CN112617746B - Non-contact physiological signal detection device - Google Patents
Non-contact physiological signal detection device Download PDFInfo
- Publication number
- CN112617746B CN112617746B CN201910955653.8A CN201910955653A CN112617746B CN 112617746 B CN112617746 B CN 112617746B CN 201910955653 A CN201910955653 A CN 201910955653A CN 112617746 B CN112617746 B CN 112617746B
- Authority
- CN
- China
- Prior art keywords
- light
- unit
- physiological
- physiological signal
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 96
- 238000012545 processing Methods 0.000 claims abstract description 54
- 230000003287 optical effect Effects 0.000 claims description 11
- 239000008280 blood Substances 0.000 claims description 7
- 210000004369 blood Anatomy 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 238000004458 analytical method Methods 0.000 claims description 3
- 210000003423 ankle Anatomy 0.000 claims description 3
- 230000036772 blood pressure Effects 0.000 claims description 3
- 238000009529 body temperature measurement Methods 0.000 claims description 3
- 230000000747 cardiac effect Effects 0.000 claims description 3
- 210000004392 genitalia Anatomy 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 230000000737 periodic effect Effects 0.000 claims description 3
- 230000010349 pulsation Effects 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 2
- 239000003550 marker Substances 0.000 claims 1
- 230000029058 respiratory gaseous exchange Effects 0.000 claims 1
- 230000002792 vascular Effects 0.000 claims 1
- 238000005259 measurement Methods 0.000 description 22
- 238000012360 testing method Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 13
- 238000013186 photoplethysmography Methods 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 4
- 210000001061 forehead Anatomy 0.000 description 4
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 3
- 230000036760 body temperature Effects 0.000 description 3
- 230000004962 physiological condition Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000036387 respiratory rate Effects 0.000 description 3
- 210000000707 wrist Anatomy 0.000 description 3
- 201000004624 Dermatitis Diseases 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 238000009530 blood pressure measurement Methods 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000037307 sensitive skin Effects 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 201000002282 venous insufficiency Diseases 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Physics & Mathematics (AREA)
- Physiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Cardiology (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
Description
技术领域Technical Field
本发明属于生理信号检测的技术领域,尤其涉及一种能够在保护受测者隐私及不伤害受测者皮肤的情况下完成生理信号检测程序的非接触式的生理信号检测装置,且此非接触式的生理信号检测装置同时具有架构简单和低成本的优点。The present invention belongs to the technical field of physiological signal detection, and in particular relates to a non-contact physiological signal detection device that can complete the physiological signal detection procedure while protecting the privacy of the subject and without damaging the subject's skin. The non-contact physiological signal detection device also has the advantages of simple structure and low cost.
背景技术Background technique
血氧浓度、心跳等生理信息为判断一个人健康状态的重要指标。目前,光体积变化描记图法(Photoplethysmography,PPG)已经被广泛地应用于测量个体的生理信号,进而从该生理信号中提取出该个体的生理特征。例如,中国台湾专利号I592138公开了一种穿戴式血压测量装置,其适于配戴在待测者的手腕上,以进行个体生理信号的测量。在测量个体生理信号的过程中,该穿戴式血压测量装置会发出一侦测光至手腕皮肤组织,接着利用光接收单元接收来自于手腕皮肤组织的反射光,并连续记录反射光的变化来获得一光体积变化信号(PPG signal)。另一方面,美国专利公开号US2017/0340217A1公开了一种生理检测装置,其实际上为一指尖脉搏血氧仪(Fingertip pulse oximeter)。进行个体生理信号的测量时,待测者必须将其手指置入该指尖脉搏血氧仪的一测量空间之中,接着该指尖脉搏血氧仪发出一侦测光至手指的一表面。最终,在手指的另一表面接收且连续记录该侦测光的透射光之后,便可获得一光体积变化信号。Physiological information such as blood oxygen concentration and heartbeat are important indicators for judging a person's health status. At present, photoplethysmography (PPG) has been widely used to measure the physiological signals of an individual, and then extract the physiological characteristics of the individual from the physiological signals. For example, Taiwan Patent No. I592138 discloses a wearable blood pressure measurement device, which is suitable for wearing on the wrist of a person to be measured to measure individual physiological signals. In the process of measuring individual physiological signals, the wearable blood pressure measurement device emits a detection light to the wrist skin tissue, and then uses a light receiving unit to receive the reflected light from the wrist skin tissue, and continuously records the changes in the reflected light to obtain a photoplethysmography signal (PPG signal). On the other hand, U.S. Patent Publication No. US2017/0340217A1 discloses a physiological detection device, which is actually a fingertip pulse oximeter. When measuring individual physiological signals, the subject must place his finger into a measurement space of the fingertip pulse oximeter, and then the fingertip pulse oximeter emits a detection light to one surface of the finger. Finally, after the other surface of the finger receives and continuously records the transmitted light of the detection light, a light volume change signal can be obtained.
由前述说明可知,光体积变化描记图法已经被应用在光反射式或光穿透式的接触式生理信号测量装置之中。然而,使用者的反馈意见指出,接触式生理信号测量装置会造成许多不方便,例如,易造成敏感性皮肤的使用者(例如:婴幼儿)产生皮肤过敏现象。有鉴于此,另一种非接触式生理信号测量技术被提出。例如,中国专利号CN102973253B公开了一种利用视觉信息监测人体生理指针的系统。实施生理信号的测量时,现有的系统使用一个摄影机持续拍摄受测者的影像,接着透过复杂的运算从受测者的影像之中辨识出受测者的脸部,并在受测者的脸部位置之上选择一个感兴趣区域(Region of interest,ROI)。继续地,对ROI图像执行三色信道分离处理,以获得R信道信号、G信道信号以及B信道信号。最终,利用特定的算法处理及/或分析RGB的三组信道信号之后,便可获得个体的生理特征或信息。As can be seen from the above description, the photoplethysmography method has been applied to light reflection type or light penetration type contact type physiological signal measurement devices. However, feedback from users indicates that contact type physiological signal measurement devices can cause many inconveniences, for example, it is easy to cause skin allergies in users with sensitive skin (such as infants and young children). In view of this, another non-contact type physiological signal measurement technology is proposed. For example, Chinese patent number CN102973253B discloses a system for monitoring human physiological indicators using visual information. When implementing the measurement of physiological signals, the existing system uses a camera to continuously capture the image of the subject, and then identifies the face of the subject from the image of the subject through complex calculations, and selects a region of interest (ROI) above the face position of the subject. Continuously, the ROI image is subjected to three-color channel separation processing to obtain R channel signals, G channel signals and B channel signals. Finally, after processing and/or analyzing the three groups of RGB channel signals using a specific algorithm, the physiological characteristics or information of the individual can be obtained.
前述方式也称为成像式体积变化描记图法(Imaging photoplethysmography,iPPG)或遥测式体积变化描记图法(Remote photoplethysmography,rPPG)。熟悉rPPG技术的工程师必然知道,使用rPPG技术的非接触式生理信号测量装置必须搭载具高速运算能力的处理芯片组,导致其整体成本无法被有效地降低。此外,即使搭载了高速运算能力的处理芯片组,使用rPPG技术的非接触式生理信号测量装置仍旧需要花费许多时间才能够完成庞大的运算量,而后从拍摄获得的受测者的影像之中提取出个体的生理特征或信息。更重要的是,受测者在接用rPPG的非接触式生理信号测量的过程中,其脸部影像被大量地复制且储存,引发受测者的隐私缺乏保障的疑虑。The aforementioned method is also called imaging photoplethysmography (iPPG) or remote photoplethysmography (rPPG). Engineers familiar with rPPG technology must know that non-contact physiological signal measurement devices using rPPG technology must be equipped with a processing chipset with high-speed computing capabilities, resulting in the inability to effectively reduce their overall costs. In addition, even if equipped with a processing chipset with high-speed computing capabilities, non-contact physiological signal measurement devices using rPPG technology still need to spend a lot of time to complete a huge amount of computing, and then extract individual physiological characteristics or information from the images of the subjects obtained by the capture. More importantly, during the process of non-contact physiological signal measurement using rPPG, the subject's facial image is copied and stored in large quantities, raising concerns about the lack of privacy protection for the subject.
由上述说明可知,基于PPG技术的接触式生理信号测量装置虽然具有架构简单与低成本的优点,然而使用者的反馈意见指出这种接触式生理信号测量装置容易造成敏感性皮肤的使用者产生皮肤过敏现象。另一方面,基于rPPG技术的非接触式生理信号测量装置虽然可以在不碰触使用者的情况下完成个体生理信号的取得,但此种非接触式生理信号测量装置必须搭载高速运算能力的处理芯片组,导致其整体成本较高。同时,基于rPPG技术的非接触式生理信号测量装置也会引发受测者的隐私的相关疑虑。From the above description, it can be seen that although the contact-type physiological signal measurement device based on PPG technology has the advantages of simple architecture and low cost, feedback from users indicates that this type of contact-type physiological signal measurement device is prone to cause skin allergies in users with sensitive skin. On the other hand, although the non-contact physiological signal measurement device based on rPPG technology can obtain individual physiological signals without touching the user, this type of non-contact physiological signal measurement device must be equipped with a processing chipset with high-speed computing capabilities, resulting in a higher overall cost. At the same time, the non-contact physiological signal measurement device based on rPPG technology will also raise concerns about the privacy of the subject.
有鉴于此,本案的发明人尽力加以研究发明,终于研发完成本发明的一种能够在保护受测者隐私及不伤害受测者皮肤的情况下完成生理信号检测程序的非接触式的生理信号检测装置,且此非接触式的生理信号检测装置同时具有架构简单和低成本的优点。In view of this, the inventor of this case has made every effort to research and invent, and finally developed a non-contact physiological signal detection device of the present invention that can complete the physiological signal detection process while protecting the privacy of the subject and without damaging the subject's skin. This non-contact physiological signal detection device also has the advantages of simple structure and low cost.
发明内容Summary of the invention
本发明的主要目的在于提供一种非接触式的生理信号检测装置,其具有基于PPG技术的接触式生理信号测量装置的架构简单与低成本的优点,同时兼具基于rPPG技术的非接触式生理信号测量装置的非接触式生理信号测量的特色。更进一步地,本发明的非接触式的生理信号检测装置不包含任何摄影单元,是以能够在保护受测者隐私及不伤害受测者皮肤的情况下完成生理信号检测程序。The main purpose of the present invention is to provide a non-contact physiological signal detection device, which has the advantages of simple structure and low cost of the contact physiological signal measurement device based on PPG technology, and at the same time has the characteristics of non-contact physiological signal measurement of the non-contact physiological signal measurement device based on rPPG technology. Furthermore, the non-contact physiological signal detection device of the present invention does not include any photographic unit, so that the physiological signal detection procedure can be completed while protecting the privacy of the subject and not damaging the subject's skin.
为达成上述目的,本发明提出所述非接触式的生理信号检测装置的一实施例,其包括:To achieve the above object, the present invention provides an embodiment of the non-contact physiological signal detection device, which includes:
一光感测单元,用来面对一受试物的感测部位,进而通过非接触式的方式从该感测部位的表面收集一漫射光;以及a light sensing unit, used to face a sensing part of a test object, and collect a diffuse light from the surface of the sensing part in a non-contact manner; and
一信号处理模块,包括:A signal processing module, comprising:
一信号处理单元;a signal processing unit;
一控制单元,耦接该信号处理单元与该光感测单元,用来控制该光感测单元收集所述漫射光;及a control unit, coupled to the signal processing unit and the light sensing unit, for controlling the light sensing unit to collect the diffuse light; and
一信号接收单元,耦接该光感测单元与该信号处理单元,用来通过该光感测单元接收所述漫射光,且传送对应于该漫射光的一生理信号至该信号处理单元;a signal receiving unit, coupled to the light sensing unit and the signal processing unit, for receiving the diffuse light through the light sensing unit and transmitting a physiological signal corresponding to the diffuse light to the signal processing unit;
其中,在接收所述生理信号之后,该信号处理单元对该生理信号执行至少一信号处理以获得至少一生理信息。After receiving the physiological signal, the signal processing unit performs at least one signal processing on the physiological signal to obtain at least one physiological information.
在本发明所述的非接触式的生理信号检测装置的实施例中,所述生理信息可为下列任意一者:血容量、心率、呼吸率、血氧、血压、血管粘度(Blood vessel viscosity)、静脉功能、静脉回流、脚踝压力、生殖器反应(Genital responses)、心输出量(Cardiacoutput)。In an embodiment of the non-contact physiological signal detection device described in the present invention, the physiological information may be any one of the following: blood volume, heart rate, respiratory rate, blood oxygen, blood pressure, blood vessel viscosity, venous function, venous return, ankle pressure, genital responses, and cardiac output.
在一可行实施例中,本发明的非接触式的生理信号检测装置还包括一数据输出单元,其耦接该信号处理单元,使得该信号处理单元通过所述数据输出单元输出至少一生理信息。其中,该数据输出单元可为下列任意一者:显示器、扬声器、有线传输接口、无线传输接口。In a feasible embodiment, the non-contact physiological signal detection device of the present invention further includes a data output unit, which is coupled to the signal processing unit, so that the signal processing unit outputs at least one physiological information through the data output unit. The data output unit can be any one of the following: a display, a speaker, a wired transmission interface, and a wireless transmission interface.
在一可行实施例中,本发明的非接触式的生理信号检测装置还包括一聚光透镜,其介于该光感测单元与该漫射光之间,用来将该漫射光聚焦至该光感测单元。其中,所述漫射光为一单波长光或一多波长光。In a feasible embodiment, the non-contact physiological signal detection device of the present invention further includes a focusing lens, which is located between the light sensing unit and the diffuse light, and is used to focus the diffuse light onto the light sensing unit. The diffuse light is a single wavelength light or a multi-wavelength light.
在本发明所述的非接触式的生理信号检测装置的实施例中,在该受试物曝露在一环境光的情况下,该漫射光产生于该感测部位的表面。其中,所述环境光为一自然光或由一外部光源所提供的一人造光。In an embodiment of the non-contact physiological signal detection device of the present invention, when the test object is exposed to an ambient light, the diffuse light is generated on the surface of the sensing part, wherein the ambient light is natural light or artificial light provided by an external light source.
在一可行实施例中,本发明的非接触式的生理信号检测装置还包括一发光单元,用来发射一侦测光至该受试物的该感测部位的表面,以使所述漫射光产生于该感测部位的表面。其中,该发光单元包括至少一发光组件,且该发光组件可为下列任意一者:发光二极管、垂直共振腔发光二极管、有机发光二极管。In a feasible embodiment, the non-contact physiological signal detection device of the present invention further includes a light emitting unit for emitting a detection light to the surface of the sensing part of the test object, so that the diffuse light is generated on the surface of the sensing part. The light emitting unit includes at least one light emitting component, and the light emitting component can be any one of the following: a light emitting diode, a vertical resonant cavity light emitting diode, and an organic light emitting diode.
在本发明所述的非接触式的生理信号检测装置的实施例中,该信号处理模块还包括一驱动单元,其耦接该控制单元,用来驱动该发光单元发射所述侦测光。In an embodiment of the non-contact physiological signal detection device of the present invention, the signal processing module further includes a driving unit, which is coupled to the control unit and is used to drive the light emitting unit to emit the detection light.
在本发明所述的非接触式的生理信号检测装置的实施例中,该光感测单元可为下列任意一者:单点式光传感器(Single point photo sensor)、矩阵式光传感器(Matrixphoto sensor)、单信道影像传感器(One-channel image sensor)、多信道影像传感器(multi-channel image sensor)。In the embodiment of the non-contact physiological signal detection device described in the present invention, the light sensing unit can be any one of the following: a single point photo sensor, a matrix photo sensor, a one-channel image sensor, or a multi-channel image sensor.
在本发明所述的非接触式的生理信号检测装置的实施例中,该光感测单元包括一红外光传感器,使得本发明的非接触式的生理信号检测装置同时具有一体温测量功能。In an embodiment of the non-contact physiological signal detection device of the present invention, the light sensing unit includes an infrared light sensor, so that the non-contact physiological signal detection device of the present invention also has an integrated temperature measurement function.
在一可行实施例中,该光感测单元包括一红外光传感器,使得本发明的非接触式的生理信号检测装置可以被整合于一光学式体温测量器之中。In a feasible embodiment, the light sensing unit includes an infrared light sensor, so that the non-contact physiological signal detection device of the present invention can be integrated into an optical body temperature measuring device.
在一可行实施例中,本发明的非接触式的生理信号检测装置还包括一感测区域标记单元,其耦接该控制单元,用来基于该控制单元的控制而发射一标记信号至该感测部位的表面,进而在该感测部位的表面标记出一感测区域。其中,所述标记信号可为下列任意一者:光点、图案、符号、文字。In a feasible embodiment, the non-contact physiological signal detection device of the present invention further includes a sensing area marking unit, which is coupled to the control unit and is used to transmit a marking signal to the surface of the sensing part based on the control of the control unit, thereby marking a sensing area on the surface of the sensing part. The marking signal can be any one of the following: a light spot, a pattern, a symbol, or text.
在一可行实施例中,该信号处理模块还包括一活体侦测单元,其耦接该信号处理单元及/或该信号接收单元,用以对该生理信号执行一信号分析,进而确认该生理信号是否含有至少一活体生理特征,借以判断该受试物为一活体或一非活体。In a feasible embodiment, the signal processing module also includes a living body detection unit, which is coupled to the signal processing unit and/or the signal receiving unit to perform a signal analysis on the physiological signal to further confirm whether the physiological signal contains at least one living body physiological characteristic, so as to determine whether the subject is a living body or a non-living body.
在本发明所述的非接触式的生理信号检测装置的实施例中,所述活体生理特征包括:至少一频域生理特征与/或至少一时域生理特征。其中,所述频域生理特征为心跳的周期性脉动,且所述时域生理特征为所述生理信号所带有的至少一活体波形特征。In an embodiment of the non-contact physiological signal detection device of the present invention, the living body physiological feature includes: at least one frequency domain physiological feature and/or at least one time domain physiological feature. The frequency domain physiological feature is the periodic pulsation of the heartbeat, and the time domain physiological feature is at least one living body waveform feature carried by the physiological signal.
在一可行实施例中,本发明的非接触式的生理信号检测装置还包括一警示单元,其耦接该活体侦测单元;其中,在该活体侦测单元判断该受试物为所述非活体的情况下,该警示单元发出一警示讯息。In a feasible embodiment, the non-contact physiological signal detection device of the present invention further includes a warning unit coupled to the living body detection unit; wherein, when the living body detection unit determines that the test object is the non-living body, the warning unit sends a warning message.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明的非接触式的生理信号检测装置的第一实施例的第一示意性立体图;FIG1 is a first schematic perspective view of a first embodiment of a non-contact physiological signal detection device of the present invention;
图2为本发明的非接触式的生理信号检测装置的第一实施例的功能方块图;FIG2 is a functional block diagram of a first embodiment of a non-contact physiological signal detection device of the present invention;
图3为本发明的非接触式的生理信号检测装置的第一实施例的第二示意性立体图;FIG3 is a second schematic perspective view of the first embodiment of the non-contact physiological signal detection device of the present invention;
图4为本发明的非接触式的生理信号检测装置的第二实施例的示意性立体图;FIG4 is a schematic perspective view of a second embodiment of a non-contact physiological signal detection device of the present invention;
图5为本发明的非接触式的生理信号检测装置的第二实施例的功能方块图;FIG5 is a functional block diagram of a second embodiment of a non-contact physiological signal detection device of the present invention;
图6为本发明的非接触式的生理信号检测装置的第三实施例的功能方块图;FIG6 is a functional block diagram of a third embodiment of a non-contact physiological signal detection device of the present invention;
图7为本发明的非接触式的生理信号检测装置的第四实施例的功能方块图;以及FIG. 7 is a functional block diagram of a fourth embodiment of a non-contact physiological signal detection device of the present invention; and
图8为本发明的非接触式的生理信号检测装置的第五实施例的功能方块图。FIG. 8 is a functional block diagram of a fifth embodiment of a non-contact physiological signal detection device according to the present invention.
【符号说明】【Symbol Description】
<本发明><The present invention>
1 非接触式的生理信号检测装置1. Non-contact physiological signal detection device
10 数据输出单元10 Data output unit
11 光感测单元11 Light sensing unit
12 信号处理模块12 Signal Processing Module
120 信号处理单元120 signal processing unit
121 控制单元121 Control unit
122 信号接收单元122 signal receiving unit
123 驱动单元123 Drive Unit
124 活体侦测单元124 Living Detection Unit
13 发光单元13 Lighting Unit
14 聚光透镜14 Condenser lens
15 感测区域标记单元15 Sensing area marking unit
16 警示单元16 Warning Unit
2 受试物2 Test substances
21 感测部位21 Sensing area
M 感测区域M Sensing area
<现有技术>< Prior Art >
无none
具体实施方式Detailed ways
为了能够更清楚地描述本发明所提出的非接触式的生理信号检测装置,以下将配合附图,详尽说明本发明的较佳实施例。In order to more clearly describe the non-contact physiological signal detection device proposed by the present invention, the preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
第一实施例First embodiment
图1显示了本发明的非接触式的生理信号检测装置的第一实施例的第一示意性立体图,且图2显示了本发明的非接触式的生理信号检测装置的第一实施例的功能方块图。特别说明的是,在第一实施例之中,本发明是以最简单的架构实现所述非接触式的生理信号检测装置1。如图1与图2所示,本发明仅以一光感测单元11和一信号处理模块12组成非接触式的生理信号检测装置1的第一实施例。其中,该光感测单元11用以面对一受试物2的一感测部位21,进而通过非接触式的方式从该感测部位21的表面收集一漫射光。例如,图1显示所述受试物2为人体,而该感测部位21为人体的脸部、手部或者人体其它外露部位的皮肤。FIG. 1 shows a first schematic stereoscopic diagram of a first embodiment of a non-contact physiological signal detection device of the present invention, and FIG. 2 shows a functional block diagram of the first embodiment of a non-contact physiological signal detection device of the present invention. It is particularly noted that, in the first embodiment, the present invention implements the non-contact physiological signal detection device 1 with the simplest architecture. As shown in FIG. 1 and FIG. 2, the present invention only comprises a light sensing unit 11 and a signal processing module 12 to form the first embodiment of a non-contact physiological signal detection device 1. The light sensing unit 11 is used to face a sensing part 21 of a test object 2, and then collect a diffuse light from the surface of the sensing part 21 in a non-contact manner. For example, FIG. 1 shows that the test object 2 is a human body, and the sensing part 21 is the skin of the face, hand or other exposed parts of the human body.
在该受试物2曝露在一环境光的情况下,该漫射光即产生于该感测部位21的表面。值得注意的是,此环境光可能是一自然光或由一外部光源所提供的一人造光,因此漫射光可能是一单波长光或一多波长光。基于上述理由,本发明并不限定该光感测单元11的类型。依据所述环境光的光源种类,非接触式的生理信号检测装置1所撘载的光感测单元11可以是单点式光传感器(Single point photo sensor)、矩阵式光传感器(Matrix photosensor)、单信道影像传感器(One-channel image sensor)或多信道影像传感器(multi-channel image sensor)。When the test object 2 is exposed to an ambient light, the diffuse light is generated on the surface of the sensing portion 21. It is worth noting that the ambient light may be natural light or artificial light provided by an external light source, so the diffuse light may be a single-wavelength light or a multi-wavelength light. Based on the above reasons, the present invention does not limit the type of the light sensing unit 11. Depending on the type of the light source of the ambient light, the light sensing unit 11 carried by the non-contact physiological signal detection device 1 may be a single point photo sensor, a matrix photosensor, a one-channel image sensor, or a multi-channel image sensor.
更详细地说明,该信号处理模块12包括:一信号处理单元120、一控制单元121、与一信号接收单元122。其中,该控制单元121耦接该信号处理单元120与该光感测单元11,用以控制所述光感测单元11收集所述漫射光。另一方面,该信号接收单元122耦接该光感测单元11与该信号处理单元120,用来通过该光感测单元11接收所述漫射光,且传送对应于该漫射光的一生理信号至该信号处理单元120。进一步地,在接收所述生理信号之后,该信号处理单元120对该生理信号执行至少一信号处理,借以获得至少一生理信息。依据所述信号处理的执行内容及算法的不同,最终获得的生理信息也不同。在一般的情况下,所述生理信息可以是血容量(Blood volume variation)、心率(Heart rate,HR)、呼吸率(Respiratoryrate,RR)、血氧(Blood oxygen level)、血压(Blood pressure)、血管粘度(Blood vesselviscosity)、静脉功能(Venous function)、静脉回流(Venous reflux)、脚踝压力(Anklepressure)、生殖器反应(Genital responses)、心输出量(Cardiac output)。In more detail, the signal processing module 12 includes: a signal processing unit 120, a control unit 121, and a signal receiving unit 122. The control unit 121 is coupled to the signal processing unit 120 and the light sensing unit 11 to control the light sensing unit 11 to collect the diffuse light. On the other hand, the signal receiving unit 122 is coupled to the light sensing unit 11 and the signal processing unit 120 to receive the diffuse light through the light sensing unit 11 and transmit a physiological signal corresponding to the diffuse light to the signal processing unit 120. Furthermore, after receiving the physiological signal, the signal processing unit 120 performs at least one signal processing on the physiological signal to obtain at least one physiological information. Depending on the execution content and algorithm of the signal processing, the physiological information finally obtained is also different. In general, the physiological information may include blood volume variation, heart rate (HR), respiratory rate (RR), blood oxygen level, blood pressure, blood vessel viscosity, venous function, venous reflux, ankle pressure, genital responses, and cardiac output.
图2还显示了该信号处理单元120耦接一数据输出单元10。在完成所述生理信号的处理并取得至少一生理信息之后,该信号处理单元120通过所述数据输出单元10输出该至少一生理信息。本发明并不限定所述数据输出单元10的类型,其可以是显示设备、扬声器、有线传输接口或无线传输接口。请进一步参阅图3,其显示本发明的非接触式的生理信号检测装置的第一实施例的第二示意性立体图。如图3所示,一聚光透镜14设置于该光感测单元11与该漫射光之间,使得该漫射光被有效聚焦至该光感测单元11。FIG2 also shows that the signal processing unit 120 is coupled to a data output unit 10. After completing the processing of the physiological signal and obtaining at least one physiological information, the signal processing unit 120 outputs the at least one physiological information through the data output unit 10. The present invention does not limit the type of the data output unit 10, which may be a display device, a speaker, a wired transmission interface, or a wireless transmission interface. Please further refer to FIG3, which shows a second schematic stereoscopic diagram of the first embodiment of the non-contact physiological signal detection device of the present invention. As shown in FIG3, a focusing lens 14 is disposed between the light sensing unit 11 and the diffuse light, so that the diffuse light is effectively focused on the light sensing unit 11.
在仔细观察图1与图3之后,可以发现图1与图3是将本发明的非接触式的生理信号检测装置1以额温枪(Forehead thermometer)的形式呈现。在实际应用本发明时,只要使所述光感测单元11包括一红外光(线)传感器,便可以使得此非接触式的生理信号检测装置1同时具有一体温测量功能。因此,易于推知的,本发明的非接触式的生理信号检测装置1可以整合在一光学式体温测量器之中,例如:额温枪或耳温枪(Ear thermometer)。或者,本发明的非接触式的生理信号检测装置1在具体上可以是一组具有生理信号检测功能的光学式体温测量器。After carefully observing Figures 1 and 3, it can be found that Figures 1 and 3 present the non-contact physiological signal detection device 1 of the present invention in the form of a forehead thermometer. In the actual application of the present invention, as long as the light sensing unit 11 includes an infrared light (line) sensor, the non-contact physiological signal detection device 1 can also have a body temperature measurement function. Therefore, it is easy to infer that the non-contact physiological signal detection device 1 of the present invention can be integrated into an optical body temperature measuring device, such as a forehead thermometer or an ear thermometer. Alternatively, the non-contact physiological signal detection device 1 of the present invention can specifically be a set of optical body temperature measuring devices with a physiological signal detection function.
第二实施例Second embodiment
图4显示了本发明的非接触式的生理信号检测装置的第二实施例的示意性立体图,且图5显示了本发明的非接触式的生理信号检测装置的第二实施例的功能方块图。比较图2与图5可以轻易地发现,本发明的非接触式的生理信号检测装置1的第二实施例还包括一发光单元13。并且,在第二实施例中,一驱动单元123被进一步地整合于该信号处理模块12之中。如图5所示,该驱动单元123耦接该控制单元121与该发光单元13,用来驱动该发光单元13发出一人造光作为所述侦测光。应可理解的是,所述人造光可以是单波长光或是多波长光。更详细地说明,发光单元13包括至少一发光组件,且该发光组件可以是发光二极管、垂直共振腔发光二极管、或有机发光二极管。其中,该发光二极管(Light-emittingdiode,LED)可以是单色光LED或至少包含绿光(400-600nm)、红光(600-800nm)与红外光(800-1000nm)的多色光LED,且该有机发光二极管(Organic light-emitting diode,OLED)可以是单色光OLED或至少包含绿光、红光与红外光的多色光OLED。FIG4 shows a schematic stereoscopic diagram of a second embodiment of the non-contact physiological signal detection device of the present invention, and FIG5 shows a functional block diagram of the second embodiment of the non-contact physiological signal detection device of the present invention. By comparing FIG2 with FIG5, it can be easily found that the second embodiment of the non-contact physiological signal detection device 1 of the present invention also includes a light-emitting unit 13. In addition, in the second embodiment, a driving unit 123 is further integrated into the signal processing module 12. As shown in FIG5, the driving unit 123 couples the control unit 121 and the light-emitting unit 13 to drive the light-emitting unit 13 to emit an artificial light as the detection light. It should be understood that the artificial light can be a single-wavelength light or a multi-wavelength light. In more detail, the light-emitting unit 13 includes at least one light-emitting component, and the light-emitting component can be a light-emitting diode, a vertical resonant cavity light-emitting diode, or an organic light-emitting diode. The light-emitting diode (LED) may be a monochromatic LED or a multicolor LED including at least green light (400-600nm), red light (600-800nm) and infrared light (800-1000nm), and the organic light-emitting diode (OLED) may be a monochromatic OLED or a multicolor OLED including at least green light, red light and infrared light.
简单地说,前述非接触式的生理信号检测装置的第一实施例是在无光源或自然光源的条件下完成受试物2的生理信号测量。不同地,在第二实施例中,非接触式的生理信号检测装置1能够自行以其发光单元13发出所述侦测光至受试物2的感测部位21,进而接着完成该感测部位21的生理信号测量。In short, the first embodiment of the non-contact physiological signal detection device is to complete the physiological signal measurement of the test object 2 without light source or natural light source. Differently, in the second embodiment, the non-contact physiological signal detection device 1 can emit the detection light to the sensing part 21 of the test object 2 by its light emitting unit 13, and then complete the physiological signal measurement of the sensing part 21.
第三实施例Third embodiment
图6显示了本发明的非接触式的生理信号检测装置的第三实施例的功能方块图。比较图5与图6可以轻易地发现,本发明的非接触式的生理信号检测装置1的第三实施例还包括一感测区域标记单元15,其耦接该控制单元121,且用以基于该控制单元121的控制而发射一标记信号至该感测部位21的表面,进而在该感测部位21的表面标记出一感测区域M。例如,在该感测部位21的表面标记出光点、图案、符号或文字。必须加以说明的是,增设所述感测区域标记单元15有助于提升非接触式的生理信号检测装置1的测量准确性。举例而言,在不使用发光单元13或者所述侦测光为一红外光(infrared light)的情况下,操作者实难以确定该光感测单元11是否正对受试物2的感测部位21。尤其,若感测部位21为受试物2的额头,则操作者有很高的机率会将光感测单元11正对受试物2的受到头发覆盖的额头部位。在此情况下,光感测单元11所收集的漫射光所带有的生理信号无法完全反映出受试物2的真实生理状况。相反地,利用所述感测区域标记单元15在受试物2的感测部位21的表面标记出感测区域M之后,操作者可以将所述光感测单元11对准正确的受试物2的感测部位21。如此,便能够保证光感测单元11所收集的漫射光所带有的生理信号可以确实地反映出受试物2的真实生理状况,进而提升本发明的非接触式的生理信号检测装置1的测量准确度。FIG6 shows a functional block diagram of the third embodiment of the non-contact physiological signal detection device of the present invention. By comparing FIG5 with FIG6, it can be easily found that the third embodiment of the non-contact physiological signal detection device 1 of the present invention further includes a sensing area marking unit 15, which is coupled to the control unit 121 and is used to emit a marking signal to the surface of the sensing part 21 based on the control of the control unit 121, thereby marking a sensing area M on the surface of the sensing part 21. For example, a light spot, a pattern, a symbol or a text is marked on the surface of the sensing part 21. It must be explained that the addition of the sensing area marking unit 15 helps to improve the measurement accuracy of the non-contact physiological signal detection device 1. For example, when the light emitting unit 13 is not used or the detection light is an infrared light, it is difficult for the operator to determine whether the light sensing unit 11 is facing the sensing part 21 of the subject 2. In particular, if the sensing part 21 is the forehead of the subject 2, the operator has a high probability of facing the light sensing unit 11 to the forehead part of the subject 2 covered by hair. In this case, the physiological signal carried by the diffuse light collected by the optical sensing unit 11 cannot fully reflect the real physiological condition of the test object 2. On the contrary, after marking the sensing area M on the surface of the sensing part 21 of the test object 2 using the sensing area marking unit 15, the operator can align the optical sensing unit 11 with the correct sensing part 21 of the test object 2. In this way, it can be ensured that the physiological signal carried by the diffuse light collected by the optical sensing unit 11 can truly reflect the real physiological condition of the test object 2, thereby improving the measurement accuracy of the non-contact physiological signal detection device 1 of the present invention.
第四实施例Fourth embodiment
图7显示了本发明的非接触式的生理信号检测装置的第四实施例的功能方块图。比较图2与图7可以轻易地发现,通过将一感测区域标记单元15增设至前述第一实施例的架构中后,即获得所述非接触式的生理信号检测装置的第四实施例。在第四实施例中,操作者可以利用所述感测区域标记单元15在受试物2的感测部位21的表面标记出感测区域M之后,并接着将所述光感测单元11对准正确的受试物2的感测部位21。如此,便能够保证光感测单元11所收集的漫射光所带有的生理信号可以确实地反映出受试物2的真实生理状况,进而提升本发明的非接触式的生理信号检测装置1的测量准确度。FIG7 shows a functional block diagram of the fourth embodiment of the non-contact physiological signal detection device of the present invention. By comparing FIG2 with FIG7, it can be easily found that by adding a sensing area marking unit 15 to the architecture of the aforementioned first embodiment, the fourth embodiment of the non-contact physiological signal detection device is obtained. In the fourth embodiment, the operator can use the sensing area marking unit 15 to mark the sensing area M on the surface of the sensing part 21 of the subject 2, and then align the optical sensing unit 11 with the correct sensing part 21 of the subject 2. In this way, it can be ensured that the physiological signal carried by the diffuse light collected by the optical sensing unit 11 can truly reflect the actual physiological condition of the subject 2, thereby improving the measurement accuracy of the non-contact physiological signal detection device 1 of the present invention.
第五实施例Fifth embodiment
图8显示本发明的非接触式的生理信号检测装置的第五实施例的功能方块图。比较图6与图8可以发现,本发明的非接触式的生理信号检测装置1的第五实施例还包括一活体侦测单元124,其耦接该信号处理单元120和该信号接收单元122,且用以对该生理信号执行一信号分析,进而确认该生理信号是否含有至少一活体生理特征,借此判断该受试物2为一活体或一非活体。补充说明的是,在可行的实施例中,该活体侦测单元124也可以选择性地仅与该信号处理单元120或该信号接收单元122连接。此外,第五实施例还包括一警示单元16,其耦接该活体侦测单元124。FIG8 shows a functional block diagram of the fifth embodiment of the non-contact physiological signal detection device of the present invention. By comparing FIG6 with FIG8 , it can be found that the fifth embodiment of the non-contact physiological signal detection device 1 of the present invention also includes a liveness detection unit 124, which is coupled to the signal processing unit 120 and the signal receiving unit 122, and is used to perform a signal analysis on the physiological signal, thereby confirming whether the physiological signal contains at least one physiological feature of a living body, thereby determining whether the subject 2 is a living body or a non-living body. It should be supplemented that, in a feasible embodiment, the liveness detection unit 124 can also be selectively connected only to the signal processing unit 120 or the signal receiving unit 122. In addition, the fifth embodiment also includes an alarm unit 16, which is coupled to the liveness detection unit 124.
更详细地说明,活体侦测单元124透过该信号接收单元122接收对应于该漫射光的一生理信号,此生理信号为一光体积变化信号(PPG signal)。在对所述生理信号进行例如奇异谱分析(Singular Spectrum Analysis,SSA)或正规化最小均方(Normalized LeastMean Square,NLMS)时域信号处理之后,便可接着从完成所述时域信号处理的生理信号中提取出时域生理特征。许多研究报告及/或文献已经指出,活体(例如:人体)的生理信号会带有特别的时域生理特征,因此,在确认该生理信号是否含有至少一活体生理特征之后,所述活体侦测单元124便可判断该受试物2为一活体或一非活体。In more detail, the living body detection unit 124 receives a physiological signal corresponding to the diffuse light through the signal receiving unit 122, and the physiological signal is a photovolume variation signal (PPG signal). After the physiological signal is subjected to time-domain signal processing such as singular spectrum analysis (SSA) or normalized least mean square (NLMS), the time-domain physiological features can be extracted from the physiological signal that has completed the time-domain signal processing. Many research reports and/or literatures have pointed out that the physiological signals of living bodies (e.g., human bodies) have special time-domain physiological features. Therefore, after confirming whether the physiological signal contains at least one living body physiological feature, the living body detection unit 124 can determine whether the subject 2 is a living body or a non-living body.
另一方面,活体侦测单元124在透过该信号接收单元122接收对应于该漫射光的生理信号(亦即,光体积变化信号(PPG signal))之后,也可以对所述生理信号进行例如快速傅立叶变换(Fast Fourier Transform,FFT)或短时距傅立叶变换(Short-Time FourierTransform,STFT)频域信号处理,并接着从完成所述频域信号处理的生理信号中提取出频域生理特征,例如:心跳的周期性脉动。On the other hand, after receiving the physiological signal corresponding to the diffuse light (i.e., the photoplethysmographic signal (PPG signal)) through the signal receiving unit 122, the living body detection unit 124 can also perform frequency domain signal processing such as fast Fourier transform (FFT) or short-time Fourier transform (STFT) on the physiological signal, and then extract frequency domain physiological features, such as the periodic pulsation of the heartbeat, from the physiological signal that has completed the frequency domain signal processing.
活体侦测单元124的使用也有助于提升、校正本发明的非接触式的生理信号检测装置1的测量准确性。更详细的说明,若操作者使用本发明的非接触式的生理信号检测装置1的光感测单元11正对一非活体的对象,则活体侦测单元124会立即判断出该对象并非是活体。在此情况下,该活体侦测单元124会通知该警示单元16发出一警示讯息以通知操作者,例如:光讯息、声音讯息、文字讯息、影像讯息等,或通过数据输出单元10将警示讯息传送出去。The use of the liveness detection unit 124 also helps to improve and calibrate the measurement accuracy of the non-contact physiological signal detection device 1 of the present invention. In more detail, if the operator uses the light sensing unit 11 of the non-contact physiological signal detection device 1 of the present invention to face a non-living object, the liveness detection unit 124 will immediately determine that the object is not a living object. In this case, the liveness detection unit 124 will notify the warning unit 16 to send a warning message to notify the operator, such as: light message, sound message, text message, image message, etc., or send the warning message through the data output unit 10.
如此,上述已完整且清楚地说明本发明的非接触式的生理信号检测装置的所有实施例及其特征。必须加以强调的是,前述本发明所公开的为较佳实施例,凡是根据本发明构思所作出的各种变化或修饰,皆落入本发明的保护范围。Thus, the above has completely and clearly described all embodiments and features of the non-contact physiological signal detection device of the present invention. It must be emphasized that the above disclosed embodiments of the present invention are preferred embodiments, and all changes or modifications made according to the concept of the present invention fall within the protection scope of the present invention.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910955653.8A CN112617746B (en) | 2019-10-09 | 2019-10-09 | Non-contact physiological signal detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910955653.8A CN112617746B (en) | 2019-10-09 | 2019-10-09 | Non-contact physiological signal detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112617746A CN112617746A (en) | 2021-04-09 |
CN112617746B true CN112617746B (en) | 2024-04-09 |
Family
ID=75283677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910955653.8A Active CN112617746B (en) | 2019-10-09 | 2019-10-09 | Non-contact physiological signal detection device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112617746B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115429235A (en) * | 2021-06-05 | 2022-12-06 | 台北科技大学 | Device for detecting and estimating microvascular physiological parameters |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8798700B1 (en) * | 2008-07-23 | 2014-08-05 | Vioptix, Inc. | Oximeter with marking feature |
CN104968259A (en) * | 2013-02-05 | 2015-10-07 | 皇家飞利浦有限公司 | System and method for determining vital sign information of a subject |
CN105636506A (en) * | 2013-10-17 | 2016-06-01 | 皇家飞利浦有限公司 | Automatic camera adjustment for remote photoplethysmography |
CN106845395A (en) * | 2017-01-19 | 2017-06-13 | 北京飞搜科技有限公司 | A kind of method that In vivo detection is carried out based on recognition of face |
CN107205663A (en) * | 2015-01-19 | 2017-09-26 | 皇家飞利浦有限公司 | Equipment, system and method for skin detection |
CN108471949A (en) * | 2015-10-28 | 2018-08-31 | 光谱Md公司 | The tissue typing multispectral time discrimination optics imaging method of reflective-mode and equipment |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6270287B2 (en) * | 2012-11-23 | 2018-01-31 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Device and method for extracting physiological information |
RU2697291C2 (en) * | 2013-03-06 | 2019-08-13 | Конинклейке Филипс Н.В. | System and method of determining information on basic indicators of body state |
-
2019
- 2019-10-09 CN CN201910955653.8A patent/CN112617746B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8798700B1 (en) * | 2008-07-23 | 2014-08-05 | Vioptix, Inc. | Oximeter with marking feature |
CN104968259A (en) * | 2013-02-05 | 2015-10-07 | 皇家飞利浦有限公司 | System and method for determining vital sign information of a subject |
CN105636506A (en) * | 2013-10-17 | 2016-06-01 | 皇家飞利浦有限公司 | Automatic camera adjustment for remote photoplethysmography |
CN107205663A (en) * | 2015-01-19 | 2017-09-26 | 皇家飞利浦有限公司 | Equipment, system and method for skin detection |
CN108471949A (en) * | 2015-10-28 | 2018-08-31 | 光谱Md公司 | The tissue typing multispectral time discrimination optics imaging method of reflective-mode and equipment |
CN106845395A (en) * | 2017-01-19 | 2017-06-13 | 北京飞搜科技有限公司 | A kind of method that In vivo detection is carried out based on recognition of face |
Also Published As
Publication number | Publication date |
---|---|
CN112617746A (en) | 2021-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12089958B2 (en) | Personal health data collection | |
US9723997B1 (en) | Electronic device that computes health data | |
JP6596089B2 (en) | Methods and equipment for use in allergy testing | |
JP2017029761A (en) | Apparatus, system, and method for tissue oxygen saturation measurement and perfusion imaging | |
JP2010535594A (en) | Sensors and systems providing physiological data and biometric identification | |
CN108324286B (en) | Infrared noninvasive blood glucose detection device based on PCA-NARX correction algorithm | |
TWI772751B (en) | Device and method for liveness detection | |
US11344254B2 (en) | Estimating hydration using capillary refill time | |
US20150112169A1 (en) | Finger-placement sensor | |
WO2021084488A1 (en) | Smartglasses for detecting physiological parameters | |
CN116013514A (en) | An integrated diabetic foot prediction system based on multi-parameter fusion | |
CN112617746B (en) | Non-contact physiological signal detection device | |
CN104680609B (en) | Multi-functional attendance device based on virtual reality technology and use its method | |
TWI772689B (en) | Non-contact physiological signal measuring device | |
CN215305821U (en) | A rapid measurement device for multiple vital signs | |
US20210106232A1 (en) | Non-contact physiological signal measuring device | |
CN210843087U (en) | Ultrasonic doctor emotion quantification device | |
CN110236574B (en) | Method and device for quantifying emotion of sonographer | |
CN113273961B (en) | Living body detection device and method | |
KR20220012581A (en) | Apparatus and method for estimating bio-information | |
KR20220012582A (en) | Apparatus and method for estimating bio-information | |
Neha et al. | Mobile application to collect data and measure blood component level in a non-invasive way | |
Alhammad | Face detection for pulse rate measurement | |
CN110279394A (en) | The method with judgement physiological characteristic is recognized using black light | |
GB2622396A (en) | Real time opto-physiological monitoring method and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |