法
CN108059475A (zh) * 2017-12-08 2018-05-22 南京航空航天大学 一种碳纳米管增强Cf/SiC复合材料及其制备方法
CN108218457A (zh) * 2018-03-19 2018-06-29 中南大学 一种含纳米增强体的SiCf/SiC复合材料的制备方法
CN109400169A (zh) * 2018-10-25 2019-03-01 中国人民解放军国防科技大学 具有SiC涂层的SiCf/SiC复合材料的制备方法
CN109564786A (zh) * 2016-08-08 2019-04-02 通用原子公司 工程sic-sic复合材料和整体sic层状结构
CN110483055A (zh) * 2019-08-08 2019-11-22 中国核动力研究设计院 一种含共沉积复相界面的SiCf/SiC复合材料制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10131758A1 (de) * 2001-06-30 2003-01-16 Sgl Carbon Ag Faserverstärkter, wenigstens im Randbereich aus einer Metall-Verbundkeramik bestehender Werkstoff
FR2857660B1 (fr) * 2003-07-18 2006-03-03 Snecma Propulsion Solide Structure composite thermostructurale a gradient de composition et son procede de fabrication
FR2936088B1 (fr) * 2008-09-18 2011-01-07 Commissariat Energie Atomique Gaine de combustible nucleaire a haute conductivite thermique et son procede de fabrication.
BR112012010907A2 (pt) * 2009-11-23 2019-09-24 Applied Nanostructured Sols "materiais compósitos de cerâmica contendo materiais de fibra infundidos em nanotubo de carbono e métodos para a produção dos mesmos"
US10734121B2 (en) * 2014-03-12 2020-08-04 Westinghouse Electric Company Llc Double-sealed fuel rod end plug for ceramic-containing cladding
CN109721367B (zh) * 2019-01-28 2021-09-07 西北工业大学 一种高导热高导电cnt界面改性陶瓷基复合材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106966731A (zh) * 2016-06-03 2017-07-21 北京航空航天大学 碳纤维表面原位生长碳纳米管界面改性碳‑碳化硅双基体复合材料的制备方法
CN109564786A (zh) * 2016-08-08 2019-04-02 通用原子公司 工程sic-sic复合材料和整体sic层状结构
CN107324828A (zh) * 2017-07-24 2017-11-07 苏州宏久航空防热材料科技有限公司 一种SiCf/SiC陶瓷基复合过滤管及其制备方法
CN108059475A (zh) * 2017-12-08 2018-05-22 南京航空航天大学 一种碳纳米管增强Cf/SiC复合材料及其制备方法
CN108218457A (zh) * 2018-03-19 2018-06-29 中南大学 一种含纳米增强体的SiCf/SiC复合材料的制备方法
CN109400169A (zh) * 2018-10-25 2019-03-01 中国人民解放军国防科技大学 具有SiC涂层的SiCf/SiC复合材料的制备方法
CN110483055A (zh) * 2019-08-08 2019-11-22 中国核动力研究设计院 一种含共沉积复相界面的SiCf/SiC复合材料制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
processing,properties and applications of ceramic matrix composites,SiCf/SiC: an overview;D.Ding等;《Advances in ceramic matrix composites》;20141231;9-26 *
Ring compression properties of SiCf/SiCcomposites prepared by chemical vapor infiltration;Yue Li等;《Ceramics International》;20181215;第44卷(第18期);22529-22537 *
原位生长碳纳米管增强SiCf/SiC复合材料的力学性能;周新贵等;《中国科技论文》;20140228(第2期);149-152 *
含(PyC/SiC)n多层界面SiCf/SiC Mini复合材料的制备与拉伸行为;杨平等;《粉末冶金材料科学与工程》;20181231;第23卷(第6期);553-561 *

Also Published As

Publication number Publication date
CN112876257A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
CN112876257B (zh) 一种SiCf/SiC复合材料两层复合包壳管及其制备方法
JP3143086B2 (ja) SiC複合材料スリーブおよびその製造方法
CN112479718B (zh) 一种Ti3SiC2 MAX相界面层改性SiC/SiC复合材料及其制备方法
CN101863665A (zh) 自愈合抗氧化功能纤维增强陶瓷基复合材料的制备方法
CN114455982B (zh) 一种含有氧化铝涂层和碳化硅涂层的炭/炭复合材料坩埚
FR3008968A1 (fr) Procede de fabrication de pieces en materiau composite par impregnation a basse temperature de fusion
CN112142486A (zh) 抗烧蚀碳化硅纤维增强陶瓷基复合材料的制备方法
CN109020589A (zh) 一种耐事故燃料核包壳管及制备方法
CN112374902A (zh) 一种高致密化SiCf/SiC包壳复合管材的制备方法
CN116283324B (zh) 一种改善碳纤维陶瓷界面的方法与制备方法及应用
CN104356696B (zh) 一种稀土硅酸盐涂料及C/SiC复合材料表面制备涂层的方法
JP3021405B2 (ja) 中性子吸収ピン
WO1999052838A1 (en) Tough, low permeable ceramic composite material
CN114057502B (zh) 陶瓷基复合材料细长薄壁管件制备方法及基于该方法的陶瓷基复合材料细长薄壁管件与应用
JP2003252694A (ja) SiC繊維複合化SiC複合材料
JP4707854B2 (ja) 高強度SiC繊維/SiC複合材料の製造方法
Zhen et al. The improvement of mechanical properties of SiC/SiC composites by in situ introducing vertically aligned carbon nanotubes on the PyC interface
Besmann et al. Ceramic composites with multilayer interface coatings
CN119161199A (zh) 一种SiC/SiC复合材料包壳管及其制备方法和应用
CN116427034A (zh) 一种带有涂层的碳质材料及其制备方法
CN114751760A (zh) 一种纳米浸渍瞬态共晶制备单晶碳化硅纳米纤维/碳化硅陶瓷基复合材料的方法
WO2015016072A1 (ja) セラミック複合材料及びセラミック複合材料の製造方法
CN112174685A (zh) 一种单向纤维束增强ZrB2-SiC复合材料的制备方法
WO2015016071A1 (ja) SiC繊維強化SiC複合材料及びSiC繊維強化SiC複合材料の製造方法
CN117820000B (zh) 一种纤维增韧烧结碳化硅/氮化硅陶瓷基复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant