CN112768663B - 一种纳米多孔硅/碳负极材料及其制备方法、锂离子电池 - Google Patents
一种纳米多孔硅/碳负极材料及其制备方法、锂离子电池 Download PDFInfo
- Publication number
- CN112768663B CN112768663B CN202110106539.5A CN202110106539A CN112768663B CN 112768663 B CN112768663 B CN 112768663B CN 202110106539 A CN202110106539 A CN 202110106539A CN 112768663 B CN112768663 B CN 112768663B
- Authority
- CN
- China
- Prior art keywords
- porous silicon
- silicon
- nano porous
- nano
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910021426 porous silicon Inorganic materials 0.000 title claims abstract description 67
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 52
- 239000007773 negative electrode material Substances 0.000 title claims abstract description 37
- 238000002360 preparation method Methods 0.000 title claims abstract description 25
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 21
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 20
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 50
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 36
- 239000010703 silicon Substances 0.000 claims abstract description 36
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 35
- 239000000956 alloy Substances 0.000 claims abstract description 35
- 239000011572 manganese Substances 0.000 claims abstract description 27
- 239000002243 precursor Substances 0.000 claims abstract description 24
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 16
- 239000011863 silicon-based powder Substances 0.000 claims abstract description 14
- 239000010405 anode material Substances 0.000 claims abstract description 13
- 238000001816 cooling Methods 0.000 claims abstract description 10
- 229910000905 alloy phase Inorganic materials 0.000 claims abstract description 7
- 238000002844 melting Methods 0.000 claims abstract description 7
- 230000008018 melting Effects 0.000 claims abstract description 7
- 238000010587 phase diagram Methods 0.000 claims abstract description 7
- 238000003763 carbonization Methods 0.000 claims abstract description 6
- 238000002074 melt spinning Methods 0.000 claims abstract description 6
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 3
- 229910052751 metal Inorganic materials 0.000 claims abstract description 3
- 239000002184 metal Substances 0.000 claims abstract description 3
- 238000010438 heat treatment Methods 0.000 claims description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 239000010949 copper Substances 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 239000011261 inert gas Substances 0.000 claims description 6
- 239000000243 solution Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 239000012300 argon atmosphere Substances 0.000 claims description 5
- 239000012298 atmosphere Substances 0.000 claims description 5
- 239000002159 nanocrystal Substances 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 238000010891 electric arc Methods 0.000 claims description 2
- 230000008859 change Effects 0.000 abstract description 6
- 239000011883 electrode binding agent Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 8
- 229910052744 lithium Inorganic materials 0.000 description 8
- 238000007599 discharging Methods 0.000 description 7
- 230000006872 improvement Effects 0.000 description 7
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical group CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 6
- 239000006258 conductive agent Substances 0.000 description 6
- 239000007774 positive electrode material Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- 239000011856 silicon-based particle Substances 0.000 description 5
- 229910018643 Mn—Si Inorganic materials 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 239000002210 silicon-based material Substances 0.000 description 4
- 239000002562 thickening agent Substances 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 239000010406 cathode material Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 238000009830 intercalation Methods 0.000 description 3
- 230000002687 intercalation Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000001291 vacuum drying Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 2
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明属于锂离子电池技术领域,尤其涉及一种纳米多孔硅/碳负极材料及其制备方法,包括步骤:结合合金相图设计硅和锰的原子比例,然后通过熔融甩带法制备出前驱体合金条带;将前驱体合金条带放入电解质溶液中进行脱合金,脱去较活泼的金属锰,得到纳米多孔硅条带,对纳米多孔硅条带进行洗涤、干燥、研磨,得到纳米多孔硅粉;对纳米多孔硅粉进行高温碳化,保温一定时间后降至室温,得到纳米多孔硅/碳负极材料。另外,本发明还涉及一种锂离子电池。相比于现有技术,本发明工艺简单易行,制得的纳米多孔硅/碳负极材料具有导电性能好、比容量高、体积变化小等特点,解决了因体积膨胀而导致的结构破坏问题,提高锂离子电池的使用寿命和使用安全性。
Description
技术领域
本发明属于锂离子电池技术领域,尤其涉及一种纳米多孔硅/碳负极材料及其制备方法、锂离子电池。
背景技术
随着锂离子电池技术的发展,研究者们不断开发寻找容量大的负极材料。当前商业化的锂电池负极材料主要为改性天然石墨和人造石墨,尽管制备技术已相当成熟,但其理论比容量只有372mAh/g,难以满足市场对高容量锂离子电池的需求,因此研究者们在不断地寻求高克容量的负极材料。
硅具有高达4200mAh/g的理论嵌锂容量,嵌锂电位为0.2V vs.Li/Li+,且硅储量丰富,成本优势明显,是锂离子电池最具发展前景的负极材料。硅负极材料目前之所以没有被实用化,主要由于以下两点:一方面,硅脱嵌锂过程中出现高300%的体积膨胀,这将导致硅颗粒的破碎、粉化,进而暴露出新的表面,新的硅表面消耗大量的电解液;与此同时失去与铜箔的接触,硅失去与箔材的接触会大幅增加电子的传输距离,这些均导致硅材料寿命大幅衰减。另一方面,硅是一种半导体材料,其电子电导率相对较低,电子传输速度慢,采用硅负极材料制备的电池内阻大,倍率性能差。
发明内容
本发明的目的之一在于:针对现有技术的不足,而提供一种纳米多孔硅/碳负极材料的制备方法,工艺简单易行,制得的纳米多孔硅/碳负极材料具有导电性能好、比容量高、体积变化小等特点,有效解决因体积膨胀而导致的结构破坏问题,提高锂离子电池的使用寿命和使用安全性。
为了实现上述目的,本发明采用以下技术方案:
一种纳米多孔硅/碳负极材料的制备方法,包括以下步骤:
1)结合合金相图设计硅和锰的原子比例,然后通过熔融甩带法制备出前驱体合金条带;
2)将前驱体合金条带放入电解质溶液中进行脱合金,脱去较活泼的金属锰,得到纳米多孔硅条带,对纳米多孔硅条带进行洗涤、干燥、研磨,得到纳米多孔硅粉;
3)对纳米多孔硅粉进行高温碳化,保温一定时间后降至室温,即得到纳米多孔硅/碳负极材料。
作为本发明所述的纳米多孔硅/碳负极材料的制备方法的一种改进,步骤1)中,结合Mn-Si合金相图,设计硅和锰的原子比例为65~70:30~35。由于锰比较活泼,容易被腐蚀,因此,本发明选用锰和硅来制备形成前驱体合金条带,方便后续脱合金处理。
作为本发明所述的纳米多孔硅/碳负极材料的制备方法的一种改进,步骤1)中,通过熔融甩带法制备出前驱体合金条带具体包括以下操作:在氩气气氛下,先用电弧熔炼纯锰块和纯硅块制备合金锭,再通过高速旋转的铜辊其冷表面对再熔融的合金锭进行快速冷却,得到均匀纳米晶体两相结构的前驱体合金条带。
作为本发明所述的纳米多孔硅/碳负极材料的制备方法的一种改进,步骤1)中得到的前驱体合金条带中Mn11Si19相和Si相并存。
作为本发明所述的纳米多孔硅/碳负极材料的制备方法的一种改进,所述高速旋转的铜辊的转速为2000~5000r/min。通过调节铜辊的旋转速度可以得到不同的孔隙的合金条带。
作为本发明所述的纳米多孔硅/碳负极材料的制备方法的一种改进,步骤2)中,脱合金过程具体为:将前驱体合金条带置于浓度为1M的(NH4)2SO4溶液中,加热至60℃进行化学脱合金,24h后Mn11Si19相完全溶解而Si相保留,得到纳米多孔硅条带。硫酸铵是弱酸,其不损坏多孔结构。而且硫酸铵在水中的溶解度有限,浓度大容易析出,因此选用浓度为1M的(NH4)2SO4溶液较为合适。
作为本发明所述的纳米多孔硅/碳负极材料的制备方法的一种改进,步骤2)中,先用水和酒精混合对纳米多孔硅条带洗涤3~5次,再用酒精对纳米多孔硅条带洗涤1~2次,最后真空干燥。
作为本发明所述的纳米多孔硅/碳负极材料的制备方法的一种改进,步骤3)中,在惰性气体氛围下,使用甲烷作为碳源,将纳米多孔硅粉进行高温碳化,以8~12℃/min的升温速率升温至550~650℃,保温1~2小时,再自然降温至室温,即得纳米多孔硅/碳负极材料。惰性气体一般选用氩气。
本发明的的目的之二在于:提供一种纳米多孔硅/碳负极材料,采用说明书前文所述的制备方法制得。
本发明的的目的之三在于:提供一种锂离子电池,包括说明书前文所述的纳米多孔硅/碳负极材料。
相比于现有技术,本发明的有益效果在于:
本发明工艺简单易行,成本较低,通过熔融甩带法结合脱合金的方法制得的纳米多孔硅/碳负极材料具有导电性能好、比容量高、体积变化小等特点;有效解决了体积膨胀导致的结构破坏问题,提高了锂离子电池的使用寿命和使用安全性。具体的,在纳米多孔硅/碳体系中,纳米多孔硅作为活性物质,提供储锂容量;碳则既能缓冲充放电过程中硅负极的体积变化,又能改善硅基材料的导电性,还能避免硅颗粒在充放电循环时发生团聚。因此,纳米多孔硅/碳负极材料综合了二者的优点,表现出高的比容量和较长的循环寿命。除此之外,在纳米多孔硅/碳负极材料中,均匀分布在硅颗粒中的孔道结构能够提供快速的离子传输通道,较大的比表面积增加了材料反应活性,从而展现出优良的倍率性能,在电池快充性能方面具有显著优势。
具体实施方式
下面结合具体实施方式对本发明作进一步详细的描述,但本发明的实施方式并不限于此。
实施例1
纳米多孔硅/碳负极材料的制备:
1)结合Mn-Si合金相图,设计硅和锰的原子比例为70:30;在氩气气氛下,先用电弧熔炼纯锰块和纯硅块制备合金锭,再通过高速旋转(5000r/min)的铜辊其冷表面对再熔融的合金锭进行快速冷却,得到均匀纳米晶体两相结构的前驱体合金条带,前驱体合金条带中Mn11Si19相和Si相并存;
2)将前驱体合金条带置于浓度为1M的(NH4)2SO4溶液中,加热至60℃进行化学脱合金,24h后Mn11Si19相完全溶解而Si相保留,得到纳米多孔硅条带;先用水和酒精混合对纳米多孔硅条带洗涤3次,再用酒精对纳米多孔硅条带洗涤1次,最后真空干燥、研磨,得到纳米多孔硅粉;
3)在惰性气体氛围下,使用甲烷作为碳源,将纳米多孔硅粉进行高温碳化,以10℃/min的升温速率升温至600℃,保温1小时,再自然降温至室温,即得纳米多孔硅/碳负极材料。
锂离子电池的制备:
将上述纳米多孔硅/碳负极材料作为负极活性材料,负极粘结剂使用丁苯橡胶(SBR),增稠剂选用羧甲基纤维素钠,负极活性材料、负极导电剂、增稠剂和负极粘结剂的重量比为94.6:1:1.2:3.2,将以上材料混合搅拌均匀后涂布于铜箔上,干燥得到负极片。
正极活性材料采用钴酸锂,正极粘结剂选用聚偏氟乙烯(PVDF),溶剂选用N-甲基吡咯烷酮(NMP),正极活性材料、正极导电剂和正极粘接剂的重量比为96.5:1.5:2,将以上材料加入至NMP中,搅拌混合均匀后涂布于铝箔上,干燥得到正极片。
将正极片、负极片和隔膜叠置后进行卷绕得到电芯,隔膜位于正极片和负极片之间。正极以铝极耳点焊引出,负极以镍极耳点焊引出;然后将电芯置于铝塑包装袋中,注入电解液,经封装、化成、分容等工序,制成锂离子电池。
实施例2
与实施例1不同的是:
纳米多孔硅/碳负极材料的制备:
1)结合Mn-Si合金相图,设计硅和锰的原子比例为65:35;在氩气气氛下,先用电弧熔炼纯锰块和纯硅块制备合金锭,再通过高速旋转(4000r/min)的铜辊其冷表面对再熔融的合金锭进行快速冷却,得到均匀纳米晶体两相结构的前驱体合金条带,前驱体合金条带中Mn11Si19相和Si相并存;
2)将前驱体合金条带置于浓度为1M的(NH4)2SO4溶液中,加热至60℃进行化学脱合金,24h后Mn11Si19相完全溶解而Si相保留,得到纳米多孔硅条带;先用水和酒精混合对纳米多孔硅条带洗涤4次,再用酒精对纳米多孔硅条带洗涤1~2次,最后真空干燥、研磨,得到纳米多孔硅粉;
3)在惰性气体氛围下,使用甲烷作为碳源,将纳米多孔硅粉进行高温碳化,以8℃/min的升温速率升温至550℃,保温2小时,再自然降温至室温,即得纳米多孔硅/碳负极材料。
其余同实施例1,这里不再赘述。
实施例3
与实施例1不同的是:
纳米多孔硅/碳负极材料的制备:
1)结合Mn-Si合金相图,设计硅和锰的原子比例为70:30;在氩气气氛下,先用电弧熔炼纯锰块和纯硅块制备合金锭,再通过高速旋转(3000r/min)的铜辊其冷表面对再熔融的合金锭进行快速冷却,得到均匀纳米晶体两相结构的前驱体合金条带,前驱体合金条带中Mn11Si19相和Si相并存;
2)将前驱体合金条带置于浓度为1M的(NH4)2SO4溶液中,加热至60℃进行化学脱合金,24h后Mn11Si19相完全溶解而Si相保留,得到纳米多孔硅条带;先用水和酒精混合对纳米多孔硅条带洗涤3次,再用酒精对纳米多孔硅条带洗涤2次,最后真空干燥、研磨,得到纳米多孔硅粉;
3)在惰性气体氛围下,使用甲烷作为碳源,将纳米多孔硅粉进行高温碳化,以12℃/min的升温速率升温至650℃,保温1小时,再自然降温至室温,即得纳米多孔硅/碳负极材料。
其余同实施例1,这里不再赘述。
对比例1
锂离子电池的制备:
将硅材料作为负极活性材料,负极粘结剂使用丁苯橡胶(SBR),增稠剂选用羧甲基纤维素钠,负极活性材料、负极导电剂、增稠剂和负极粘结剂的重量比为94.6:1:1.2:3.2,将以上材料混合搅拌均匀后涂布于铜箔上,干燥得到负极片。
正极活性材料采用钴酸锂,正极粘结剂选用聚偏氟乙烯(PVDF),溶剂选用N-甲基吡咯烷酮(NMP),正极活性材料、正极导电剂和正极粘接剂的重量比为96.5:1.5:2,将以上材料加入至NMP中,搅拌混合均匀后涂布于铝箔上,干燥得到正极片。
将正极片、负极片和隔膜叠置后进行卷绕得到电芯,隔膜位于正极片和负极片之间。正极以铝极耳点焊引出,负极以镍极耳点焊引出;然后将电芯置于铝塑包装袋中,注入电解液,经封装、化成、分容等工序,制成锂离子电池。
性能测试
对以上实施例和对比例制得的电池进行以下性能测试:
1)在0.2C倍率下,测试电池的首次放电克容量和库伦效率;
2)在10C倍率下,测试电池的放电克容量;
3)在室温下,以0.5C/0.5C循环充放电200周后,计算电池的容量保持率。
以上测试结果见表1。
表1测试结果
由表1的测试结果可以看出,实施例1~3制得的锂离子电池其放电克容量、首次库伦效率、大倍率放电克容量以及循环容量保持率均高于对比例1。这是因为本发明的制备方法制得的纳米多孔硅/碳负极材料具有导电性能好、比容量高、体积变化小等特点,有效解决了体积膨胀导致的结构破坏问题。具体的,在纳米多孔硅/碳体系中,纳米多孔硅作为活性物质,提供储锂容量;碳则既能缓冲充放电过程中硅负极的体积变化,又能改善硅基材料的导电性,还能避免硅颗粒在充放电循环时发生团聚。因此,纳米多孔硅/碳负极材料综合了二者的优点,表现出高的比容量和较长的循环寿命。除此之外,在纳米多孔硅/碳负极材料中,均匀分布在硅颗粒中的孔道结构能够提供快速的离子传输通道,较大的比表面积增加了材料反应活性,从而展现出优良的倍率性能。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还能够对上述实施方式进行变更和修改。因此,本发明并不局限于上述的具体实施方式,凡是本领域技术人员在本发明的基础上所作出的任何显而易见的改进、替换或变型均属于本发明的保护范围。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。
Claims (7)
1.一种纳米多孔硅/碳负极材料的制备方法,其特征在于,包括以下步骤:
1)结合合金相图,按原子比例为65~70:30~35设计硅和锰,然后通过熔融甩带法制备出前驱体合金条带,得到前驱体合金条带中Mn 11 Si 19 相和Si相并存;
2)将前驱体合金条带放入电解质溶液中进行脱合金,脱去较活泼的金属锰,得到纳米多孔硅条带,对纳米多孔硅条带进行洗涤、干燥、研磨,得到纳米多孔硅粉;
3)对纳米多孔硅粉进行高温碳化,保温一定时间后降至室温,即得到纳米多孔硅/碳负极材料;
其中,步骤2)中脱合金过程具体为:将前驱体合金条带置于浓度为1M的(NH 4 ) 2 SO 4 溶液中,加热至60℃进行化学脱合金,24h后Mn 11 Si 19 相完全溶解而Si相保留,得到纳米多孔硅条带。
2.根据权利要求1所述的纳米多孔硅/碳负极材料的制备方法,其特征在于,步骤1)中,通过熔融甩带法制备出前驱体合金条带具体包括以下操作:在氩气气氛下,先用电弧熔炼纯锰块和纯硅块制备合金锭,再通过高速旋转的铜辊其冷表面对再熔融的合金锭进行快速冷却,得到均匀纳米晶体两相结构的前驱体合金条带。
3.根据权利要求2所述的纳米多孔硅/碳负极材料的制备方法,其特征在于,所述高速旋转的铜辊的转速为2000~5000r/min。
4.根据权利要求1所述的纳米多孔硅/碳负极材料的制备方法,其特征在于,步骤2)中,先用水和酒精混合对纳米多孔硅条带洗涤3~5次,再用酒精对纳米多孔硅条带洗涤1~2次,最后真空干燥。
5.根据权利要求1所述的纳米多孔硅/碳负极材料的制备方法,其特征在于,步骤3)中,在惰性气体氛围下,使用甲烷作为碳源,将纳米多孔硅粉进行高温碳化,以8~12℃/min的升温速率升温至550~650℃,保温1~2小时,再自然降温至室温,即得纳米多孔硅/碳负极材料。
6.一种纳米多孔硅/碳负极材料,其特征在于,采用权利要求1~5中任一项所述的制备方法制得。
7.一种锂离子电池,其特征在于,包括权利要求6所述的纳米多孔硅/碳负极材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110106539.5A CN112768663B (zh) | 2021-01-26 | 2021-01-26 | 一种纳米多孔硅/碳负极材料及其制备方法、锂离子电池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110106539.5A CN112768663B (zh) | 2021-01-26 | 2021-01-26 | 一种纳米多孔硅/碳负极材料及其制备方法、锂离子电池 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112768663A CN112768663A (zh) | 2021-05-07 |
CN112768663B true CN112768663B (zh) | 2022-06-03 |
Family
ID=75705891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110106539.5A Active CN112768663B (zh) | 2021-01-26 | 2021-01-26 | 一种纳米多孔硅/碳负极材料及其制备方法、锂离子电池 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112768663B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114560464B (zh) * | 2022-03-01 | 2023-06-09 | 山东大学 | 一种硅负极材料及其制备方法和应用 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104975336A (zh) * | 2014-04-14 | 2015-10-14 | 微宏动力系统(湖州)有限公司 | 一种用于锂电池负极材料的多孔硅的制备方法 |
CN109888232A (zh) * | 2014-04-15 | 2019-06-14 | 中国科学院宁波材料技术与工程研究所 | 一种锂离子电池多孔纳米硅-碳复合负极材料及其制备方法 |
CN106784766B (zh) * | 2016-12-16 | 2019-05-24 | 天津理工大学 | 一种用于锂离子电池的多孔负极材料的制备方法及应用 |
CN106784743A (zh) * | 2017-02-28 | 2017-05-31 | 山东泰纳新材料科技有限公司 | 一种低膨胀率多孔硅/石墨复合电极材料及其制备方法 |
CN107507972B (zh) * | 2017-08-29 | 2020-11-20 | 北方奥钛纳米技术有限公司 | 硅碳负极材料的制备方法、硅碳负极材料以及锂离子电池 |
CN107863253A (zh) * | 2017-10-16 | 2018-03-30 | 天津工业大学 | 一种纳米多孔镍铁锰合金/氧化物复合电极及其制备方法 |
CN107739869B (zh) * | 2017-11-09 | 2019-09-13 | 天津工业大学 | 纳米多孔铜复合材料及其制备方法 |
-
2021
- 2021-01-26 CN CN202110106539.5A patent/CN112768663B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN112768663A (zh) | 2021-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10727491B2 (en) | Battery | |
CN108862235B (zh) | 一种可用于钠离子电池负极的纤维状中空硬碳材料及其制备方法 | |
CN112151764A (zh) | 一种电极极片及其制备方法和应用 | |
CN110112419A (zh) | 可高倍率快速充放电的MXene气凝胶锂负极集流体及其制备方法、应用 | |
CN110098380A (zh) | 一种锂离子电池硅基负极材料的制备方法 | |
CN111453713A (zh) | 一种氧化亚硅/碳材料及其制备方法和应用 | |
CN117766742B (zh) | 多孔硅碳复合材料、其制备方法及在二次电池中的应用 | |
CN109301203B (zh) | 三维海胆/多孔复合结构锂离子电池铜/氧化铜/二氧化锡/碳负极及其制备方法 | |
US20240372083A1 (en) | Method for preparing silicon-carbon composite anode material and use thereof | |
CN116646497A (zh) | 一种碳包覆磷酸钒钛锰钠正极材料及其制备方法与应用 | |
CN112614703A (zh) | 一种离子电容器负极材料及其制备方法和应用 | |
CN109037606A (zh) | 一种碳包覆多孔硅硅铁合金复合负极材料及其制备、应用 | |
CN111293296A (zh) | 一种自支撑多孔硅合金及其制备方法与应用 | |
CN113903891B (zh) | 一种含准金属态锂的无定形碳基复合负极材料的制备方法和应用 | |
CN112768663B (zh) | 一种纳米多孔硅/碳负极材料及其制备方法、锂离子电池 | |
CN112980436A (zh) | 一种碳量子点衍生碳纳米片复合二氧化硅负极材料及其制备方法 | |
CN114361457B (zh) | 一种负极极片及包含其的二次电池 | |
CN113097482B (zh) | 一种负极材料及其制备方法和具有负极材料的锂电池 | |
CN111370655A (zh) | 一种碘修饰的纺锤形生物碳材料及其在制备金属锂负极中的应用 | |
CN116332153A (zh) | 一种负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料的制备方法及其应用 | |
CN115101731A (zh) | 一种负极材料及其制备方法、负极片和二次电池 | |
CN115893389B (zh) | 一种海绵镍负载氮、氟双掺杂垂直石墨烯的制备方法及应用 | |
CN110707321A (zh) | 一种铜包覆中空磷化镍材料及其制备方法和应用 | |
CN111864203A (zh) | 一种高电容量锂电碳负极材料及其制备方法和应用 | |
CN118398766B (zh) | 一种二次电池及其制备方法、用电设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |