CN112832733B - Nested gas-liquid-solid cyclone separation device - Google Patents
Nested gas-liquid-solid cyclone separation device Download PDFInfo
- Publication number
- CN112832733B CN112832733B CN202011617786.3A CN202011617786A CN112832733B CN 112832733 B CN112832733 B CN 112832733B CN 202011617786 A CN202011617786 A CN 202011617786A CN 112832733 B CN112832733 B CN 112832733B
- Authority
- CN
- China
- Prior art keywords
- flow channel
- hole
- liquid
- threadedly connected
- spiral flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000926 separation method Methods 0.000 title claims abstract description 39
- 239000007787 solid Substances 0.000 title claims abstract description 29
- 239000007788 liquid Substances 0.000 claims abstract description 57
- 239000004576 sand Substances 0.000 claims abstract description 55
- 238000005191 phase separation Methods 0.000 claims abstract description 52
- 239000007791 liquid phase Substances 0.000 claims abstract description 21
- 239000007790 solid phase Substances 0.000 claims abstract description 19
- 238000007789 sealing Methods 0.000 claims description 36
- 238000002347 injection Methods 0.000 claims description 2
- 239000007924 injection Substances 0.000 claims description 2
- 230000001681 protective effect Effects 0.000 claims description 2
- 239000012071 phase Substances 0.000 abstract description 53
- 238000000034 method Methods 0.000 abstract description 6
- 230000008569 process Effects 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 35
- 238000010992 reflux Methods 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 5
- 239000012530 fluid Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/34—Arrangements for separating materials produced by the well
- E21B43/38—Arrangements for separating materials produced by the well in the well
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B41/00—Equipment or details not covered by groups E21B15/00 - E21B40/00
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/02—Subsoil filtering
- E21B43/08—Screens or liners
- E21B43/086—Screens with preformed openings, e.g. slotted liners
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/12—Methods or apparatus for controlling the flow of the obtained fluid to or in wells
- E21B43/121—Lifting well fluids
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Cyclones (AREA)
Abstract
一种嵌套式气液固旋流分离装置。其特征在于:所述外套筒内含有气相分离模块、液相分离模块和固相分离模块,气液固三相混合液从外套筒进液口进入旋流分离装置后,通过气相分离模块嵌套的外螺旋流道与内螺旋流道使得气相被优先排出,同时分离出的液相依次通过螺旋流道内部、回流控制单元后重新回流到外套筒内,再经过液相分离模块旋流从而排出三相混合液中的密度较轻的溢流,环绕在外套筒内壁砂相最后经过固相分离模块使得砂相被分离,底流液通过内套管流出。本种旋流分离装置可对三相混合液的进行处理,实现气相、固相、溢流液、底流液的单相分离。
A nested gas-liquid-solid cyclone separation device. It is characterized in that: the outer sleeve contains a gas phase separation module, a liquid phase separation module and a solid phase separation module, and the gas-liquid-solid three-phase mixed liquid enters the cyclone separation device from the liquid inlet of the outer sleeve, and passes through the gas-phase separation module. The nested outer spiral flow channel and inner spiral flow channel allow the gas phase to be discharged preferentially, while the separated liquid phase passes through the spiral flow channel and the backflow control unit in turn, and then flows back into the outer sleeve, and then passes through the liquid phase separation module. Then, the lighter density overflow in the three-phase mixed liquid is discharged, and the sand phase surrounds the inner wall of the outer sleeve and finally passes through the solid phase separation module to separate the sand phase, and the underflow liquid flows out through the inner casing. The cyclone separation device can process the three-phase mixed liquid and realize the single-phase separation of gas phase, solid phase, overflow liquid and underflow liquid.
Description
技术领域technical field
本发明涉及一种应用石油化工、水处理领域的气液固三相旋流分离装置。The invention relates to a gas-liquid-solid three-phase cyclone separation device applied in the fields of petrochemical industry and water treatment.
背景技术Background technique
随着油田的不断开采,油田采出液中含砂含气问题日益严重,采出液中含有气体不仅会增加一部分人工举升的成本,而且伴随的气体若得不到较好的处理也会对环境产生影响,更重要的是会严重影响高含水油田同井注采旋流分离的效率,若能将混合液中含有的气体收集起来回收利用即避免低效率的旋流分离,同时也减少了能源的浪费;另一方面含砂问题也不容小觑,一定量的含砂会影响到分离的效率,大量的含砂则会出现淤积堵塞的现象,因此很有必要研制气液固三相分离装置,通常气液固三相分离旋流器是利用各相间密度差进行旋流分离的,例如三相分离旋流器,专利号:2015108694142,该发明专利所设计的装置能够实现气液固三相的分离,但仍有较多不足,首先该装置实现固相分离的螺旋结构加工复杂不容易实现、更为重要的是该装置不能实现同为液相的底流与溢流之间的分离,这就需要研制既能除砂、排气、底流分离、溢流分离的多功能旋流分离装置。With the continuous exploitation of the oilfield, the problem of sand and gas in the oilfield produced fluid is becoming more and more serious. The gas contained in the produced fluid will not only increase the cost of artificial lift, but also cause the accompanying gas if not properly treated. It has an impact on the environment, and more importantly, it will seriously affect the efficiency of injection-production cyclone separation in the same well of high water-cut oilfields. If the gas contained in the mixed liquid can be collected and recycled, inefficient cyclone separation will be avoided, and at the same time, it will be reduced. On the other hand, the problem of sand content should not be underestimated. A certain amount of sand content will affect the efficiency of separation, and a large amount of sand content will cause siltation and blockage. Therefore, it is necessary to develop gas-liquid-solid three-phase Separation device, usually gas-liquid-solid three-phase separation cyclone uses the density difference between the phases for cyclone separation, such as three-phase separation cyclone, patent number: 2015108694142, the device designed by this invention patent can realize gas-liquid-solid separation The separation of three-phase, but there are still many deficiencies, first of all, the device realizes the helical structure of solid-phase separation is complicated and difficult to realize, and more importantly, the device cannot realize the separation between the underflow and the overflow that are both liquid phases. , which requires the development of a multi-functional cyclone separation device that can not only remove sand, exhaust, separate underflow, and separate overflow.
发明内容SUMMARY OF THE INVENTION
发明提供了一种嵌套式气液固旋流分离装置,该装置的排气机构由内外嵌套式螺旋流道构成,实现精准脱气的同时将溢流液回流,经过渐变式螺旋流道将溢流液排出,最后依据密度差分离原理实现重质砂相的分离,具备较强的分离各相介质的能力。The invention provides a nested gas-liquid-solid cyclone separation device. The exhaust mechanism of the device is composed of inner and outer nested spiral flow channels, which realizes precise degassing and returns the overflow liquid through the gradient spiral flow channel. The overflow liquid is discharged, and finally the heavy sand phase is separated according to the principle of density difference separation, which has a strong ability to separate the media of each phase.
本发明的技术方案是:该种嵌套式气液固旋流分离器,具有外套筒,气相分离模块,液相分离模块,固相分离模块。The technical scheme of the present invention is that the nested gas-liquid-solid cyclone separator has an outer sleeve, a gas phase separation module, a liquid phase separation module and a solid phase separation module.
所述外套筒为两端外径不同且中段变径的圆筒状,两端面内壁均开有螺纹,进液口与排砂口分布在外套筒两端且通口方向相反,外套筒中端溢流孔与进液口通口方向相同;The outer sleeve is a cylindrical shape with different outer diameters at both ends and a variable diameter in the middle. The inner walls of both ends are threaded. The liquid inlet and the sand discharge port are distributed at both ends of the outer sleeve and the directions of the openings are opposite. The overflow hole at the middle end is in the same direction as the inlet port;
所述气相分离模块包括外置螺旋流道、内置螺旋流道、阶梯封盘、排气管、外端封盘、内置螺旋流道定位单元以及回流控制单元;所述外置螺旋流道主要结构有内气核孔、内环筒、脱液孔、定位孔、回注孔、稳流管、防护罩,内环筒内放置内置螺旋流道,共3列脱液孔圆周分布内环筒表面且每列有4个脱液孔,定位孔与圆顶定位销孔配合实现内置螺旋流道定位,回注孔与收缩通柱螺纹连接;所述内置螺旋流道端面开有中心孔与定位分流锥螺纹连接,中心孔内壁面圆周分布3个通透孔,所述阶梯封盘与外置螺旋流道螺纹连接,阶梯封盘中心圆孔螺纹连接至排气管;所述排气管一端与阶梯封盘螺纹连接,另一端与外端封盘螺纹连接;所述外端封盘与外套筒螺纹连接,其中心开有通孔与排气管螺纹连接在一起,所述内置螺旋流道定位单元包括圆顶定位销和定位分流锥,所述圆顶定位销在内置螺旋流通透孔内滑动;所述定位分流锥与内置螺旋流道螺纹连接;所述回流控制单包括收缩通柱、阻流罩、冲击锥和紧固圈,所述收缩通柱一端与外置螺旋流道内回注孔螺纹连接,另一端端面圆周等距分布4个通孔;所述阻流罩主要结构有主滑杆、副滑杆,4个副滑杆圆周分布其内端面且与收缩通柱端面紧固圈配合孔配合;所述冲击锥底端面中心孔与阻流罩内主滑杆螺纹连接;所述紧固圈为一端开孔的圆柱体,内孔壁面开有螺纹且与阻流罩的副滑杆螺纹连接在一起;The gas phase separation module includes an external spiral flow channel, a built-in spiral flow channel, a stepped sealing plate, an exhaust pipe, an outer end sealing plate, a built-in spiral flow channel positioning unit and a backflow control unit; the main structure of the external spiral flow channel There are inner gas core hole, inner ring cylinder, deliquoring hole, positioning hole, reinjection hole, steady flow tube, protective cover, built-in spiral flow channel is placed in the inner ring cylinder, a total of 3 rows of deliquoring holes are distributed on the surface of the inner ring cylinder And there are 4 deliquification holes in each row. The positioning holes cooperate with the dome positioning pin holes to realize the positioning of the built-in spiral flow channel, and the reinjection hole is threadedly connected with the shrinking through column; Conical thread connection, three through holes are distributed around the inner wall of the central hole, the stepped sealing disc is threadedly connected with the external spiral flow channel, and the central circular hole of the stepped sealing disc is threadedly connected to the exhaust pipe; one end of the exhaust pipe is connected to the exhaust pipe. The stepped sealing disc is threadedly connected, and the other end is threadedly connected with the outer end sealing disc; the outer end sealing disc is threadedly connected with the outer sleeve, and a through hole is opened in the center to be threadedly connected with the exhaust pipe, and the built-in spiral flow channel The positioning unit includes a dome positioning pin and a positioning shunt cone, the dome positioning pin slides in the built-in helical flow through hole; the positioning shunt cone is threadedly connected with the built-in helical flow channel; the backflow control unit includes a shrinkage through column, The choke cover, the impact cone and the tightening ring, one end of the shrinking through column is threadedly connected with the reinjection hole in the external spiral flow channel, and the other end face has 4 through holes equally spaced around the circumference; the main structure of the choke cover has the main The sliding rod, the auxiliary sliding rod, the inner end faces of the 4 secondary sliding rods are distributed around the circumference and are matched with the matching holes of the tightening ring on the end face of the shrinking through-column; The fastening ring is a cylinder with a hole at one end, the inner hole wall is threaded and connected with the auxiliary sliding rod of the choke cover;
所述液相分离模块包括渐变螺旋流道和溢流通管,渐变螺旋流道两段圆锥体倾角不同,在其轴线上开一轴心孔、在垂直轴线方向上开一竖直孔,所述溢流通管螺纹连接至渐变螺旋流道竖直孔内;The liquid phase separation module includes a gradient spiral flow channel and an overflow pipe. The two sections of the gradient spiral channel have different inclination angles, and an axial hole is opened on its axis and a vertical hole is opened in the vertical axis direction. The overflow pipe is threaded into the vertical hole of the gradient spiral flow channel;
所述固相分离模块包括内套管和螺纹底锥,所述内套管主要结构有隔砂盘、底流管和花瓣转柄,内部为通透空腔,隔砂盘对立端面开有底锥配合孔且在其内壁开螺纹,内套管外表面开有一段螺纹并且与外套筒螺纹连接,所述螺纹底锥前端为圆锥体、中端为圆柱状且表面开有一段螺纹、后端为凹型球,螺纹底锥与内套管螺纹连接;The solid phase separation module includes an inner casing and a threaded bottom cone. The main structure of the inner casing includes a sand separator, an underflow tube and a petal turning handle. The interior is a transparent cavity, and the opposite end face of the sand separator is provided with a bottom cone. The matching hole is threaded on its inner wall, and the outer surface of the inner sleeve is provided with a thread and is threadedly connected with the outer sleeve. It is a concave ball, and the threaded bottom cone is threadedly connected to the inner casing;
所述气相分离模块与排气管一段螺纹连接,排气管另一端与外端封盘螺纹连接,将外端封盘螺纹连接至外套筒;渐变螺旋流道内竖直孔与溢流通管螺纹连接,将溢流通管螺纹连接至外套筒上溢流孔;内套管与外套筒螺纹连接,螺纹底锥与内套管螺纹连接。The gas phase separation module is threadedly connected with a section of the exhaust pipe, the other end of the exhaust pipe is threadedly connected with the outer end sealing disk, and the outer end sealing disk is threadedly connected to the outer sleeve; the vertical hole in the gradient spiral flow channel is threaded with the overflow pipe thread The overflow pipe is threadedly connected to the overflow hole on the outer sleeve; the inner sleeve is threadedly connected to the outer sleeve, and the threaded bottom cone is threadedly connected to the inner sleeve.
本发明具有如下有益效果:本装置利用各相间密度差进行旋流分离,可实现对气相、砂相、溢流、底流的分离,气液固三相混合液流过外置螺旋流道产生强旋流使得轻质气相及部分溢流流入气相分离模块,气相分离模块主要由内、外置螺旋流道嵌套构成,采用凸轮机构作为内置螺旋流道定位单元的执行机构,气相经过二次旋流通过排气管排出,其余溢流从脱液孔流入外置螺旋流道内腔后经过回流控制单元流入外套筒内,回流控制单元根据流体压力大小有效控制液体回流,排出气相后的固液混合相经过液相分离模块产生强旋流使得溢流通过渐变螺旋流道被完全排出,重质相的砂相环绕在外套筒内壁面附近,外套筒与内套管螺纹连接,通过旋转内套管实现其直线运动,调节内套管与外套筒中段入口通路(砂相入口)大小,使得砂相流入内套管与外套筒环腔后经外套筒排砂口排出,底流液通过内套管内部空腔后从底流管流出。The invention has the following beneficial effects: the device utilizes the density difference between the phases to carry out cyclone separation, which can realize the separation of gas phase, sand phase, overflow and underflow, and the gas-liquid-solid three-phase mixed liquid flows through the external spiral flow channel to produce strong The swirling flow makes the light gas phase and part of the overflow flow into the gas phase separation module. The gas phase separation module is mainly composed of inner and outer spiral flow channels. The cam mechanism is used as the actuator of the built-in spiral flow channel positioning unit. The flow is discharged through the exhaust pipe, and the rest of the overflow flows from the deliquoring hole into the inner cavity of the external spiral flow channel and then flows into the outer sleeve through the reflux control unit. The reflux control unit effectively controls the liquid reflux according to the fluid pressure, and discharges the solid-liquid after the gas phase The mixed phase passes through the liquid phase separation module to generate a strong swirling flow, so that the overflow is completely discharged through the gradient spiral flow channel, and the sand phase of the heavy phase surrounds the inner wall of the outer sleeve. The casing realizes its linear movement, and the size of the inlet passage (sand phase inlet) in the middle section of the inner casing and the outer casing is adjusted, so that the sand phase flows into the annular cavity of the inner casing and the outer casing and is discharged through the sand discharge port of the outer casing, and the underflow liquid is discharged. After passing through the inner cavity of the inner sleeve, it flows out from the underflow tube.
下面进行详细说明:The details are as follows:
首先,该种嵌套式气液固旋流分离器外观结构美观,在功能多用性方面具有创新性,能将气液固三相混合液内含有的各相以单独形式分离出来,而整个分离过程依旧维持溢流液与底流液的高效分离。First of all, the nested gas-liquid-solid cyclone separator has a beautiful appearance and structure, and is innovative in terms of functional versatility. The process still maintains efficient separation of overflow liquid and underflow liquid.
其次,该种嵌套式气液固旋流分离器的回流控制单元结构简单,但能实现强大的功能,巧妙的利用液体间的压力差使得从脱液孔流出的液体能通过回流控制单元流入外套筒内,避免外套筒内液体反向流入。Secondly, the backflow control unit of the nested gas-liquid-solid cyclone has a simple structure, but it can achieve powerful functions. It cleverly uses the pressure difference between the liquids so that the liquid flowing out of the deliquoring hole can flow into the backflow control unit through the backflow control unit. inside the outer sleeve to avoid reverse inflow of liquid in the outer sleeve.
再次,该装置首次运用内外嵌套式螺旋流道产生的二次旋流将气体排出,并且使排出气体中含液量为最小,同时外置螺旋流道构型新颖,稳流管和防护罩对于稳定回流控制单元起重要作用。Thirdly, the device uses the secondary swirling flow generated by the inner and outer nested spiral flow channels to discharge the gas for the first time, and minimizes the liquid content in the exhaust gas. It plays an important role in stabilizing the backflow control unit.
然后,该种嵌套式气液固旋流分离装置的渐变螺旋流道及内置螺旋流道均采用新型变锥角式流道,该种流道结束端液体有效过流面积远小于初始端面积,因此单位时间内结束端流过液体速度更快,会产生较强旋心力从而有益于各相间的分离,此外创新性应用凸轮机构实现内置螺旋流道的定位。Then, the gradient spiral flow channel and the built-in spiral flow channel of the nested gas-liquid-solid cyclone separation device adopt a new type of variable cone angle flow channel, and the effective flow area of the liquid at the end of the flow channel is much smaller than the initial end area. , so the liquid flows faster at the end of the unit time, which will generate strong spin force, which is beneficial to the separation of each phase. In addition, the cam mechanism is innovatively applied to realize the positioning of the built-in helical flow channel.
最后,该种嵌套式气液固旋流分离器可以根据实际需求调节除砂比例,通过旋转内套管调节内套管在外套筒内有效长度,从而间接控制隔砂盘与外套筒中段环形入口(即砂相入口)流过面积大小,可根据实际除砂需求调节内套管长度,当内套管在外套筒内有效长度最短时不能除砂,避免了无砂状况下的底流液的浪费;并且螺纹底锥也可以调节其位于内套管内长度从而调节轴心处溢流核的有效长度。Finally, the nested gas-liquid-solid cyclone separator can adjust the sand removal ratio according to actual needs, and adjust the effective length of the inner casing in the outer casing by rotating the inner casing, thereby indirectly controlling the sand separator and the middle section of the outer casing The size of the flow area of the annular inlet (that is, the sand phase inlet) can adjust the length of the inner casing according to the actual sand removal requirements. When the effective length of the inner casing in the outer casing is the shortest, the sand cannot be removed, which avoids the underflow liquid under the condition of no sand. And the threaded bottom cone can also adjust its length in the inner casing to adjust the effective length of the overflow core at the axis.
综上所述,本发明提出的一种嵌套式气液固旋流分离装置,可以实现气液固三相混合液的各相分离,也能同时进行溢流与底流的分离,创新性的将内置螺旋流道放入外置螺旋流道内部形成嵌套组合,将气体内含有的液体充分分离并且回流,使得排出气体内附带液体量大大降低,回流的液体通过回流控制单元流入外套筒后经过渐变螺旋流道,渐变螺旋流道有效过流面积的逐渐减小会产生强旋流并使得全部溢流从溢流通管流出,并且可以根据实际含砂量动态调节内套管处于外套筒内长度,间接改变砂相入口过流面积大小,当内套管处于外套筒内长度最小时即为气液旋流分离器,实际适用性较强,以往的气液固分离装置不能实现溢流与底流的分离且结构固定,但是本发明可以实现气相、砂相、溢流、底流的全部分离,而且不需要除砂时通过旋转内套管即可。To sum up, the nested gas-liquid-solid cyclone separation device proposed by the present invention can realize the separation of each phase of the gas-liquid-solid three-phase mixed liquid, and can also carry out the separation of overflow and underflow at the same time, which is innovative. The built-in spiral flow channel is placed inside the external spiral flow channel to form a nested combination, and the liquid contained in the gas is fully separated and refluxed, so that the amount of liquid attached to the exhaust gas is greatly reduced, and the refluxed liquid flows into the outer sleeve through the reflux control unit. After passing through the gradient spiral flow channel, the gradual reduction of the effective flow area of the gradient spiral flow channel will generate strong swirling flow and make all the overflow flow out of the overflow pipe, and the inner casing can be dynamically adjusted according to the actual sand content. The inner length of the cylinder indirectly changes the flow area of the sand phase inlet. When the inner casing is in the outer sleeve with the smallest length, it is a gas-liquid cyclone separator, which has strong practical applicability and cannot be realized by the previous gas-liquid-solid separation devices. The separation of overflow and underflow is fixed and the structure is fixed, but the present invention can realize all separation of gas phase, sand phase, overflow and underflow, and the inner casing can be rotated when sand removal is not required.
附图说明:Description of drawings:
图1为嵌套式气液固旋流分离器整体外观图。Figure 1 shows the overall appearance of the nested gas-liquid-solid cyclone separator.
图2为嵌套式气液固旋流分离器爆炸图。Figure 2 is an exploded view of the nested gas-liquid-solid cyclone separator.
图3为嵌套式气液固旋流分离器截面剖视图。3 is a cross-sectional view of a nested gas-liquid-solid cyclone separator.
图4为外套筒结构图。Figure 4 is a structural diagram of the outer sleeve.
图5为气相分离模块装配体外观图。Fig. 5 is an external view of the gas phase separation module assembly.
图6为气相分离模块装配体爆炸图。Figure 6 is an exploded view of the gas phase separation module assembly.
图7为气相分离模块装配体截面剖视图。7 is a cross-sectional view of a gas phase separation module assembly.
图8为外置螺旋流道剖视图。8 is a cross-sectional view of an external spiral flow channel.
图9为外置螺旋流道端面剖视图。FIG. 9 is an end sectional view of an external spiral flow channel.
图10为内置螺旋流道结构图。Figure 10 is a structural diagram of a built-in spiral flow channel.
图11为定位分流锥结构图。Figure 11 is a structural diagram of the positioning diverter cone.
图12为内置螺旋流道定位单元定位完成示意图。FIG. 12 is a schematic diagram of the positioning completion of the built-in spiral flow channel positioning unit.
图13为内置螺旋流道定位单元定位取消示意图。Figure 13 is a schematic diagram of the positioning cancellation of the built-in spiral flow channel positioning unit.
图14为阶梯封盘结构图。FIG. 14 is a structural diagram of a stepped sealing disc.
图15为排气管结构图。FIG. 15 is a structural diagram of an exhaust pipe.
图16为外端封盘结构图。Figure 16 is a structural diagram of the outer end sealing disc.
图17为回流控制单元整体装配图。Figure 17 is an overall assembly view of the backflow control unit.
图18为回流控制单元爆炸图。Figure 18 is an exploded view of the backflow control unit.
图19为回流控制单元整体剖视图。FIG. 19 is an overall cross-sectional view of the backflow control unit.
图20为收缩通柱结构图。FIG. 20 is a structural diagram of a shrink-through column.
图21为阻流罩结构图。FIG. 21 is a structural diagram of a spoiler cover.
图22为冲击锥内部剖视图。Figure 22 is a cross-sectional view of the interior of the impact cone.
图23为渐变螺旋流道结构图。Figure 23 is a structural diagram of a gradient spiral flow channel.
图24为渐变螺旋流道剖视图。FIG. 24 is a cross-sectional view of a gradual spiral flow channel.
图25为溢流通管结构图。Figure 25 is a structural diagram of an overflow pipe.
图26为内套管结构图。Figure 26 is a structural diagram of the inner sleeve.
图27为螺纹底锥结构图。Figure 27 is a structural diagram of a threaded bottom cone.
图28为含有少量砂相时固相分离模块分离示意图。Figure 28 is a schematic diagram of the separation of the solid phase separation module when a small amount of sand phase is contained.
图29为含有大量砂相时固相分离模块分离示意图。Figure 29 is a schematic diagram of the separation of the solid phase separation module when a large amount of sand phase is contained.
图30为无砂相时固相分离模块分离示意图。Figure 30 is a schematic diagram of the separation of the solid phase separation module when there is no sand phase.
图中1-外套筒,2气相分离模块,3-液相分离模块,4-固相分离模块,5-外置螺旋流道,6-内置螺旋流道,7-阶梯封盘,8-排气管,9-外端封盘, 11-回流控制单元,12-圆顶定位销,13-定位分流锥,14-收缩通柱,15-阻流罩,16-冲击锥,17-紧固圈,18-渐变螺旋流道,19-溢流通管,20-内套管,21-螺纹底锥,22-进液口,23-排砂口,24-溢流孔,25-内气核孔,26-内环筒,27-脱液孔,28-定位孔,29-回注孔,30-稳流管,31-防护罩,32排气管配合孔,33-通透长孔,34-紧固圈配合孔,35-主滑杆,36-副滑杆,37-轴心孔,38-竖直孔,39-隔砂盘,40-底流管,41-底锥配合孔,42-花瓣转柄,43-凹型球。In the figure 1-outer sleeve, 2-gas phase separation module, 3-liquid phase separation module, 4-solid phase separation module, 5-external spiral flow channel, 6-internal spiral flow channel, 7-step sealing plate, 8- Exhaust pipe, 9-outer end sealing disc, 11-return control unit, 12-dome positioning pin, 13-positioning diverter cone, 14-shrinking through column, 15-blocking cover, 16-impact cone, 17-tightening Fixed ring, 18-gradient spiral flow channel, 19-overflow pipe, 20-inner casing, 21-thread bottom cone, 22-liquid inlet, 23-sand outlet, 24-overflow hole, 25-inner gas Nuclear hole, 26-inner ring cylinder, 27-dehydration hole, 28-positioning hole, 29-reinjection hole, 30-steady flow pipe, 31-protective cover, 32-exhaust pipe matching hole, 33-through long hole , 34- Fastening ring matching hole, 35- Main sliding rod, 36- Secondary sliding rod, 37- Axial hole, 38- Vertical hole, 39- Sand separator, 40- Bottom flow pipe, 41- Bottom cone matching hole , 42-petal stalk, 43-concave ball.
具体实施方式:Detailed ways:
下面结合附图对本发明作进一步说明:The present invention will be further described below in conjunction with the accompanying drawings:
本种嵌套式气液固旋流分离器整体外观图如图1所示,气液固三相混合液从进液口22进入外套筒1内部分离,气相经排气管8排出、砂相由排砂口23排出、溢流液经溢流通管19排出、底流液经底流管40排出。嵌套式气液固旋流分离器爆炸图如图2所示,主要由外套筒1,气相分离模块2,排气管8,外端封盘9,渐变螺旋流道18,溢流通管19,内套管20,螺纹底锥21组成。图3为嵌套式气液固旋流分离器截面剖视图,气液固三相混合液从进液口22进入后依次通过气相分离模块2使得气体从排气管8排出、通过液相分离模块3使得溢流经过溢流通管19排出、通过固相分离模块4使得固相从排砂口23排出。图4为外套筒1结构图,进液口22一侧端面与外端封盘9螺纹连接,外套筒1中端溢流孔24与溢流通管19孔配合将液相分离模块3定位。The overall appearance of this nested gas-liquid-solid cyclone separator is shown in Figure 1. The gas-liquid-solid three-phase mixed liquid enters the
图5为气相分离模块2装配体外观图。气相分离模块2装配体爆炸图如图6所示,主要由外置螺旋流道5,内置螺旋流道6,阶梯封盘7,排气管8,回流控制单元11,圆顶定位销12,定位分流锥13组成。气相分离模块2装配体截面剖视图如图7所示,回流控制单元11螺纹连接至外置螺旋流道5,内置螺旋流道6装配至外置螺旋流道5内部,定位分流锥13控制内置螺旋流道6的定位,阶梯封盘7与外置螺旋流道5螺纹连接使外置螺旋流道5内部密封,排气管8与阶梯封盘7螺纹连接使气相通过排气管8排出。图8为外置螺旋流道5剖视图,轻质相的气体和部分溢流通过内气核孔进入外置螺旋流道5内环筒26,内置螺旋流道6装配至内环筒26内使进入的气液混合相二次旋流,因此被分离出来的气相含液量大大降低从而通过排气管8排出,其余液相被旋流至内环筒26内壁通过脱液孔27流入到回流控制单元11回流至外套筒1内部,稳流管30可以稳定回流控制单元11附近流场压力,减少液体回流阻力,防护罩31可以减少外套筒1内部产生的旋流压力作用在回流控制单元11上的对流压力,减弱对回流控制单元11的正面冲击力,圆顶定位销12与定位孔28孔配合实现内置螺旋流道6的定位。图9为外置螺旋流道5端面剖视图,回注孔29与稳流管30均为4个且圆周分布在外置螺旋流道同一端面。内置螺旋流道6结构图如图10所示,端面开有中心孔与定位分流锥13螺纹连接,其圆孔内壁面圆周分布3个通透长孔33用来当做圆顶定位销12的定位滑道。图11为定位分流锥13结构图,其端部螺纹连接至内置螺旋流道6,底端的凸轮结构用于控制内置螺旋流道6的定位,顶端的槽当做旋转驱动着力点。内置螺旋流道定位单元初始安装示意图、定位示意图如图12、13所示,圆顶定位销12位于内置螺旋流道6内通透长孔33内使得圆顶定位销12可以实现往复式伸缩,将定位分流锥13底端凸轮相对凹陷部分与圆顶定位销12圆顶同一水平线对齐后,顺时针旋转定位分流锥13半圈使凸轮凸起端与圆顶定位销12圆顶接触,此过程顺势抬升圆顶定位销12使配合至外置螺旋流道5的定位孔28内,即可实现内置螺旋流道的定位。图14为阶梯封盘7结构图,阶梯封盘7与外置螺旋流道5螺纹连接实现外置螺旋流道5的密封,阶梯封盘7中心圆孔与排气管8螺纹连接。图15为排气管8结构图,其紧靠端部螺纹端与阶梯封盘7螺纹连接,另一端与外端封盘9螺纹连接。图16为外端封盘9结构图,外端封盘9与外套筒1螺纹连接使外套筒1封闭,其轴心排气管配合孔32与排气管8螺纹连接将气相分离模块2与外套筒1固定在一起。FIG. 5 is an external view of the assembly of the gas
图17为回流控制单元11整体装配图,回流控制单元11螺纹连接至外置螺旋流道5回注孔29内。图18为回流控制单元11爆炸图,主要由收缩通柱14、阻流罩15、冲击锥16、紧固圈17组成。图19为回流控制单元11整体剖视图,回流的液相经过收缩通柱14,然后在液体压力作用下冲击阻流罩15使其副滑杆36在紧固圈配合孔34内滑动,使阻流罩15与收缩通柱14间隙变大进而排出需要回流的液相,紧固圈17作用为防止副滑杆36在滑动过程中脱离紧固圈配合孔34,若回流控制单元11外界流场压力大于内部压力,外界的液相通过阻流罩15与收缩通柱14间隙流入阻流罩15内部,随后液相将会将压力施加在冲击锥16底端面,此时冲击锥16带动主滑杆35逆向滑动,使得阻流罩15与收缩通柱14间隙变小,有效隔离外界液体进入回流控制单元11内部,直至液相回流压力大于外界液相压力时使恢复阻流罩15与收缩通柱14的正常间隙。图20为收缩通柱14结构图,将收缩通柱14与回注孔29螺纹连接使回流控制单元11与外置螺旋流道5固定。图21为阻流罩15结构图,4个副滑杆36圆周分布其内端面且与收缩通柱14端面紧固圈配合孔34配合,主滑杆35与冲击锥16螺纹连接在一起。图22为冲击锥16内部剖视图,底端面朝向阻流罩15一端可以根据回流控制单元11内外实际压力动态调节阻流罩15与收缩通柱14间隙,冲击锥16内部为空腔使得自重不会影响冲击锥16的滑动调节过程。FIG. 17 is an overall assembly view of the
渐变螺旋流道18结构图如图23所示,渐变式螺旋锥道可使混合液产生更大旋心力。图24为渐变螺旋流道18剖视图,溢流通管19与渐变螺旋流道18竖直孔38螺纹连接,溢流液依次通过轴心孔37、竖直孔38排出。图25为溢流通管19结构图,与渐变螺旋流道18内竖直孔38螺纹连接,另一段螺纹连接至外套筒1的溢流孔24以定位液相分离模块3。图26为内套管20结构图,隔砂盘39起到分离混合液中的不同密度砂相和液相的作用,相对轻质相的底流液进入内套管20内部空腔后经底流管40排出,内套管20与外套筒1螺纹连接,通过旋转花瓣转柄42实现内套管20的直线运动从而改变隔砂盘39与外套筒1之间(砂相入口)通路大小,实现对不同含砂量处理的精准调控,底锥配合孔与螺纹底锥21螺纹连接。图27为螺纹底锥21结构图,螺纹底锥21螺纹连接至内套管20,通过旋转凹型球43实现对螺纹底锥21处于内套管20内部有效长度的调控,提高了分离的效率。含有少量砂相时固相分离模块4分离示意图如图28所示,重质砂相在旋心力作用下依附在外套筒1内壁,而后进入外套筒1与内套管20之间环形腔后经由排砂口23排出,而相对轻质的底流液则旋入内套管20内部经由底流管40排出,内套管20与螺纹底锥21均可单独自由调节,且保证内套管20的隔砂盘39处于外套筒1中段变径段即可实现除砂功能,通过旋转花瓣转柄42可改变内套管20处于外套筒1内部有效长度,通过旋转凹型球43可改变螺纹底锥21处于内套管20内部有效长度。图29为含有大量砂相时固相分离模块4分离示意图,此时旋转内套管20处于外套筒1内部有效长度为最大,对比看出内套管20内部隔砂盘39与外套筒1之间间隙(砂相入口)明显变大,因此更多的砂相被分离。图30为无砂相时固相分离模块4分离示意图,旋转内套管20处于外套筒1内部有效长度为最小时,隔砂盘39旋进至外套筒1底端圆柱部分,其外端直径与外套筒1底端直径相同,此时砂相入口封闭,全部底流液经内套管20内部空腔从底流管40排出。The structure diagram of the gradient
本发明所提出的一种嵌套式气-液-固多相一体化旋流分离装置,可进行复杂流场条件下的气液固三相分离且依旧实现底流液与溢流液间的有效分离,相比较常规除气装置,创新性采用内外嵌套式变锥段流道使得排出的气相内部含液量大大降低,将凸轮机构作为内置螺旋流道定位单元的调控机构,操作简单定位精准,回流控制单元可以根据内外液压大小有效控制液体回流,固相分离模块也可以根据实际含砂量进行动态调节使被分离出的固相含液量降至最低,在无砂相条件下可以关闭固相分离模块使整个装置只进行气液相间分离,极大提高实际分离效率,避免底流液的无效排出,功能强大可实现一机多用,具有很强的实际应用价值。The nested gas-liquid-solid multiphase integrated cyclone separation device proposed by the present invention can perform gas-liquid-solid three-phase separation under complex flow field conditions and still achieve effective separation between underflow liquid and overflow liquid Separation, compared with the conventional degassing device, the innovative use of inner and outer nested variable cone section flow channels greatly reduces the liquid content in the discharged gas phase. The cam mechanism is used as the control mechanism of the built-in spiral flow channel positioning unit, which is easy to operate and accurate. , the backflow control unit can effectively control the liquid backflow according to the internal and external hydraulic pressure, and the solid phase separation module can also be dynamically adjusted according to the actual sand content to minimize the separated solid and liquid content, and can be turned off under the condition of no sand phase. The solid phase separation module enables the entire device to only separate between gas and liquid phases, which greatly improves the actual separation efficiency and avoids the ineffective discharge of the underflow liquid.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011617786.3A CN112832733B (en) | 2020-12-30 | 2020-12-30 | Nested gas-liquid-solid cyclone separation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011617786.3A CN112832733B (en) | 2020-12-30 | 2020-12-30 | Nested gas-liquid-solid cyclone separation device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112832733A CN112832733A (en) | 2021-05-25 |
CN112832733B true CN112832733B (en) | 2022-05-31 |
Family
ID=75923959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011617786.3A Active CN112832733B (en) | 2020-12-30 | 2020-12-30 | Nested gas-liquid-solid cyclone separation device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112832733B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114293982B (en) * | 2022-03-08 | 2022-05-17 | 智慧猫(东营)智能科技有限公司 | Logging-while-drilling instrument provided with runner conversion connecting piece |
CN115626684A (en) * | 2022-10-10 | 2023-01-20 | 东北石油大学 | Phase-state heavy-distribution type automatic current-stabilizing three-phase separation device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4361424A (en) * | 1981-02-02 | 1982-11-30 | Henszey Richard R | Gas separating device |
GB9602631D0 (en) * | 1996-02-09 | 1996-04-10 | Vortoil Separation Systems Ltd | Hydrocyclone separator |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11123303A (en) * | 1997-10-21 | 1999-05-11 | Shinyuu Giken:Kk | Apparatus for separating air bubble |
CN201179364Y (en) * | 2008-02-15 | 2009-01-14 | 天津瑞吉德科技有限公司 | Vertical gas (steam) liquid cyclone separator with built-in helical commutating device |
CN105880045B (en) * | 2015-01-13 | 2018-10-12 | 石河子大学 | Bispin is turnstiled compound hydrocyclone |
CN208456574U (en) * | 2018-06-15 | 2019-02-01 | 西南石油大学 | A subsea hydrate downhole separation device with a helical steady flow cone |
CN111330746B (en) * | 2020-02-14 | 2021-09-07 | 东北石油大学 | A kind of downhole automatic steady flow cyclone separator |
CN111322057B (en) * | 2020-02-14 | 2021-10-22 | 东北石油大学 | Multi-stage gravity shear cyclone degassing device in oil production wellbore |
-
2020
- 2020-12-30 CN CN202011617786.3A patent/CN112832733B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4361424A (en) * | 1981-02-02 | 1982-11-30 | Henszey Richard R | Gas separating device |
GB9602631D0 (en) * | 1996-02-09 | 1996-04-10 | Vortoil Separation Systems Ltd | Hydrocyclone separator |
Also Published As
Publication number | Publication date |
---|---|
CN112832733A (en) | 2021-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112832733B (en) | Nested gas-liquid-solid cyclone separation device | |
CN106076671B (en) | A kind of de-oiling desanding cyclone separation device | |
US20140150881A1 (en) | Choke Assembly | |
CN111322057B (en) | Multi-stage gravity shear cyclone degassing device in oil production wellbore | |
CN107252742B (en) | Degassing and oil-removing hydraulic coalescence device | |
CN111330746B (en) | A kind of downhole automatic steady flow cyclone separator | |
CA2777839C (en) | Cyclone separator for high gas volume fraction fluids | |
CA2598947A1 (en) | Separator to separate a liquid/liquid/gas/solid mixture | |
CN104785384A (en) | Axial entrance static hydrocyclone for pre-dehydration of oil-well produced water | |
CN205435993U (en) | Spiral entry is cone type hydraulic cyclone | |
CN111318058A (en) | Integrated gas-liquid-solid continuous separation device | |
CN111841865A (en) | A kind of flow channel pitch adjustable hydrocyclone | |
CN110538487A (en) | A downhole supergravity coalescing cyclone oil-water separation device | |
CN112780250B (en) | Oil-gas-water three-phase multi-stage separation device in oil production well barrel | |
CN111974027A (en) | Pipeline type multistage oil-water separator utilizing angular momentum conservation | |
CN113617544B (en) | An automatic split-flow cyclone separation device | |
CN112791869A (en) | An automatic huff and puff split ratio self-adjusting hydrocyclone separation device | |
CN112832734B (en) | Gas-liquid three-stage cyclone separation device in injection-production shaft of same well | |
CN110732188A (en) | In-pipe phase-separated split-flow high-flow gas-liquid separation device and method | |
WO2024239950A1 (en) | Pipeline-type pre-water-separation system for oilfield produced fluid | |
CN117703342A (en) | A single-pump suction coalescing cyclone oil-water separation device for injection and production in the same well | |
CN100357565C (en) | Sleeved sand control device for downhole oil extraction device | |
CN110743253A (en) | Pipeline type high-flow-rate gas-liquid separation device and method | |
CN115626684A (en) | Phase-state heavy-distribution type automatic current-stabilizing three-phase separation device | |
AU2008281614A1 (en) | Cyclone apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241113 Address after: No. 38 Huoju New Street, High tech Zone, Daqing City, Heilongjiang Province, 163316 Patentee after: Daqing Northeast Petroleum University Asset Management Co.,Ltd. Country or region after: China Patentee after: Xing Lei Address before: No. 199, development road, high tech Zone, Daqing City, Heilongjiang Province, 163318 Patentee before: NORTHEAST PETROLEUM University Country or region before: China |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241227 Address after: Room 211, Comprehensive Building, Daqing Applied Technology Research Institute, No. 109 Keji Road, High tech Zone, Daqing City, Heilongjiang Province, China 163316 Patentee after: Daqing Future Smart Creative Design Technology Development Co.,Ltd. Country or region after: China Address before: No. 38 Huoju New Street, High tech Zone, Daqing City, Heilongjiang Province, 163316 Patentee before: Daqing Northeast Petroleum University Asset Management Co.,Ltd. Country or region before: China Patentee before: Xing Lei |