CN112608875B - Perishable organic solid waste biological drying strain and application thereof - Google Patents
Perishable organic solid waste biological drying strain and application thereof Download PDFInfo
- Publication number
- CN112608875B CN112608875B CN202110248727.1A CN202110248727A CN112608875B CN 112608875 B CN112608875 B CN 112608875B CN 202110248727 A CN202110248727 A CN 202110248727A CN 112608875 B CN112608875 B CN 112608875B
- Authority
- CN
- China
- Prior art keywords
- jyj1
- fwgk
- waste
- organic solid
- solid waste
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001035 drying Methods 0.000 title claims abstract description 66
- 239000002910 solid waste Substances 0.000 title claims abstract description 65
- 241000193419 Geobacillus kaustophilus Species 0.000 claims abstract description 48
- 239000002699 waste material Substances 0.000 claims abstract description 22
- 239000010806 kitchen waste Substances 0.000 claims abstract description 15
- 235000012055 fruits and vegetables Nutrition 0.000 claims abstract description 11
- 239000010802 sludge Substances 0.000 claims abstract description 9
- 210000003608 fece Anatomy 0.000 claims abstract description 6
- 244000144972 livestock Species 0.000 claims abstract description 6
- 239000010871 livestock manure Substances 0.000 claims abstract description 6
- 244000144977 poultry Species 0.000 claims abstract description 6
- 235000013311 vegetables Nutrition 0.000 claims abstract description 4
- 239000002054 inoculum Substances 0.000 claims description 40
- 239000007788 liquid Substances 0.000 claims description 40
- 238000000034 method Methods 0.000 claims description 25
- 239000007787 solid Substances 0.000 claims description 22
- 239000002994 raw material Substances 0.000 claims description 17
- 238000010564 aerobic fermentation Methods 0.000 claims description 13
- 239000003795 chemical substances by application Substances 0.000 claims description 10
- 230000001580 bacterial effect Effects 0.000 claims description 9
- 235000013305 food Nutrition 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- 235000013361 beverage Nutrition 0.000 claims description 5
- 238000002360 preparation method Methods 0.000 claims description 5
- 238000000855 fermentation Methods 0.000 claims description 4
- 230000004151 fermentation Effects 0.000 claims description 3
- 239000007790 solid phase Substances 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 239000002068 microbial inoculum Substances 0.000 claims 5
- 101150084750 1 gene Proteins 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 15
- 244000005700 microbiome Species 0.000 abstract description 9
- 230000006641 stabilisation Effects 0.000 abstract description 3
- 238000011105 stabilization Methods 0.000 abstract description 3
- 230000007613 environmental effect Effects 0.000 abstract description 2
- 241000193385 Geobacillus stearothermophilus Species 0.000 description 18
- 239000002609 medium Substances 0.000 description 18
- 239000000463 material Substances 0.000 description 17
- 230000008859 change Effects 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 9
- 239000010794 food waste Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- 238000012216 screening Methods 0.000 description 6
- 238000009423 ventilation Methods 0.000 description 6
- 238000009278 biodrying Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- 239000001888 Peptone Substances 0.000 description 4
- 108010080698 Peptones Proteins 0.000 description 4
- 229940041514 candida albicans extract Drugs 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000005416 organic matter Substances 0.000 description 4
- 239000010815 organic waste Substances 0.000 description 4
- 235000019319 peptone Nutrition 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000012138 yeast extract Substances 0.000 description 4
- 108020004465 16S ribosomal RNA Proteins 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000009264 composting Methods 0.000 description 3
- 238000012258 culturing Methods 0.000 description 3
- 239000010791 domestic waste Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 241000255925 Diptera Species 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000009270 solid waste treatment Methods 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000013619 trace mineral Nutrition 0.000 description 2
- 239000011573 trace mineral Substances 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 1
- 108010077805 Bacterial Proteins Proteins 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- 241000192125 Firmicutes Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000002154 agricultural waste Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000009246 food effect Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000003864 humus Substances 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
- 235000015099 wheat brans Nutrition 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/02—Biological treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/12—Treatment of sludge; Devices therefor by de-watering, drying or thickening
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Hydrology & Water Resources (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Tropical Medicine & Parasitology (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Virology (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
本发明涉及环境微生物技术领域,特别是涉及一种易腐有机固废生物干化处理菌种及其应用,经鉴定为嗜热地芽孢杆菌Geobacillus kaustophilus,命名为嗜热地芽孢杆菌Geobacillus kaustophilus FWGK‑JYJ1,保藏编号为CCTCC NO:M 2020974。嗜热地芽孢杆菌Geobacillus kaustophilus FWGK‑JYJ1耐高温,自产热能力强,具有快速、高效释放易腐有机固废中水分的能力,可应用于餐饮垃圾、厨余垃圾、果蔬垃圾、尾菜、畜禽养殖粪污、市政污泥等易腐有机固废的生物干化处理过程,实现易腐有机固废的快速干化和稳定化的效果。
The invention relates to the technical field of environmental microorganisms, in particular to a perishable organic solid waste biological drying treatment strain and its application, which has been identified as Geobacillus kaustophilus and named as Geobacillus kaustophilus FWGK‑ JYJ1, the deposit number is CCTCC NO:M 2020974. Geobacillus kaustophilus FWGK‑JYJ1 is resistant to high temperature, has strong self-generating heat capacity, and has the ability to quickly and efficiently release moisture in perishable organic solid waste. It can be used in catering waste, kitchen waste, fruit and vegetable waste, tail vegetables, The biological drying process of perishable organic solid waste such as livestock and poultry manure, municipal sludge, etc., realizes the effect of rapid drying and stabilization of perishable organic solid waste.
Description
技术领域technical field
本发明涉及环境微生物技术领域,特别是涉及一种易腐有机固废生物干化菌种及其应用。The invention relates to the technical field of environmental microorganisms, in particular to a perishable organic solid waste biological drying strain and its application.
背景技术Background technique
随着我国人民生活水平的提高以及城市化进程的不断推进,易腐有机固废的产生量逐年增加。易腐有机固废主要来源于农业废弃物、工业废弃物和生活垃圾。尤其是我国46个城市启动生活垃圾分类以来,生活垃圾来源的易腐有机固废的数量急剧上升。易腐有机固废含水率高、热值低、有机物含量高、易腐烂发臭,给收集、运输以及末端的处理处置都带来了一定的难度。若不经过有效处理,极易引起病原菌繁殖、蚊蝇滋生和水体污染,同时也给人居环境带来巨大压力,因此,易腐有机固废的无害化、减量化、资源化处理迫在眉睫。With the improvement of people's living standards and the continuous advancement of urbanization in our country, the production of perishable organic solid waste has increased year by year. Perishable organic solid waste mainly comes from agricultural waste, industrial waste and domestic waste. Especially since 46 cities in my country started the classification of domestic waste, the amount of perishable organic solid waste from domestic waste has risen sharply. The perishable organic solid waste has high moisture content, low calorific value, high organic content, and perishable odor, which brings certain difficulties to the collection, transportation and terminal treatment. If it is not treated effectively, it will easily lead to the reproduction of pathogenic bacteria, the breeding of mosquitoes and flies and water pollution, and it will also bring huge pressure to the living environment. .
目前国内外常用的易腐有机固废处理技术有干化焚烧、卫生填埋、厌氧消化、好氧堆肥、生态饲料等。每种方法各有优缺点:(1)干化焚烧:能够将有机固废中的有机成分彻底氧化分解,减量率高达50%-80%。但由于某些有机固废(如餐厨垃圾)含水率高,并不适合直接进焚烧炉焚烧,必须经干化预处理。(2)卫生填埋:将有机固废埋入地下,利用各类微生物将大分子充分降解为小分子。其处理成本低、技术简单、适合各种有机固废,发展中国家应用较多。但存在重大安全隐患,产生的甲烷等气体可能发生爆炸,渗滤液容易污染地下水,同时资源回收利用率基本为零、占用大量土地,不适合用地紧张的地区。(3)厌氧消化:在无氧条件下利用兼性/厌氧微生物的代谢作用实现对有机固废的减容减量及资源化利用。其自动化程度高、所需人力少、容易控制恶臭气体散发、产品多样化、经济价值高。但微生物对酸碱度要求高,处理技术相对复杂,反应器内生物启动时间长;厌氧发酵产生的沼液和沼渣处理仍是一大难题。(4)好氧堆肥:在有氧条件下利用好氧微生物对有机固废中的有机物进行生物降解,最终形成稳定的高肥力腐殖质。其技术简单、便于推广、资源化利用率高。但占地面积大、堆肥过程产生臭气、经济效益不高。(5)生态饲料:利用某些有机固废(如餐厨垃圾)发酵生产生态饲料。在日本发展较好,我国主要是发酵生产菌体蛋白。由于餐厨垃圾饲料化具有潜在的食物链风险,在生产和使用时需谨慎操作,并制定相应的行业标准与法律法规来保证其安全性。总体而言,目前易腐有机固废处理技术仍存在处理效率低、资源浪费、二次污染严重等问题。At present, the commonly used perishable organic solid waste treatment technologies at home and abroad include dry incineration, sanitary landfill, anaerobic digestion, aerobic composting, and ecological feed. Each method has its own advantages and disadvantages: (1) Dry incineration: It can completely oxidize and decompose the organic components in the organic solid waste, and the reduction rate is as high as 50%-80%. However, due to the high moisture content of some organic solid wastes (such as kitchen waste), they are not suitable for direct incineration and must be pretreated by drying. (2) Sanitary landfill: The organic solid waste is buried underground, and various microorganisms are used to fully degrade macromolecules into small molecules. Its processing cost is low, the technology is simple, and it is suitable for various organic solid wastes, and is widely used in developing countries. However, there are major safety hazards. The generated methane and other gases may explode, and the leachate is likely to pollute the groundwater. At the same time, the resource recovery rate is basically zero, occupying a lot of land, and it is not suitable for areas with tight land use. (3) Anaerobic digestion: Under anaerobic conditions, the metabolism of facultative/anaerobic microorganisms is used to achieve volume reduction and resource utilization of organic solid waste. It has a high degree of automation, requires less manpower, is easy to control the emission of malodorous gases, has diversified products, and has high economic value. However, microorganisms have high requirements for pH, relatively complex treatment technology, and long biological start-up time in the reactor; the treatment of biogas slurry and biogas residue produced by anaerobic fermentation is still a major problem. (4) Aerobic composting: Under aerobic conditions, aerobic microorganisms are used to biodegrade the organic matter in the organic solid waste, and finally a stable high-fertility humus is formed. The technology is simple, easy to popularize, and high in resource utilization. However, the area is large, the composting process produces odor, and the economic benefit is not high. (5) Ecological feed: use some organic solid waste (such as kitchen waste) to ferment and produce ecological feed. It has developed better in Japan, and our country mainly produces bacterial protein by fermentation. Due to the potential food chain risks of food waste feed, it is necessary to operate with caution during production and use, and formulate corresponding industry standards and laws and regulations to ensure its safety. In general, the current perishable organic solid waste treatment technology still has problems such as low treatment efficiency, waste of resources, and serious secondary pollution.
生物干化是近几年兴起的一种易腐有机固废干化预处理技术。与热干化不同,它无需消耗外界热能,而是利用高温好氧微生物,代谢原料中可生物降解的有机组分,分解释放热量,在干化仓内形成持续稳定的高温环境(50-75 ℃),使原料中的液态水分受热蒸发为气态水,再由通风系统将干化仓内的水蒸气排出,从而降低原料中的水分。这种方式既不消耗外源热能,又可提高原料低位热值,有利于热能回收利用,还能使可生物降解有机物部分稳定化,减少后续处理过程中污染物的污染潜力。生物干化技术追求的目标是通过最小的有机物降解实现最大的水分去除,快速降低有机物料中的水分。经生物干化预处理后得到的含水率较低的有机固废,仍保留了大部分有机物,具有较高的热值,可以直接焚烧处理,或进一步加工制备垃圾衍生燃料。但目前易腐有机固废的生物干化仍存在启动慢、高温持续时间短、干化效果差等技术问题。造成这一问题的主要原因是由于原料的土著微生物中高温、高效功能微生物种类少、浓度低、活性差。因此筛选耐高温且自产热能力强的功能微生物菌种,实现易腐有机固废的快速高效生物干化处理,成为亟待解决的问题。Biological drying is a drying pretreatment technology for perishable organic solid waste that has emerged in recent years. Different from thermal drying, it does not need to consume external heat energy, but uses high-temperature aerobic microorganisms to metabolize biodegradable organic components in raw materials, decompose and release heat, and form a continuous and stable high-temperature environment (50-75%) in the drying chamber. ℃), the liquid water in the raw material is heated and evaporated into gaseous water, and then the water vapor in the drying chamber is discharged by the ventilation system, thereby reducing the moisture in the raw material. This method does not consume external heat energy, and can improve the low calorific value of raw materials, which is conducive to the recovery and utilization of heat energy, and can also partially stabilize the biodegradable organic matter, reducing the pollution potential of pollutants in the subsequent treatment process. The goal pursued by bio-drying technology is to achieve maximum water removal through minimum degradation of organic matter, and to rapidly reduce the moisture in organic materials. The organic solid waste with low moisture content obtained after biological drying pretreatment still retains most of the organic matter and has a high calorific value, which can be directly incinerated or further processed to prepare waste-derived fuel. However, the current biological drying of perishable organic solid waste still has technical problems such as slow start-up, short duration of high temperature, and poor drying effect. The main reason for this problem is that the indigenous microorganisms in the raw materials have high temperature, few species of high-efficiency functional microorganisms, low concentration and poor activity. Therefore, it is an urgent problem to screen functional microbial strains with high temperature resistance and strong self-heating ability to realize fast and efficient biological drying treatment of perishable organic solid waste.
发明内容SUMMARY OF THE INVENTION
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种易腐有机固废生物干化菌种及其应用,用于解决现有技术中的问题。In view of the above-mentioned shortcomings of the prior art, the purpose of the present invention is to provide a perishable organic solid waste biological drying strain and its application, which are used to solve the problems in the prior art.
为实现上述目的及其他相关目的,本发明提供一种嗜热地芽孢杆菌Geobacillus kaustophilus FWGK-JYJ1,保藏编号为CCTCC NO: M 2020974。In order to achieve the above object and other related objects, the present invention provides a Geobacillus kaustophilus FWGK -JYJ1, the deposit number is CCTCC NO: M 2020974.
本发明还提供一种液体菌剂,所述液体菌剂包括所述嗜热地芽孢杆菌Geobacillus kaustophilus FWGK-JYJ1,所述液体菌剂中嗜热地芽孢杆菌Geobacillus kaustophilus FWGK-JYJ1的浓度至少为1×108 cfu/mL。The present invention also provides a liquid inoculum, the liquid inoculum comprises the Geobacillus kaustophilus FWGK-JYJ1, and the concentration of the Geobacillus kaustophilus FWGK -JYJ1 in the liquid inoculum is at least 1 ×10 8 cfu/mL.
本发明还提供所述液体菌剂的制备方法,包括如下步骤:将所述嗜热地芽孢杆菌Geobacillus kaustophilus FWGK-JYJ1的纯菌种接种于液体培养基中培养,培养结束后即得到液体菌剂。The present invention also provides a method for preparing the liquid inoculum, comprising the following steps: inoculating the pure strain of the Geobacillus kaustophilus FWGK-JYJ1 in a liquid medium for cultivation, and obtaining a liquid inoculum after the cultivation is completed .
本发明还提供一种固体菌剂,所述的固体菌剂包括所述嗜热地芽孢杆菌Geobacillus kaustophilus FWGK-JYJ1与载体。The present invention also provides a solid inoculum comprising the Geobacillus kaustophilus FWGK-JYJ1 and a carrier.
本发明还提供所述固体菌剂的制备方法,包括如下步骤:将载体与所述液体菌剂按照质量比1:1~1:10混合后进行干燥。The present invention also provides a method for preparing the solid inoculum, comprising the following steps: mixing the carrier and the liquid inoculum in a mass ratio of 1:1 to 1:10, and then drying.
本发明还提供所述嗜热地芽孢杆菌Geobacillus kaustophilus FWGK-JYJ1在易腐有机固废生物干化中的应用。The invention also provides the application of the Geobacillus kaustophilus FWGK-JYJ1 in the biological drying of perishable organic solid waste.
本发明还提供一种易腐有机固废生物干化的方法,所述方法包括如下步骤:将所述的固体菌剂与易腐有机固废原料混合后进行好氧发酵。The invention also provides a method for biological drying of perishable organic solid waste, the method comprising the steps of: mixing the solid inoculum with the raw material of perishable organic solid waste and performing aerobic fermentation.
如上所述,本发明的一种易腐有机固废生物干化菌种及其应用,具有以下有益效果:As mentioned above, a kind of perishable organic solid waste biological drying bacteria and application thereof of the present invention have the following beneficial effects:
(1)本发明所述的嗜热地芽孢杆菌Geobacillus kaustophilus FWGK-JYJ1,好氧发酵自产热能力强,可使物料最高温度达75 ℃;(1) The Geobacillus kaustophilus FWGK-JYJ1 of the present invention has a strong self-producing heat capacity by aerobic fermentation, which can make the maximum temperature of the material reach 75 °C;
(2)本发明所述的嗜热地芽孢杆菌Geobacillus kaustophilus FWGK-JYJ1,具有耐高温能力,可在高温(50~75 ℃)条件下正常生长并对易腐有机固废原料进行快速干化,20 h以内可使易腐有机固废含水率由80%左右降低至40%左右;(2) The Geobacillus kaustophilus FWGK-JYJ1 described in the present invention has high temperature resistance, can grow normally under high temperature (50~75 ℃) conditions, and quickly dry perishable organic solid waste raw materials, The moisture content of perishable organic solid waste can be reduced from about 80% to about 40% within 20 hours;
(3)本发明所述的嗜热地芽孢杆菌Geobacillus kaustophilus FWGK-JYJ1,具有耐高盐能力,可以对含盐量较高的餐饮垃圾等易腐有机固废进行生物干化处理。(3) The Geobacillus kaustophilus FWGK-JYJ1 described in the present invention has the ability to tolerate high salt, and can perform biological drying treatment on perishable organic solid wastes such as food and beverage waste with high salt content.
综合以上特点,嗜热地芽孢杆菌Geobacillus kaustophilusFWGK-JYJ1可强化应用于易腐有机固废生物干化处理,解决易腐有机固废干化成本高,自然生物干化时间长等问题,实现易腐有机固废的无害化处理和资源化利用。Based on the above characteristics, Geobacillus kaustophilus FWGK-JYJ1 can be strengthened and applied to the biological drying treatment of perishable organic solid waste, solving the problems of high drying cost of perishable organic solid waste and long natural biological drying time. Harmless treatment and resource utilization of rot organic solid waste.
附图说明Description of drawings
图1显示为本发明的菌株FWGK-JYJ1的系统进化树。Figure 1 shows the phylogenetic tree of the strain FWGK-JYJ1 of the present invention.
图2显示为本发明的菌株FWGK-JYJ1对餐饮垃圾生物干化过程的含水率变化。Figure 2 shows the change of water content in the process of biological drying of food waste by strain FWGK-JYJ1 of the present invention.
图3显示为本发明的菌株FWGK-JYJ1对厨余垃圾生物干化过程的含水率变化。FIG. 3 shows the change of water content in the biological drying process of kitchen waste by the strain FWGK-JYJ1 of the present invention.
图4显示为本发明的菌株FWGK-JYJ1对果蔬垃圾生物干化过程的含水率变化。Figure 4 shows the change of water content in the biological drying process of fruit and vegetable waste by the strain FWGK-JYJ1 of the present invention.
图5显示为本发明的菌株FWGK-JYJ1对市政污泥生物干化过程的含水率变化。Figure 5 shows the change of water content in the biological drying process of municipal sludge by strain FWGK-JYJ1 of the present invention.
图6显示为本发明的菌株FWGK-JYJ1对混合易腐有机固废生物干化过程的含水率变化。FIG. 6 shows the change of water content in the biological drying process of mixed perishable organic solid waste by strain FWGK-JYJ1 of the present invention.
具体实施方式Detailed ways
发明人通过分离培养基初筛、菌株生长温度复筛、易腐有机固废生物干化实验验证,得到一株高效易腐有机固废生物干化菌种。The inventor obtained a high-efficiency perishable organic solid waste bio-drying strain through preliminary screening of the separation medium, re-screening of the strain growth temperature, and experimental verification of the perishable organic solid waste biological drying.
本发明第一方面提供一种易腐有机固废生物干化菌种,通过菌落和细胞形态、生理生化特征、16S rDNA基因序列测定等数据综合分析,将该菌种鉴定为嗜热地芽孢杆菌Geobacillus kaustophilus,保藏于中国典型培养物保藏中心CCTCC,菌种名称为Geobacillus kaustophilus FWGK-JYJ1,保藏日期为2020.12.28,保藏编号为CCTCC NO: M2020974,保藏地址为中国.武汉.武汉大学。The first aspect of the present invention provides a perishable organic solid waste biological drying strain, which is identified as Geobacillus thermophilus through comprehensive analysis of data such as colony and cell morphology, physiological and biochemical characteristics, and 16S rDNA gene sequence determination. Geobacillus kaustophilus is deposited in CCTCC, China Collection Center for Type Cultures. The strain name is Geobacillus kaustophilus FWGK-JYJ1.
所述易腐有机固废是指容易腐烂变质的有机固体废弃物总称。易腐有机固废大体分为农业有机废物、工业有机废物和市政有机废物。市政有机废物主要包括餐饮垃圾、厨余垃圾、果蔬垃圾、畜禽养殖粪污、市政污泥等。The perishable organic solid waste refers to the general term for organic solid wastes that are prone to decay and deterioration. Perishable organic solid waste is roughly divided into agricultural organic waste, industrial organic waste and municipal organic waste. Municipal organic waste mainly includes catering waste, kitchen waste, fruit and vegetable waste, livestock and poultry manure, municipal sludge, etc.
所述嗜热地芽孢杆菌Geobacillus kaustophilus FWGK-JYJ1,包括如SEQ IDNO.1所示的基因序列。The Geobacillus kaustophilus FWGK-JYJ1 includes the gene sequence shown in SEQ ID NO.1.
所述嗜热地芽孢杆菌Geobacillus kaustophilus FWGK-JYJ1为革兰氏阳性菌、杆状,菌落形态为圆形、淡黄色、边缘整齐、表面光滑有光泽。The Geobacillus kaustophilus FWGK-JYJ1 is a gram-positive bacterium, rod-shaped, and the colony shape is round, pale yellow, with neat edges, and a smooth and shiny surface.
所述嗜热地芽孢杆菌Geobacillus kaustophilus FWGK-JYJ1耐高温,可在高温50~75 ℃条件下正常生长。The Geobacillus kaustophilus FWGK-JYJ1 is resistant to high temperature and can grow normally under high temperature conditions of 50-75°C.
所述嗜热地芽孢杆菌Geobacillus kaustophilus FWGK-JYJ1好氧发酵自产热。在一种实施方式中,所述嗜热地芽孢杆菌Geobacillus kaustophilus FWGK-JYJ1能使物料的温度达75 ℃。The aerobic fermentation of Geobacillus kaustophilus FWGK-JYJ1 self-produces heat. In one embodiment, the Geobacillus kaustophilus FWGK-JYJ1 enables the temperature of the material to reach 75°C.
在一种实施方式中,可将所述嗜热地芽孢杆菌Geobacillus kaustophilus FWGK-JYJ1制成液体菌剂或固体菌剂进行生物干化。In one embodiment, the Geobacillus kaustophilus FWGK-JYJ1 can be made into a liquid inoculum or a solid inoculum for biological drying.
所述嗜热地芽孢杆菌Geobacillus kaustophilus FWGK-JYJ1对易腐有机固废生物干化处理,16~20小时后,生物干化率相对于不含嗜热地芽孢杆菌Geobacillus kaustophilus FWGK-JYJ1的对照组提高83%以上。The bio-drying treatment of perishable organic solid waste by Geobacillus kaustophilus FWGK-JYJ1, after 16-20 hours, the bio-drying rate is relative to the control group without Geobacillus kaustophilus FWGK -JYJ1 increased by more than 83%.
易腐有机固废生物干化处理包括如下步骤:The biological drying treatment of perishable organic solid waste includes the following steps:
1)向易腐有机固废原料中加入嗜热地芽孢杆菌Geobacillus kaustophilusFWGK-JYJ1的固体菌剂,固体菌剂的质量为易腐有机固废原料质量的0.5%;1) Add the solid inoculum of Geobacillus kaustophilus FWGK-JYJ1 to the perishable organic solid waste raw material, and the quality of the solid inoculum is 0.5% of the quality of the perishable organic solid waste raw material;
2)好氧发酵16 h或20h,过程中每小时对物料搅拌一次,通风速率为30 mL/min;2) Aerobic fermentation for 16 h or 20 h, the material is stirred once per hour during the process, and the ventilation rate is 30 mL/min;
3)每4 h通过烘干法测定物料的含水率,利用公式(1)计算生物干化率。3) The moisture content of the material is determined by the drying method every 4 hours, and the biological drying rate is calculated using the formula (1).
以上步骤中对照组除不加嗜热地芽孢杆菌Geobacillus kaustophilus FWGK-JYJ1的固体菌剂外,剩余操作完全相同。In the above steps, the remaining operations are exactly the same except that the solid inoculum of Geobacillus kaustophilus FWGK-JYJ1 is not added in the control group.
生物干化率=(ω0-ω1)/ω0 (1)Biological drying rate=(ω0-ω1)/ω0 (1)
公式(1)中,ω0为物料初始含水率,ω1为物料任一时刻含水率。In formula (1), ω0 is the initial moisture content of the material, and ω1 is the moisture content of the material at any time.
实验组(即含有嗜热地芽孢杆菌Geobacillus kaustophilus FWGK-JYJ1)的生物干化率相对于对照组(即不含嗜热地芽孢杆菌Geobacillus kaustophilus FWGK-JYJ1)的生物干化率的提高按照以下公式(2)计算:The increase in the biological drying rate of the experimental group (ie, containing Geobacillus kaustophilus FWGK-JYJ1) relative to that of the control group (ie, without Geobacillus kaustophilus FWGK-JYJ1) was calculated according to the following formula (2) Calculate:
生物干化率的提高=(实验组的生物干化率-对照组的生物干化率)/对照组的生物干化率×100% (2)The increase of the biological drying rate = (the biological drying rate of the experimental group - the biological drying rate of the control group)/the biological drying rate of the control group × 100% (2)
易腐有机固废原料包括餐饮垃圾、厨余垃圾、果蔬垃圾、畜禽养殖粪污、市政污泥。Perishable organic solid waste raw materials include food and beverage waste, kitchen waste, fruit and vegetable waste, livestock and poultry manure, and municipal sludge.
本发明第二方面提供一种液体菌剂,所述液体菌剂包含嗜热地芽孢杆菌Geobacillus kaustophilus FWGK-JYJ1,所述液体菌剂中嗜热地芽孢杆菌Geobacillus kaustophilus FWGK-JYJ1的浓度至少为1×108 cfu/mL。A second aspect of the present invention provides a liquid inoculum, the liquid inoculum comprises Geobacillus kaustophilus FWGK-JYJ1, and the concentration of Geobacillus kaustophilus FWGK -JYJ1 in the liquid inoculum is at least 1 ×10 8 cfu/mL.
本发明第三方面提供所述液体菌剂的制备方法,至少包括如下步骤:将嗜热地芽孢杆菌Geobacillus kaustophilus FWGK-JYJ1的纯菌种接种于液体培养基中培养,培养结束后即得到液体菌剂。A third aspect of the present invention provides a method for preparing the liquid bacterial agent, which at least includes the following steps: inoculating a pure strain of Geobacillus kaustophilus FWGK-JYJ1 in a liquid medium for cultivation, and obtaining a liquid bacteria after the cultivation is completed. agent.
在一种实施方式中,将嗜热地芽孢杆菌Geobacillus kaustophilus FWGK-JYJ1的纯菌种接种至液体培养基中培养后,再将获得的培养液接种至另一液体培养基扩大培养,培养结束后获得液体菌剂。In one embodiment, the pure strain of Geobacillus kaustophilus FWGK-JYJ1 is inoculated into a liquid medium for cultivation, and then the obtained culture solution is inoculated into another liquid medium for expansion cultivation. Obtain a liquid inoculum.
在一种实施方式中,培养的温度为40~60 ℃。In one embodiment, the temperature of the cultivation is 40-60°C.
在一种实施方式中,培养的搅拌速度为150~230 r/min。In one embodiment, the stirring speed of the culture is 150-230 r/min.
在一种实施方式中,将嗜热地芽孢杆菌Geobacillus kaustophilus FWGK-JYJ1的纯菌种接种至液体培养基中培养12~16 h后再接种至另一液体培养基中扩大培养。In one embodiment, the pure strain of Geobacillus kaustophilus FWGK-JYJ1 is inoculated into a liquid medium for culturing for 12-16 hours, and then inoculated into another liquid medium for expansion culture.
在一种实施方式中,扩大培养16~20 h即可得到该菌株的液体菌剂。In one embodiment, the liquid bacterial agent of the strain can be obtained by expanding the culture for 16-20 h.
液体培养基组成为:蛋白胨3 g/L、酵母提取物2 g/L、NaCl 3 g/L、MgCl2 0.125g/L、CaCl2 0.5 g/L、FeSO4·7H2O 0.01 g/L、微量元素溶液(Na2MoO4 12 g/L、VOSO4·xH2O1 g/L、MnCl2 5 g/L、ZnSO4·7H2O 0.6 g/L、CuSO4·5H2O 0.15 g/L、CoCl2·6H2O 8 g/L、NiCl2·6H2O 0.2 g/L)100 μL/L,pH值调节为7~7.5。The composition of liquid medium is: peptone 3 g/L, yeast extract 2 g/L, NaCl 3 g/L, MgCl 2 0.125 g/L, CaCl 2 0.5 g/L, FeSO 4 7H 2 O 0.01 g/L , trace element solution (Na 2 MoO 4 12 g/L, VOSO 4 ·xH 2 O1 g/L, MnCl 2 5 g/L, ZnSO 4 ·7H 2 O 0.6 g/L, CuSO 4 ·5H 2 O 0.15 g /L, CoCl 2 ·6H 2 O 8 g/L, NiCl 2 ·6H 2 O 0.2 g/L) 100 μL/L, pH was adjusted to 7~7.5.
本发明第四方面提供一种固体菌剂,所述固体菌剂包括所述嗜热地芽孢杆菌Geobacillus kaustophilus FWGK-JYJ1与载体。A fourth aspect of the present invention provides a solid inoculum comprising the Geobacillus kaustophilus FWGK-JYJ1 and a carrier.
所述载体为固相载体。所述固相载体例如为淀粉、环糊精、黄原胶、木屑、稻壳、麦麸。The carrier is a solid phase carrier. The solid phase carrier is, for example, starch, cyclodextrin, xanthan gum, wood chips, rice husk, and wheat bran.
本发明第五方面提供所述固体菌剂的制备方法,将载体与所述液体菌剂按照质量比为1:1~1:10混合、干燥。A fifth aspect of the present invention provides a method for preparing the solid inoculum, comprising mixing and drying the carrier and the liquid inoculum in a mass ratio of 1:1 to 1:10.
所述载体与液体菌剂的质量比例如为1:2、1:3、1:4、1:5、1:6、1:7、1:8、1:9。The mass ratio of the carrier to the liquid bacterial agent is, for example, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9.
所述干燥条件是将混合物干燥至含水率为10%以下。The drying conditions are drying the mixture to a moisture content of 10% or less.
本发明第六方面提供所述嗜热地芽孢杆菌Geobacillus kaustophilus FWGK-JYJ1在易腐有机固废生物干化中的应用。The sixth aspect of the present invention provides the application of the Geobacillus kaustophilus FWGK-JYJ1 in the biological drying of perishable organic solid waste.
本发明第七方面提供一种易腐有机固废生物干化的方法,所述方法包括如下步骤:将所述固体菌剂与易腐有机固废原料混合后进行好氧发酵。A seventh aspect of the present invention provides a method for biological drying of perishable organic solid waste, the method comprising the steps of: mixing the solid inoculum with the perishable organic solid waste raw material and performing aerobic fermentation.
在一种实施方式中,所述固体菌剂的质量为易腐有机固废原料质量的0.1%-1%;In one embodiment, the quality of the solid bacterial agent is 0.1%-1% of the quality of the perishable organic solid waste raw material;
在一种实施方式中,好氧发酵过程中通风、搅拌。通风搅拌可保证物料温度均匀且在好氧条件下进行。In one embodiment, aeration and agitation are performed during aerobic fermentation. Ventilation and stirring can ensure that the temperature of the material is uniform and carried out under aerobic conditions.
好氧发酵时间可根据物料的不同具体确定。在一种实施方式中,好氧发酵的时间为10小时以上。好氧发酵时间例如为10~15小时、15~20小时、20~25小时或更长时间。Aerobic fermentation time can be determined according to different materials. In one embodiment, the time for aerobic fermentation is 10 hours or more. The aerobic fermentation time is, for example, 10 to 15 hours, 15 to 20 hours, 20 to 25 hours or more.
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。The embodiments of the present invention are described below through specific specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification. The present invention can also be implemented or applied through other different specific embodiments, and various details in this specification can also be modified or changed based on different viewpoints and applications without departing from the spirit of the present invention.
在进一步描述本发明具体实施方式之前,应理解,本发明的保护范围不局限于下述特定的具体实施方案;还应当理解,本发明实施例中使用的术语是为了描述特定的具体实施方案,而不是为了限制本发明的保护范围;在本发明说明书和权利要求书中,除非文中另外明确指出,单数形式“一个”、“一”和“这个”包括复数形式。Before further describing the specific embodiments of the present invention, it should be understood that the protection scope of the present invention is not limited to the following specific specific embodiments; it should also be understood that the terms used in the examples of the present invention are for describing specific specific embodiments, Rather than limiting the scope of the invention; in the specification and claims of the present invention, the singular forms "a", "an" and "the" include the plural forms unless the context clearly dictates otherwise.
当实施例给出数值范围时,应理解,除非本发明另有说明,每个数值范围的两个端点以及两个端点之间任何一个数值均可选用。除非另外定义,本发明中使用的所有技术和科学术语与本技术领域技术人员通常理解的意义相同。除实施例中使用的具体方法、设备、材料外,根据本技术领域的技术人员对现有技术的掌握及本发明的记载,还可以使用与本发明实施例中所述的方法、设备、材料相似或等同的现有技术的任何方法、设备和材料来实现本发明。When numerical ranges are given in the examples, it is to be understood that, unless otherwise indicated herein, both endpoints of each numerical range and any number between the two endpoints may be selected. Unless otherwise defined, all technical and scientific terms used in the present invention have the same meaning as commonly understood by one of ordinary skill in the art. In addition to the specific methods, equipment and materials used in the embodiments, according to the mastery of the prior art by those skilled in the art and the description of the present invention, the methods, equipment and materials described in the embodiments of the present invention can also be used Any methods, devices and materials similar or equivalent to those of the prior art can be used to implement the present invention.
以下是本发明的实施例所用到的培养基及其配方:The following are the culture medium used in the embodiments of the present invention and its formulation:
分离纯化培养基:蛋白胨3 g/L、酵母提取物2 g/L、NaCl 3 g/L、MgCl2 0.125 g/L、CaCl2 0.5 g/L、FeSO4·7H2O 0.01 g/L、微量元素溶液(Na2MoO4 12 g/L、VOSO4·xH2O 1g/L、MnCl2 5 g/L、ZnSO4·7H2O 0.6 g/L、CuSO4·5H2O 0.15 g/L、CoCl2·6H2O 8 g/L、NiCl2·6H2O 0.2 g/L)100 μL/L,琼脂20 g/L,pH值调节为7~7.5。Separation and purification medium: peptone 3 g/L, yeast extract 2 g/L, NaCl 3 g/L, MgCl 2 0.125 g/L, CaCl 2 0.5 g/L, FeSO 4 7H 2 O 0.01 g/L, Trace element solution (Na 2 MoO 4 12 g/L, VOSO 4 ·xH 2 O 1g/L, MnCl 2 5 g/L, ZnSO 4 ·7H 2 O 0.6 g/L, CuSO 4 ·5H 2 O 0.15 g/L L, CoCl 2 ·6H 2 O 8 g/L, NiCl 2 ·6H 2 O 0.2 g/L) 100 μL/L, agar 20 g/L, pH adjusted to 7~7.5.
种子培养基:蛋白胨3 g/L、酵母提取物2 g/L、NaCl 3 g/L、MgCl2 0.125 g/L、CaCl2 0.5 g/L、FeSO4·7H2O 0.01 g/L、微量元素溶液(Na2MoO4 12 g/L、VOSO4·xH2O 1 g/L、MnCl2 5 g/L、ZnSO4·7H2O 0.6 g/L、CuSO4·5H2O 0.15 g/L、CoCl2·6H2O 8 g/L、NiCl2·6H2O 0.2 g/L)100 μL/L,pH值调节为7~7.5。Seed medium: peptone 3 g/L, yeast extract 2 g/L, NaCl 3 g/L, MgCl 2 0.125 g/L, CaCl 2 0.5 g/L, FeSO 4 7H 2 O 0.01 g/L, trace Elemental solution (Na 2 MoO 4 12 g/L, VOSO 4 ·xH 2 O 1 g/L, MnCl 2 5 g/L, ZnSO 4 ·7H 2 O 0.6 g/L, CuSO 4 ·5H 2 O 0.15 g/L L, CoCl 2 ·6H 2 O 8 g/L, NiCl 2 ·6H 2 O 0.2 g/L) 100 μL/L, and the pH value was adjusted to 7~7.5.
液体培养基:蛋白胨3 g/L、酵母提取物2 g/L、NaCl 3 g/L、MgCl2 0.125 g/L、CaCl2 0.5 g/L、FeSO4·7H2O 0.01 g/L、微量元素溶液(Na2MoO4 12 g/L、VOSO4·xH2O 1 g/L、MnCl2 5 g/L、ZnSO4·7H2O 0.6 g/L、CuSO4·5H2O 0.15 g/L、CoCl2·6H2O 8 g/L、NiCl2·6H2O 0.2 g/L)100 μL/L,pH值调节为7~7.5。Liquid medium: peptone 3 g/L, yeast extract 2 g/L, NaCl 3 g/L, MgCl 2 0.125 g/L, CaCl 2 0.5 g/L, FeSO 4 7H 2 O 0.01 g/L, trace Elemental solution (Na 2 MoO 4 12 g/L, VOSO 4 ·xH 2 O 1 g/L, MnCl 2 5 g/L, ZnSO 4 ·7H 2 O 0.6 g/L, CuSO 4 ·5H 2 O 0.15 g/L L, CoCl 2 ·6H 2 O 8 g/L, NiCl 2 ·6H 2 O 0.2 g/L) 100 μL/L, and the pH value was adjusted to 7~7.5.
以上培养基配制好后,均在121 ℃下高压蒸汽灭菌15 min,备用。After the above media were prepared, they were all sterilized by autoclaving at 121 °C for 15 min.
实施例1:菌株FWGK-JYJ1的分离筛选及性能测定Example 1: Isolation, screening and performance determination of strain FWGK-JYJ1
本发明菌株FWGK-JYJ1的分离纯化过程:试验样品采集自某餐饮垃圾处理厂高温好氧发酵罐,加入无菌水混匀后,进行梯度稀释,将不同梯度的稀释液取200 μL涂布于分离纯化培养基平板上,于50 ℃恒温培养箱中培养24~48 h后,挑取形态大小不同的单菌落,划线纯化后编号保藏,经初筛共得到41个菌株。The separation and purification process of the strain FWGK-JYJ1 of the present invention: the test sample is collected from a high-temperature aerobic fermentation tank of a food and beverage waste treatment plant, and after adding sterile water and mixing, gradient dilution is performed, and 200 μL of different gradient dilutions are spread on After culturing in a constant temperature incubator at 50 °C for 24-48 h on the separation and purification medium plate, single colonies with different shapes and sizes were picked, streaked and purified, and numbered for storage. A total of 41 strains were obtained through primary screening.
对初筛获得的菌株进行最高生长温度复筛,将菌株在固体培养基上划线并置于温度梯度为50、55、60、65、70、75、80 ℃的培养箱内,记录其生长情况,筛选最高生长温度为60℃以上的耐高温菌株,经复筛共得到15个菌株。The strains obtained from the primary screening were screened at the highest growth temperature, and the strains were streaked on the solid medium and placed in an incubator with a temperature gradient of 50, 55, 60, 65, 70, 75, and 80 °C, and their growth was recorded. In some cases, the high temperature resistant strains with the highest growth temperature above 60°C were screened, and a total of 15 strains were obtained after rescreening.
将复筛得到的菌株接种至种子培养基,50 ℃、180 r/min培养16 h,然后再以1%的接种量接入到同样的液体培养基中扩大培养,50 ℃、180 r/min培养16~20 h,即可得到该菌株的液体菌剂。取200 mL液体菌剂,离心后用无菌生理盐水洗涤,重悬至5 mL,加入到1000 g餐饮垃圾(取自中国科学院上海高等研究院单位食堂)中搅拌均匀,进行生物干化实验好氧发酵,过程中每小时对物料搅拌一次,通风速率为30 mL/min。结果显示接种菌株FWGK-JYJ1的餐饮垃圾干化效果最为明显,在24 h时含水率由初始含水率81%降低至38%,即生物干化率为53.1%。The strains obtained by re-screening were inoculated into the seed medium, cultured at 50 °C, 180 r/min for 16 h, and then transferred to the same liquid medium with 1% inoculum for expansion culture, at 50 °C, 180 r/min. After culturing for 16-20 h, the liquid inoculum of the strain can be obtained. Take 200 mL of the liquid bacterial agent, wash it with sterile saline after centrifugation, resuspend it to 5 mL, add it to 1000 g of food waste (taken from the canteen of the Shanghai Institutes for Advanced Study, Chinese Academy of Sciences), stir well, and conduct a biological drying experiment. Oxygen fermentation, the material was stirred once per hour during the process, and the ventilation rate was 30 mL/min. The results showed that the drying effect of the food waste inoculated with the strain FWGK-JYJ1 was the most obvious, and the moisture content decreased from the initial moisture content of 81% to 38% at 24 h, that is, the biological drying rate was 53.1%.
菌株FWGK-JYJ1的主要生物学特性为革兰氏阳性菌、杆状,菌落形态为圆形、淡黄色、边缘整齐、表面光滑有光泽。菌株FWGK-JYJ1的最高耐受温度为75 ℃,高于75℃时不生长。所述菌株的16S rDNA序列如SEQ ID NO.1所示,在NCBI提交16S rDNA序列,通过软件与GenBank进行同源性序列比对分析,应用MEGA X软件构建该菌株系统发育树(图1)。综合以上信息,鉴定菌株FWGK-JYJ1为嗜热地芽孢杆菌Geobacillus kaustophilus。The main biological characteristics of strain FWGK-JYJ1 are Gram-positive bacteria, rod-shaped, and the colony shape is round, light yellow, neat edge, smooth and shiny surface. The maximum temperature tolerance of strain FWGK-JYJ1 is 75 ℃, and it does not grow when it is higher than 75 ℃. The 16S rDNA sequence of the strain is shown in SEQ ID NO. 1. The 16S rDNA sequence was submitted to NCBI, and the homology sequence alignment analysis was performed with the software and GenBank, and the MEGA X software was used to construct the phylogenetic tree of the strain (Figure 1). . Based on the above information, the strain FWGK-JYJ1 was identified as Geobacillus kaustophilus .
实施例2:菌株FWGK-JYJ1的菌剂制备Example 2: Preparation of bacterial agent of strain FWGK-JYJ1
液体菌剂的制备:将FWGK-JYJ1纯菌种接种于5个10 mL种子培养基中,于50 ℃、180 r/min的恒温摇床中培养12 h,然后再以液体培养基体积的1%的接种量接入到5 L液体培养基中扩大培养,50 ℃、180 r/min培养18 h,即可得到该菌株的液体菌剂。Preparation of liquid inoculum: FWGK-JYJ1 pure strain was inoculated into five 10 mL seed medium, cultured in a constant temperature shaker at 50 °C and 180 r/min for 12 h, and then added to 1 volume of liquid medium. % of the inoculum was transferred into 5 L liquid medium for expanded culture, and cultured at 50 °C and 180 r/min for 18 h to obtain the liquid inoculum of the strain.
固体菌剂的制备:将淀粉与该菌株的液体菌剂按照质量比1:5混合、喷雾干燥制备而成。Preparation of solid inoculum: The starch and the liquid inoculum of the strain are mixed in a mass ratio of 1:5 and prepared by spray drying.
实施例3:菌株FWGK-JYJ1对不同来源单一易腐有机固废原料的生物干化处理效果Example 3: Bio-drying treatment effect of strain FWGK-JYJ1 on single perishable organic solid waste raw materials from different sources
向不同来源单一易腐有机固废原料中加入嗜热地芽孢杆菌FWGK-JYJ1的固体菌剂,固体菌剂的添加量为原料质量的0.5%,搅拌均匀后进行好氧发酵,过程中需要通风、搅拌,以保证温度均匀且在好氧条件下进行。每4 h对物料含水率进行测定,得到物料的含水率变化,含水率变化如图2~图5所示。The solid inoculum of Geobacillus thermophilus FWGK-JYJ1 is added to the single perishable organic solid waste raw material from different sources. The amount of the solid inoculum is 0.5% of the mass of the raw material. After stirring evenly, aerobic fermentation is carried out, and ventilation is required during the process. , stirring to ensure uniform temperature and under aerobic conditions. The moisture content of the material is measured every 4 h, and the moisture content change of the material is obtained, and the moisture content change is shown in Figures 2 to 5.
餐饮垃圾取自中国科学院上海高等研究院单位食堂,其含水率为80.2%。图2为嗜热地芽孢杆菌FWGK-JYJ1对餐饮垃圾含水率变化的影响。从该图中可以看出,接入嗜热地芽孢杆菌FWGK-JYJ1对餐饮垃圾的含水率变化在16 h就达到了最小值38.6%,而不加菌剂的对照组的含水率最小值为58.4%,实验组比对照组的生物干化率提高了90.8%。由此可知,接入嗜热地芽孢杆菌FWGK-JYJ1可显著提高餐饮垃圾的生物干化效果。The food waste was taken from the canteen of the Shanghai Institutes for Advanced Study, Chinese Academy of Sciences, and its moisture content was 80.2%. Figure 2 shows the effect of Geobacillus thermophilus FWGK-JYJ1 on changes in the moisture content of food waste. It can be seen from the figure that the change of the moisture content of the food and beverage waste after the addition of Geobacillus thermophilus FWGK-JYJ1 reached the minimum value of 38.6% in 16 h, and the minimum value of the moisture content of the control group without the addition of inoculants was Compared with the control group, the biological drying rate of the experimental group increased by 90.8%. It can be seen that the access to Geobacillus thermophilus FWGK-JYJ1 can significantly improve the biological drying effect of food waste.
厨余垃圾取自中国科学院上海高等研究院单位食堂,其含水率为76.8%。图3为嗜热地芽孢杆菌FWGK-JYJ1对厨余垃圾的含水率变化影响,从该图中可以看出,接入嗜热地芽孢杆菌FWGK-JYJ1对厨余垃圾的含水率变化在16 h就达到了最小值32.4%,而不加菌剂的对照组的含水率最小值为52.6%,实验组比对照组的生物干化率提高了83.5%。由此可见,接入嗜热地芽孢杆菌FWGK-JYJ1可显著提高厨余垃圾的生物干化效果。The kitchen waste was taken from the canteen of the Shanghai Institutes for Advanced Study of the Chinese Academy of Sciences, and its moisture content was 76.8%. Figure 3 shows the effect of Geobacillus thermophilus FWGK-JYJ1 on the change of moisture content of kitchen waste. It can be seen from the figure that the change of moisture content of kitchen waste after adding Geobacillus thermophilus FWGK-JYJ1 to the kitchen waste after 16 h It reached the minimum value of 32.4%, while the minimum moisture content of the control group without inoculants was 52.6%, and the biological drying rate of the experimental group was 83.5% higher than that of the control group. It can be seen that the access to Geobacillus thermophilus FWGK-JYJ1 can significantly improve the biological drying effect of kitchen waste.
果蔬垃圾取自上海市某农贸市场,其含水率为91.3%。图4为嗜热地芽孢杆菌FWGK-JYJ1对果蔬垃圾的含水率变化影响,从该图中可以看出,接入嗜热地芽孢杆菌FWGK-JYJ1对果蔬垃圾的含水率变化在20 h达到了最小值47.6%,而不加菌剂的对照组的含水率最小值为67.9%,实验组比对照组的生物干化率提高了86.8%。由此可见,接入嗜热地芽孢杆菌FWGK-JYJ1可显著提高果蔬垃圾的生物干化效果。The fruit and vegetable waste was taken from a farmer's market in Shanghai, and its moisture content was 91.3%. Figure 4 shows the effect of Geobacillus thermophilus FWGK-JYJ1 on the change of moisture content of fruit and vegetable waste. It can be seen from the figure that the change of moisture content of fruit and vegetable waste after adding Geobacillus thermophilus FWGK-JYJ1 to fruit and vegetable waste reached 20 h. The minimum value is 47.6%, while the minimum moisture content of the control group without the addition of bacterial agent is 67.9%, and the biological drying rate of the experimental group is 86.8% higher than that of the control group. It can be seen that the access to Geobacillus thermophilus FWGK-JYJ1 can significantly improve the biological drying effect of fruit and vegetable waste.
市政污泥取自上海市某污水处理厂,其含水率为79.9%。图5为嗜热地芽孢杆菌FWGK-JYJ1对市政污泥的含水率变化影响,从该图中可以看出,接入嗜热地芽孢杆菌FWGK-JYJ1对市政污泥的含水率变化在20 h达到了最小值41.3%,而不加菌剂的对照组的含水率最小值为60.1%,实验组比对照组的生物干化率提高了95.0%。由此可见,接入嗜热地芽孢杆菌FWGK-JYJ1可显著提高市政污泥的生物干化效果。Municipal sludge was taken from a sewage treatment plant in Shanghai, and its moisture content was 79.9%. Figure 5 shows the effect of Geobacillus thermophilus FWGK-JYJ1 on the change of water content of municipal sludge. It can be seen from the figure that the change of water content of municipal sludge caused by the addition of Geobacillus thermophilus FWGK-JYJ1 was within 20 h. It reached the minimum value of 41.3%, while the minimum moisture content of the control group without inoculants was 60.1%, and the biological drying rate of the experimental group was 95.0% higher than that of the control group. It can be seen that the access to Geobacillus thermophilus FWGK-JYJ1 can significantly improve the biological drying effect of municipal sludge.
综上所述,接入嗜热地芽孢杆菌FWGK-JYJ1可实现易腐有机固废的快速干化,从而达到易腐有机固废无害化、稳定化和减量化的效果。In conclusion, the access to Geobacillus thermophilus FWGK-JYJ1 can realize the rapid drying of perishable organic solid waste, so as to achieve the effects of harmlessness, stabilization and reduction of perishable organic solid waste.
实施例4:菌株FWGK-JYJ1对混合易腐有机固废的生物干化处理效果Example 4: Biological drying treatment effect of strain FWGK-JYJ1 on mixed perishable organic solid waste
将待处理的厨余垃圾、尾菜、畜禽粪污这三种易腐有机固废按照质量比1:1:1混合,混合物料的含水率为77.7%,在混合后的易腐有机固废中加入嗜热地芽孢杆菌FWGK-JYJ1固体菌剂,固体菌剂的添加量为原料质量的1%,搅拌均匀后在进行好氧发酵,过程中需要通风、搅拌,以保证温度均匀且在好氧条件下进行。每4 h对处理系统物料进行含水率测量,得到物料的含水率变化,如图6所示。结果显示接入嗜热地芽孢杆菌FWGK-JYJ1对混合易腐有机固废的含水率变化在12 h就达到了最小值31.1%,而对照组的含水率最小值为55.3%,实验组比对照组的生物干化率提高了108.0%。由此可见,嗜热地芽孢杆菌FWGK-JYJ1在好氧条件下可用于降解厨余垃圾、尾菜、畜禽粪污等混合易腐有机固废,具有很高的应用价值和广阔的应用前景。Mix the three kinds of perishable organic solid wastes, such as kitchen waste, tail vegetables and livestock and poultry manure, according to the mass ratio of 1:1:1. The moisture content of the mixed material is 77.7%. Add Geobacillus thermophilus FWGK-JYJ1 solid inoculum to the waste. The amount of solid inoculum is 1% of the raw material mass. After stirring evenly, aerobic fermentation is carried out. During the process, ventilation and stirring are required to ensure uniform temperature. performed under aerobic conditions. The moisture content of the materials in the treatment system was measured every 4 h, and the moisture content changes of the materials were obtained, as shown in Figure 6. The results showed that the change of water content of mixed perishable organic solid waste by adding Geobacillus thermophilus FWGK-JYJ1 reached the minimum value of 31.1% in 12 h, while the minimum value of water content in the control group was 55.3%. The biological desiccation rate of the group increased by 108.0%. It can be seen that Geobacillus thermophilus FWGK-JYJ1 can be used to degrade mixed perishable organic solid wastes such as kitchen waste, tail vegetables, livestock and poultry manure under aerobic conditions, and has high application value and broad application prospects. .
菌株生物干化实验结果表明,该菌株在好氧条件下能够实现易腐有机固废的快速干化,达到无害化、减量化和稳定化的目的,可用于处理餐饮垃圾、厨余垃圾、果蔬垃圾等易腐有机固废,具有很高的应用价值。The results of the biological drying experiment of the strain show that the strain can achieve rapid drying of perishable organic solid waste under aerobic conditions, achieving the purpose of harmlessness, reduction and stabilization, and can be used for the treatment of catering waste and kitchen waste. , fruit and vegetable waste and other perishable organic solid waste, with high application value.
以上的实施例是为了说明本发明公开的实施方案,并不能理解为对本发明的限制。此外,本文所列出的各种修改以及发明中方法的变化,在不脱离本发明的范围和精神的前提下对本领域内的技术人员来说是显而易见的。虽然已结合本发明的多种具体优选实施例对本发明进行了具体的描述,但应当理解,本发明不应仅限于这些具体实施例。事实上,各种如上所述的对本领域内的技术人员来说显而易见的修改来获取发明都应包括在本发明的范围内。The above examples are intended to illustrate the disclosed embodiments of the present invention, and should not be construed as limiting the present invention. Furthermore, various modifications set forth herein and variations in the methods of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the present invention has been described in detail in conjunction with various specific preferred embodiments of the present invention, it should be understood that the present invention should not be limited to these specific embodiments. Indeed, various modifications as described above which are obvious to those skilled in the art to obtain the invention are intended to be included within the scope of the present invention.
序列表sequence listing
<110> 中国科学院上海高等研究院<110> Shanghai Institutes for Advanced Study, Chinese Academy of Sciences
<120> 一种易腐有机固废生物干化菌种及其应用<120> A kind of perishable organic solid waste biological drying bacteria and its application
<160> 1<160> 1
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 1432<211> 1432
<212> DNA<212> DNA
<213> 嗜酷热地芽孢杆菌(Geobacillus kaustophilus FWGK-JYJ1)<213> Geobacillus kaustophilus FWGK-JYJ1
<400> 1<400> 1
gctggctccc gtaagggtta cctcaccgac ttcgggtgtt gcaagctctc gtggtgtgac 60gctggctccc gtaagggtta cctcaccgac ttcgggtgtt gcaagctctc gtggtgtgac 60
gggcggtgtg tacaaggccc gggaacgtat tcaccgcggc atgctgatcc gcgattacta 120gggcggtgtg tacaaggccc gggaacgtat tcaccgcggc atgctgatcc gcgattacta 120
gcgattccgg cttcatgcag gcgagttgca gcctgcaatc cgaactgaga gcggcttttt 180gcgattccgg cttcatgcag gcgagttgca gcctgcaatc cgaactgaga gcggcttttt 180
gggattcgct ccccctcgcg ggttcgcagc cctttgtacc gcccattgta gcacgtgtgt 240gggattcgct ccccctcgcg ggttcgcagc cctttgtacc gcccattgta gcacgtgtgt 240
agcccaggtc ataaggggca tgatgatttg acgtcatccc caccttcctc cgacttgtcg 300agcccaggtc ataaggggca tgatgatttg acgtcatccc caccttcctc cgacttgtcg 300
ccggcagtcc ctctagagtg cccaccttcg tgctggcaac tagaggcgag ggttgcgctc 360ccggcagtcc ctctagagtg cccaccttcg tgctggcaac tagaggcgag ggttgcgctc 360
gttgcgggac ttaacccaac atctcacgac acgagctgac gacaaccatg caccacctgt 420gttgcgggac ttaacccaac atctcacgac acgagctgac gacaaccatg caccacctgt 420
caccctgtcc ccccgaaggg ggaacgccca atctcttggg ttgtcagggg atgtcaagac 480caccctgtcc ccccgaaggg ggaacgccca atctcttggg ttgtcagggg atgtcaagac 480
ctggtaaggt tcttcgcgtt gcttcaaatt aaaccacatg ctccaccgct tgtgcgggcc 540ctggtaaggt tcttcgcgtt gcttcaaatt aaaccacatg ctccaccgct tgtgcgggcc 540
cccgtcaatt cctttgagtt tcagccttgc ggccgtactc cccaggcgga gtgcttatcg 600cccgtcaatt cctttgagtt tcagccttgc ggccgtactc cccaggcgga gtgcttatcg 600
cgttagctgc agcactaaag ggtgtgaccc ctctaacact tagcactcat cgtttacggc 660cgttagctgc agcactaaag ggtgtgaccc ctctaacact tagcactcat cgtttacggc 660
gtggactacc agggtatcta atcctgtttg ctccccacgc tttcgcgcct cagcgtcagt 720gtggactacc agggtatcta atcctgtttg ctccccacgc tttcgcgcct cagcgtcagt 720
tgcaggccag agagccgcct tcgccactgg tgttcctcca catctctacg catttcaccg 780tgcaggccag agagccgcct tcgccactgg tgttcctcca catctctacg catttcaccg 780
ctacacgtgg aattccgctc tcctctcctg cactcaagtc ccccagtttc caatgaccct 840ctacacgtgg aattccgctc tcctctcctg cactcaagtc ccccagtttc caatgaccct 840
ccacggttga gccgtgggct ttcacatcag acttaaggaa ccgcctgcgc gcgctttacg 900ccacggttga gccgtgggct ttcacatcag acttaaggaa ccgcctgcgc gcgctttacg 900
cccaataatt ccggacaacg ctcgccccct acgtattacc gcggctgctg gcacgtagtt 960cccaataatt ccggacaacg ctcgccccct acgtattacc gcggctgctg gcacgtagtt 960
agccggggct tcctcgtgag gtaccgtcac cgcgccgccc tcttcgaacg gcgctccttc 1020agccggggct tcctcgtgag gtaccgtcac cgcgccgccc tcttcgaacg gcgctccttc 1020
gtccctcaca acagagcttt acgacccgaa ggccttcttc gctcacgcgg cgtcgctccg 1080gtccctcaca acagagcttt acgacccgaa ggccttcttc gctcacgcgg cgtcgctccg 1080
tcaggctttc gcccattgcg gaagattccc tactgctgcc tcccgtagga gtctgggccg 1140tcaggctttc gcccattgcg gaagattccc tactgctgcc tcccgtagga gtctgggccg 1140
tgtctcagtc ccagtgtggc cggtcaccct ctcaggccgg ctacgcatcg tcgccttggt 1200tgtctcagtc ccagtgtggc cggtcaccct ctcaggccgg ctacgcatcg tcgccttggt 1200
gagccgttac ctcaccaact agctaatgcg ccgcgggccc atccgcaagt gacagccaaa 1260gagccgttac ctcaccaact agctaatgcg ccgcgggccc atccgcaagt gacagccaaa 1260
ggccgccttt caaccaaaga ccatgcggtc ttcggtgtta tccggtatta gctccggttt 1320ggccgccttt caaccaaaga ccatgcggtc ttcggtgtta tccggtatta gctccggttt 1320
cccggagtta tcccggtctt gcgggcaggt tgcccacgtg ttactcaccc gtccgccgct 1380cccggagtta tcccggtctt gcgggcaggt tgcccacgtg ttactcaccc gtccgccgct 1380
gaccaaatca gagcaagctc cgatttggtc cgctcgactt gcatgtatta gc 1432gaccaaatca gagcaagctc cgatttggtc cgctcgactt gcatgtatta gc 1432
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110248727.1A CN112608875B (en) | 2021-03-08 | 2021-03-08 | Perishable organic solid waste biological drying strain and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110248727.1A CN112608875B (en) | 2021-03-08 | 2021-03-08 | Perishable organic solid waste biological drying strain and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112608875A CN112608875A (en) | 2021-04-06 |
CN112608875B true CN112608875B (en) | 2021-05-18 |
Family
ID=75254523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110248727.1A Active CN112608875B (en) | 2021-03-08 | 2021-03-08 | Perishable organic solid waste biological drying strain and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112608875B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112760274B (en) * | 2021-04-07 | 2021-07-06 | 中国科学院上海高等研究院 | A kind of organic solid waste high temperature aerobic composting bacteria and its application |
CN113832051B (en) * | 2021-09-07 | 2023-11-14 | 碧沃丰工程有限公司 | Microbial inoculum and preparation method and application thereof |
CN114480215B (en) * | 2022-03-08 | 2022-11-11 | 中国科学院上海高等研究院 | Compound microbial agent and application thereof in biogas residue high-temperature aerobic composting |
CN114644998B (en) * | 2022-03-30 | 2022-11-25 | 深圳市深水生态环境技术有限公司 | Kitchen waste biological drying strain and application thereof |
CN117387075A (en) * | 2023-12-11 | 2024-01-12 | 国能龙源环保有限公司 | A low-energy consumption treatment method for organic solid waste |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111235052A (en) * | 2019-12-10 | 2020-06-05 | 北京工商大学 | Thermophilic bacillus licheniformis and application thereof |
CN111808779B (en) * | 2020-07-29 | 2022-07-05 | 中国科学院上海高等研究院 | Geobacillus thermophilus and application thereof in agricultural wastes |
CN112175875A (en) * | 2020-10-13 | 2021-01-05 | 蛋壳城矿环保科技发展(广州)有限公司 | Preparation method and application of ultrahigh-temperature aerobic composite biological agent |
-
2021
- 2021-03-08 CN CN202110248727.1A patent/CN112608875B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN112608875A (en) | 2021-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112608875B (en) | Perishable organic solid waste biological drying strain and application thereof | |
CN101724655B (en) | Method for producing methane as clean energy source by utilizing catering organic waste | |
WO2019100579A1 (en) | Method for rapidly reducing antibiotics and resistance genes in organic solid waste | |
CN106190927B (en) | A kind of bacterial strain used for high-temperature composting of sludge and its application | |
CN104370582B (en) | A kind of organic waste odorless aerobic compost method | |
CN103084377B (en) | The process of changing food waste and recycling | |
CN105016792A (en) | Method for converting kitchen waste to produce functional microbial organic fertilizer by hermertia illucens L and microorganisms | |
CN114574383B (en) | Efficient kitchen waste degradation composite microbial agent and preparation method and application thereof | |
CN106587559A (en) | Sludge anaerobic digestion method | |
CN114940635A (en) | Method for reducing emission of greenhouse gas by organic solid waste semipermeable membrane fermentation and preparing microbial fertilizer | |
CN115786206B (en) | Self-heat-generating high-temperature aerobic strain and application thereof in biological treatment of kitchen waste | |
CN111154690B (en) | Geobacillus thermooleophilic bacillus, microbial inoculum thereof and application of bacillus thermooleophilic bacillus in kitchen waste treatment | |
CN110777090B (en) | A kind of food waste treatment bacteria and its application | |
CN115058357A (en) | Bacterial strain for biological drying of kitchen waste, screening method and application | |
CN116004438A (en) | Strain for strengthening anaerobic fermentation of kitchen waste to produce methane and application thereof | |
CN103087920A (en) | Mixotrophic scenedesmus and application thereof in sewage resource treatment | |
CN114921356A (en) | Household kitchen waste aerobic composting composite microbial agent and preparation method thereof | |
CN114644998B (en) | Kitchen waste biological drying strain and application thereof | |
Wang et al. | Application of oil-degrading agents consisted of thermophilic Bacillus subtilis and Bacillus glycinifermentans in food waste | |
CN114456985B (en) | A kind of microbial strain for high-temperature aerobic composting of biogas residue and its application | |
CN114437976B (en) | Composite microbial agent and application thereof in kitchen waste biological reduction | |
CN112662602B (en) | Organic solid waste high-temperature aerobic biological decrement strain and application thereof | |
CN106754543A (en) | A kind of microorganism formulation for sludge anaerobic fermentation | |
CN111014252A (en) | High-temperature garbage degradation treatment method based on microbial flora | |
CN114525220B (en) | Kitchen waste biological decrement strain and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |