CN112582471B - Semiconductor device and forming method - Google Patents
Semiconductor device and forming method Download PDFInfo
- Publication number
- CN112582471B CN112582471B CN201910935432.4A CN201910935432A CN112582471B CN 112582471 B CN112582471 B CN 112582471B CN 201910935432 A CN201910935432 A CN 201910935432A CN 112582471 B CN112582471 B CN 112582471B
- Authority
- CN
- China
- Prior art keywords
- ions
- semiconductor device
- region
- fins
- ion implantation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/62—Fin field-effect transistors [FinFET]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/024—Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/213—Channel regions of field-effect devices
- H10D62/221—Channel regions of field-effect devices of FETs
- H10D62/235—Channel regions of field-effect devices of FETs of IGFETs
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及半导体技术领域,尤其涉及一种半导体器件及形成方法。The present invention relates to the field of semiconductor technology, and in particular to a semiconductor device and a forming method thereof.
背景技术Background Art
随着半导体制造工艺的不断发展,半导体器件的集成度越来越高,半导体器件的特征尺寸也逐渐缩小。然而,半导体器件的性能还需要提高。With the continuous development of semiconductor manufacturing technology, the integration of semiconductor devices is getting higher and higher, and the characteristic size of semiconductor devices is gradually shrinking. However, the performance of semiconductor devices still needs to be improved.
发明内容Summary of the invention
有鉴于此,本发明实施例提供了一种半导体器件及形成方法,以提高半导体器件的性能。In view of this, an embodiment of the present invention provides a semiconductor device and a method for forming the same, so as to improve the performance of the semiconductor device.
第一方面,本发明实施例提供一种半导体器件的形成方法,所述方法包括:In a first aspect, an embodiment of the present invention provides a method for forming a semiconductor device, the method comprising:
提供前端器件层,所述前端器件层包括多个分立的鳍部以及横跨所述鳍部的栅极结构,所述鳍部位于栅极结构下方的区域为沟道区;Providing a front-end device layer, the front-end device layer comprising a plurality of discrete fins and a gate structure spanning the fins, wherein the region of the fins located below the gate structure is a channel region;
以所述栅极结构为掩膜刻蚀所述栅极结构两侧的鳍部,以在所述鳍部上形成凹陷区,露出所述沟道区的侧壁;Using the gate structure as a mask, etching the fins on both sides of the gate structure to form a recessed area on the fins and expose the sidewalls of the channel area;
形成扩散区,所述扩散区从所述沟道区侧壁的底部区域向内延伸;forming a diffusion region, the diffusion region extending inward from a bottom region of a sidewall of the channel region;
在所述沟道区两侧的鳍部上形成源漏区。Source and drain regions are formed on the fins at both sides of the channel region.
进一步地,所述形成扩散区具体包括:Furthermore, the forming of the diffusion region specifically includes:
以所述栅极结构为掩膜在所述凹陷区的底部和所述沟道区的侧壁的底部进行离子注入,以形成包括扩散区的离子注入层;Using the gate structure as a mask, ion implantation is performed at the bottom of the recessed region and the bottom of the sidewall of the channel region to form an ion implantation layer including a diffusion region;
以所述栅极结构为掩膜将所述凹陷区的底部向下刻蚀预定深度,以去除位于所述凹陷区底部的部分离子注入层。The bottom of the recessed area is etched downward to a predetermined depth using the gate structure as a mask to remove a portion of the ion implantation layer located at the bottom of the recessed area.
进一步地,所述离子注入的能量为3Kev-10Kev。Furthermore, the energy of the ion implantation is 3Kev-10Kev.
进一步地,所述离子注入的注入离子包括类型与所述源漏区的掺杂离子的类型相反的离子,以减小漏电流。Furthermore, the implanted ions of the ion implantation include ions of a type opposite to that of the doping ions of the source and drain regions, so as to reduce leakage current.
进一步地,所述离子注入的注入离子包括类型与所述源漏区的掺杂离子的类型相同的离子,以提高沟道区的载流子迁移率。Furthermore, the implanted ions of the ion implantation include ions of the same type as the doping ions of the source and drain regions, so as to improve the carrier mobility of the channel region.
进一步地,所述半导体器件为N型场效应晶体管,所述离子注入工艺的注入离子为碳离子、硼离子和镓离子中的一种或多种;或者Further, the semiconductor device is an N-type field effect transistor, and the implanted ions in the ion implantation process are one or more of carbon ions, boron ions and gallium ions; or
所述半导体器件为P型场效应晶体管,所述离子注入工艺的注入离子为磷离子和镓离子中的一种或多种。The semiconductor device is a P-type field effect transistor, and the implanted ions in the ion implantation process are one or more of phosphorus ions and gallium ions.
进一步地,所述半导体器件为N型场效应晶体管,所述离子注入工艺的注入离子为磷离子和镓离子中的一种或多种;或者Further, the semiconductor device is an N-type field effect transistor, and the implanted ions in the ion implantation process are one or more of phosphorus ions and gallium ions; or
所述半导体器件为P型场效应晶体管,所述离子注入工艺的注入离子为磷离子和镓离子中的一种或多种。The semiconductor device is a P-type field effect transistor, and the implanted ions in the ion implantation process are one or more of phosphorus ions and gallium ions.
进一步地,所述扩散区的深度范围是3纳米-10纳米。Furthermore, the depth of the diffusion region ranges from 3 nanometers to 10 nanometers.
进一步地,所述栅极结构包括伪栅和覆盖所述伪栅侧壁的隔离层,所述在所述沟道区两侧的鳍部上形成源漏区具体包括:Furthermore, the gate structure includes a dummy gate and an isolation layer covering the sidewalls of the dummy gate, and the forming of source and drain regions on the fins on both sides of the channel region specifically includes:
减薄所述隔离层;Thinning the isolation layer;
以所述伪栅和经过减薄的隔离层为掩膜在所述凹陷区底面和所述沟道区的侧壁上采用外延生长工艺形成外延层;Using the dummy gate and the thinned isolation layer as masks, an epitaxial layer is formed on the bottom surface of the recessed area and the sidewall of the channel area by an epitaxial growth process;
形成覆盖所述经过减薄的隔离层的侧壁的侧墙;forming a sidewall covering the sidewall of the thinned isolation layer;
以所述伪栅、所述经过减薄的隔离层和所述侧墙为掩膜,对所述外延层进行离子注入。Ions are implanted into the epitaxial layer using the dummy gate, the thinned isolation layer and the sidewall as masks.
第二方面,本发明实施例提供一种半导体器件,所述半导体器件包括:In a second aspect, an embodiment of the present invention provides a semiconductor device, wherein the semiconductor device comprises:
前端器件层,所述前端器件层包括多个分立的鳍部以及横跨所述鳍部的栅极结构,所述鳍部位于栅极结构下方的区域为沟道区,所述栅极结构两侧的鳍部上具有凹陷区;A front-end device layer, the front-end device layer comprising a plurality of discrete fins and a gate structure spanning the fins, the region of the fins located below the gate structure being a channel region, and the fins on both sides of the gate structure having recessed regions;
扩散区,所述从所述沟道区侧壁的底部区域向内延伸;a diffusion region extending inwardly from a bottom region of a sidewall of the channel region;
源漏区,所述源漏区位于所述凹陷区中。A source/drain region is located in the recessed region.
进一步地,所述扩散区通过在所述沟道区的底部进行离子注入形成。Furthermore, the diffusion region is formed by performing ion implantation at the bottom of the channel region.
进一步地,所述扩散区的深度范围是3纳米-10纳米。Furthermore, the depth of the diffusion region ranges from 3 nanometers to 10 nanometers.
进一步地,所述扩散区的掺杂离子的类型与所述源漏区的掺杂离子的类型相反,以减小漏电流。Furthermore, the type of doping ions in the diffusion region is opposite to the type of doping ions in the source and drain regions, so as to reduce leakage current.
进一步地,所述扩散区的掺杂离子的类型与所述源漏区的掺杂离子的类型相反,以提高沟道区的载流子迁移率。Furthermore, the type of doping ions in the diffusion region is opposite to the type of doping ions in the source and drain regions, so as to improve the carrier mobility in the channel region.
在本发明实施例中,在形成源漏区前,在沟道区侧壁的底部区域形成扩散区。扩散区可以有效的阻挡后续在凹陷区中形成的源漏区之间的离子横向扩散到沟道区中,可以提高栅极结构对沟道区的控制能力。通过形成扩散区,还可以调节后续形成的栅极结构的阈值电压。从而能够提高半导体器件的可靠性。In an embodiment of the present invention, before forming the source and drain regions, a diffusion region is formed in the bottom region of the sidewall of the channel region. The diffusion region can effectively block the ions between the source and drain regions formed in the recessed region from laterally diffusing into the channel region, and can improve the control capability of the gate structure over the channel region. By forming the diffusion region, the threshold voltage of the gate structure formed later can also be adjusted. Thus, the reliability of the semiconductor device can be improved.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
通过以下参照附图对本发明实施例的描述,本发明的上述以及其它目的、特征和优点将更为清楚,在附图中:The above and other objects, features and advantages of the present invention will become more apparent through the following description of the embodiments of the present invention with reference to the accompanying drawings, in which:
图1-图4是对比例的半导体器件的形成方法的各步骤形成的结构的示意图;1 to 4 are schematic diagrams of structures formed in various steps of a method for forming a semiconductor device of a comparative example;
图5是本发明第一实施例的半导体器件的形成方法的流程图;5 is a flow chart of a method for forming a semiconductor device according to a first embodiment of the present invention;
图6-图15是本发明实施例的半导体器件的形成方法的各步骤形成的结构的示意图;6 to 15 are schematic diagrams of structures formed in various steps of a method for forming a semiconductor device according to an embodiment of the present invention;
图16是本发明第二实施例的半导体器件的形成方法的流程图;16 is a flow chart of a method for forming a semiconductor device according to a second embodiment of the present invention;
图17是本发明第三实施例的半导体器件的结构示意图。FIG. 17 is a schematic structural diagram of a semiconductor device according to a third embodiment of the present invention.
具体实施方式DETAILED DESCRIPTION
以下基于实施例对本发明进行描述,但是本发明并不仅仅限于这些实施例。在下文对本发明的细节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的描述也可以完全理解本发明。为了避免混淆本发明的实质,公知的方法、过程、流程、元件和电路并没有详细叙述。The present invention is described below based on embodiments, but the present invention is not limited to these embodiments. In the detailed description of the present invention below, some specific details are described in detail. It is possible for a person skilled in the art to fully understand the present invention without the description of these details. In order to avoid confusing the essence of the present invention, known methods, processes, flows, components and circuits are not described in detail.
此外,本领域普通技术人员应当理解,在此提供的附图都是为了说明的目的,并且附图不一定是按比例绘制的。In addition, persons of ordinary skill in the art will appreciate that the drawings provided herein are for illustration purposes and are not necessarily drawn to scale.
除非上下文明确要求,否则在说明书的“包括”、“包含”等类似词语应当解释为包含的含义而不是排他或穷举的含义;也就是说,是“包括但不限于”的含义。Unless the context clearly requires otherwise, words such as “include”, “including” and the like in the specification should be interpreted as including rather than being exclusive or exhaustive; that is, as including but not limited to “including”.
在本发明的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。In the description of the present invention, it should be understood that the terms "first", "second", etc. are only used for descriptive purposes and cannot be understood as indicating or implying relative importance. In addition, in the description of the present invention, unless otherwise specified, "plurality" means two or more.
在本发明的描述中,需要理解的是,术语“层”在其最广泛的意义上被使用,从而包括膜、盖层或类似,并且一个层可以包括多个子层。In the description of the present invention, it needs to be understood that the term "layer" is used in its broadest sense to include a film, a cover layer or the like, and one layer may include a plurality of sub-layers.
在本发明的描述中,需要理解的是,贯穿说明书提及用于选择性地去除多晶硅、氮化硅、二氧化硅、金属、光致抗蚀剂、聚酰亚胺或类似材料的半导体制造领域中已知的传统蚀刻技术包括例如湿化学蚀刻、反应离子(等离子体)蚀刻(RIE)、洗涤、湿清洗、预清洗、喷淋清洗、化学机械研磨工艺(Chemical Mechanical Polishing,CMP)以及类似的工艺。这里参照这种工艺的例子对特定的实施例进行描述。然而,本公开以及对于特定沉积技术的参照不应当限于所描述的。在一些例子中,两种这样的技术可以互换。例如,剥离光致抗蚀剂可以包括将样本浸泡在湿化学浴中或可代替地将湿化学品直接喷涂在样本上。In the description of the present invention, it is to be understood that conventional etching techniques known in the field of semiconductor manufacturing for selectively removing polysilicon, silicon nitride, silicon dioxide, metal, photoresist, polyimide or similar materials are mentioned throughout the specification, including, for example, wet chemical etching, reactive ion (plasma) etching (RIE), washing, wet cleaning, pre-cleaning, spray cleaning, chemical mechanical polishing (CMP) and similar processes. Specific embodiments are described herein with reference to examples of such processes. However, the present disclosure and reference to specific deposition techniques should not be limited to those described. In some examples, two such techniques may be interchangeable. For example, stripping the photoresist may include immersing the sample in a wet chemical bath or alternatively spraying the wet chemical directly on the sample.
“横跨”是指,如栅极结构横跨鳍部,表示所述伪栅结构覆盖鳍部的部分顶部表面和部分侧壁表面,并且伪栅结构和鳍部具有交叉的位置关系,伪栅结构的高度大于鳍部的高度。“Spanning” means that, for example, the gate structure spans the fin, indicating that the dummy gate structure covers part of the top surface and part of the sidewall surface of the fin, and the dummy gate structure and the fin have a crossing positional relationship, and the height of the dummy gate structure is greater than the height of the fin.
半导体器件是导电性介于良导电体与绝缘体之间,利用半导体材料特殊电特性来完成特定功能的电子器件,可用来产生、控制、接收、变换、放大信号和进行能量转换。现有常用的半导体器件包括鳍式场效应晶体管(Fin Field-Effect Transistor,Fin-FET)。鳍式场效应晶体管包括P型鳍式场效应晶体管和N型鳍式场效应晶体管不同类型的晶体管。Semiconductor devices are electronic devices with conductivity between good conductors and insulators. They use the special electrical properties of semiconductor materials to complete specific functions. They can be used to generate, control, receive, transform, amplify signals and perform energy conversion. Existing commonly used semiconductor devices include Fin Field-Effect Transistors (Fin-FET). Fin Field-Effect Transistors include different types of transistors, such as P-type Fin Field-Effect Transistors and N-type Fin Field-Effect Transistors.
随着晶体管栅极长度的持续缩小,氧化增强扩散(Oxidation EnhancedDiffusion,OED)成为影响硼离子和磷离子扩散的关键因素,由于氧化增强扩散效应,造成了瞬态增强扩散效应(Transient Enhanced Diffusion TED),而瞬态增强扩散效应不仅造成晶体管的短沟道效应(Short Channel Effects,SCE),而且影响晶体管沟道迁移率、结电容以及结漏电流。短沟道效应是当金属氧化物场效应晶体管的导电沟道长度降低到十几纳米、甚至几纳米量级时,晶体管出现的一些效应。这些效应主要包括阈值电压随着沟道长度降低而降低、漏致势垒降低、载流子表面散射、速度饱和、离子化和热电子效应。因此,急需一种新的半导体器件的形成方法,来抑制半导体器件的瞬态增强扩散效应,进而有效的抑制短沟道效应,提高半导体器件的性能。As the gate length of transistors continues to shrink, oxidation enhanced diffusion (OED) becomes a key factor affecting the diffusion of boron and phosphorus ions. Due to the oxidation enhanced diffusion effect, transient enhanced diffusion effect (TED) is caused, and transient enhanced diffusion effect not only causes short channel effects (SCE) of transistors, but also affects transistor channel mobility, junction capacitance and junction leakage current. Short channel effect is some effects that appear in transistors when the conductive channel length of metal oxide field effect transistors is reduced to more than ten nanometers or even a few nanometers. These effects mainly include the decrease of threshold voltage as the channel length decreases, the decrease of drain-induced potential barrier, carrier surface scattering, velocity saturation, ionization and hot electron effect. Therefore, a new method for forming semiconductor devices is urgently needed to suppress the transient enhanced diffusion effect of semiconductor devices, thereby effectively suppressing the short channel effect and improving the performance of semiconductor devices.
参考图1-图4,对比例半导体器件的形成方法包括如下步骤:1 to 4 , the method for forming a semiconductor device of the comparative example includes the following steps:
步骤S1、提供前端器件层。所述前端器件层包括多个分立的鳍部以及横跨所述鳍部的栅极结构,所述鳍部位于栅极结构下方的区域为沟道区。Step S1, providing a front-end device layer. The front-end device layer includes a plurality of discrete fins and a gate structure spanning the fins, and the region of the fins located below the gate structure is a channel region.
步骤S2、以所述栅极结构为掩膜刻蚀所述鳍部,刻蚀所述栅极结构两侧的鳍部,以在所述鳍部上形成凹陷区露出所述沟道区的侧壁。Step S2, etching the fins using the gate structure as a mask, and etching the fins on both sides of the gate structure to form recessed areas on the fins to expose the sidewalls of the channel area.
步骤S3、在所述沟道区两侧的鳍部上形成源漏区。Step S3, forming source and drain regions on the fins at both sides of the channel region.
图1是对比例的半导体器件的前端器件层的示意图。图2是图1沿AA’线的剖面示意图。参考图1和图2,在步骤S1中,提供前端器件层1。所述前端器件层1包括多个分立的鳍部2以及横跨所述鳍部2的栅极结构3。Fig. 1 is a schematic diagram of a front-end device layer of a semiconductor device of a comparative example. Fig. 2 is a cross-sectional schematic diagram along line AA' of Fig. 1. Referring to Fig. 1 and Fig. 2, in step S1, a front-end device layer 1 is provided. The front-end device layer 1 includes a plurality of discrete fins 2 and a gate structure 3 spanning the fins 2.
栅极结构3包括:隔离层3a和伪栅3b。其中,伪栅3b包括依次叠置的栅介质层、伪栅层以及盖帽层。The gate structure 3 includes: an isolation layer 3a and a dummy gate 3b, wherein the dummy gate 3b includes a gate dielectric layer, a dummy gate layer and a cap layer stacked in sequence.
相邻的鳍部11之间有浅沟槽隔离结构(Shallow Trench Isolation,STI)4。A shallow trench isolation (STI) structure 4 is provided between adjacent fins 11 .
参考图3,在步骤S2中,以所述栅极结构3为掩膜刻蚀所述栅极结构两侧的鳍部11,以在所述鳍部11上形成凹陷区5。3 , in step S2 , the fins 11 on both sides of the gate structure are etched using the gate structure 3 as a mask to form recessed regions 5 on the fins 11 .
参考图4,在步骤S3中,在所述凹陷区5中形成源漏区6。4 , in step S3 , source and drain regions 6 are formed in the recessed region 5 .
然而,对比例的半导体器件的形成方法形成的半导体器件仍存在短沟道效应,有较高的漏电流。However, the semiconductor device formed by the semiconductor device forming method of the comparative example still has a short channel effect and a high leakage current.
有鉴于此,为了提高半导体器件的性能。本发明实施例提供了一种半导体器件的形成方法。在本发明实施例中,以形成鳍式场效应晶体管为例进行说明,进一步地,本发明实施例的方法可用于形成10nm工艺节点以下的鳍式场效应晶体管,例如,用于形成5nm或者7nm的场效应晶体管。进一步地,本发明实施例的方法所形成的鳍式场效应晶体管的方法同样也可以用于形成互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS),NAND存储器(NAND Flash Memory)以及静态随机存取存储器(Static RandomAccess Memory,SRAM)等其他半导体器件。In view of this, in order to improve the performance of semiconductor devices. An embodiment of the present invention provides a method for forming a semiconductor device. In the embodiment of the present invention, the formation of a fin field effect transistor is taken as an example for explanation. Furthermore, the method of the embodiment of the present invention can be used to form a fin field effect transistor below a 10nm process node, for example, to form a 5nm or 7nm field effect transistor. Furthermore, the method of forming a fin field effect transistor by the method of the embodiment of the present invention can also be used to form other semiconductor devices such as complementary metal oxide semiconductors (CMOS), NAND flash memories (NAND flash memories) and static random access memories (SRAM).
图5是本发明第一实施例的半导体器件的形成方法的流程图。如图5所示,本发明第一实施例的半导体器件的形成方法包括如下步骤:FIG5 is a flow chart of a method for forming a semiconductor device according to a first embodiment of the present invention. As shown in FIG5 , the method for forming a semiconductor device according to a first embodiment of the present invention includes the following steps:
步骤S100、提供前端器件层,所述前端器件层包括多个分立的鳍部以及横跨所述鳍部的栅极结构,所述鳍部位于栅极结构下方的区域为沟道区。Step S100: providing a front-end device layer, wherein the front-end device layer comprises a plurality of discrete fins and a gate structure spanning the fins, wherein the region of the fins below the gate structure is a channel region.
步骤S200、以所述栅极结构为掩膜刻蚀所述栅极结构两侧的鳍部,以在所述鳍部上形成凹陷区,露出所述沟道区的侧壁。Step S200: using the gate structure as a mask to etch the fins on both sides of the gate structure to form a recessed area on the fins and expose the sidewalls of the channel area.
步骤S300、形成扩散区,所述扩散区从所述沟道区侧壁的底部区域向内延伸。Step S300: forming a diffusion region, wherein the diffusion region extends inward from a bottom region of a sidewall of the channel region.
步骤S400、在所述沟道区两侧的鳍部上形成源漏区。Step S400: forming source and drain regions on the fins at both sides of the channel region.
图6-图15是本发明实施例的半导体器件的形成方法的各步骤形成的结构的示意图。6 to 15 are schematic diagrams of structures formed in various steps of the method for forming a semiconductor device according to an embodiment of the present invention.
图6是前端器件层的立体结构图。图7是前端器件层沿AA’线的剖面示意图。参考图6和图7,在步骤S100中,提供前端器件层10,所述前端器件层10包括多个分立的鳍部11以及横跨所述鳍部11的栅极结构12,所述鳍部11位于栅极结构下方的区域为沟道区C。Fig. 6 is a three-dimensional structural diagram of the front-end device layer. Fig. 7 is a cross-sectional schematic diagram of the front-end device layer along line AA'. Referring to Fig. 6 and Fig. 7, in step S100, a front-end device layer 10 is provided, wherein the front-end device layer 10 includes a plurality of discrete fins 11 and a gate structure 12 spanning the fins 11, and the region of the fins 11 below the gate structure is a channel region C.
具体地,在步骤S100中提供的前端器件层10可包括硅单晶衬底、锗单晶衬底或硅锗单晶衬底。可替换地,前端器件层10还可包括绝缘体上硅(SOI)衬底、绝缘体上层叠硅(SSOI)、绝缘体上层叠锗化硅(S-SiGeOI)、绝缘体上锗化硅(SiGeOI)、绝缘体上锗(GeOI)、硅上外延层结构的衬底、化合物前端器件层或合金前端器件层。所述化合物前端器件层包括碳化硅、砷化镓、磷化镓、磷化铟、砷化铟、或镝化铟,所述合金前端器件层包括SiGe、GaAsP、AlInAs、AlGaAs、GaInAs、GaInP、GaInAsP或者它们的组合,所述SOI衬底包括设置在绝缘材料层上的半导体层(例如硅层、锗硅层、碳硅层或锗层),半导体层中具有源器件和无源器件,所述绝缘材料层保护设置在半导体层上的有源器件和无源器件。在所述前端器件层表面还可以形成若干外延界面层或应变层等结构以提高半导体器件的电学性能。Specifically, the front-end device layer 10 provided in step S100 may include a silicon single crystal substrate, a germanium single crystal substrate or a silicon germanium single crystal substrate. Alternatively, the front-end device layer 10 may also include a silicon-on-insulator (SOI) substrate, a stacked silicon-on-insulator (SSOI), a stacked silicon-germanium-on-insulator (S-SiGeOI), a silicon-germanium-on-insulator (SiGeOI), a germanium-on-insulator (GeOI), a substrate of an epitaxial layer structure on silicon, a compound front-end device layer or an alloy front-end device layer. The compound front-end device layer includes silicon carbide, gallium arsenide, gallium phosphide, indium phosphide, indium arsenide, or indium dysprosium, the alloy front-end device layer includes SiGe, GaAsP, AlInAs, AlGaAs, GaInAs, GaInP, GaInAsP or a combination thereof, the SOI substrate includes a semiconductor layer (such as a silicon layer, a silicon germanium layer, a carbon silicon layer or a germanium layer) disposed on an insulating material layer, the semiconductor layer has active devices and passive devices, and the insulating material layer protects the active devices and passive devices disposed on the semiconductor layer. Several structures such as epitaxial interface layers or strained layers can also be formed on the surface of the front-end device layer to improve the electrical performance of the semiconductor device.
所述多个鳍部11平行或者基本平行。The plurality of fins 11 are parallel or substantially parallel.
所述栅极结构12包括:隔离层12a和伪栅12b。其中,伪栅12b中包括依次叠置的栅介质层、伪栅层以及盖帽层。The gate structure 12 includes an isolation layer 12a and a dummy gate 12b, wherein the dummy gate 12b includes a gate dielectric layer, a dummy gate layer and a cap layer stacked in sequence.
隔离层12a的材料可以为二氧化硅(SiO2)、氮氧化硅(SiON)、氮化硅(Si3N4)或碳氧化硅(SiOC)。在本实施例中,隔离层12a的材料为氮化硅。The material of the isolation layer 12a may be silicon dioxide (SiO 2 ), silicon oxynitride (SiON), silicon nitride (Si 3 N 4 ) or silicon oxycarbide (SiOC). In the present embodiment, the material of the isolation layer 12a is silicon nitride.
在一种可选的实现方式中,前端器件层10中还包括浅沟槽隔离结构13。浅沟槽隔离结构13填充相邻的鳍部11中的底部。所述浅沟槽隔离结构13用于相邻鳍部11之间的电隔离。浅沟槽隔离结构13可以在后续离子注入工艺中避免掺杂离子注入到前端器件层10中。浅沟槽隔离结构13的材料可以为二氧化硅(SiO2)、氮氧化硅(SiON)或碳氧化硅(SiOC)。浅沟槽的材料还可以是低K介质材料(介电常数大于或等于2.5且小于3.9)或超低K介质材料(介电常数小于2.5),在本实施例中,浅沟槽隔离结构13的材料为二氧化硅。In an optional implementation, the front-end device layer 10 also includes a shallow trench isolation structure 13. The shallow trench isolation structure 13 fills the bottom of adjacent fins 11. The shallow trench isolation structure 13 is used for electrical isolation between adjacent fins 11. The shallow trench isolation structure 13 can avoid doping ions from being implanted into the front-end device layer 10 in a subsequent ion implantation process. The material of the shallow trench isolation structure 13 can be silicon dioxide ( SiO2 ), silicon oxynitride (SiON) or silicon oxycarbide (SiOC). The material of the shallow trench can also be a low-K dielectric material (dielectric constant greater than or equal to 2.5 and less than 3.9) or an ultra-low-K dielectric material (dielectric constant less than 2.5). In this embodiment, the material of the shallow trench isolation structure 13 is silicon dioxide.
参考图8,在步骤S200中,以所述栅极结构12为掩膜刻蚀所述栅极结构两侧的鳍部11。以在所述鳍部11上形成凹陷区20,露出所述沟道区C的侧壁。8 , in step S200 , the fins 11 on both sides of the gate structure are etched using the gate structure 12 as a mask to form a recessed region 20 on the fins 11 and expose the sidewalls of the channel region C.
所述刻蚀工艺可以选用干法刻蚀或湿法刻蚀等。在本实施例中,采用干法刻蚀以刻蚀所述鳍部11,干法蚀刻可以根据所选材料的不同来选择蚀刻气体,可以选择三氟甲烷(CHF3),六氟化硫(SF6),四氟化碳(CF4),四氟化碳(CF4)/氧气(O2)和四氟化碳(CF4)/氢气(H2)等作为刻蚀气体。在本发明实施例中,采用CHF3作为刻蚀气体,所述刻蚀压力可以为5-300mTorr。The etching process may be dry etching or wet etching. In the present embodiment, dry etching is used to etch the fin 11. The etching gas may be selected according to the selected material. Trifluoromethane (CHF 3 ), sulfur hexafluoride (SF 6 ), carbon tetrafluoride (CF 4 ), carbon tetrafluoride (CF 4 )/oxygen (O 2 ) and carbon tetrafluoride (CF 4 )/hydrogen (H 2 ) may be selected as the etching gas. In the embodiment of the present invention, CHF 3 is used as the etching gas, and the etching pressure may be 5-300 mTorr.
可选地,在刻蚀鳍部后,采用清洁工艺去除鳍部表面的杂质离子。在采用湿法清洁工艺后,烘干上述步骤形成的中间结构。Optionally, after etching the fins, a cleaning process is used to remove impurity ions on the surface of the fins. After the wet cleaning process is used, the intermediate structure formed in the above steps is dried.
参考图9和图10,在步骤S300中,形成扩散区30,所述扩散区30从所述沟道区C侧壁的底部区域向内延伸。9 and 10 , in step S300 , a diffusion region 30 is formed, wherein the diffusion region 30 extends inward from a bottom region of a sidewall of the channel region C. As shown in FIG.
具体地,所述形成扩散区包括:Specifically, forming the diffusion region includes:
步骤S301、以所述栅极结构为掩膜在所述凹陷区的底部和所述沟道区的侧壁的底部进行离子注入,以形成包括扩散区的离子注入层。Step S301 , performing ion implantation at the bottom of the recessed region and the bottom of the sidewall of the channel region using the gate structure as a mask to form an ion implantation layer including a diffusion region.
步骤S302、以所述栅极结构为掩膜将所述凹陷区的底部向下刻蚀预定深度,以去除位于所述凹陷区底部的部分离子注入层。Step S302 , using the gate structure as a mask to etch the bottom of the recessed area downward to a predetermined depth, so as to remove a portion of the ion implantation layer located at the bottom of the recessed area.
参考图9,在步骤S301中,以所述栅极结构12为掩膜在所述凹陷区20的底部和所述沟道区C的侧壁的底部进行离子注入,以形成包括扩散区30的离子注入层30a。9 , in step S301 , ion implantation is performed at the bottom of the recessed region 20 and the bottom of the sidewall of the channel region C using the gate structure 12 as a mask to form an ion implantation layer 30 a including a diffusion region 30 .
具体地,所述离子注入的能量为3Kev-10Kev。离子注入的注入角度为0°-15°。所述离子注入的注入离子为碳离子、磷离子、硼离子、镓离子以及砷离子中的一种或多种。所述离子注入层30a的深度范围是3纳米-10纳米。深度范围可以是离子注入层在如图9所示的截面在沟道区沿水平方向上的尺寸,或者可以是离子注入层在如图9所示的截面在凹槽底部区域沿垂直方向的尺寸。Specifically, the energy of the ion implantation is 3Kev-10Kev. The implantation angle of the ion implantation is 0°-15°. The implanted ions of the ion implantation are one or more of carbon ions, phosphorus ions, boron ions, gallium ions and arsenic ions. The depth range of the ion implantation layer 30a is 3 nanometers-10 nanometers. The depth range can be the size of the ion implantation layer in the horizontal direction of the channel region in the cross section as shown in Figure 9, or it can be the size of the ion implantation layer in the vertical direction in the cross section as shown in Figure 9 in the bottom area of the groove.
在一种可选的实现方式中,所述离子注入的注入离子包括类型与所述源漏区的掺杂离子的类型相反的离子,以减小漏电流。In an optional implementation, the implanted ions of the ion implantation include ions of a type opposite to that of the doping ions of the source and drain regions, so as to reduce leakage current.
具体地,所述半导体器件为N型场效应晶体管,所述离子注入工艺的注入离子为碳离子、硼离子和镓离子中的一种或多种。所述半导体器件为P型场效应晶体管,所述离子注入工艺的注入离子为磷离子和镓离子中的一种或多种。Specifically, the semiconductor device is an N-type field effect transistor, and the implanted ions in the ion implantation process are one or more of carbon ions, boron ions and gallium ions. The semiconductor device is a P-type field effect transistor, and the implanted ions in the ion implantation process are one or more of phosphorus ions and gallium ions.
具体地,所述半导体器件为P型场效应晶体管,所述离子注入工艺的注入离子为碳离子、硼离子和镓离子。离子注入的能量为7Kev,注入角度为10°。离子注入层30a的深度为8纳米。所述半导体器件为N型场效应晶体管,所述离子注入工艺的注入离子为磷离子和镓离子。离子注入的能量为5Kev,注入角度为13°。离子注入层30a的深度为6纳米。Specifically, the semiconductor device is a P-type field effect transistor, and the implanted ions of the ion implantation process are carbon ions, boron ions and gallium ions. The energy of the ion implantation is 7Kev, and the implantation angle is 10°. The depth of the ion implantation layer 30a is 8 nanometers. The semiconductor device is an N-type field effect transistor, and the implanted ions of the ion implantation process are phosphorus ions and gallium ions. The energy of the ion implantation is 5Kev, and the implantation angle is 13°. The depth of the ion implantation layer 30a is 6 nanometers.
通过形成包括与源漏区的掺杂离子类型相反的离子的扩散区,可以有效的阻挡后续在凹陷区中形成的源漏区之间的离子或原子横向扩散到沟道区中,可以提高栅极结构对沟道区的控制能力。By forming a diffusion region including ions of opposite doping type to the source and drain regions, ions or atoms between the source and drain regions subsequently formed in the recessed region can be effectively blocked from laterally diffusing into the channel region, thereby improving the control capability of the gate structure over the channel region.
参考图10,在步骤S302中,以所述栅极结构12为掩膜将所述凹陷区20的底部向下刻蚀预定深度,以去除位于所述凹陷区20底部的部分离子注入层30a。10 , in step S302 , the bottom of the recessed region 20 is etched downward to a predetermined depth using the gate structure 12 as a mask to remove a portion of the ion implantation layer 30 a located at the bottom of the recessed region 20 .
也就是说,在本步骤中,去除扩散区30以外的离子注入层30a。可以选用干法刻蚀或湿法刻蚀等。在本实施例中,采用干法刻蚀工艺刻蚀所述凹陷区20底部的部分离子注入层30a,可以根据所选材料的不同来选择蚀刻气体,可以选择三氟甲烷(CHF3),六氟化硫(SF6),四氟化碳(CF4),四氟化碳(CF4)/氧气(O2)和四氟化碳(CF4)/氢气(H2)等作为刻蚀气体。在本发明实施例中,采用三氟甲烷作为刻蚀气体,所述刻蚀压力可以为5-300mTorr。That is to say, in this step, the ion implantation layer 30a outside the diffusion region 30 is removed. Dry etching or wet etching can be used. In this embodiment, a dry etching process is used to etch part of the ion implantation layer 30a at the bottom of the recessed region 20. The etching gas can be selected according to the selected material. Trifluoromethane (CHF 3 ), sulfur hexafluoride (SF 6 ), carbon tetrafluoride (CF 4 ), carbon tetrafluoride (CF 4 )/oxygen (O 2 ) and carbon tetrafluoride (CF 4 )/hydrogen (H 2 ) can be selected as the etching gas. In the embodiment of the present invention, trifluoromethane is used as the etching gas, and the etching pressure can be 5-300 mTorr.
最终形成的扩散区如图11所示,所述扩散区的深度范围是3纳米-10纳米。The diffusion region finally formed is shown in FIG. 11 , and the depth of the diffusion region ranges from 3 nanometers to 10 nanometers.
在其他可选的实现方式中,也可以先通过光刻工艺在凹槽的预定区域形成掩膜层,再对未被掩膜层覆盖的凹槽的底部和沟道区侧壁的底部进行离子注入。In other optional implementations, a mask layer may be formed in a predetermined area of the groove by a photolithography process, and then ions may be implanted into the bottom of the groove and the bottom of the sidewall of the channel region that are not covered by the mask layer.
将扩散区形成在沟道的侧壁,而不覆盖凹陷区的底部,可以避免凹陷区的底部中的掺杂离子影响后续源漏区的形成,避免源漏区中形成缺陷。The diffusion region is formed on the sidewall of the channel without covering the bottom of the recessed region, so that the doped ions in the bottom of the recessed region can be prevented from affecting the subsequent formation of the source and drain regions and preventing defects from being formed in the source and drain regions.
在本步骤中,通过采用离子注入工艺形成包括扩散区30的离子注入层30a,再将扩散区30以外的离子注入层30a去除,形成扩散区30。扩散区30中经过与源漏区中掺杂离子的类型相反的离子注入,使注入的离子填充了沟道区的侧壁区域中的材料的空位,使沟道区的预定区域的材料的组织更加致密。因此,根据扩散的相关理论可知,致密的扩散区可以有效的阻挡后续在凹陷区中形成的源漏区之间的离子或原子横向扩散到沟道区中,能够减小漏电流,抑制瞬态增强扩散效应,进而能够抑制短沟道效应。In this step, an ion implantation layer 30a including a diffusion region 30 is formed by adopting an ion implantation process, and then the ion implantation layer 30a outside the diffusion region 30 is removed to form the diffusion region 30. The diffusion region 30 is implanted with ions of the opposite type to the doping ions in the source and drain regions, so that the implanted ions fill the vacancies of the materials in the sidewall region of the channel region, making the material structure of the predetermined region of the channel region more compact. Therefore, according to the relevant theories of diffusion, the compact diffusion region can effectively block the ions or atoms between the source and drain regions formed in the recessed region from diffusing laterally into the channel region, which can reduce the leakage current, suppress the transient enhanced diffusion effect, and further suppress the short channel effect.
参考图10,在步骤S400中,在所述沟道区两侧的鳍部上形成源漏区。10 , in step S400 , source and drain regions are formed on the fins at both sides of the channel region.
具体地,所述栅极结构包括栅极和覆盖所述栅极侧壁的隔离层,所述在所述沟道区两侧的鳍部上形成源漏区包括:Specifically, the gate structure includes a gate and an isolation layer covering the sidewalls of the gate, and the forming of source and drain regions on the fins on both sides of the channel region includes:
步骤S401、减薄所述隔离层。Step S401, thinning the isolation layer.
步骤S402、以所述伪栅和经过减薄的隔离层为掩膜在所述凹陷区底面和所述沟道区的侧壁上采用外延生长工艺形成外延层。Step S402 : using the dummy gate and the thinned isolation layer as masks, an epitaxial layer is formed on the bottom surface of the recessed region and the sidewalls of the channel region by an epitaxial growth process.
步骤S403、形成覆盖所述经过减薄的隔离层的侧壁的侧墙。Step S403 , forming a sidewall covering the sidewall of the thinned isolation layer.
步骤S404、以所述伪栅、所述经过减薄的隔离层和所述侧墙为掩膜,对所述外延层进行离子注入。Step S404: performing ion implantation on the epitaxial layer using the dummy gate, the thinned isolation layer and the sidewall as masks.
参考图11,在步骤S401中,减薄所述隔离层12a。Referring to FIG. 11 , in step S401 , the isolation layer 12 a is thinned.
具体地,减薄所述隔离层12a至所述隔离层12a的厚度为4纳米-7纳米。所述厚度是图11中所示的截面中,所述隔离层12a在水平方向的尺寸。通过减薄所述隔离层12a,可以后续在凹陷区20中较好的形成源漏区,避免因为隔离层12a过厚导致在沟道区的侧壁的位置形成空隙。Specifically, the isolation layer 12a is thinned to a thickness of 4 nanometers to 7 nanometers. The thickness is the dimension of the isolation layer 12a in the horizontal direction in the cross section shown in FIG. 11. By thinning the isolation layer 12a, the source and drain regions can be better formed in the recessed region 20 later, and the formation of gaps at the sidewalls of the channel region due to the isolation layer 12a being too thick can be avoided.
具体地,可以通过刻蚀工艺减薄所述隔离层12a。所述刻蚀工艺可以是干法刻蚀,具体可以是对鳍部11具有较高选择比的刻蚀工艺。Specifically, the isolation layer 12 a may be thinned by an etching process. The etching process may be dry etching, and specifically may be an etching process with a high selectivity to the fin 11 .
在一种可选的实现方式中,采用的刻蚀气体可以为氟甲烷(CH3F)、二氟甲烷(CH2F2)和三氟甲烷(CHF3)中的一种或组合,在所述刻蚀气体中混合使用氧气作为辅助气体。刻蚀气体的流量范围是20标况毫升每分,刻蚀时间范围是20秒到100秒。In an optional implementation, the etching gas used may be one or a combination of fluoromethane (CH 3 F), difluoromethane (CH 2 F 2 ) and trifluoromethane (CHF 3 ), and oxygen is mixed in the etching gas as an auxiliary gas. The flow rate of the etching gas is 20 standard milliliters per minute, and the etching time ranges from 20 seconds to 100 seconds.
参考图12,在步骤S402中,以所述伪栅12b和经过减薄的隔离层12为掩膜在所述凹陷区20底面和所述沟道区C的侧壁上采用外延生长工艺形成外延层40a。12 , in step S402 , an epitaxial layer 40 a is formed on the bottom surface of the recessed region 20 and the sidewalls of the channel region C by an epitaxial growth process using the dummy gate 12 b and the thinned isolation layer 12 as masks.
对于N型半导体器件来说,可以在凹陷区20中外延生长硅(Si)。对于P型半导体器件来说,可以在凹陷区20中外延生长锗硅(SiGe)。外延生长可以在后续工艺中形成抬升的源漏区,以便于向器件引入应力。其中,在外延生长时可以进行原位掺杂,例如掺入磷(P)或硼(B)等。For an N-type semiconductor device, silicon (Si) may be epitaxially grown in the recessed region 20. For a P-type semiconductor device, silicon germanium (SiGe) may be epitaxially grown in the recessed region 20. Epitaxial growth may form elevated source and drain regions in subsequent processes to facilitate the introduction of stress into the device. In-situ doping may be performed during epitaxial growth, such as doping with phosphorus (P) or boron (B).
采用外延生长工艺形成外延层,使得后续形成的源漏区的宽度大于鳍部的宽度,可以减小串联电阻,提高驱动电流;同时能够抬高源漏区的位置,以减小寄生结电容,从而提高半导体器件的性能。The epitaxial layer is formed by an epitaxial growth process so that the width of the subsequently formed source and drain regions is greater than the width of the fins, which can reduce the series resistance and increase the drive current; at the same time, the position of the source and drain regions can be raised to reduce the parasitic junction capacitance, thereby improving the performance of the semiconductor device.
具体地,外延生长的工艺可以选用如气相外延工艺(Vpor-Phase Epitaxy,VPE),液相外延工艺(Liquid-Phase Epitaxy),分子束外延工艺(Molecular Beam Epitaxy,MBE)以及离子束外延工艺(Ion Beam Epitaxy,IBE)等Specifically, the epitaxial growth process can be selected from vapor phase epitaxy (VPE), liquid phase epitaxy (Liquid-Phase Epitaxy), molecular beam epitaxy (MBE) and ion beam epitaxy (IBE).
参考图13,在步骤S403中,形成覆盖所述经过减薄的隔离层12a的侧壁的侧墙50。13 , in step S403 , a sidewall spacer 50 is formed to cover the sidewall of the thinned isolation layer 12 a .
所述侧墙50用于在后续离子注入工艺中作为掩膜,避免离子注入到沟道区和伪栅中。所述侧墙50的厚度可以是5纳米-20纳米。The sidewall spacer 50 is used as a mask in the subsequent ion implantation process to prevent ions from being implanted into the channel region and the dummy gate. The thickness of the sidewall spacer 50 may be 5 nanometers to 20 nanometers.
所述侧墙50的材料可以是低K介质材料(介电常数大于或等于2.5且小于3.9)或超低K介质材料(介电常数小于2.5),在本实施例中,侧墙20的材料为二氧化硅。The material of the sidewall spacer 50 may be a low-K dielectric material (with a dielectric constant greater than or equal to 2.5 and less than 3.9) or an ultra-low-K dielectric material (with a dielectric constant less than 2.5). In this embodiment, the material of the sidewall spacer 20 is silicon dioxide.
具体地,可以采用化学气相沉积法(Chemical Vapor Deposition,CVD),例如低温化学气相沉积(Low Temperature Chemical Vapor Deposition,LTCVD)、等离子体化学气相沉积工艺(Plasma Chemical Vapor Deposition,PCVD)、低压化学气相沉积(LowPressure Chemical Vapor Deposition,LPCVD)、快热化学气相沉积(Rapid ThermoChemical Vapor Deposition,RTCVD)、等离子体增强化学气相沉积(Plasma EnhancedChemical Vapor Deposition,PECVD)、流体化学气相沉积工艺(Fluid Chemical VaporDeposition,FCVD)。Specifically, a chemical vapor deposition method (Chemical Vapor Deposition, CVD) can be used, such as low temperature chemical vapor deposition (Low Temperature Chemical Vapor Deposition, LTCVD), plasma chemical vapor deposition process (Plasma Chemical Vapor Deposition, PCVD), low pressure chemical vapor deposition (Low Pressure Chemical Vapor Deposition, LPCVD), rapid thermal chemical vapor deposition (Rapid Thermo Chemical Vapor Deposition, RTCVD), plasma enhanced chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition, PECVD), and fluid chemical vapor deposition process (Fluid Chemical Vapor Deposition, FCVD).
参考图14,在步骤S404中,以所述伪栅12b、所述经过减薄的隔离层12a和所述侧墙50为掩膜,对所述外延层40a进行离子注入。以形成源漏区40。Referring to FIG. 14 , in step S404 , ion implantation is performed on the epitaxial layer 40 a using the dummy gate 12 b , the thinned isolation layer 12 a and the spacer 50 as masks to form source and drain regions 40 .
具体地,离子注入工艺的注入离子为磷离子、砷离子、硼离子、铟(In)离子、镓离子和锑离子中的一种或几种,离子注入的注入角度为0-5度,注入剂量为5E13atom/cm2-5E15atom/cm2,注入能量为6Kev-50Kev。Specifically, the implanted ions in the ion implantation process are one or more of phosphorus ions, arsenic ions, boron ions, indium (In) ions, gallium ions and antimony ions, the implantation angle of the ion implantation is 0-5 degrees, the implantation dose is 5E13atom/ cm2-5E15atom / cm2 , and the implantation energy is 6Kev-50Kev.
以所述伪栅12b、所述经过减薄的隔离层12a和所述侧墙50为掩膜,能够避免离子注入到沟道区C和伪栅12b中。同时,能够使注入离子的区域与沟道区C有一定的距离,避免源漏区40中的离子向沟道区中扩散。The dummy gate 12b, the thinned isolation layer 12a and the sidewall 50 are used as masks to prevent ions from being implanted into the channel region C and the dummy gate 12b. At the same time, the region where ions are implanted can be kept at a certain distance from the channel region C to prevent ions in the source and drain region 40 from diffusing into the channel region.
参考图15,在后续工艺中,还包括:形成覆盖所述鳍部11、源漏区40和所述侧墙50的侧壁的刻蚀停止层60。在所述刻蚀停止层60上形成介质层70。将伪栅替换成金属栅极。形成与源漏区和金属栅电连接的导电通孔。与导电通孔电连接的互连结构。并对形成的半导体结构进行封装。以形成完整的半导体器件。Referring to FIG. 15 , in the subsequent process, it also includes: forming an etching stop layer 60 covering the sidewalls of the fin 11, the source and drain regions 40 and the sidewalls 50. Forming a dielectric layer 70 on the etching stop layer 60. Replacing the dummy gate with a metal gate. Forming a conductive via electrically connected to the source and drain regions and the metal gate. An interconnection structure electrically connected to the conductive via. And packaging the formed semiconductor structure. To form a complete semiconductor device.
图16是本发明第二实施例的半导体器件的形成方法的流程图。参考图16,本发明第二实施例的半导体器件的形成方法包括如下步骤:FIG16 is a flow chart of a method for forming a semiconductor device according to a second embodiment of the present invention. Referring to FIG16 , the method for forming a semiconductor device according to the second embodiment of the present invention includes the following steps:
步骤S100、提供前端器件层,所述前端器件层包括多个分立的鳍部以及横跨所述鳍部的栅极结构,所述鳍部位于栅极结构下方的区域为沟道区。Step S100: providing a front-end device layer, wherein the front-end device layer comprises a plurality of discrete fins and a gate structure spanning the fins, wherein the region of the fins below the gate structure is a channel region.
步骤S200、以所述栅极结构为掩膜刻蚀所述栅极结构两侧的鳍部,以在所述鳍部上形成凹陷区,露出所述沟道区的侧壁。Step S200: using the gate structure as a mask to etch the fins on both sides of the gate structure to form a recessed area on the fins and expose the sidewalls of the channel area.
步骤S300’、形成扩散区,所述扩散区从所述沟道区侧壁的底部区域向内延伸。Step S300': forming a diffusion region, wherein the diffusion region extends inward from a bottom region of the sidewall of the channel region.
步骤S400、在所述沟道区两侧的鳍部上形成源漏区。Step S400: forming source and drain regions on the fins at both sides of the channel region.
其中,步骤S100、步骤S200和步骤S400可以参考本发明第一实施例,在此不再赘述。Among them, step S100, step S200 and step S400 may refer to the first embodiment of the present invention, and will not be described in detail here.
在步骤S300’中,形成扩散区,所述扩散区从所述沟道区侧壁的底部区域向内延伸。In step S300', a diffusion region is formed, wherein the diffusion region extends inward from a bottom region of a sidewall of the channel region.
具体地,本发明第一实施例和第二实施例的区别在于在形成扩散区的过程中,离子注入的类型不同。Specifically, the difference between the first embodiment and the second embodiment of the present invention lies in the different types of ion implantation during the process of forming the diffusion region.
在本发明第二实施例中,所述离子注入的注入离子包括类型与所述源漏区的掺杂离子的类型相同的离子,以提高沟道区的载流子迁移率。In a second embodiment of the present invention, the implanted ions of the ion implantation include ions of the same type as the doping ions of the source and drain regions, so as to improve the carrier mobility of the channel region.
具体地,所述半导体器件为N型场效应晶体管,所述离子注入工艺的注入离子为碳离子、硼离子和镓离子。离子注入的能量为7Kev,注入角度为10°。离子注入层30a的深度为8纳米。所述半导体器件为P型场效应晶体管,所述离子注入工艺的注入离子为磷离子和镓离子。离子注入的能量为5Kev,注入角度为13°。离子注入层30a的深度为6纳米。Specifically, the semiconductor device is an N-type field effect transistor, and the implanted ions of the ion implantation process are carbon ions, boron ions and gallium ions. The energy of the ion implantation is 7Kev, and the implantation angle is 10°. The depth of the ion implantation layer 30a is 8 nanometers. The semiconductor device is a P-type field effect transistor, and the implanted ions of the ion implantation process are phosphorus ions and gallium ions. The energy of the ion implantation is 5Kev, and the implantation angle is 13°. The depth of the ion implantation layer 30a is 6 nanometers.
通过在扩散区注入与源漏区的掺杂离子类型相同的离子,可以提高线性电流,能够使半导体器件的漏端的势垒降低。By injecting ions of the same type as those of the source and drain regions into the diffusion region, the linear current can be increased and the potential barrier at the drain end of the semiconductor device can be lowered.
具体地,所述半导体器件为N型场效应晶体管,所述离子注入工艺的注入离子为磷离子和镓离子中的一种或多种。所述半导体器件为P型场效应晶体管,所述离子注入工艺的注入离子为磷离子和镓离子中的一种或多种。Specifically, the semiconductor device is an N-type field effect transistor, and the implanted ions in the ion implantation process are one or more of phosphorus ions and gallium ions. The semiconductor device is a P-type field effect transistor, and the implanted ions in the ion implantation process are one or more of phosphorus ions and gallium ions.
在扩散区中注入与源漏区掺杂离子类型相同的离子,可以降低沟道区的电阻,提高沟道区中载流子的迁移率。调节后续形成的栅极结构的阈值电压。可以提高线性电流,能够使半导体器件的漏端的势垒降低。从而能够提高半导体器件的可靠性。Injecting ions of the same type as those doped in the source and drain regions into the diffusion region can reduce the resistance of the channel region and increase the mobility of carriers in the channel region. It can also adjust the threshold voltage of the gate structure formed subsequently. It can increase the linear current and reduce the potential barrier at the drain end of the semiconductor device. This can improve the reliability of the semiconductor device.
在本发明实施例中,在形成源漏区前,在沟道区侧壁的底部区域形成扩散区。扩散区可以减小半导体器件的漏电流,能够抑制短沟道效应。或者,扩散区能够提高沟道区中载流子的迁移率,使半导体器件的漏端的势垒降低,增大半导体器件的线性电流。通过形成扩散区,能够提高半导体器件的性能。In an embodiment of the present invention, before forming the source and drain regions, a diffusion region is formed in the bottom region of the sidewall of the channel region. The diffusion region can reduce the leakage current of the semiconductor device and suppress the short channel effect. Alternatively, the diffusion region can increase the mobility of carriers in the channel region, reduce the potential barrier at the drain end of the semiconductor device, and increase the linear current of the semiconductor device. By forming the diffusion region, the performance of the semiconductor device can be improved.
另一方面,本发明实施例还提供一种半导体器件,所述半导体器件包括:前端器件层、扩散区以及源漏区。On the other hand, an embodiment of the present invention further provides a semiconductor device, which includes: a front-end device layer, a diffusion region, and a source and drain region.
所述前端器件层包括多个分立的鳍部以及横跨所述鳍部的栅极结构,所述鳍部位于栅极结构下方的区域为沟道区,所述栅极结构两侧的鳍部上具有凹陷区。The front-end device layer includes a plurality of discrete fins and a gate structure spanning the fins. The area of the fins located below the gate structure is a channel area. The fins on both sides of the gate structure have recessed areas.
所述扩散区从所述沟道区侧壁的底部区域向内延伸。The diffusion region extends inward from a bottom region of a sidewall of the channel region.
所述源漏区位于所述凹陷区中。The source and drain regions are located in the recessed region.
图17是本发明第三实施例的半导体器件的剖面示意图。参考图17,本发明实施例所述半导体器件包括:前端器件层10’、扩散区30’以及源漏区40’。Fig. 17 is a cross-sectional schematic diagram of a semiconductor device according to a third embodiment of the present invention. Referring to Fig. 17, the semiconductor device according to the embodiment of the present invention comprises: a front-end device layer 10', a diffusion region 30' and a source-drain region 40'.
所述前端器件层10’包括多个分立的鳍部11’以及横跨所述鳍部11’的栅极结构12’,所述鳍部11’位于栅极结构12’下方的区域为沟道区C’,所述栅极结构12’两侧的鳍部11’上具有凹陷区。The front-end device layer 10' includes a plurality of discrete fins 11' and a gate structure 12' spanning the fins 11', the area where the fins 11' are located below the gate structure 12' is a channel region C', and the fins 11' on both sides of the gate structure 12' have recessed regions.
在一种可选的实现方式中,前端器件层10’中还包括浅沟槽隔离结构13’。浅沟槽隔离结构13’填充相邻的鳍部11’中的底部。所述浅沟槽隔离结构13’用于相邻鳍部11’之间的电隔离。所述多个鳍部’11平行或者基本平行。In an optional implementation, the front-end device layer 10' further includes a shallow trench isolation structure 13'. The shallow trench isolation structure 13' fills the bottom of the adjacent fins 11'. The shallow trench isolation structure 13' is used for electrical isolation between adjacent fins 11'. The multiple fins 11' are parallel or substantially parallel.
所述栅极结构12’包括:隔离层12a’和伪栅12b’。其中,伪栅12b’中包括依次叠置的栅介质层、伪栅层以及盖帽层。The gate structure 12' comprises: an isolation layer 12a' and a dummy gate 12b'. The dummy gate 12b' comprises a gate dielectric layer, a dummy gate layer and a cap layer stacked in sequence.
在一种可选的实现方式中,栅极结构12’的侧壁上覆盖有侧墙50’。In an optional implementation, the sidewalls of the gate structure 12' are covered with sidewall spacers 50'.
所述扩散区30’从所述沟道区C’侧壁的底部区域向内延伸。The diffusion region 30' extends inward from the bottom area of the sidewall of the channel region C'.
所述源漏区40’位于所述凹陷区中。The source and drain regions 40' are located in the recessed regions.
所述扩散区30’通过在所述沟道区C’的底部进行离子注入形成。The diffusion region 30' is formed by ion implantation at the bottom of the channel region C'.
所述扩散区30’的深度范围是3纳米-10纳米。The depth of the diffusion region 30' is in the range of 3 nm to 10 nm.
具体地,所述扩散区的掺杂离子的类型与所述源漏区的掺杂离子的类型相反,以减小漏电流。Specifically, the type of doping ions in the diffusion region is opposite to the type of doping ions in the source and drain regions, so as to reduce leakage current.
在本发明实施例中,在沟道区侧壁的底部区域形成有扩散区。扩散区可以减小半导体器件的漏电流,能够抑制短沟道效应。In the embodiment of the present invention, a diffusion region is formed in the bottom area of the sidewall of the channel region. The diffusion region can reduce the leakage current of the semiconductor device and suppress the short channel effect.
本发明第四实施例提供一种半导体器件,第四实施例与第三实施例的区别在于,所述扩散区的掺杂离子的类型与所述源漏区的掺杂离子的类型相反,以提高沟道区的载流子迁移率。A fourth embodiment of the present invention provides a semiconductor device. The fourth embodiment differs from the third embodiment in that the type of doping ions in the diffusion region is opposite to the type of doping ions in the source and drain regions, so as to improve the carrier mobility in the channel region.
在本发明实施例中,扩散区能够提高沟道区中载流子的迁移率,使半导体器件的漏端的势垒降低,增大半导体器件的线性电流。通过设置扩散区,能够提高半导体器件的性能。In the embodiment of the present invention, the diffusion region can improve the mobility of carriers in the channel region, reduce the potential barrier of the drain end of the semiconductor device, and increase the linear current of the semiconductor device. By setting the diffusion region, the performance of the semiconductor device can be improved.
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域技术人员而言,本发明可以有各种改动和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention and is not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and variations. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the protection scope of the present invention.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910935432.4A CN112582471B (en) | 2019-09-29 | 2019-09-29 | Semiconductor device and forming method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910935432.4A CN112582471B (en) | 2019-09-29 | 2019-09-29 | Semiconductor device and forming method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112582471A CN112582471A (en) | 2021-03-30 |
CN112582471B true CN112582471B (en) | 2024-10-29 |
Family
ID=75111330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910935432.4A Active CN112582471B (en) | 2019-09-29 | 2019-09-29 | Semiconductor device and forming method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112582471B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115775827A (en) * | 2021-09-06 | 2023-03-10 | 苏州大学 | Field Effect Transistor Devices |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104124167A (en) * | 2013-04-28 | 2014-10-29 | 中芯国际集成电路制造(上海)有限公司 | Mos transistor and forming method thereof |
CN110047754A (en) * | 2018-01-16 | 2019-07-23 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor devices and its manufacturing method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7485536B2 (en) * | 2005-12-30 | 2009-02-03 | Intel Corporation | Abrupt junction formation by atomic layer epitaxy of in situ delta doped dopant diffusion barriers |
CN102768957B (en) * | 2011-05-06 | 2016-09-14 | 中国科学院微电子研究所 | Fin field effect transistor and manufacturing method thereof |
CN107958873B (en) * | 2016-10-18 | 2020-11-27 | 中芯国际集成电路制造(上海)有限公司 | Fin-type field effect transistor and method of forming the same |
-
2019
- 2019-09-29 CN CN201910935432.4A patent/CN112582471B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104124167A (en) * | 2013-04-28 | 2014-10-29 | 中芯国际集成电路制造(上海)有限公司 | Mos transistor and forming method thereof |
CN110047754A (en) * | 2018-01-16 | 2019-07-23 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor devices and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
CN112582471A (en) | 2021-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10978352B2 (en) | FinFET device | |
US11164786B2 (en) | Power reduction in finFET structures | |
US9196543B2 (en) | Structure and method for finFET device | |
US9923094B2 (en) | Source/drain regions for fin field effect transistors and methods of forming same | |
US10872805B2 (en) | Semiconductor device and manufacturing method thereof | |
US8878308B2 (en) | Multi-fin device by self-aligned castle fin formation | |
US20130140639A1 (en) | High gate density devices and methods | |
US10629497B2 (en) | FinFET device structure and method for enlarging gap-fill window | |
US8962430B2 (en) | Method for the formation of a protective dual liner for a shallow trench isolation structure | |
US11257908B2 (en) | Transistors with stacked semiconductor layers as channels | |
US11145747B2 (en) | FinFET structure | |
CN114864496A (en) | Method for forming semiconductor device | |
US7851328B2 (en) | STI stress modulation with additional implantation and natural pad sin mask | |
CN112582471B (en) | Semiconductor device and forming method | |
CN112582268B (en) | Semiconductor device and method for forming the same | |
CN106910685A (en) | A kind of semiconductor devices and preparation method thereof, electronic installation | |
CN105826200A (en) | Transistor and forming method thereof | |
CN112582472B (en) | Semiconductor device and forming method | |
US11271111B2 (en) | Source/drain structure with barrier in FinFET device and method for forming the same | |
CN106910671B (en) | A kind of semiconductor device and its preparation method, electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |