[go: up one dir, main page]

CN112786713A - 一种高效超薄铜铟镓硒薄膜太阳能电池及其制备方法 - Google Patents

一种高效超薄铜铟镓硒薄膜太阳能电池及其制备方法 Download PDF

Info

Publication number
CN112786713A
CN112786713A CN202110100600.5A CN202110100600A CN112786713A CN 112786713 A CN112786713 A CN 112786713A CN 202110100600 A CN202110100600 A CN 202110100600A CN 112786713 A CN112786713 A CN 112786713A
Authority
CN
China
Prior art keywords
layer
indium gallium
copper indium
gallium selenide
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110100600.5A
Other languages
English (en)
Other versions
CN112786713B (zh
Inventor
张宽翔
刘小雨
蒋继文
何早阳
张鑫根
朱登华
魏小涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Triumph Photovoltaic Material Co ltd
Original Assignee
Triumph Photovoltaic Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Triumph Photovoltaic Material Co ltd filed Critical Triumph Photovoltaic Material Co ltd
Priority to CN202110100600.5A priority Critical patent/CN112786713B/zh
Publication of CN112786713A publication Critical patent/CN112786713A/zh
Application granted granted Critical
Publication of CN112786713B publication Critical patent/CN112786713B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/30Coatings
    • H10F77/306Coatings for devices having potential barriers
    • H10F77/311Coatings for devices having potential barriers for photovoltaic cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/128Annealing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/129Passivating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/20Electrodes
    • H10F77/206Electrodes for devices having potential barriers
    • H10F77/211Electrodes for devices having potential barriers for photovoltaic cells
    • H10F77/219Arrangements for electrodes of back-contact photovoltaic cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/30Coatings
    • H10F77/306Coatings for devices having potential barriers
    • H10F77/311Coatings for devices having potential barriers for photovoltaic cells
    • H10F77/315Coatings for devices having potential barriers for photovoltaic cells the coatings being antireflective or having enhancing optical properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本发明公开一种高效超薄铜铟镓硒薄膜太阳能电池及其制备方法,先在背电极表面制作低熔点的金属颗粒团簇,然后沉积钝化层和CIGS层,高温退火使金属颗粒团簇与CIGS层相互扩散形成金属掺杂的CIGS吸收层,同时,在钝化层上形成孔洞,随后完成铜铟镓硒薄膜太阳能电池的制备。与传统的制备方法相比,具有以下优势:首先,CIGS吸收层与背电极通过钝化层上的孔洞实现点接触,可以有效减少电子空穴的背面复合,提高转换效率;钝化层还可以有效反射未被吸收层吸收的光,产生二次吸收,有利于提高光生电流密度,提高转换效率;低熔点的金属颗粒团簇在CIGS层高温退火时,向CIGS层扩散,形成有效的金属掺杂,有利于提升CIGS吸收层的结晶和带隙,提升CIGS太阳能电池的性能。

Description

一种高效超薄铜铟镓硒薄膜太阳能电池及其制备方法
技术领域
本发明涉及薄膜太阳能电池技术领域,具体是一种高效超薄铜铟镓硒薄膜太阳能电池及其制备方法。
背景技术
随着能源危机及环境污染的日益加剧,如何提高可再生能源比例,调整能源结构成为社会发展的主流。太阳能作为重要的可再生能源,近年来受到广泛的关注并得到快速发展。从市场需求来看,光伏发电在很多国家已成为清洁、低碳、同时具有价格优势的能源形式。不仅在欧、美、日等发达地区,在中东、南美等地区也快速兴起。2019年,全球光伏新增装机市场达到115GW,创历史新高。截至2019年底,全球光伏组件产能达到218.7GW,产量达到138.2GW,分别同比增长14.9%和19.3%,产能利用率达到63.2%,相比2018年略有提升。从组件生产类型来看,晶硅组件依然是市场主流,2019年产量达到132.1GW,薄膜组件产量约为6.14GW,较2018年均有一定涨幅的增长,且薄膜组建的市场占比较2018年提升了1.2个百分点。其中,铜铟镓硒(CIGS)薄膜太阳能电池具有良好的弱光(散射)效应和较低的温度系数,并且具有长期不衰减的特性,因而发电性能好、发电稳定,组件美观大方,颜色可变,完美的契合了光伏建筑一体化BIPV和屋顶发电,生产工艺简单并无污染等优势,被业界评为“太阳能能源的未来”。目前,小面积CIGS电池世界纪录由Solar Frontier采用(Zn,Mg)O/Zn(O,S,OH)工艺制得,其转换效率达到23.35%;小尺寸组件纪录由中国建材凯盛集团AVANCIS公司制备30×30cm2 CIGS小组件保持,认证转换效率达19.2%;量产组件转换效率也均达到或超过15%。
然而,受制于铜铟镓硒薄膜太阳电池成本的限制,其组件作为电站产品的竞争力相对于晶硅组件较弱。其中,进一步减少CIGS吸收层的厚度是降本的可行方法,但厚度减少,后导致钼电极和CIGS吸收层复合增加,对光吸收减少,开路电压和短路电流同时减少,降低转换效率。受传统晶硅电池背钝化技术启发,CIGS电池中背钝化技术同样受到广泛的研究,在钼电极和CIGS吸收层之间加入钝化层,为了保证吸收层和背电极的有效接触,减少接触电阻,钝化层无法完全覆盖钼电极,要形成点接触才能起到作用。目前,常用的方法是采用平板印刷或化学水浴沉积CdS纳米颗粒实现吸收层和背电极在钝化层上电接触。化学水浴法制备CdS颗粒,属于湿法工艺,同时由于Cd元素的存在,易造成污染;平板印刷,工业化集成困难。
发明内容
为了解决现有技术存在的问题,本发明提供一种高效超薄铜铟镓硒薄膜太阳能电池,通过钝化层上的孔洞实现吸收层与背电极的点接触,可有效减少吸收层与背电极的表面复合,提升光吸收率,提高转换效率,同时有效减少铜铟镓硒吸收层的厚度,减少原材料的使用,降低生产制造成本,提升铜铟镓硒薄膜太阳能电池的行业竞争力。
本发明采用如下技术方案:一种高效超薄铜铟镓硒薄膜太阳能电池,包括基板、钼背电极、钼背电极的上表面由下至上依次沉积有钝化层、金属掺杂的铜铟镓硒吸收层、缓冲层、高阻层和透明电极层,所述的钝化层上具有孔洞,金属掺杂的铜铟镓硒吸收层与背电极通过孔洞实现点接触。
进一步地,所述的钝化层的材料是氧化铝、氧化硅或氧化钛,钝化层的厚度为2~100nm,所述的金属是低熔点银、金、铝、锑或其合金。
本发明的高效超薄铜铟镓硒薄膜太阳能电池通过钝化层上的孔洞实现铜铟镓硒吸收层与背电极的点接触,有效减少电子空穴的背面复合,提高转换效率;钝化层还可有效反射未被铜铟镓硒吸收层吸收的光,产生二次吸收,有利于提高光生电流密度,提高转换效率;金属掺杂的铜铟镓硒吸收层还有利于提升吸收层的结晶和带隙,提升铜铟镓硒电池性能,提升铜铟镓硒薄膜太阳能电池竞争力。
为了解决上述技术问题,本发明还提供了一种高效超薄铜铟镓硒薄膜太阳能电池的制备方法,包括以下步骤:
(1)采用化学方法或物理法在背电极表面沉积金属颗粒团簇;
(2)在带有金属颗粒团簇的背电极上沉积钝化层;
(3)在钝化层上沉积铜铟镓硒层;
(4)高温退火,金属颗粒团簇与铜铟镓硒相互扩散,使铜铟镓硒层形成金属掺杂的铜铟镓硒吸收层,同时在钝化层上形成孔洞;
(5)在金属掺杂的铜铟镓硒吸收层上依次沉积缓冲层、高阻层和透明电极层。
进一步地,所述的化学方法为溶胶-凝胶法、电化学沉积法、氧化-还原法或静电喷涂法。
进一步地,所述的物理方法指先在背电极上采用物理气相沉积法沉积一层金属薄膜,然后在真空、大气或保护气体氛围下退火形成金属颗粒团簇,所述的金属薄膜的厚度为2~200nm。所述的物理气相沉积法为溅射工艺、蒸发工艺或离子镀工艺。
进一步地,金属颗粒团簇的材料是低熔点的银、金、铝或锑,金属颗粒团簇的形状为球形,直径>50nm。
进一步地,钝化层的材料是氧化铝、氧化硅或氧化钛,钝化层的厚度为2~100nm。
本发明的有益效果是:
一、经过高温退火后铜铟镓硒吸收层与背电极通过钝化层上的孔洞实现点接触,可以有效减少电子空穴的背面复合,提高转换效率;
二、钝化层能够有效反射未被吸收层完全吸收的光,产生二次吸收,有利于提高光生电流密度,提高转换效率;
三、低熔点的金属颗粒团簇在铜铟镓硒层高温退火时,向铜铟镓硒层中扩散,形成有效的金属掺杂,有利于提升铜铟镓硒吸收层的结晶和带隙,提升铜铟镓硒电池性能;
四、基于以上优点,可有效减少铜铟镓硒吸收层的厚度,减少原材料的使用,降低生产制造成本,提升铜铟镓硒薄膜太阳能电池竞争力。
附图说明
图1是本发明高效超薄铜铟镓硒薄膜太阳能电池的结构示意图。
图2是实施例一的制备方法流程图。
图3是实施例二的制备方法流程图。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
一种高效超薄铜铟镓硒薄膜太阳能电池,如图1所示,包括基板1和钼背电极2,钼背电极2上依次沉积有钝化层5、金属Ag掺杂的铜铟镓硒吸收层7、缓冲层8、高阻层9和透明电极层10,钝化层5上具有孔洞51,金属Ag掺杂的铜铟镓硒吸收层7与钼背电极2通过孔洞51实现点接触。
实施例一
一种高效超薄铜铟镓硒薄膜太阳能电池的制备方法,流程如图2所示,步骤如下:
(1)在普通2.1mm厚的钠钙玻璃衬底上采用磁控溅射法生长90nm厚的阻挡层氮化硅作为基板1;在基板1上采用磁控溅射沉积厚度为450nm钼背电极2;
(2)采用磁控溅射在钼背电极2表面沉积一层Ag薄膜3,Ag薄膜3的厚度为100nm;
(3)采用220℃温度退火,使Ag薄膜3凝聚成球形的纳米Ag颗粒团簇4;
(4)采用原子层沉积法沉积一层Al203薄膜,膜层厚度25nm,作为钝化层5;
(5)分别采用磁控溅射制备Cu、In、Ga金属预制层和Se薄膜层,形成CIGS层6,厚度为700nm;
(6)在含H2S氛围中,560℃退火,使Ag颗粒团簇与CIGS层6相互扩散,CIGS层6形成Ag掺杂的CIGS吸收层7,同时,在钝化层5上原Ag颗粒团簇4所在的位置形成孔洞51,从而实现铜铟镓硒吸收层7与背电极2的点接触;
(7)采用蒸发法沉积NaCl和InxSy缓冲层8,然后采用射频磁控溅射沉积一层60nm厚的i-ZnO高阻层9,最后采用直流磁控溅射沉积掺铝氧化锌薄膜作为透明电极层10。
实施例二
一种高效超薄铜铟镓硒薄膜太阳能电池的制备方法,流程如图3所示,步骤如下:
(1)在普通2.1mm厚的钠钙玻璃衬底上采用磁控溅射法生长90nm厚的阻挡层氮化硅作为基板1;在基板1上采用磁控溅射沉积厚度为450nm钼背电极2;
(2)采用电化学沉积法制备Ag颗粒团簇4,采用配置好的AgNO3、CitNa和KNO3溶液,以钼背电极2为工作电极,Pt为对电极,在钼背电极2表面沉积Ag颗粒团簇4;
(3)采用原子层沉积法沉积一层Al203薄膜,膜层厚度25nm,作为钝化层5;
(4)分别采用磁控溅射在钝化层6上制备Cu、In、Ga金属预制层和Se薄膜层,形成CIGS层6,厚度为700nm;
(5)在含H2S氛围中,560℃退火,使Ag颗粒团簇4与CIGS层6相互扩散,CIGS层6形成Ag掺杂的CIGS吸收层7,同时,在钝化层5上原Ag颗粒团簇4所在的位置形成孔洞51,从而实现铜铟镓硒吸收层7与背电极2的点接触;
(6)采用蒸发法沉积NaCl和InxSy缓冲层8,然后采用射频磁控溅射沉积一层60nm厚的i-ZnO高阻层9,最后采用直流磁控溅射沉积掺铝氧化锌薄膜作为透明电极层10。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。

Claims (9)

1.一种高效超薄铜铟镓硒薄膜太阳能电池,包括基板、背电极、背电极的上表面由下至上依次沉积有钝化层、金属掺杂的铜铟镓硒吸收层、缓冲层、高阻层和透明电极层,其特征在于,所述的钝化层上具有孔洞,铜铟镓硒吸收层与背电极通过孔洞实现点接触。
2.根据权利要求1所述的高效超薄铜铟镓硒薄膜太阳能电池,其特征在于:所述的钝化层的材料是氧化铝、氧化硅或氧化钛,钝化层的厚度为2~100nm。
3.根据权利要求1或2所述的高效超薄铜铟镓硒薄膜太阳能电池,其特征在于:所述的金属是银、金、铝或锑。
4.一种高效超薄铜铟镓硒薄膜太阳能电池的制备方法,包括以下步骤:
(1)采用化学方法或物理法在背电极表面沉积金属颗粒团簇;
(2)在带有金属颗粒团簇的背电极上沉积钝化层;
(3)在钝化层上沉积铜铟镓硒层;
(4)高温退火,金属颗粒团簇与铜铟镓硒相互扩散,使铜铟镓硒层形成金属掺杂的铜铟镓硒吸收层,同时在钝化层上形成孔洞;
(5)在金属掺杂的铜铟镓硒吸收层上依次沉积缓冲层、高阻层和透明电极层。
5.根据权利要求4所述的高效超薄铜铟镓硒薄膜太阳能电池的制备方法,其特征在于:所述的化学方法为溶胶-凝胶法、电化学沉积法、氧化-还原法或静电喷涂法。
6.根据权利要求4所述的高效超薄铜铟镓硒薄膜太阳能电池的制备方法,其特征在于:所述的物理方法指先在背电极上采用物理气相沉积法沉积一层金属薄膜,然后在真空、大气或保护气体氛围下退火形成金属颗粒团簇,所述的金属薄膜的厚度为2~200nm。
7.根据权利要求6所述的高效超薄铜铟镓硒薄膜太阳能电池的制备方法,其特征在于:所述的物理气相沉积法为溅射工艺、蒸发工艺或离子镀工艺。
8.根据权利要求5或6所述的高效超薄铜铟镓硒薄膜太阳能电池的制备方法,其特征在于:金属颗粒团簇的材料是银、金、铝或锑,金属颗粒团簇的形状为球形,直径>50nm。
9.根据权利要求4所述的高效超薄铜铟镓硒薄膜太阳能电池的制备方法,其特征在于:钝化层的材料是氧化铝、氧化硅或氧化钛,钝化层的厚度为2~100nm。
CN202110100600.5A 2021-01-26 2021-01-26 一种高效超薄铜铟镓硒薄膜太阳能电池及其制备方法 Active CN112786713B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110100600.5A CN112786713B (zh) 2021-01-26 2021-01-26 一种高效超薄铜铟镓硒薄膜太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110100600.5A CN112786713B (zh) 2021-01-26 2021-01-26 一种高效超薄铜铟镓硒薄膜太阳能电池及其制备方法

Publications (2)

Publication Number Publication Date
CN112786713A true CN112786713A (zh) 2021-05-11
CN112786713B CN112786713B (zh) 2023-08-25

Family

ID=75757240

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110100600.5A Active CN112786713B (zh) 2021-01-26 2021-01-26 一种高效超薄铜铟镓硒薄膜太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN112786713B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU504697B1 (en) 2023-07-07 2025-01-07 Univ Luxembourg Thin film solar cell and corresponding production method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100037937A1 (en) * 2008-08-15 2010-02-18 Sater Bernard L Photovoltaic cell with patterned contacts
CN101937939A (zh) * 2010-08-02 2011-01-05 中国科学院物理研究所 一种等离子体薄膜太阳能电池增效方法
US20120031492A1 (en) * 2010-08-04 2012-02-09 Miasole Gallium-Containing Transition Metal Thin Film for CIGS Nucleation
CN103474484A (zh) * 2013-09-16 2013-12-25 深圳先进技术研究院 太阳电池器件的背电极及其制备方法以及太阳电池器件
CN103681951A (zh) * 2012-09-07 2014-03-26 耀华电子股份有限公司 太阳能电池背面钝化局部扩散结构及其制造方法
CN104143587A (zh) * 2014-07-22 2014-11-12 苏州瑞晟纳米科技有限公司 一种可以提高铜铟镓硒薄膜太阳能电池性能的表面钝化技术
US20150007881A1 (en) * 2012-01-16 2015-01-08 Heraeus Precious Metals North America Conshohocken Llc Aluminum conductor paste for back surface passivated cells with locally opened vias
US20150087106A1 (en) * 2013-09-23 2015-03-26 Markus Eberhard Beck Methods of forming thin-film photovoltaic devices with discontinuous passivation layers
CN112186066A (zh) * 2019-07-01 2021-01-05 北京铂阳顶荣光伏科技有限公司 一种银掺杂铜铟镓硒太阳能电池的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100037937A1 (en) * 2008-08-15 2010-02-18 Sater Bernard L Photovoltaic cell with patterned contacts
CN101937939A (zh) * 2010-08-02 2011-01-05 中国科学院物理研究所 一种等离子体薄膜太阳能电池增效方法
US20120031492A1 (en) * 2010-08-04 2012-02-09 Miasole Gallium-Containing Transition Metal Thin Film for CIGS Nucleation
US20150007881A1 (en) * 2012-01-16 2015-01-08 Heraeus Precious Metals North America Conshohocken Llc Aluminum conductor paste for back surface passivated cells with locally opened vias
CN103681951A (zh) * 2012-09-07 2014-03-26 耀华电子股份有限公司 太阳能电池背面钝化局部扩散结构及其制造方法
CN103474484A (zh) * 2013-09-16 2013-12-25 深圳先进技术研究院 太阳电池器件的背电极及其制备方法以及太阳电池器件
US20150087106A1 (en) * 2013-09-23 2015-03-26 Markus Eberhard Beck Methods of forming thin-film photovoltaic devices with discontinuous passivation layers
CN104143587A (zh) * 2014-07-22 2014-11-12 苏州瑞晟纳米科技有限公司 一种可以提高铜铟镓硒薄膜太阳能电池性能的表面钝化技术
CN112186066A (zh) * 2019-07-01 2021-01-05 北京铂阳顶荣光伏科技有限公司 一种银掺杂铜铟镓硒太阳能电池的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈小青;杨少鸿;曲晶晶;张永哲;严辉;: "铜铟镓硒(CIGS)薄膜太阳电池的碱金属掺杂工程", 北京工业大学学报, no. 10, pages 1180 - 1191 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU504697B1 (en) 2023-07-07 2025-01-07 Univ Luxembourg Thin film solar cell and corresponding production method
WO2025012117A1 (en) 2023-07-07 2025-01-16 Universite Du Luxembourg Thin film solar cell and corresponding production method

Also Published As

Publication number Publication date
CN112786713B (zh) 2023-08-25

Similar Documents

Publication Publication Date Title
CN102054897B (zh) 多元素合金单一靶材制备薄膜太阳能电池的方法
CN105810772B (zh) 一种硫化锑/硅叠层太阳电池及其制备方法
CN103426943B (zh) 一种铜锌锡硫薄膜太阳能电池叠层结构及其制备方法
CN101217167A (zh) 一种机械叠层AlSb/CIS薄膜太阳电池
CN101789469A (zh) 铜铟镓硒硫薄膜太阳电池光吸收层的制备方法
TW201108425A (en) Solar cell and fabrication method thereof
CN102637755B (zh) 一种纳米结构czts薄膜光伏电池及其制备方法
CN103915516A (zh) 一种cigs基薄膜光伏材料的钠掺杂方法
CN102610673A (zh) 一种铜锌锡硫化合物薄膜太阳能电池及其制备方法
CN103038895A (zh) 太阳能电池及其制造方法
CN106024937A (zh) 一种cigs基薄膜太阳能电池及其制备方法
CN104617183B (zh) 一种cigs基薄膜太阳电池及其制备方法
CN103474488A (zh) 一种薄膜太阳能电池及其制备方法
CN105261660B (zh) 一种cigs基薄膜太阳能电池
CN102201480B (zh) 基于n型硅片的碲化镉半导体薄膜异质结太阳电池
CN109638096A (zh) 一种化合物半导体薄膜太阳能电池制备方法
CN103999236B (zh) 太阳能电池及其制造方法
CN112786713B (zh) 一种高效超薄铜铟镓硒薄膜太阳能电池及其制备方法
CN105355681B (zh) 一种溅射靶材及用该溅射靶材制作的cigs基薄膜太阳能电池
CN105244394B (zh) 一种cigs基薄膜太阳能电池及其制备方法
CN102709393A (zh) 用铜锌锡硫化合物单一靶材制备薄膜太阳能电池的方法
CN101707219B (zh) 本征隔离结构太阳能电池及其制造方法
CN110176503A (zh) 一种碲化镉发电玻璃
CN104882508A (zh) 一种黄铜矿型薄膜光伏电池及其制作方法
CN105047738B (zh) 溅射靶材及用该溅射靶材制作的cigs基薄膜太阳能电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant