CN111318058A - Integrated gas-liquid-solid continuous separation device - Google Patents
Integrated gas-liquid-solid continuous separation device Download PDFInfo
- Publication number
- CN111318058A CN111318058A CN202010092604.9A CN202010092604A CN111318058A CN 111318058 A CN111318058 A CN 111318058A CN 202010092604 A CN202010092604 A CN 202010092604A CN 111318058 A CN111318058 A CN 111318058A
- Authority
- CN
- China
- Prior art keywords
- cyclone
- separation
- sand
- oil
- overflow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000926 separation method Methods 0.000 title claims abstract description 171
- 239000007787 solid Substances 0.000 title claims abstract description 16
- 239000004576 sand Substances 0.000 claims abstract description 112
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 69
- 238000010521 absorption reaction Methods 0.000 claims abstract description 21
- 239000007788 liquid Substances 0.000 claims abstract description 21
- 230000001133 acceleration Effects 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 10
- 230000007423 decrease Effects 0.000 claims description 5
- 230000000149 penetrating effect Effects 0.000 claims description 4
- 238000007599 discharging Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 abstract description 21
- 238000004062 sedimentation Methods 0.000 abstract description 14
- 239000012528 membrane Substances 0.000 abstract description 7
- 238000007789 sealing Methods 0.000 abstract description 5
- 239000003921 oil Substances 0.000 abstract 5
- 230000002209 hydrophobic effect Effects 0.000 abstract 1
- 239000012071 phase Substances 0.000 description 79
- 235000019198 oils Nutrition 0.000 description 69
- 230000005484 gravity Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 238000007872 degassing Methods 0.000 description 6
- 235000019476 oil-water mixture Nutrition 0.000 description 6
- 239000010865 sewage Substances 0.000 description 5
- 239000013049 sediment Substances 0.000 description 4
- 238000009827 uniform distribution Methods 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/26—Separation of sediment aided by centrifugal force or centripetal force
- B01D21/262—Separation of sediment aided by centrifugal force or centripetal force by using a centrifuge
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D17/00—Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
- B01D17/02—Separation of non-miscible liquids
- B01D17/0202—Separation of non-miscible liquids by ab- or adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D19/00—Degasification of liquids
- B01D19/0073—Degasification of liquids by a method not covered by groups B01D19/0005 - B01D19/0042
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Cyclones (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种应用于石油、化工和环保等领域中的含油污水的分离处理装置。The invention relates to a separation and treatment device for oily sewage applied in the fields of petroleum, chemical industry, environmental protection and the like.
背景技术Background technique
随着油田的不断开发,以及油田采出液含水率的逐渐升高,导致油田污水的含水、含砂以及含气量也逐渐上升,污水处理成本也日益升高。含油污水若不经处理而直接排放,不仅会造成土壤、水源的污染,甚至会破坏生态系统平衡。较为常见的含油污水处理方法主要有沉降分离、旋流分离和过滤分离等,但目前的这些传统分离方法不仅工艺复杂、系统庞杂、不易搬运,且大多设备分离介质单一,无法满足行业日益发展的需求。目前,国内在气液固分离系统的研究方面有专利CN 105779022 B公开的旋风分离器及气液固分离系统,但是该专利存在的一个极大问题就是分离工艺复杂,设施占地面积大。With the continuous development of oilfields and the gradual increase in the water content of oilfield produced fluids, the water, sand and gas content of oilfield sewage has also gradually increased, and the cost of sewage treatment has also increased. If oily sewage is directly discharged without treatment, it will not only pollute the soil and water sources, but even destroy the balance of the ecosystem. The more common oily sewage treatment methods mainly include sedimentation separation, cyclone separation and filtration separation, etc. However, these traditional separation methods are not only complicated in process, complex in system, difficult to handle, and most of the equipment and separation medium are single, which cannot meet the increasingly developing industry. need. At present, there is a cyclone separator and a gas-liquid-solid separation system disclosed in patent CN 105779022 B in the research of gas-liquid-solid separation system in China, but a great problem of this patent is that the separation process is complicated and the facility occupies a large area.
发明内容SUMMARY OF THE INVENTION
为了解决背景技术中所提到的技术问题,本发明提供了一种一体化气液固连续分离装置将不同介质相分离在不同区域,实现彼此间互不干扰分离;同时加入膜分离技术,实现油水间的多重分离,解决现存旋流器分离效率低下的弊端。另外,这种分离装置结构简单,拆装便捷,可完成气-液-固多相介质在同一分离器内的连续分离,具有较高的分离效率和实用性。In order to solve the technical problems mentioned in the background art, the present invention provides an integrated gas-liquid-solid continuous separation device to separate different media phases in different regions to achieve mutual non-interfering separation; at the same time, adding membrane separation technology to achieve The multiple separation between oil and water solves the disadvantage of low separation efficiency of the existing cyclone. In addition, the separation device has simple structure, convenient disassembly and assembly, can complete the continuous separation of gas-liquid-solid multiphase medium in the same separator, and has high separation efficiency and practicability.
本发明的技术方案是:该种一体化气液固连续分离装置,具有上封盖、分离罐体和下封盖,上封盖的外观形状呈半球形,并在顶部设有排气口,分离罐体为中空的圆筒,在分离罐体右侧上端设有混合液总入口,在分离罐体的左侧的上下两端分别设有一级出油口和二级出油口,分离罐体通过法兰分别与上封盖和下封盖连接固定。其独特在于:The technical scheme of the present invention is as follows: the integrated gas-liquid-solid continuous separation device has an upper cover, a separation tank body and a lower cover. The separation tank is a hollow cylinder, and a mixed liquid general inlet is provided at the upper end of the right side of the separation tank. The upper and lower ends of the left side of the separation tank are respectively provided with a primary oil outlet and a secondary oil outlet. The body is connected and fixed with the upper cover and the lower cover respectively through flanges. It is unique in that:
在分离罐体内分别在上下各设置有罐内上挡板卡座和罐内下挡板卡座,其中罐内下挡板卡座在对向位置开有豁口,方便下挡板的取放。The upper and lower baffle holders in the tank are respectively provided on the upper and lower sides of the separation tank, wherein the lower baffle holder in the tank has a gap at the opposite position to facilitate the taking and placing of the lower baffle.
上挡板和下挡板分别置于罐内上挡板卡座和罐内下挡板卡座内。The upper baffle and the lower baffle are respectively placed in the upper baffle holder in the tank and the lower baffle holder in the tank.
所述分离装置还包括切向入口旋流器、螺旋管式加速流道和溢流导管。The separation device also includes a tangential inlet cyclone, a helical tube acceleration flow channel and an overflow conduit.
其中,切向入口旋流器的上端是一个带封盖中间设有导气通道的溢流管,切向入口旋流器的中间放置有切向入口盘,下端为旋流器外筒,三者之间通过长螺栓连接在一起;上挡板、下挡板、上吸油膜以及下吸油膜均呈圆盘状,上吸油膜和上挡板中间开有圆孔,用于固定切向入口旋流器;上挡板和下挡板都开有若干小孔,用于将吸油分离后的水相排掉,增大油水分离效率;下吸油膜和下挡板则通过在中心区域开有四个与导砂管相对应的定位孔,用于固定和密封导砂管;上吸油膜以及下吸油膜采用亲油滤水毡;旋流器内溢流管在溢流管道的中上位置设有供气相进入的若干进气孔,经由所述进气孔进入的气体再通过导气口进入导气管排出;在旋流器内溢流管中溢流管道的最下方开有若干过油孔,在所述过油孔的外围包裹有一层亲油滤水毡,通过过油孔进入溢流管道的绝大部分油相和小部分水相由顶部的溢流嘴排入溢流导管中。Among them, the upper end of the tangential inlet cyclone is an overflow pipe with a cover with an air guide channel in the middle, the tangential inlet plate is placed in the middle of the tangential inlet cyclone, the lower end is the outer cylinder of the cyclone, the three They are connected together by long bolts; the upper baffle, the lower baffle, the upper oil absorbing film and the lower oil absorbing film are all disc-shaped, and there are round holes in the middle of the upper oil absorbing film and the upper baffle for fixing the tangential inlet. Cyclone; both the upper baffle and the lower baffle have a number of small holes, which are used to drain the water phase after oil absorption and separation, and increase the oil-water separation efficiency; the lower oil absorption film and the lower baffle are opened in the central area. Four positioning holes corresponding to the sand guide pipe are used to fix and seal the sand guide pipe; the upper oil absorption film and the lower oil absorption film are made of oleophilic water filter felt; the overflow pipe in the cyclone is in the upper middle position of the overflow pipe There are several air inlet holes for the gas phase to enter, and the gas entering through the air inlet holes enters the air guide pipe through the air guide port and is discharged; in the overflow pipe in the cyclone, there are several oil passages at the bottom of the overflow pipe. A layer of lipophilic water filter felt is wrapped around the oil-passing hole, and most of the oil phase and a small part of the water phase entering the overflow pipeline through the oil-passing hole are discharged into the overflow conduit from the overflow nozzle at the top .
切向入口盘的结构为圆环形,在其上端面开有四个均匀分布并穿透的螺孔,用于固定切向入口盘在切向入口旋流器中的位置;在切向入口盘的上端有两个大小相同、均匀分布的切向入口槽,切向入口槽槽口由外至内逐渐减小,用于增大来液切向入口速度并提供足够压力。The structure of the tangential inlet disc is a circular ring, and there are four evenly distributed and penetrating screw holes on its upper end face, which are used to fix the position of the tangential inlet disc in the tangential inlet cyclone; There are two tangential inlet grooves with the same size and uniform distribution on the upper end of the disc. The notch of the tangential inlet groove gradually decreases from the outside to the inside, which is used to increase the tangential inlet velocity of the incoming liquid and provide sufficient pressure.
旋流器外筒的上部设有切向入口并在旋流腔段的外围设有卡盘,卡盘与上挡板固定并支撑旋流器外筒;位于所述旋流器外筒下端的底流管上开有四个切向的导砂口,用于将所述旋流器外筒内部的砂相排出,并在四个切向出砂口上各连接有一个法兰,用于与导砂管相连接;导砂管为带有法兰的弯管,导砂管通过上法兰盘与旋流器外筒的导砂口相连接,实现提前排砂。The upper part of the cyclone outer cylinder is provided with a tangential inlet and a chuck is arranged on the periphery of the cyclone cavity section, and the chuck is fixed with the upper baffle plate and supports the cyclone outer cylinder; There are four tangential sand guide openings on the bottom flow pipe, which are used to discharge the sand phase inside the outer cylinder of the cyclone, and a flange is connected to each of the four tangential sand outlets for connecting with the guide. The sand pipe is connected with each other; the sand guide pipe is an elbow with a flange, and the sand guide pipe is connected with the sand guide port of the outer cylinder of the cyclone through the upper flange plate, so as to realize the sand discharge in advance.
下封盖通过大法兰盘与分离罐体相连,并在最下方设有排砂口,左侧设有一个排水口;下封盖内部通过支撑架焊接有一个导砂台,导砂台为倒扣的半椭球形,用于将导砂管中落下的砂导入到下方的沉砂腔中。The lower cover is connected with the separation tank body through a large flange, and is provided with a sand discharge port at the bottom and a drain port on the left side; a sand guide table is welded inside the lower cover through the support frame, and the sand guide table is inverted. The semi-ellipsoidal shape of the buckle is used to guide the sand falling from the sand guide tube into the sand chamber below.
螺旋管式加速流道呈螺旋状,自上而下直径不断减小;螺旋管式加速流道的入口和混合液总入口相连接,螺旋管式加速流道的出口和切向入口旋流器的切向入口相连接;溢流导管的下端设有与旋流器内溢流管相连接的等大法兰盘,二者连接用于支撑和固定溢流导管;经过旋流分离后的油和水通过旋流器内溢流管进入溢流导管,再沿溢流导管的流道进入溢流分导管。The spiral tube type accelerating flow channel is spiral, and the diameter decreases continuously from top to bottom; the inlet of the spiral tube type accelerating flow channel is connected with the total inlet of the mixed liquid, and the outlet of the spiral tube type accelerating flow channel is connected with the tangential inlet cyclone. The tangential inlet of the cyclone is connected; the lower end of the overflow conduit is provided with an equal-sized flange connected to the overflow pipe in the cyclone, and the two are connected to support and fix the overflow conduit; the oil and The water enters the overflow conduit through the overflow pipe in the cyclone, and then enters the overflow branch conduit along the flow channel of the overflow conduit.
导气管具有左端法兰、沉降壶以及出气喇叭口,沉降壶的底部是由两瓣半圆形的橡胶隔膜组成;导气管通过左端法兰与旋流器溢流管导气口相连;经由导气口将旋流器分离后的气体和少部分油水排入到导气管中。The air duct has a left end flange, a settling pot and an air outlet bell mouth. The bottom of the settling pot is composed of two semicircular rubber diaphragms; the air duct is connected to the air guide port of the cyclone overflow pipe through the left end flange; The gas and a small amount of oil and water separated by the cyclone are discharged into the air pipe.
本发明具有如下有益效果:The present invention has the following beneficial effects:
本装置采用旋流技术、重力沉降和膜分离等多重分离工艺套用,实现多相介质连续分离;且设备结构简单,体积小,大多使用法兰连接,方便拆卸使用;通过在切向入口旋流器前端加入一个螺旋管式加速流道,用以提高旋流器内的切向速度,与切向入口盘配合使用来增大入口压力,能够有效提高分离效率;采用CN208201821U高性能吸油毡的方式是实现了油水的高效分离,延长了油水混合液的分离时间,提高除油效率;通过在导气管中添加沉降壶,有效除去导气管中残留的油水相介质,防止油水相堵塞导气管,提高脱气效率;通过在旋流器底流直管段开设切向排砂口与导砂管实现提前排砂,防止砂相堵塞二级分离区域的吸油膜,实现油水的高效分离,增加吸油膜的使用寿命;增设导砂台避免泥沙对封盖的冲蚀,增加其使用寿命。The device adopts multiple separation processes such as cyclone technology, gravity sedimentation and membrane separation to achieve continuous separation of multiphase media; and the equipment is simple in structure and small in volume, most of which are connected by flanges, which are convenient for disassembly and use; by cyclone at the tangential inlet A helical tube acceleration flow channel is added to the front end of the cyclone to increase the tangential velocity in the cyclone, and it is used in conjunction with the tangential inlet disc to increase the inlet pressure, which can effectively improve the separation efficiency; the CN208201821U high-performance oil-absorbing felt method is adopted. It realizes the high-efficiency separation of oil and water, prolongs the separation time of oil-water mixture, and improves the oil removal efficiency; by adding a settling pot in the air duct, the oil-water phase medium remaining in the air duct can be effectively removed, so as to prevent the oil-water phase from blocking the air duct and improve the Degassing efficiency: by opening a tangential sand discharge port and a sand guide pipe in the straight pipe section of the cyclone bottom flow to realize the sand discharge in advance, to prevent the sand phase from blocking the oil absorption film in the secondary separation area, to achieve efficient separation of oil and water, and to increase the use of oil absorption film Service life; adding a sand guide table to avoid the erosion of the cover by sediment and increase its service life.
本装置不但具有现有分离设备所具备的分离特点,并在此基础上引入膜分离法,将脱气、分油、去水、除砂等分离工艺有序结合,既保持了原有分离设备的精密分离性能,又实现了多次连续分离的处理能力,同时将各分离器按照由上到下、由内到外的排布方式整合到一个分离罐中,具有工艺简单、占地空间小、搬运方便、实用性强等优点。可以在实际生产中稳定使用,实现了气液固一体化的高精度连续分离效果。The device not only has the separation characteristics of the existing separation equipment, but also introduces the membrane separation method on this basis, and combines the separation processes such as degassing, oil separation, water removal, and sand removal in an orderly manner, which not only maintains the original separation equipment High precision separation performance, and realizes the processing capacity of multiple continuous separations. At the same time, each separator is integrated into a separation tank according to the arrangement from top to bottom and from inside to outside, which has the advantages of simple process and small footprint. , convenient transportation, strong practicability and so on. It can be used stably in actual production, and realizes the high-precision continuous separation effect of gas-liquid-solid integration.
综上,该分离装置既可以应用于石油化工行业,又可以在于冶金及水处理等其它领域实现推广应用,具有良好的发展前景。In conclusion, the separation device can be applied not only in the petrochemical industry, but also in other fields such as metallurgy and water treatment, and has a good development prospect.
附图说明:Description of drawings:
图1是一体化气液固高精度连续分离装置外形及内部结构设计示意图。Figure 1 is a schematic diagram of the shape and internal structure design of an integrated gas-liquid-solid high-precision continuous separation device.
图2是一体化气液固高精度连续分离装置整体剖视图。Figure 2 is an overall cross-sectional view of an integrated gas-liquid-solid high-precision continuous separation device.
图3是一体化气液固高精度连续分离装置的结构爆炸图。Figure 3 is an exploded view of the structure of the integrated gas-liquid-solid high-precision continuous separation device.
图4是切向入口旋流器内部件爆炸图。Figure 4 is an exploded view of the internal components of the tangential inlet cyclone.
图5是上封盖结构外观图。FIG. 5 is an external view of the structure of the upper cover.
图6是分离罐体半剖视图。Fig. 6 is a half sectional view of the separation tank.
图7是上挡板和上吸油膜的结构外观图。Fig. 7 is an external view of the structure of the upper baffle plate and the upper oil absorbing film.
图8是下挡板和下吸油膜的结构外观图。FIG. 8 is an external view of the structure of the lower baffle plate and the lower oil absorbing film.
图9是螺旋管式加速流道结构外观图。FIG. 9 is an external view of the structure of the helical tube acceleration flow channel.
图10为旋流器内溢流管外观结构图。Figure 10 is a structural diagram of the appearance of the overflow pipe in the cyclone.
图11为旋流器内溢流管半剖视图。Figure 11 is a half cross-sectional view of the overflow pipe in the cyclone.
图12则为切向入口盘外形结构图。Fig. 12 is the external structure diagram of the tangential inlet disc.
图13为旋流器外筒外观结构图。Fig. 13 is a structural view of the external appearance of the outer cylinder of the cyclone.
图14为旋流器外筒半剖视图。Fig. 14 is a half sectional view of the outer cylinder of the cyclone.
图15为溢流导管半剖视图。Figure 15 is a half cross-sectional view of the overflow conduit.
图16为溢流导管外部结构图。Figure 16 is an external structural view of the overflow conduit.
图17为导气管外部结构图。Figure 17 is a diagram of the external structure of the airway.
图18为导气管剖视图。18 is a cross-sectional view of the airway.
图19为导砂管外部结构图。Fig. 19 is the external structure diagram of the sand guide pipe.
图20为下封盖外观结构图。FIG. 20 is a structural diagram of the appearance of the lower cover.
图21为下封盖半剖视图。Figure 21 is a half cross-sectional view of the lower cover.
图中1-一级分离区域,2-二级分离区域,3-三级分离区域,4-上封盖,5-分离罐体,6-下封盖,7-溢流导管,8-螺旋管式加速流道,9-导气管,10-切向入口旋流器,11-上吸油膜,12-上挡板,13-导砂管,14-下吸油膜,15-下挡板,16-溢流管,17-切向入口盘,18-旋流器外筒,401-排气口,501-混合液总入口,502-一级出油口,503-二级出油口,504-上挡板卡座,505-下挡板卡座,601-下封盖大法兰盘,602-排砂口,603-排水口,604-支撑架,605-导砂台,701-溢流导管法兰盘,702-溢流分导管,901-沉降壶,902-出气喇叭口,903-橡胶隔膜,904-导气管法兰,1301-导砂管法兰盘,1601-进气孔,1602-导气口,1603-过油孔,1604-溢流嘴,1701-入口盘紧固螺孔,1702-切向入口槽,1801-切向入口,1802-旋流器卡盘,1803-导砂口,1804-导砂口法兰。In the figure, 1- primary separation area, 2- secondary separation area, 3- tertiary separation area, 4- upper cover, 5- separation tank, 6- lower cover, 7- overflow conduit, 8- spiral Tubular acceleration flow channel, 9-air guide pipe, 10-tangential inlet cyclone, 11-upper oil absorption film, 12-upper baffle, 13-sand guide pipe, 14-lower oil absorption film, 15-lower baffle, 16- overflow pipe, 17- tangential inlet disc, 18- cyclone outer cylinder, 401- exhaust port, 501- mixed liquid total inlet, 502- primary oil outlet, 503- secondary oil outlet, 504-upper baffle holder, 505-lower baffle holder, 601-lower cover large flange, 602-sand discharge port, 603-drainage port, 604-support frame, 605-sand guide table, 701-overflow Flow conduit flange, 702-overflow branch conduit, 901-settling pot, 902-air outlet bell mouth, 903-rubber diaphragm, 904-air conduit flange, 1301-sand conduit flange, 1601-air inlet , 1602-air guide port, 1603-oil hole, 1604-overflow nozzle, 1701-inlet plate fastening screw hole, 1702-tangential inlet groove, 1801-tangential inlet, 1802-cyclone chuck, 1803- Sand guide port, 1804-sand guide port flange.
具体实施方式:Detailed ways:
下面结合附图对本发明作进一步说明:The present invention will be further described below in conjunction with the accompanying drawings:
由图1至图21所示,该种一体化气液固高精度连续分离装置,具有一级分离区域1、二级分离区域2,以及三级分离区域3,其中三个分离区域通过分离罐体5顺序作用,分离罐体5形状大体为中空的圆柱段,并在右侧上端设有混合液总入口501,左侧在上下两端分别设有一级出油口502和二级出油口503,中间则分别在上下各设置有一道卡座用来固定上挡板504和下挡板505,其中下卡座在对向位置开有豁口,方便下挡板15的取放,整个分离罐体通过法兰分别与上封盖4和下封盖5相连接固定。As shown in Figures 1 to 21, the integrated gas-liquid-solid high-precision continuous separation device has a first-stage separation zone 1, a second-
所述一级分离区域1中,切向入口旋流器10的上端是一个带封盖中间设有导气通道的溢流管16,中间放置有切向入口盘17,下端为旋流器外筒18,三者之间通过长螺栓连接在一起,依据旋流分离原理不同密度的介质相在离心力的作用下实现初级分离。上挡板12、下挡板15和上吸油膜11、吸油膜14的结构外形都成圆盘状,其中上吸油膜11和上挡板12中间开有圆孔,用于固定旋流器,上下挡板都开有若干小孔,用于将吸油分离后的水相排掉,增大油水分离效率,下吸油膜14和下挡板15则通过在中心区域开有四个与导砂管13相对应的定位孔,用于固定和密封导砂管,所述的吸油膜采用专利号CN208201821U给出的高性能吸油毡。In the first-stage separation area 1, the upper end of the
所述二级分离区域2中,上封盖4的外观形状呈半球形,并在顶部设有排气口401,且通过法兰与分离罐体5相连接。螺旋管式加速流道8的结构自上而下呈直径不断减小,呈螺旋状;其不仅可以通过螺旋加速与重力加速为混合来液提供加速度,还可以变径来增大其入口压力,增强分离效率,其连接方式主要通过在入口和出口处的法兰盘与分离罐体的混合液总入口501和切向入口旋流器的切向入口1801固定。溢流导管7部件的下端设有与旋流器内溢流管(16)相连接的等大法兰盘701,二者连接用于支撑和固定该溢流导管,经过旋流分离后,绝大部分油和小部分水通过溢流管进入溢流导管,在沿溢流导管的流道进入溢流分导管-702。最后在重力的作用下排入到一级分离区域1内。导气管9部件的工作原理主要依靠导气口1602将旋流器分离后的气体和少部分油水排入到导气管中,其中的大部分气体和少部分的油水在导气管的沉降壶901中再次完成重力分离,轻质相的气体通过狭长的管道由出气喇叭口902排出,重质相的油水则存留在沉降壶的底部,其中沉降壶的底部是由两瓣半圆形的橡胶隔膜903组成,当沉降壶中存储的油水达到一定量就会通过两快橡胶隔膜的缝隙排出进入到一级分离区域,当油水排尽后,橡胶隔膜会由于其弹性变回原来的状态,将沉降壶底部闭合。该部件的连接和固定主要通过其左端的一个法兰904与旋流器溢流管导气口1602相连。In the
所述三级分离区域3中,旋流器内溢流管16通过将溢流管道与封盖板焊接在一起形成一个部件,在溢流管道的中上位置设有供气相进入的若干进气孔1601,由进气孔进入的气体再通过导气口1602进入导气管排出;而在溢流管道的最下方则开有一些较大的过油孔1603通过在这些过油孔的外围包裹上一层亲油滤水毡来保证旋流器油水分离的高效性,通过过油孔1603进入溢流管道的绝大部分油相和小部分水相由顶部的溢流嘴1604排入溢流导管中。切向入口盘17的结构大体为圆环形,并在其上端面开有四个均匀分布并穿透的螺孔1701,用于固定切向入口盘在旋流器中的位置,而在其上端还分布于两个大小相同、均匀分布的切向入口槽1702,该槽槽口由外至内逐渐减小,用于增大来液切向入口速度并提供足够压力。旋流器外筒18的结构为双切向入口双锥段旋流器,其上部设有切向入口1801并在旋流腔段的外围设有卡盘1802,与上挡板12固定并支撑旋流器外筒,在旋流器外筒下端的底流管开有四个切向的导砂口1803,用于将旋流器外筒内部的砂相排出,并在四个切向出砂口上各连接有一个法兰1804,用于与导砂管相连接。导砂管13的外部形状为带有法兰的弯管,该部件通过其上法兰盘1301与旋流器外筒的导砂口1803相连接,实现提前排砂。下封盖6的总体外观和上封盖相似,大体为半圆球形,通过一个大法兰盘601与分离罐体5相连,并在最下方设有排砂口602,左侧设有一个排水口603;且该部件内部通过支撑架604焊接有一个导砂台605,该导砂台为半椭球形倒扣形式放置,主要用于将导砂管中落下的砂导入到下方的沉砂腔中,同时起到缓冲作用,避免砂相对下封盖壁面的磨碎冲击,增长其使用寿命。In the
图2为其整体剖视图,本装置整体由分离罐、螺旋管式加速流道、一级油气水砂旋流分流段、二级油水膜分离段和沉砂段等部分组成,其中的不同空间区域包括有一级分离区域1、二级分离区域2和三级分离区域3。Figure 2 is an overall cross-sectional view. The device is composed of a separation tank, a spiral tube acceleration flow channel, a first-stage oil-gas-water-sand cyclone flow splitting section, a second-stage oil-water film separation section, and a sand settling section. It includes a primary separation zone 1, a
图3为一体化气液固高精度连续分离装置的结构爆炸图,图中部件依次为上封盖4,分离罐体5,下封盖6,溢流导管7,螺旋管式加速流道8,导气管9,切向入口旋流器10,上吸油膜11,上挡板12,导砂管13,下吸油膜14,下挡板15等组成。其中切向入口旋流器7的内部件爆炸图如图4所示,上端是一个带封盖中间设有导气通道的溢流管16,中间放置有切向入口盘17,下端为旋流器外筒18,三者之间通过长螺栓连接在一起。依据旋流分离原理不同密度的介质相在离心力的作用下实现初级分离。图5为上封盖4的结构外观图,其形状呈半球形,并在顶部设有排气口401,且通过法兰与分离罐体5相连接。图6为分离罐体5的半剖视图,其形状大体为中空的圆柱段,并在右侧上端设有混合液总入口501,左侧在上下两端分别设有一级出油口502和二级出油口503,中间则分别在上下各设置有一道卡座用来固定上挡板504和下挡板505,其中下卡座在对向位置开有豁口,方便下挡板15的取放,整个分离罐体通过法兰分别与上封盖4和下封盖5相连接固定。图7和图8分别为上下挡板和上下吸油膜的结构外观图,其结构外形都成圆盘状,其中上吸油膜和上挡板中间开有圆孔,用于固定旋流器,上下挡板都开有若干小孔,用于将吸油分离后的水相排掉,增大油水分离效率,下吸油膜和下挡板则通过在中心区域开有四个与导砂管相对应的定位孔,用于固定和密封导砂管,其中本文提及的吸油膜采用专利号CN208201821U所述高性能吸油毡。图9为螺旋管式加速流道8的结构外观图,该流道自上而下呈直径不断减小的螺旋状,其不仅可以通过螺旋加速与重力加速为混合来液提供加速度,还可以变径来增大其入口压力,增强分离效率,其连接方式主要通过在入口和出口处的法兰盘与分离罐体的混合液总入口501和切向入口旋流器的切向入口1801固定。图10和图11分别为旋流器内溢流管16的外观结构图和半剖视图,该溢流管通过将溢流管道与封盖板焊接在一起形成一个部件,在溢流管道的中上位置设有供气相进入的若干进气孔1601,由进气孔进入的气体再通过导气口1602进入导气管排出;而在溢流管道的最下方则开有一些较大的过油孔1603通过在这些过油孔的外围包裹上一层亲油滤水毡来保证旋流器油水分离的高效性,通过过油孔进入溢流管道的绝大部分油相和小部分水相由顶部的溢流嘴1604排入溢流导管中。图12则为切向入口盘17的外形结构图,该结构大体为圆环形,并在其上端面开有四个均匀分布并穿透的螺孔,用于固定切向入口盘在旋流器中的位置,而在其上端还分布于两个大小相同、均匀分布的切向入口槽1701,该槽槽口由外至内逐渐减小,用于增大来液切向入口速度并提供足够压力。图13和图14分别为旋流器外筒18的外观结构图和半剖视图,旋流器外筒结构为切向入口双锥段旋流器,其上部设有切向入口1801并在旋流腔段的外围设有卡盘1802,与上挡板固定并支撑旋流器外筒,在旋流器外筒下端的底流管开有四个切向的导砂口1803,用于将旋流器外筒内部的砂相排出,并在四个切向出砂口上各连接有一个法兰,用于与导砂管相连接。图15和图16分别为溢流导管7的半剖视图和外部结构图,该部件下端设有与旋流器内溢流管16相连接的等大法兰盘,二者连接用于支撑和固定该溢流导管,经过旋流分离后,绝大部分油和小部分水通过溢流管进入溢流导管,在沿溢流导管的流道进入溢流分导管701。最后在重力的作用下排入到一级分离区域。图17和图18分别为导气管9的外部结构图和半剖视图,该部件的工作原理主要依靠导气口1602将旋流器分离后的气体和少部分油水排入到导气管中,其中的大部分气体和少部分的油水在导气管的沉降壶901中再次完成重力分离,轻质相的气体通过狭长的管道由出气喇叭口902排出,重质相的油水则存留在沉降壶的底部,其中沉降壶的底部是由两瓣半圆形的橡胶隔膜903组成,当沉降壶中存储的油水达到一定量就会通过两快橡胶隔膜的缝隙排出进入到一级分离区域,当油水排尽后,橡胶隔膜会由于其弹性变回原来的状态,将沉降壶底部闭合。该部件的连接和固定主要通过其左端的一个法兰与旋流器溢流管导气口1602相连。图19为导砂管13的外部结构图,该部件外形为带有法兰的弯管,该部件通过其上法兰盘1301与旋流器外筒的导砂口1803相连接,实现提前排砂。图20为下封盖6的外观结构图,该部件总体外观和上封盖相似,大体为半圆球形,通过一个大法兰盘与分离罐体相连,并在最下方设有排砂口602,左侧设有一个排水口601;图21为下封盖6的半剖视图,结合图21来看,该部件内部通过支撑架焊接有一个导砂台603,该导砂台为半椭球形倒扣形式放置,主要用于将导砂管中落下的砂导入到下方的沉砂腔中,同时起到缓冲作用,避免砂相对下封盖壁面的磨碎冲击,增长其使用寿命。3 is an exploded view of the structure of the integrated gas-liquid-solid high-precision continuous separation device. The components in the figure are the
下面对一体化气液固高精度连续分离装置的工作原理和工作过程进行详细说明:The working principle and working process of the integrated gas-liquid-solid high-precision continuous separation device are described in detail below:
本发明的工作原理如下:本发明为一种通过旋流分离、重力沉降与膜分离等多重分离原理共同作用的分离装置。混合来液通过本装置的混合液总入口进入本分离装置,经由螺旋管式加速流道后通过切向入口进入旋流器,再经切向入口盘实现二次加速,然后在旋流器中受离心力作用,由于不同介质相的密度不同实现一次分离,最轻质的气相和较少的油水相最先经由导气孔后通过排气管道进入沉降壶,依靠重力,气相最后通过排气口完全排出,沉降壶中剩余的油水相通过沉降壶底部的橡胶隔膜排入到一级分离区域;绝大部分较轻质的油相和部分较重质相的水相通过溢流管和溢流分导管也排入到一级分离区域;在一级分离区域的油水混合物通过CN208201821U上高性能吸油毡的分离将油相保留在一级分离区域内,当其中保存的油相达到一定高度就会通过罐体上的一级排油口排出到罐外,水相透过上吸油膜和上挡板进入二级分离区域。旋流器内部剩余的绝大部分水相及所有砂相还有少部分的油在旋流器的锥段内继续分离,并在离心力与重力的作用下,砂相聚集到最外层,通过在旋流器直管段开有的切向出砂口排出后再经由导砂管排入三级分离区域;剩余的大部分水相和少部分油相则通过旋流器底流口直接排入二级分离区域;由一级分离区域排出的水相和旋流器底流口排出到二级分离区域油水混合物则再通过铺设在二级分离区域底部的CN208201821U下高性能吸油毡完成二次分离,油相继续保存在二级分离区域。水相排入到三级分离区域,当二级分离区域保存的油相达到一定量再通过分离罐上开有的二级出油口排出。经由导砂管排出的砂相在进入到三级分离区域中的过程中会先通过导砂台,以避免泥沙对下封盖的冲击磨损,再进入沉砂腔,而通过由二级分离区域排出的水相和砂相在三级分离区域内通过重力沉降,最重的砂相被沉降在最下层的沉砂腔中,较轻的水相置于砂相之上,当水量达到一定值时会通过左侧的排水口排出。The working principle of the present invention is as follows: The present invention is a separation device that works together through multiple separation principles such as cyclone separation, gravity sedimentation and membrane separation. The mixed liquid enters the separation device through the total mixed liquid inlet of the device, enters the cyclone through the tangential inlet after passing through the helical tube acceleration flow channel, and then realizes secondary acceleration through the tangential inlet disk, and then enters the cyclone in the cyclone. Under the action of centrifugal force, due to the different densities of different medium phases, a separation is achieved. The lightest gas phase and the less oil-water phase first enter the sedimentation pot through the air guide hole and then the exhaust pipe. By gravity, the gas phase finally passes through the exhaust port. Discharge, the remaining oil-water phase in the sedimentation pot is discharged into the primary separation area through the rubber diaphragm at the bottom of the sedimentation pot; most of the lighter oil phase and some of the heavier water phase pass through the overflow pipe and the overflow separator. The conduit is also discharged into the primary separation area; the oil-water mixture in the primary separation area is separated by the high-performance oil-absorbing felt on CN208201821U to keep the oil phase in the primary separation area, and when the oil phase stored in it reaches a certain height, it will pass through The primary oil discharge port on the tank body is discharged to the outside of the tank, and the water phase enters the secondary separation area through the upper oil absorption film and the upper baffle. Most of the remaining water phase and all sand phases in the cyclone and a small part of the oil continue to separate in the cone section of the cyclone, and under the action of centrifugal force and gravity, the sand phase gathers to the outermost layer, and passes through the cyclone. It is discharged from the tangential sand outlet in the straight pipe section of the cyclone and then discharged into the tertiary separation area through the sand guide pipe; most of the remaining water phase and a small part of the oil phase are directly discharged into the second stage through the bottom flow outlet of the cyclone. Secondary separation area; the water phase discharged from the primary separation area and the bottom flow port of the cyclone are discharged to the secondary separation area, and the oil-water mixture is then passed through the CN208201821U high-performance oil-absorbing felt laid at the bottom of the secondary separation area to complete the secondary separation. The phase continues to be stored in the secondary separation area. The water phase is discharged into the tertiary separation area, and when the oil phase stored in the secondary separation area reaches a certain amount, it is discharged through the secondary oil outlet on the separation tank. The sand phase discharged through the sand guide pipe will first pass through the sand guide table in the process of entering the tertiary separation area to avoid the impact and wear of the sediment on the lower cover, and then enter the sand chamber, and pass through the secondary separation. The water phase and sand phase discharged from the area are settled by gravity in the tertiary separation area, the heaviest sand phase is settled in the bottom sand chamber, and the lighter water phase is placed on the sand phase. value is discharged through the drain on the left.
本发明的工作过程如下:The working process of the present invention is as follows:
混合来液通过本装置的混合液总入口501进入本分离装置,经由螺旋管式加速流道8后通过切向入口进入旋流器10,再经切向入口盘17实现二次加速,然后在旋流器10中受离心力作用,由于不同介质相的密度不同实现一次分离,最轻质的气相和较少的油水相最先经由导气孔9后通过排气管道进入沉降壶901,依靠重力,气相最后通过排气口401完全排出,沉降壶中剩余的油水相通过沉降壶901底部的橡胶隔膜903排入到一级分离区域1;绝大部分较轻质的油相和部分较重质相的水相通过溢流管16和溢流分导管7也排入到一级分离区域1;在一级分离区域的油水混合物通过CN208201821U上高性能吸油毡的分离将油相保留在一级分离区域1内,当其中保存的油相达到一定高度就会通过罐体上的一级排油口502排出到罐外,水相透过上吸油膜11和上挡板12进入二级分离区域2。旋流器内部剩余的绝大部分水相及所有砂相还有少部分的油在旋流器10的锥段内继续分离,并在离心力与重力的作用下,砂相聚集到最外层,通过在旋流器直管段开有的切向出砂口排出后再经由导砂管13排入三级分离区域3;剩余的大部分水相和少部分油相则通过旋流器底流口直接排入二级分离区域2;由一级分离区域排出的水相和旋流器底流口排出到二级分离区域油水混合物则再通过铺设在二级分离区域底部的CN208201821U下高性能吸油毡完成二次分离,油相继续保存在二级分离区域2。水相排入到三级分离区域3,当二级分离区域保存的油相达到一定量再通过分离罐5上开有的二级出油口503排出。经由导砂管13排出的砂相在进入到三级分离区域中的过程中会先通过导砂台603,以避免泥沙对下封盖6的冲击磨损,再进入沉砂腔,而通过由二级分离区域排出的水相和砂相在三级分离区域内通过重力沉降,最重的砂相被沉降在最下层的沉砂腔中,较轻的水相置于砂相之上,当水量达到一定值时会通过左侧的排水口601排出。The mixed liquid enters the separation device through the mixed liquid
本发明所提出的一体化气液固高精度连续分离装置,将螺旋管式加速流道、切向入口旋流器与切向入口盘相配合使用,不仅加大了混合来液的入口速度,也使其入口压力增强,有效增加了旋流分离效率。且本装置在脱气部分的导气管中加装了沉降壶的设计,解决了脱气过程中少部分存在的液相可能堵塞脱气管道的问题,而且通过在沉降壶下方安装橡胶隔膜起到了分离脱气管道中油水混合物的关键作用。本分离装置通过加设上下两层CN208201821U高性能吸油毡的作用实现了油水混合的高效二次分离。排砂方面,本装置在旋流器底流的直管处开设若干切向排砂口,将固相与液相的分离区域分隔开来,避免砂相进入二级分离区域堵塞吸油膜,延长了吸油膜的使用寿命,且在三级分离区域内焊接有疏导砂相的半椭球形导砂台,既起到导引泥沙进入沉砂腔的作用,又避免了砂相对下封盖内壁的冲蚀,延长了下封盖的使用使命。The integrated gas-liquid-solid high-precision continuous separation device proposed by the present invention uses the spiral tube-type accelerating flow channel, the tangential inlet cyclone and the tangential inlet disc, which not only increases the inlet velocity of the mixed liquid, but also It also increases the inlet pressure, effectively increasing the cyclone separation efficiency. In addition, the design of the settling pot is added to the air guide pipe of the degassing part, which solves the problem that a small part of the liquid phase in the degassing process may block the degassing pipe, and the rubber diaphragm is installed under the settling pot. The key role of separating the oil-water mixture in the degassing pipeline. The separation device realizes the high-efficiency secondary separation of oil-water mixing by adding upper and lower layers of CN208201821U high-performance oil-absorbing felt. In terms of sand discharge, the device opens a number of tangential sand discharge ports at the straight pipe of the underflow of the cyclone to separate the separation area of the solid phase and the liquid phase, so as to prevent the sand phase from entering the secondary separation area to block the oil absorption film and prolong the The service life of the oil-absorbing film is shortened, and a semi-ellipsoidal sand guiding platform for dredging the sand phase is welded in the tertiary separation area, which not only plays the role of guiding the sediment into the sand chamber, but also prevents the sand from sealing the inner wall of the lower cap. The erosion extends the service mission of the lower cover.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010092604.9A CN111318058B (en) | 2020-02-14 | 2020-02-14 | Integrated gas-liquid-solid continuous separation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010092604.9A CN111318058B (en) | 2020-02-14 | 2020-02-14 | Integrated gas-liquid-solid continuous separation device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111318058A true CN111318058A (en) | 2020-06-23 |
CN111318058B CN111318058B (en) | 2021-07-27 |
Family
ID=71163339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010092604.9A Expired - Fee Related CN111318058B (en) | 2020-02-14 | 2020-02-14 | Integrated gas-liquid-solid continuous separation device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111318058B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112107886A (en) * | 2020-08-07 | 2020-12-22 | 青岛科技大学 | Separation and purification device for oil phase in oil, water and solid three-phase mixture |
CN112190980A (en) * | 2020-09-02 | 2021-01-08 | 中科智寰(北京)科技有限公司 | Gas-liquid separation device |
CN113234933A (en) * | 2021-04-30 | 2021-08-10 | 华南理工大学 | Recovery system for treating electric furnace dust by using methane |
CN113521814A (en) * | 2021-07-11 | 2021-10-22 | 苏州道森钻采设备股份有限公司 | Ultrahigh pressure cyclone desanding and separating device |
CN114470977A (en) * | 2022-04-18 | 2022-05-13 | 天津大学 | Gas-water separator applied to hydrogen fuel cell |
CN117919836A (en) * | 2024-03-21 | 2024-04-26 | 兰州助剂厂股份有限公司 | Organic peroxide reaction liquid separation device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102847618A (en) * | 2012-09-18 | 2013-01-02 | 东北石油大学 | Secondary separation cyclone |
CN204121936U (en) * | 2014-10-22 | 2015-01-28 | 西南石油大学 | A kind of novel combination type three phases separator |
CN106076671A (en) * | 2016-06-29 | 2016-11-09 | 东北石油大学 | A kind of novel removing oil desanding cyclone separation device |
CN106583068A (en) * | 2016-12-08 | 2017-04-26 | 东北石油大学 | Downhole degassing and oil removing cyclone separation device |
CN206735858U (en) * | 2017-04-26 | 2017-12-12 | 中石化绿源地热能开发有限公司 | A kind of GEOTHERMAL WATER gas-liquid solid separation device |
CN109107789A (en) * | 2018-10-19 | 2019-01-01 | 东北石油大学 | A kind of corrugated plate dst coalescence cyclone separation device |
-
2020
- 2020-02-14 CN CN202010092604.9A patent/CN111318058B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102847618A (en) * | 2012-09-18 | 2013-01-02 | 东北石油大学 | Secondary separation cyclone |
CN204121936U (en) * | 2014-10-22 | 2015-01-28 | 西南石油大学 | A kind of novel combination type three phases separator |
CN106076671A (en) * | 2016-06-29 | 2016-11-09 | 东北石油大学 | A kind of novel removing oil desanding cyclone separation device |
CN106583068A (en) * | 2016-12-08 | 2017-04-26 | 东北石油大学 | Downhole degassing and oil removing cyclone separation device |
CN206735858U (en) * | 2017-04-26 | 2017-12-12 | 中石化绿源地热能开发有限公司 | A kind of GEOTHERMAL WATER gas-liquid solid separation device |
CN109107789A (en) * | 2018-10-19 | 2019-01-01 | 东北石油大学 | A kind of corrugated plate dst coalescence cyclone separation device |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112107886A (en) * | 2020-08-07 | 2020-12-22 | 青岛科技大学 | Separation and purification device for oil phase in oil, water and solid three-phase mixture |
CN112190980A (en) * | 2020-09-02 | 2021-01-08 | 中科智寰(北京)科技有限公司 | Gas-liquid separation device |
CN113234933A (en) * | 2021-04-30 | 2021-08-10 | 华南理工大学 | Recovery system for treating electric furnace dust by using methane |
CN113521814A (en) * | 2021-07-11 | 2021-10-22 | 苏州道森钻采设备股份有限公司 | Ultrahigh pressure cyclone desanding and separating device |
CN114470977A (en) * | 2022-04-18 | 2022-05-13 | 天津大学 | Gas-water separator applied to hydrogen fuel cell |
CN117919836A (en) * | 2024-03-21 | 2024-04-26 | 兰州助剂厂股份有限公司 | Organic peroxide reaction liquid separation device |
CN117919836B (en) * | 2024-03-21 | 2024-05-31 | 兰州助剂厂股份有限公司 | Organic peroxide reaction liquid separation device |
Also Published As
Publication number | Publication date |
---|---|
CN111318058B (en) | 2021-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111318058A (en) | Integrated gas-liquid-solid continuous separation device | |
CN102743898B (en) | Ducted two-stage flow deflector type oil-water separator and its application method | |
WO2022105699A1 (en) | Adaptive multi-phase integrated separation device, and method | |
CN106076671B (en) | A kind of de-oiling desanding cyclone separation device | |
CN107473329B (en) | Underground three-stage cyclone separation device | |
CA2419217A1 (en) | Separators for three-phase or two-phase fluid mixtures realized with a centrifugal device designed for the separation of the gas from the liquid mixture | |
US8490798B2 (en) | Compacted hydrocyclone apparatus in vessels | |
US12179221B2 (en) | Spiral-shaped separation device for fluid purification device | |
CN102020336A (en) | Equipment and method for treating oil extraction wastewater with integration of coalescence and hydrocyclone separation | |
CN101411951A (en) | Water-oil separating system and method using centrifugation, gravitation, expansion composite principle | |
US11389759B2 (en) | Horizontal type combined filter separator | |
CN106111359B (en) | De-oiling desanding three-phase integratedization separator | |
WO2024188361A1 (en) | Concentric-inclined-plate enhanced vertical compact flotation apparatus | |
KR20180022758A (en) | Dual cyclone type processing apparatus of suspened solids | |
CN112107886A (en) | Separation and purification device for oil phase in oil, water and solid three-phase mixture | |
KR20170104961A (en) | Dual cyclone type processing apparatus of suspened solids | |
GB2330786A (en) | Cyclone separator | |
GB2367019A (en) | Cyclone separator | |
CN201101907Y (en) | Combined oil water separation device | |
CN108545848B (en) | Urban sewage purification device | |
US4140638A (en) | Separating device for fluid system | |
CN107050931B (en) | Gas-liquid multistage separation device for pump inflow gas-containing experiment | |
CN1124987C (en) | Process and equipment for separating multi-phase media from each other | |
CN111039432B (en) | An oil-water separation device that facilitates the integration of cyclone and air flotation processes | |
CN219449403U (en) | Oil-water separator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210727 Termination date: 20220214 |
|
CF01 | Termination of patent right due to non-payment of annual fee |