[go: up one dir, main page]

CN112778408B - Rubber tree transcription factor HbICE2, and coding gene and application thereof - Google Patents

Rubber tree transcription factor HbICE2, and coding gene and application thereof Download PDF

Info

Publication number
CN112778408B
CN112778408B CN202110232197.1A CN202110232197A CN112778408B CN 112778408 B CN112778408 B CN 112778408B CN 202110232197 A CN202110232197 A CN 202110232197A CN 112778408 B CN112778408 B CN 112778408B
Authority
CN
China
Prior art keywords
hbice2
gene
transcription factor
rubber tree
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110232197.1A
Other languages
Chinese (zh)
Other versions
CN112778408A (en
Inventor
李言
田维敏
全彩虹
杨署光
吴绍华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rubber Research Institute Chinese Academy Tropical Agricultural Sciences
Original Assignee
Rubber Research Institute Chinese Academy Tropical Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rubber Research Institute Chinese Academy Tropical Agricultural Sciences filed Critical Rubber Research Institute Chinese Academy Tropical Agricultural Sciences
Priority to CN202110232197.1A priority Critical patent/CN112778408B/en
Publication of CN112778408A publication Critical patent/CN112778408A/en
Application granted granted Critical
Publication of CN112778408B publication Critical patent/CN112778408B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明提供了一种橡胶树转录因子HbICE2,其氨基酸序列如SEQ ID NO:1所示。本发明还提供了橡胶树转录因子HbICE2的编码基因及应用。本发明基因表达分析显示HbICE2基因在响应低温胁迫上调表达,且在耐寒性强的橡胶树品种中表达量显著高于耐寒性弱的品种,通过转基因验证了HbICE2能够增强转基因植株的耐寒性、耐旱性和耐盐性等,这对于认识植物在非休眠条件下对低温胁迫、盐胁迫、干旱胁迫等的抗性机制以及通过转基因技术定向改良高产品种的低温胁迫、盐胁迫、干旱胁迫等具有重要的理论意义和实际应用价值,该基因可作为重要的基因资源,在橡胶树和其他植物抗逆基因工程中得到应用。

Figure 202110232197

The present invention provides a Hevea transcription factor HbICE2, the amino acid sequence of which is shown in SEQ ID NO:1. The invention also provides the coding gene and application of the Hevea transcription factor HbICE2. The gene expression analysis of the present invention shows that HbICE2 gene is up-regulated in response to low temperature stress, and the expression level in rubber tree varieties with strong cold tolerance is significantly higher than that in varieties with weak cold tolerance. It is verified by transgenic that HbICE2 can enhance the cold tolerance and drought tolerance of transgenic plants This is of great importance for the understanding of the resistance mechanism of plants to low temperature stress, salt stress, drought stress, etc. Theoretical significance and practical application value, this gene can be used as an important genetic resource in rubber tree and other plant stress resistance genetic engineering.

Figure 202110232197

Description

橡胶树转录因子HbICE2及其编码基因与应用Rubber tree transcription factor HbICE2 and its coding gene and application

技术领域technical field

本发明属于生物技术领域,具体涉及橡胶树转录因子HbICE2及其编码基因与应用。The invention belongs to the field of biotechnology, and in particular relates to the rubber tree transcription factor HbICE2 and its coding gene and application.

背景技术Background technique

ICE(inducer of CBF expression)是CBF诱导表达的转录激活因子。植物中ICE的结构,除含典型bHLH结构域外,还存在S富集区、NLS区和转膜区,且bHLH结构域均含有19个保守的KMDRASILGDAI(D/E)YLKELL氨基酸。其基因分别在西红柿、黄瓜、烟草、香蕉等不同植物中发现,可提高植物的抗寒性。研究表明,AtICE属于组成型表达基因,编码含bHLH的MYC类(MYC-like transcription factors)转录激活因子MYC(Myelocytomatosis)家族成员可以应答多种植物激素,在介导的植物环境胁迫反应中起着非常重要的转录调控作用。ICE (inducer of CBF expression) is a transcriptional activator induced by CBF. The structure of ICE in plants, in addition to the typical bHLH domain, also has an S-rich region, an NLS region and a transmembrane region, and the bHLH domain contains 19 conserved KMDRASILGDAI(D/E)YLKELL amino acids. Its genes are found in different plants such as tomatoes, cucumbers, tobacco, and bananas, which can improve the cold resistance of plants. Studies have shown that AtICE is a constitutively expressed gene, which encodes MYC-like transcription factors (MYC-like transcription factors) transcription activators containing bHLH. Very important transcriptional regulation.

橡胶树(Hevea brasiliensisMuell.Arg.)原产南美洲亚马逊河流域,是典型的热带雨林树种。我国的植胶区位于热带北缘,属于非传统植胶区,经常性遭遇的寒流。因此,生产上需要高产又抗寒的新品种,但是高产耐寒品种极其匮乏。这是由于橡胶树常规育种周期长,杂交次代少,高产和耐寒性状难于聚合;橡胶树耐寒性选育种依赖大田及前哨苗圃鉴定,不仅鉴定周期长、效率低,而且耗费大量的人力、物力和土地资源。本项目采取正向遗传学研究策略,利用建立的橡胶树抗寒性室内鉴定实验系统和已知抗寒性强弱的橡胶树无性系为材料,从分子生物学和遗传转化层面,揭示了橡胶树低温胁迫抗性等的分子机制,鉴定了橡胶树ICE2基因的功能,对于认识植物在非休眠条件下对低温胁迫的抗性机制以及通过转基因技术定向改良高产品种的低温胁迫抗性具有重要的理论意义和实际应用价值。Rubber tree (Hevea brasiliensis Muell. Arg.) is native to the Amazon River Basin in South America and is a typical tropical rainforest tree species. my country's rubber planting area is located on the northern edge of the tropics, which is a non-traditional rubber planting area and often encounters cold currents. Therefore, high-yield and cold-resistant new varieties are needed in production, but high-yield cold-resistant varieties are extremely scarce. This is due to the long cycle of conventional rubber tree breeding, few hybrid generations, and difficulty in consolidating high-yield and cold-resistant traits; the selection and breeding of rubber tree cold-resistant varieties relies on the identification of field and outpost nurseries, which not only has a long identification cycle and low efficiency, but also consumes a lot of manpower, material resources and land. resource. This project adopts the strategy of forward genetics research, using the established laboratory system for identification of cold resistance of rubber trees and rubber tree clones with known cold resistance as materials, from the aspects of molecular biology and genetic transformation, reveals the low temperature stress of rubber trees. The molecular mechanism of resistance, etc., identified the function of the rubber tree ICE2 gene, which has important theoretical and practical significance for the understanding of the resistance mechanism of plants to low temperature stress under non-dormant conditions and the directional improvement of low temperature stress resistance of high-yielding varieties through transgenic technology Value.

发明内容Contents of the invention

本发明的目的在于克服现有技术中的不足,提供一种橡胶树转录因子HbICE2及其编码基因与应用。The purpose of the present invention is to overcome the deficiencies in the prior art, to provide a rubber tree transcription factor HbICE2 and its coding gene and application.

本发明的第一个方面是提供一种橡胶树转录因子HbICE2,其氨基酸序列如SEQ IDNO:1所示。A first aspect of the present invention provides a Hevea transcription factor HbICE2, the amino acid sequence of which is shown in SEQ ID NO:1.

本发明的第二个方面是提供一种橡胶树转录因子HbICE2基因,其核苷酸序列如SEQ ID NO:2所示。Second aspect of the present invention provides a kind of Hevea transcription factor HbICE2 gene, its nucleotide sequence is as shown in SEQ ID NO:2.

本发明的第三个方面是提供一种重组载体,其包含原始载体和本发明第二个方面所述的橡胶树转录因子HbICE2基因。The third aspect of the present invention is to provide a recombinant vector, which comprises the original vector and the Hevea transcription factor HbICE2 gene described in the second aspect of the present invention.

其中,所述原始载体可以采用基因重组领域中常用的载体,例如病毒、质粒等。本发明对此不进行限定。在本发明的一个具体实施方式中,所述原始载体采用pCAMBIA1302载体质粒,但应当理解的是,本发明还可以采用其他质粒、或者病毒等。Wherein, the original vector can be a vector commonly used in the field of gene recombination, such as virus, plasmid and the like. The present invention is not limited thereto. In a specific embodiment of the present invention, the pCAMBIA1302 vector plasmid is used as the original vector, but it should be understood that other plasmids or viruses can also be used in the present invention.

优选地,所述原始载体为pCAMBIA1302载体质粒,SEQ ID NO:2所示核苷酸序列位于pCAMBIA1302载体质粒的Spe I和BstEⅡ两限制性内切酶位点之间。Preferably, the original vector is a pCAMBIA1302 carrier plasmid, and the nucleotide sequence shown in SEQ ID NO: 2 is located between the Spe I and BstEII restriction endonuclease sites of the pCAMBIA1302 carrier plasmid.

本发明的第四个方面是提供如本发明第一个方面所述的橡胶树转录因子HbICE2、或者本发明第二个方面所述的橡胶树转录因子HbICE2基因、或者本发明第三个方面所述的重组载体在提高植物耐寒性、和/或耐盐性、和/或耐旱性中的应用。The fourth aspect of the present invention provides the rubber tree transcription factor HbICE2 as described in the first aspect of the present invention, or the rubber tree transcription factor HbICE2 gene described in the second aspect of the present invention, or the gene described in the third aspect of the present invention Application of the recombinant vector in improving plant cold tolerance, and/or salt tolerance, and/or drought tolerance.

其中,所述盐为氯化钠。Wherein, the salt is sodium chloride.

本发明的第五个方面是提供一种提高植物耐寒性、和/或耐盐性、和/或耐旱性的方法,其特征在于,将本发明第二个方面所述的橡胶树转录因子HbICE2基因、或者本发明第三个方面所述的重组载体转染至植物。A fifth aspect of the present invention provides a method for improving plant cold tolerance and/or salt tolerance and/or drought tolerance, characterized in that the rubber tree transcription factor HbICE2 described in the second aspect of the present invention Genes, or the recombinant vectors described in the third aspect of the present invention are transfected into plants.

本发明的第六个方面是一种引物对,其核苷酸序列如SEQ ID NO:3和SEQ ID NO:4所示。The sixth aspect of the present invention is a pair of primers, the nucleotide sequences of which are shown in SEQ ID NO:3 and SEQ ID NO:4.

本发明的第七个方面是提供一种引物对,其核苷酸序列如SEQ ID NO:5和SEQ IDNO:6所示。The seventh aspect of the present invention provides a pair of primers, the nucleotide sequences of which are shown in SEQ ID NO:5 and SEQ ID NO:6.

本发明的第八个方面是提供一种引物对,其核苷酸序列如SEQ ID NO:7和SEQ IDNO:8所示。The eighth aspect of the present invention provides a pair of primers, the nucleotide sequences of which are shown in SEQ ID NO: 7 and SEQ ID NO: 8.

本发明从分子生物学和遗传转化层面,揭示了橡胶树低温胁迫抗性的分子机制,鉴定了橡胶树HbICE2基因的功能,基因表达分析显示HbICE2基因响应低温胁迫上调表达,且在耐寒性强的橡胶树品种中表达量显著高于耐寒性弱的品种,通过转基因验证了HbICE2能够增强转基因植株的耐寒性、耐旱性和耐盐性等,这对于认识植物在非休眠条件下对低温胁迫、盐胁迫、干旱胁迫等的抗性机制以及通过转基因技术定向改良高产品种的低温胁迫、盐胁迫、干旱胁迫等具有重要的理论意义和实际应用价值,该基因可作为重要的基因资源,在橡胶树和其他植物抗逆基因工程中得到应用。From the aspects of molecular biology and genetic transformation, the present invention reveals the molecular mechanism of rubber tree low temperature stress resistance, identifies the function of rubber tree HbICE2 gene, and gene expression analysis shows that HbICE2 gene responds to low temperature stress. The expression level in the medium was significantly higher than that of the varieties with weak cold tolerance. Through transgenic verification, HbICE2 can enhance the cold tolerance, drought tolerance and salt tolerance of transgenic plants, which is helpful for understanding the response of plants to low temperature stress, salt stress, The resistance mechanism of drought stress and the directional improvement of low temperature stress, salt stress, and drought stress in high-yielding varieties through transgenic technology have important theoretical significance and practical application value. This gene can be used as an important genetic resource in rubber trees and other plants. Applied in reverse genetic engineering.

附图说明Description of drawings

图1为HbICE2基因的核苷酸序列及其编码的氨基酸序列。Figure 1 is the nucleotide sequence of the HbICE2 gene and its encoded amino acid sequence.

图2为HbICE2基因的系统进化树分析。Fig. 2 is the phylogenetic tree analysis of HbICE2 gene.

图3为HbICE2基因在低温条件下橡胶树耐寒品种和不耐寒品种的表达分析结果。Fig. 3 shows the expression analysis results of HbICE2 gene in cold-resistant varieties and non-cold-resistant varieties of rubber trees under low temperature conditions.

图4为过表达HbICE2基因的拟南芥植株的耐寒性鉴定结果,图中,WT:对照,35::HbICE2:转HbICE2基因拟南芥。Figure 4 shows the cold tolerance identification results of Arabidopsis plants overexpressing the HbICE2 gene. In the figure, WT: control, 35::HbICE2: Arabidopsis transgenic for HbICE2.

图5为过表达HbICE2基因的拟南芥植株的耐盐性鉴定结果,图中,WT:对照,35::HbICE2:转HbICE2基因拟南芥。Fig. 5 shows the salt tolerance identification results of Arabidopsis plants overexpressing the HbICE2 gene. In the figure, WT: control, 35::HbICE2: Arabidopsis transgenic for HbICE2.

图6为过表达HbICE2基因的拟南芥植株的耐旱性鉴定结果,图中,WT:对照,35::HbICE2:转HbICE2基因拟南芥。Figure 6 shows the drought tolerance identification results of Arabidopsis plants overexpressing the HbICE2 gene. In the figure, WT: control, 35::HbICE2: Arabidopsis transgenic for HbICE2.

具体实施方式Detailed ways

下面参照附图,结合具体的实施例对本发明作进一步的说明,以更好地理解本发明。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。Referring to the accompanying drawings, the present invention will be further described in conjunction with specific embodiments, so as to better understand the present invention. If no specific technique or condition is indicated in the examples, it shall be carried out according to the technique or condition described in the literature in this field or according to the product specification. The reagents or instruments used were not indicated by the manufacturer, and they were all commercially available conventional products.

一、基因获得1. Gene acquisition

利用RT-PCR技术从巴西橡胶树品种93-114的树皮中克隆获得转录因子HbICE2基因,具体实施方案如下:Utilize RT-PCR technology to clone and obtain transcription factor HbICE2 gene from the bark of Brasiliensis variety 93-114, and specific embodiment is as follows:

参照天根RNAprep Pure多糖多酚植物总RNA提取试剂盒的操作说明提取橡胶树树皮总RNA。根据Ferments公司试剂盒的操作步骤合成cDNA第一链。依据本橡胶树基因组数据库,获得注释为ICE的Unigene,借助NCBI数据库搜索比对,初步鉴定为完整的基因序列。Refer to the operating instructions of Tiangen RNAprep Pure Polysaccharide and Polyphenol Plant Total RNA Extraction Kit to extract the total RNA from rubber tree bark. The first strand of cDNA was synthesized according to the operation steps of the Ferments kit. According to the rubber tree genome database, the Unigene annotated as ICE was obtained, and the complete gene sequence was preliminarily identified by searching and comparing with the NCBI database.

以cDNA第一链为模板,以HbICE2-F(SEQ ID NO:3):ATGCTATCTGGACTAAATGGCA和HbICE2-R(SEQ ID NO:4):CTATATCATTCCATGGAAGCCTG为引物,通过PCR扩增反应获得转录因子HbICE2基因的cDNA序列,扩增体系:Pyrobest DNA Polymerase(5U·μL-1)1μL,10×Pyrobest Buffer II 5μL,dNTP Mixture(2.5mmol·L-1)4μL,HbICE2-F(10μmol·L-1)1μL,HbICE2-R(10μmol·L-1)1μL,cDNA模版1μL,灭菌水补足50μL。扩增程序为:95℃预变性3min;95℃30s,60℃30s,72℃2min,共32个循环;72℃延伸10min。Using the first strand of cDNA as a template, HbICE2-F (SEQ ID NO: 3): ATGCTATCTGGACTAAATGGCA and HbICE2-R (SEQ ID NO: 4): CTATATCATTCCATGGAAGCCTG as primers, the cDNA sequence of the transcription factor HbICE2 gene was obtained by PCR amplification reaction , amplification system: Pyrobest DNA Polymerase (5U·μL -1 ) 1μL, 10×Pyrobest Buffer II 5μL, dNTP Mixture (2.5mmol·L -1 ) 4μL, HbICE2-F (10μmol·L -1 ) 1μL, HbICE2- 1 μL of R (10 μmol·L -1 ), 1 μL of cDNA template, and 50 μL of sterilized water. The amplification program was: pre-denaturation at 95°C for 3 minutes; 32 cycles at 95°C for 30 s, 60°C for 30 s, and 72°C for 2 min; extension at 72°C for 10 min.

0.2%的琼脂糖凝胶电泳分离PCR扩增产物,回收纯化目的条带,克隆到pEASY-Blunt Simple CloningVector载体上,转化大肠杆菌感受态细胞DH5α,挑取阳性克隆送Invitrogen公司进行测序。利用BLAST检索GenBank数据库进行同源性分析,结果表明克隆了ICE家族基因中的一个完整的阅读框(图1)。利用MEGA5.10软件进行多重比对分析并构建系统发育树。结果表明所克隆的ICE基因属于ICE家族,是该家族5个成员之一,于是命名该基因为HbICE2(图2)。0.2% agarose gel electrophoresis to separate the PCR amplification products, recover and purify the target bands, clone them into the pEASY-Blunt Simple Cloning Vector vector, transform Escherichia coli competent cells DH5α, pick positive clones and send them to Invitrogen for sequencing. Using BLAST to search the GenBank database for homology analysis, the results showed that a complete reading frame in the ICE family gene was cloned (Figure 1). Using MEGA5.10 software to conduct multiple comparison analysis and construct a phylogenetic tree. The results showed that the cloned ICE gene belonged to the ICE family and was one of the five members of the family, so the gene was named HbICE2 (Fig. 2).

二、基因表达模式分析2. Analysis of gene expression pattern

在长期的抗寒前哨苗圃和大田实践中,鉴定出耐寒品种橡胶树93-114、橡胶树GT1和橡胶树INA873,不耐寒品种热垦501、海垦1和热垦515。于是,以这六个品种为材料,低温(4℃)处理,分别在处理0h、4h、8h和24h采集样品,5株一个混合样,3个生物学重复。利用荧光定量技术,对橡胶树转录因子HbICE2基因的表达模式进行分析。HbICE2基因荧光定量引物序列如,HbICE2-Q-F(SEQ ID NO:5):CGATCTTCCCTTTCCAACTACCT和HbICE2-Q-R(SEQ IDNO:6):CAAAAATAGCGTATTCCCTGAGC,内参基因ACTIN7a(Gene Bank登录号:HQ260674)的引物序列如,ACTIN7a-F:GGCACTTTGGTACTCAAGTC和ACTIN7a-R:GAAGCATCCCAATCACTCTC。使用BioRad公司的CFX-384荧光定量PCR仪进行荧光定量PCR,反应程序:95℃预变性30s,94℃5s,60℃20s,72℃20s,进行45个循环,扩增结束后绘制熔解曲线,从50℃逐渐升温至95℃,升温速度0.2℃/s,全过程检测荧光信号。分别检测HbICE2在橡胶树耐寒品种和不耐寒品种中的表达情况。结果HbICE2在橡胶树耐寒品种93-114、GT1和INA873中的本底表达显著高于不耐寒品种热垦501、海垦1和热垦515。在低温胁迫下,HbICE2不论在耐寒品种还是不耐寒品种中都呈上调表达趋势,但是在耐寒品种93-114、GT1和INA873中的表达量显著高于不耐寒品种热垦501、海垦1和热垦515,特别在低温处理4h和8h时,差异极显著。这表明HbICE2基因与橡胶树的低温胁迫抗性有关(图3)。In the long-term cold-resistant sentinel nursery and field practice, the cold-resistant varieties Hevea 93-114, Hevea GT1 and Hevea INA873 were identified, and the non-cold-resistant varieties Reken 501, Haiken 1 and Reken 515 were identified. Therefore, these six varieties were used as materials, treated at low temperature (4°C), and samples were collected at 0h, 4h, 8h and 24h respectively, with 5 plants as a mixed sample and 3 biological replicates. The expression pattern of the transcription factor HbICE2 gene in rubber tree was analyzed by fluorescence quantitative technique. HbICE2 gene fluorescent quantitative primer sequence, such as, HbICE2-Q-F (SEQ ID NO: 5): CGATCTTCCCTTTCCAACTACCT and HbICE2-Q-R (SEQ ID NO: 6): CAAAAATAGCGTATTCCCTGAGC, the primer sequence of the internal reference gene ACTIN7a (Gene Bank accession number: HQ260674), such as, ACTIN7a -F:GGCACTTTGGTACTCAAGTC and ACTIN7a-R:GAAGCATCCCAATCACTCTC. The CFX-384 fluorescent quantitative PCR instrument of BioRad Company was used for fluorescent quantitative PCR. The reaction program was: 95°C pre-denaturation for 30s, 94°C for 5s, 60°C for 20s, 72°C for 20s, and 45 cycles. After the amplification, the melting curve was drawn. Gradually raise the temperature from 50°C to 95°C at a heating rate of 0.2°C/s, and detect fluorescence signals throughout the process. The expression of HbICE2 in hardy and non-hardy varieties of rubber tree was detected respectively. Results The background expression of HbICE2 in rubber tree cold-tolerant cultivars 93-114, GT1 and INA873 was significantly higher than that in non-cold-tolerant cultivars Reken 501, Haiken 1 and Reken 515. Under low temperature stress, HbICE2 was up-regulated in both cold-tolerant and non-cold-resistant varieties, but the expression level in cold-resistant varieties 93-114, GT1 and INA873 was significantly higher than that in non-cold-resistant varieties Reken 501, Haiken 1 and Reken 515, especially when treated at low temperature for 4h and 8h, the difference is extremely significant. This indicates that the HbICE2 gene is related to the low temperature stress resistance of rubber trees (Fig. 3).

三、遗传转化3. Genetic Transformation

以已测序验证的质粒为模板,以HbICE2-TR-F(SEQ ID NO:7):GACTAGTATGCTATCTGGACTAAATGG(下划线为Spe I酶切位点)和HbICE2-TR-R(SEQ ID NO:8):GGGTGACCCTATATCATTCCATGGAAGC(下划线为BstEⅡ酶切位点)为引物,扩增HbICE2基因的ORF,扩增产物经双酶切后连接到经相同内切酶切后的表达载体pCAMBIA1302中,通过测序鉴定目的基因的完整性和连接顺序的正确性,利用热激将带有HbICE2基因ORF的质粒转化到GV3101菌株。通过农杆菌介导法,侵染拟南芥的花序,将HbICE2基因转化到将要形成的种子中进行过表达,然后对转基因阳性植株进行鉴定,对含有目的基因的T3代阳性植株进行筛选及耐寒性鉴定分析,以没有转基因的正常植株为对照(WT),结果表明培养4周的转基HbICE2的拟南芥株系在低温-5℃条件下处理15h,然后正常恢复培养2周,过表达HbICE2的拟南芥株系的存活率高于60%,而对照WT的存活率仅为11%(图4)。这说明HbICE2能够提高转基因植物株系抗低温胁迫的能力。可能对橡胶树的低温胁迫抗性有很大的调控作用。Using the sequence-verified plasmid as a template, HbICE2-TR-F (SEQ ID NO:7): G ACTAGT ATGCTATCTGGACTAAATGG (the underline is the Spe I restriction site) and HbICE2-TR-R (SEQ ID NO:8): G GGTGACC CTATATCATTCCATGGAAGC (the underline is the BstEⅡ restriction site) is used as a primer to amplify the ORF of the HbICE2 gene, and the amplified product is double-digested and connected to the expression vector pCAMBIA1302 after the same restriction digestion, and the target gene is identified by sequencing The integrity and the correctness of the connection sequence were used to transform the plasmid carrying the HbICE2 gene ORF into the GV3101 strain by heat shock. Infect the inflorescence of Arabidopsis thaliana through the Agrobacterium-mediated method, transform the HbICE2 gene into the seeds to be formed for overexpression, and then identify the transgenic positive plants, and screen the T3 positive plants containing the target gene and cold resistance Sexual identification analysis, using normal plants without transgene as control (WT), the results showed that the transgenic Arabidopsis lines of HbICE2 cultured for 4 weeks were treated at low temperature -5℃ for 15h, and then normal recovery cultured for 2 weeks, overexpression Arabidopsis lines with HbICE2 had a survival rate of more than 60%, compared to only 11% for control WT (Fig. 4). This shows that HbICE2 can improve the ability of transgenic plant lines to resist low temperature stress. It may have a great regulatory effect on the low temperature stress resistance of rubber trees.

以没有转基因的正常植株为对照(WT),用300mM的氯化钠溶液给培养4周的转基HbICE2的拟南芥株系和WT植株淋水,5天淋水一次,23℃条件下盐胁迫培养2周,结果显示对照WT植株的叶片失水干枯,部分植株已枯死,存活率为54%;但是转基HbICE2的拟南芥株系没有出现枯死植株,并且已抽苔开花结果荚,存活率为100%(图5)。说明HbICE2能够提高转基因植物株系抵抗高盐胁迫的能力。Taking the normal plants without transgene as the control (WT), the transgenic HbICE2 Arabidopsis lines and WT plants cultivated for 4 weeks were sprayed with 300mM sodium chloride solution, once every 5 days. After 2 weeks of stress culture, the results showed that the leaves of the control WT plants were dehydrated and dry, some plants were dead, and the survival rate was 54%. The survival rate was 100% (Fig. 5). It shows that HbICE2 can improve the ability of transgenic plant lines to resist high-salt stress.

以没有转基因的正常植株为对照(WT),在正常条件下培养转基因HbICE2的拟南芥植株4周,然后停止淋水,即干旱处理2周,结果显示WT植株的叶片失水而枯萎,转基因HbICE2的植株的老叶已枯萎,嫩叶还正常生长,并且已抽苔开花结果荚。然后给干旱处理的WT和转基因HbICE2的拟南芥植株淋水,正常培养8天,结果显示WT的存活率为63%,而转基因HbICE2的拟南芥植株没有完全枯死的现象,并且都已开花结果,存活率为100%(图6)。由此可见HbICE2能够提高转基因植物株系抵抗干旱胁迫的能力。Taking the normal plants without transgene as the control (WT), the transgenic Arabidopsis plants of HbICE2 were cultured under normal conditions for 4 weeks, and then the watering was stopped, that is, the drought treatment was performed for 2 weeks. The results showed that the leaves of WT plants lost water and withered. The old leaves of the HbICE2 plants were withered, but the young leaves were still growing normally, and the plants had bolted, bloomed and produced pods. Then watered the drought-treated WT and transgenic HbICE2 Arabidopsis plants, and cultured them normally for 8 days. The results showed that the survival rate of WT was 63%, while the transgenic HbICE2 Arabidopsis plants did not die completely, and all of them had flowered As a result, the survival rate was 100% (Fig. 6). It can be seen that HbICE2 can improve the ability of transgenic plant lines to resist drought stress.

以上对本发明的具体实施例进行了详细描述,但其只是作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。The specific embodiments of the present invention have been described in detail above, but they are only examples, and the present invention is not limited to the specific embodiments described above. For those skilled in the art, any equivalent modifications and substitutions to the present invention are also within the scope of the present invention. Therefore, equivalent changes and modifications made without departing from the spirit and scope of the present invention shall fall within the scope of the present invention.

序列表sequence listing

<110> 中国热带农业科学院橡胶研究所<110> Institute of Rubber, Chinese Academy of Tropical Agricultural Sciences

<120> 橡胶树转录因子HbICE2及其编码基因与应用<120> Rubber tree transcription factor HbICE2 and its coding gene and application

<160> 8<160> 8

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 530<211> 530

<212> PRT<212> PRT

<213> Artificial<213> Artificial

<400> 1<400> 1

Met Leu Ser Gly Leu Asn Gly Thr Val Trp Met Glu Asp Lys Glu AlaMet Leu Ser Gly Leu Asn Gly Thr Val Trp Met Glu Asp Lys Glu Ala

1               5                   10                  151 5 10 15

Arg Asp Ser Asn Thr Asn Asn Asn Ile Asn Asn Ser Cys Val Val MetArg Asp Ser Asn Thr Asn Asn Asn Ile Asn Asn Ser Cys Val Val Met

            20                  25                  3020 25 30

Glu Ser Lys Gln Glu Met Gly Ser Ile Ser Asn Phe Lys Ser Met LeuGlu Ser Lys Gln Glu Met Gly Ser Ile Ser Asn Phe Lys Ser Met Leu

        35                  40                  4535 40 45

Asp Val Glu Asp Asp Trp Tyr Val Thr Asn Thr Thr Ile His Asn HisAsp Val Glu Asp Asp Trp Tyr Val Thr Asn Thr Thr Ile His Asn His

    50                  55                  6050 55 60

His Asp Thr Ile Arg Asp Ile Thr Phe Ser Pro Asn Leu Ala Glu ProHis Asp Thr Ile Arg Asp Ile Thr Phe Ser Pro Asn Leu Ala Glu Pro

65                  70                  75                  8065 70 75 80

Asp Asn Leu Phe Leu His Ser Val Asp Ser Ser Ser Ser Cys Ser ProAsp Asn Leu Phe Leu His Ser Val Asp Ser Ser Ser Ser Cys Ser Pro

                85                  90                  9585 90 95

Thr Ser Ser Val Phe Asn Asn Leu Asp Pro Ser His Val His Tyr PheThr Ser Ser Val Phe Asn Asn Leu Asp Pro Ser His Val His Tyr Phe

            100                 105                 110100 105 110

Met His Ser Lys Pro Thr Leu Ser Ser Leu Leu Asn Val Val Ser AsnMet His Ser Lys Pro Thr Leu Ser Ser Leu Leu Asn Val Val Ser Asn

        115                 120                 125115 120 125

Asn Pro Leu Glu His Gly Phe Asp Leu Gly Glu Ile Gly Phe Leu GluAsn Pro Leu Glu His Gly Phe Asp Leu Gly Glu Ile Gly Phe Leu Glu

    130                 135                 140130 135 140

Asn Gln Ala Thr Ala Pro Thr Thr Thr Thr Asn Ala Ser Pro Leu LeuAsn Gln Ala Thr Ala Pro Thr Thr Thr Thr Thr Asn Ala Ser Pro Leu Leu

145                 150                 155                 160145 150 155 160

Asn Arg Gly Ala Gly Val Leu Gly Ser Tyr Ile Asp Phe Ser Ser AsnAsn Arg Gly Ala Gly Val Leu Gly Ser Tyr Ile Asp Phe Ser Ser Asn

                165                 170                 175165 170 175

Asn Gln Ile Ser Thr Ser Asn Leu Cys Ser Asp Leu Pro Phe Pro ThrAsn Gln Ile Ser Thr Ser Asn Leu Cys Ser Asp Leu Pro Phe Pro Thr

            180                 185                 190180 185 190

Thr Cys Met Leu Gln Leu Pro Glu Asn Gly Pro Gly Leu Thr Gly PheThr Cys Met Leu Gln Leu Pro Glu Asn Gly Pro Gly Leu Thr Gly Phe

        195                 200                 205195 200 205

Arg Gly Ser Asp Glu Ser Ser Gly Asn Thr Leu Phe Leu Asn Arg SerArg Gly Ser Asp Glu Ser Ser Gly Asn Thr Leu Phe Leu Asn Arg Ser

    210                 215                 220210 215 220

Lys Leu Leu Arg Pro Leu Glu Thr Phe Pro Ser Met Gly Ala Gln ProLys Leu Leu Arg Pro Leu Glu Thr Phe Pro Ser Met Gly Ala Gln Pro

225                 230                 235                 240225 230 235 240

Thr Leu Phe Gln Lys Arg Ala Ala Leu Arg Lys Asn Leu Gly Asp LeuThr Leu Phe Gln Lys Arg Ala Ala Leu Arg Lys Asn Leu Gly Asp Leu

                245                 250                 255245 250 255

Ser Gly Ile Glu Ile Asp Lys Gly Lys Arg Glu Leu Thr Gln Leu GlySer Gly Ile Glu Ile Asp Lys Gly Lys Arg Glu Leu Thr Gln Leu Gly

            260                 265                 270260 265 270

Lys Glu Asn Glu Lys Lys Arg Lys Met Gly Asn Val Asp Asp Ile ValLys Glu Asn Glu Lys Lys Arg Lys Met Gly Asn Val Asp Asp Ile Val

        275                 280                 285275 280 285

Glu Asp Val Ser Ile Asp Gly Ser Gly Leu Asn Tyr Asp Ser Asp GluGlu Asp Val Ser Ile Asp Gly Ser Gly Leu Asn Tyr Asp Ser Asp Glu

    290                 295                 300290 295 300

Leu Thr Glu Asn Thr Lys Met Glu Glu Ile Gly Lys Asn Gly Gly AsnLeu Thr Glu Asn Thr Lys Met Glu Glu Ile Gly Lys Asn Gly Gly Asn

305                 310                 315                 320305 310 315 320

Ser Ser Asn Ala Asn Ser Ser Val Thr Gly Gly Gly Val Gly Asp GlnSer Ser Asn Ala Asn Ser Ser Val Thr Gly Gly Gly Val Gly Asp Gln

                325                 330                 335325 330 335

Lys Gly Lys Lys Lys Gly Leu Pro Ala Lys Asn Leu Met Ala Glu ArgLys Gly Lys Lys Lys Gly Leu Pro Ala Lys Asn Leu Met Ala Glu Arg

            340                 345                 350340 345 350

Arg Arg Arg Lys Lys Leu Asn Asp Arg Leu Tyr Met Leu Arg Ser ValArg Arg Arg Lys Lys Leu Asn Asp Arg Leu Tyr Met Leu Arg Ser Val

        355                 360                 365355 360 365

Val Pro Lys Ile Ser Lys Met Asp Arg Ala Ser Ile Leu Gly Asp AlaVal Pro Lys Ile Ser Lys Met Asp Arg Ala Ser Ile Leu Gly Asp Ala

    370                 375                 380370 375 380

Ile Glu Tyr Leu Lys Glu Leu Leu Gln Arg Ile Asn Asp Leu His AsnIle Glu Tyr Leu Lys Glu Leu Leu Gln Arg Ile Asn Asp Leu His Asn

385                 390                 395                 400385 390 395 400

Glu Leu Glu Ser Thr Pro Pro Gly Ser Ser Leu Thr Pro Thr Ser PheGlu Leu Glu Ser Thr Pro Pro Gly Ser Ser Leu Thr Pro Thr Ser Phe

                405                 410                 415405 410 415

His Pro Leu Thr Pro Thr Pro Ser Thr Leu Ser Ser Arg Ile Lys AspHis Pro Leu Thr Pro Thr Pro Ser Thr Leu Ser Ser Arg Ile Lys Asp

            420                 425                 430420 425 430

Lys Leu Cys Pro Ser Pro Leu Pro Ser Pro Asn Gly Gln Pro Ala ArgLys Leu Cys Pro Ser Pro Leu Pro Ser Pro Asn Gly Gln Pro Ala Arg

        435                 440                 445435 440 445

Val Glu Val Arg Val Arg Glu Gly Arg Ala Val Asn Ile His Met PheVal Glu Val Arg Val Arg Glu Gly Arg Ala Val Asn Ile His Met Phe

    450                 455                 460450 455 460

Cys Gly Arg Arg Pro Gly Leu Leu Leu Ser Thr Ile Arg Ala Leu AspCys Gly Arg Arg Pro Gly Leu Leu Leu Ser Thr Ile Arg Ala Leu Asp

465                 470                 475                 480465 470 475 480

Asn Leu Gly Ile Asp Ile Glu Gln Ala Val Ile Ser Cys Phe Asn GlyAsn Leu Gly Ile Asp Ile Glu Gln Ala Val Ile Ser Cys Phe Asn Gly

                485                 490                 495485 490 495

Phe Ala Met Asp Ile Phe Gln Ala Glu Gln Lys Gly Gln Asp Val HisPhe Ala Met Asp Ile Phe Gln Ala Glu Gln Lys Gly Gln Asp Val His

            500                 505                 510500 505 510

Pro Glu Gln Ile Arg Ala Val Leu Leu Asp Ser Ala Gly Phe His GlyPro Glu Gln Ile Arg Ala Val Leu Leu Asp Ser Ala Gly Phe His Gly

        515                 520                 525515 520 525

Met IleMet Ile

    530530

<210> 2<210> 2

<211> 1593<211> 1593

<212> DNA<212>DNA

<213> Artificial<213> Artificial

<400> 2<400> 2

atgctatctg gactaaatgg cactgtctgg atggaagata aagaagcacg agactccaac 60atgctatctg gactaaatgg cactgtctgg atggaagata aagaagcacg agactccaac 60

acaaacaaca acattaacaa tagctgtgtt gtgatggaga gcaagcaaga gatgggttcg 120acaaacaaca acattaacaa tagctgtgtt gtgatggaga gcaagcaaga gatgggttcg 120

atttctaact tcaaatccat gctcgatgta gaagacgact ggtacgtcac taatactact 180atttctaact tcaaatccat gctcgatgta gaagacgact ggtacgtcac taatactact 180

atccataatc atcatgatac tatcagagac atcacatttt caccaaatct tgctgagcca 240atccataatc atcatgatac tatcagagac atcacatttt caccaaatct tgctgagcca 240

gataatctct ttcttcactc tgtggattcc tcctcttctt gctcaccaac ctcctctgtt 300gataatctct ttcttcactc tgtggattcc tcctcttctt gctcaccaac ctcctctgtt 300

ttcaataatc tagacccttc tcacgtgcac tactttatgc actcgaagcc taccttatct 360ttcaataatc tagaccccttc tcacgtgcac tactttatgc actcgaagcc taccttatct 360

tcgctcctta acgttgtctc taacaaccct ttagagcatg gctttgattt gggcgaaatt 420tcgctcctta acgttgtctc taacaaccct ttagagcatg gctttgattt gggcgaaatt 420

gggttccttg agaaccaggc aactgctcct acaacaacaa caaacgcctc gcctttgcta 480gggttccttg agaaccaggc aactgctcct acaacaacaa caaacgcctc gcctttgcta 480

aacaggggag ctggggtctt aggcagctac attgatttta gctcaaataa tcaaattagc 540aacaggggag ctggggtctt aggcagctac attgatttta gctcaaataa tcaaattagc 540

acttctaatt tatgctccga tcttcccttt ccaactacct gcatgctcca attgcccgaa 600acttctaatt tatgctccga tcttcccttt ccaactacct gcatgctcca attgcccgaa 600

aatggtccag ggttaacagg atttaggggt tctgatgaga gctcagggaa tacgctattt 660aatggtccag ggttaacagg atttaggggt tctgatgaga gctcagggaa tacgctattt 660

ttgaataggt ccaagttgtt gaggcctctt gaaacctttc cttcaatggg tgcacagcct 720ttgaataggt ccaagttgtt gaggcctctt gaaacctttc cttcaatggg tgcacagcct 720

actttgtttc aaaagagagc agctttgagg aagaatttgg gggatttgag tgggattgag 780actttgtttc aaaagagagc agctttgagg aagaatttgg gggatttgag tgggattgag 780

attgataaag gaaagagaga attgactcag ttgggcaaag agaatgagaa gaagagaaaa 840attgataaag gaaagagaga attgactcag ttgggcaaag agaatgagaa gaagagaaaa 840

atgggtaacg tggatgacat tgtggaggat gtaagcattg atgggtcggg tttaaattat 900atgggtaacg tggatgacat tgtgggaggat gtaagcattg atgggtcggg tttaaattat 900

gattctgatg agttaacgga gaatactaaa atggaggaga ttggtaaaaa tggagggaat 960gattctgatg agttaacgga gaatactaaa atggaggaga ttggtaaaaa tggagggaat 960

agctcaaatg caaatagcag tgtcactggc ggtggtgttg gggatcagaa gggaaagaag 1020agctcaaatg caaatagcag tgtcactggc ggtggtgttg gggatcagaa gggaaagaag 1020

aaggggcttc ctgctaagaa tttgatggca gaaaggagac gccggaagaa gctcaatgat 1080aaggggcttc ctgctaagaa tttgatggca gaaaggagac gccggaagaa gctcaatgat 1080

aggctataca tgctaaggtc tgtagttcca aagataagca agatggatag ggcatcaatc 1140aggctataca tgctaaggtc tgtagttcca aagataagca agatggatag ggcatcaatc 1140

cttggggatg caattgagta cttgaaggaa cttctgcaaa ggatcaacga cctccataat 1200cttggggatg caattgagta cttgaaggaa cttctgcaaa ggatcaacga cctccataat 1200

gaattggagt caactcctcc tggctcttct ttgacgccta caagttttca ccctttgaca 1260gaattggagt caactcctcc tggctcttct ttgacgccta caagttttca ccctttgaca 1260

cccactccat caaccctgtc cagtcgtatc aaggataaac tctgccccag cccattgcca 1320cccactccat caaccctgtc cagtcgtatc aaggataaac tctgccccag cccatgcca 1320

agtccaaatg gtcaaccagc aagggttgaa gtaagagtga gagaaggaag agctgtaaac 1380agtccaaatg gtcaaccagc aagggttgaa gtaagagtga gagaaggaag agctgtaaac 1380

attcacatgt tttgtggccg cagacctggt ctcctgctct ccaccatcag ggccttggat 1440attcacatgt tttgtggccg cagacctggt ctcctgctct ccaccatcag ggccttggat 1440

aaccttggca tagatatcga gcaagctgtc atcagttgtt tcaatggttt tgccatggat 1500aaccttggca tagatatcga gcaagctgtc atcagttgtt tcaatggttt tgccatggat 1500

atcttccaag ctgagcaaaa agggcaggac gtgcatcctg agcaaattag agcagtactc 1560atcttccaag ctgagcaaaa agggcaggac gtgcatcctg agcaaattag agcagtactc 1560

ctggattcag caggcttcca tggaatgata tag 1593ctggattcag caggcttcca tggaatgata tag 1593

<210> 3<210> 3

<211> 22<211> 22

<212> DNA<212> DNA

<213> Artificial<213> Artificial

<400> 3<400> 3

atgctatctg gactaaatgg ca 22atgctatctg gactaaatgg ca 22

<210> 4<210> 4

<211> 23<211> 23

<212> DNA<212> DNA

<213> Artificial<213> Artificial

<400> 4<400> 4

ctatatcatt ccatggaagc ctg 23ctatatcatt ccatggaagc ctg 23

<210> 5<210> 5

<211> 23<211> 23

<212> DNA<212> DNA

<213> Artificial<213> Artificial

<400> 5<400> 5

cgatcttccc tttccaacta cct 23cgatcttccc tttccaacta cct 23

<210> 6<210> 6

<211> 23<211> 23

<212> DNA<212> DNA

<213> Artificial<213> Artificial

<400> 6<400> 6

caaaaatagc gtattccctg agc 23caaaaatagc gtattccctg agc 23

<210> 7<210> 7

<211> 27<211> 27

<212> DNA<212> DNA

<213> Artificial<213> Artificial

<400> 7<400> 7

gactagtatg ctatctggac taaatgg 27gactagtatg ctatctggac taaatgg 27

<210> 8<210> 8

<211> 28<211> 28

<212> DNA<212> DNA

<213> Artificial<213> Artificial

<400> 8<400> 8

gggtgaccct atatcattcc atggaagc 28gggtgaccct atatcattcc atggaagc 28

Claims (5)

1. Application of rubber tree transcription factor HbICE2 or rubber tree transcription factor HbICE2 gene or recombinant vector in improving cold resistance, salt resistance and/or drought resistance of plants;
the amino acid sequence of the rubber tree transcription factor HbICE2 is shown as SEQ ID NO. 1;
the nucleotide sequence of the rubber tree transcription factor HbICE2 gene is shown as SEQ ID NO. 2;
the recombinant vector comprises a raw vector and the rubber tree transcription factor HbICE2 gene.
2. The use according to claim 1, wherein the original vector is a pCAMBIA1302 vector plasmid and the nucleotide sequence of SEQ ID NO. 2 is located between the Spe I and BstE II restriction enzyme sites of the pCAMBIA1302 vector plasmid.
3. Use according to claim 1 or 2, characterized in that the salt is sodium chloride.
4. A method for improving cold resistance, and/or salt resistance, and/or drought resistance of a plant, characterized in that a rubber tree transcription factor HbICE2 gene, or a recombinant vector, is transfected into the plant;
the nucleotide sequence of the rubber tree transcription factor HbICE2 gene is shown as SEQ ID NO. 2;
the recombinant vector comprises a raw vector and the rubber tree transcription factor HbICE2 gene.
5. The method of claim 4, wherein the original vector is a pCAMBIA1302 vector plasmid and the nucleotide sequence of SEQ ID NO. 2 is located between the Spe I and BstE II restriction enzyme sites of the pCAMBIA1302 vector plasmid.
CN202110232197.1A 2021-03-02 2021-03-02 Rubber tree transcription factor HbICE2, and coding gene and application thereof Active CN112778408B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110232197.1A CN112778408B (en) 2021-03-02 2021-03-02 Rubber tree transcription factor HbICE2, and coding gene and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110232197.1A CN112778408B (en) 2021-03-02 2021-03-02 Rubber tree transcription factor HbICE2, and coding gene and application thereof

Publications (2)

Publication Number Publication Date
CN112778408A CN112778408A (en) 2021-05-11
CN112778408B true CN112778408B (en) 2023-04-28

Family

ID=75762100

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110232197.1A Active CN112778408B (en) 2021-03-02 2021-03-02 Rubber tree transcription factor HbICE2, and coding gene and application thereof

Country Status (1)

Country Link
CN (1) CN112778408B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114847074B (en) * 2022-06-13 2023-02-03 中国热带农业科学院橡胶研究所 Evaluation method for cold resistance of rubber tree
CN119242657B (en) * 2024-12-04 2025-02-25 中国热带农业科学院三亚研究院 Rubber tree ERF transcription factor HbERF gene and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201211079D0 (en) * 2012-06-22 2012-08-01 Univ Exeter The Controlling dormancy in hybrid seed
CN103290050A (en) * 2013-02-25 2013-09-11 淮阴师范学院 Cold-resistant gene engineering application method of rice OsICE2 gene
CN107109358B (en) * 2014-09-09 2022-08-02 埃沃尔瓦公司 Production of steviol glycosides in recombinant hosts
CN105925588A (en) * 2016-06-20 2016-09-07 黑龙江省林业科学研究所 Populus ussuriensis PuICE1 gene and coding protein and application thereof
CN110106187B (en) * 2019-05-28 2020-11-24 中国热带农业科学院橡胶研究所 ARF gene of a rubber tree and its encoded protein and application
CN111154773A (en) * 2020-02-19 2020-05-15 黑龙江省林业科学研究所 Application of populus tremuloides PsnICE1 gene

Also Published As

Publication number Publication date
CN112778408A (en) 2021-05-11

Similar Documents

Publication Publication Date Title
CN103848906B (en) Rice high temperature resistance related gene OsZFP, selectable marker and its isolation method
CN105838723B (en) An alfalfa cold resistance gene MsZFP and its encoded protein and application
CN111235165B (en) A lily susceptible fungal gene LrWRKY-S1 and its application
CN105254726A (en) ERF transcription factor related to plant stress resistance and encoding gene and application thereof
CN110106187A (en) The ARF gene and its coding albumen of a kind of rubber tree and application
CN102876641B (en) Soybean purple acid phosphatase GmPAP4, and coding gene and application thereof
CN107267523A (en) A kind of bacterial leaf spot resistance albumen and encoding gene
CN112778408B (en) Rubber tree transcription factor HbICE2, and coding gene and application thereof
CN112961229B (en) Rubber tree transcription factor HbICE4 and coding gene and application thereof
WO2010101818A1 (en) Nac transcriptional activators involved in abiotic stress tolerance
CN104372011B (en) Rice blast resistance gene RMg41 and applications thereof
CN114350684B (en) Apple MdERF-073 gene, protein and application
CN102732531B (en) A rice blast resistance gene RMg7 or RMg8 or RMg9 and its application
CN108103076A (en) A kind of rye grass transcription factor gene LpNACL for inhibiting leaf senile and its application
CN112813083A (en) Application of OsCIPK31 gene and coding protein in regulation and control of rice sheath blight disease resistance
CN113201558B (en) Soybean GmHDA12 gene and protein and application thereof
CN105039279A (en) Protein kinase in arabidopsis thaliana, coding gene and application of coding gene
CN112795580B (en) Pitaya gene HuAAE3 and application thereof in regulation and control of high temperature stress resistance of plants
CN105753955B (en) A soybean bHLH transcription factor and its encoding gene and application
CN105175522B (en) Crowtoe AP2/ERF transcription factors and its encoding gene and application
CN106434694B (en) Application of cotton GbDREB gene in resistance to Verticillium wilt
CN108610405A (en) Applications of the protein TaNRT2.5 in regulating and controlling plant root system development
CN102796747A (en) Application of Zea mays L. drought-induced protein (ZmDIP1) gene and its encoding protein
CN114214334A (en) Application of the gene EsH2A.3 from salt mustard in regulating plant salt tolerance
CN108753793B (en) Rice blast resistance gene RMg42 and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant