CN112577706A - Method for acquiring pose of embedded wind tunnel free flight test model - Google Patents
Method for acquiring pose of embedded wind tunnel free flight test model Download PDFInfo
- Publication number
- CN112577706A CN112577706A CN202011565410.2A CN202011565410A CN112577706A CN 112577706 A CN112577706 A CN 112577706A CN 202011565410 A CN202011565410 A CN 202011565410A CN 112577706 A CN112577706 A CN 112577706A
- Authority
- CN
- China
- Prior art keywords
- data
- model
- pose
- axis
- test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M9/00—Aerodynamic testing; Arrangements in or on wind tunnels
- G01M9/06—Measuring arrangements specially adapted for aerodynamic testing
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
Abstract
Description
技术领域technical field
风洞飞行试验技术领域,具体涉及一种内嵌式风洞自由飞试验模型位姿获取方法。The technical field of wind tunnel flight test, in particular to a method for acquiring the pose of an embedded wind tunnel free flight test model.
背景技术Background technique
风洞自由飞试验是风洞试验领域一种具体的试验方法,其原理是:在风洞试验中,将飞行器模型通过发射、投放等方式置于风洞流场之中,此时飞行器模型没有任何支撑约束,除重力外仅受气动力作用。通过实时捕获飞行器模型的位置姿态信息,可获取飞行器的静、动稳定导数系数及其它相关气动系数。相对于传统风洞试验,其最大的优点是没有支撑干扰,能较为真实地模拟飞行器的实际飞行状态。The wind tunnel free flight test is a specific test method in the field of wind tunnel testing. Any support constraints, other than gravity, are only subject to aerodynamic forces. By capturing the position and attitude information of the aircraft model in real time, the static and dynamic stability derivative coefficients and other related aerodynamic coefficients of the aircraft can be obtained. Compared with the traditional wind tunnel test, its biggest advantage is that there is no support interference, and it can more realistically simulate the actual flight state of the aircraft.
飞行器模型的位姿捕获是风洞自由飞试验的核心环节。目前,风洞自由飞试验模型的位姿捕获均基于高速摄影方法。然而,其存在获取位姿自由度少、有效数据量少的问题,制约了风洞自由飞试验的进一步发展。惯性传感器的优点是完全独立自主、输出频率高,但存在累计误差,长时间使用误差较大。因此大多数情形下,惯性传感器需要与其它传感器(GPS、磁强计、里程计等)进行组合实现位姿解算,实现优势互补。专利“一种径向水平井的井眼轨迹参数计算方法:CN 106703787 B”利用地磁信息对惯性解算信息进行校正以获取实时井眼轨迹。对于无其它类型传感器辅助的纯惯性位姿解算方法,专利“基于MEMS传感器的自适应零速修正行人导航方法:CN201710943499.3”利用MEMS惯性传感器实现零速修正,同时通过捷联解算获取行人的位置和速度。The pose capture of the aircraft model is the core part of the wind tunnel free flight test. At present, the pose capture of wind tunnel free-flight test models is based on high-speed photography methods. However, it has the problems of less degrees of freedom in obtaining poses and less effective data, which restricts the further development of wind tunnel free flight tests. The advantages of inertial sensors are that they are completely independent and have high output frequency, but there are accumulated errors, and long-term use errors are large. Therefore, in most cases, inertial sensors need to be combined with other sensors (GPS, magnetometer, odometer, etc.) to achieve pose calculation and complement each other's advantages. The patent "A method for calculating wellbore trajectory parameters of radial horizontal wells: CN 106703787 B" uses geomagnetic information to correct inertial calculation information to obtain real-time wellbore trajectory. For the pure inertial pose calculation method without the assistance of other types of sensors, the patent "Adaptive Zero-speed Correction Pedestrian Navigation Method Based on MEMS Sensor: CN201710943499.3" uses MEMS inertial sensors to achieve zero-speed correction, and at the same time obtains through strapdown solution Pedestrian position and speed.
在风洞试验中,惯性器件目前大多数应用于静态角度测量而非位姿解算,且由于MEMS惯性传感器精度较低。In wind tunnel tests, inertial devices are currently mostly used for static angle measurement rather than pose calculation, and due to the low accuracy of MEMS inertial sensors.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种内嵌式风洞自由飞试验模型位姿获取方法,能够针对风洞自由飞试验的应用场景,以提升试验精度。The purpose of the present invention is to provide an embedded wind tunnel free flight test model pose acquisition method, which can improve the test accuracy for the application scenario of the wind tunnel free flight test.
第一方面,本发明实施例提供了一种内嵌式风洞自由飞试验模型位姿获取方法,其特征在于,所述获取位姿方法包含以下步骤:In a first aspect, an embodiment of the present invention provides a method for obtaining a pose of an embedded wind tunnel free flight test model, wherein the method for obtaining a pose includes the following steps:
对所述惯性传感器数据按预设规则进行截取得到试验有效数据,其中,所述有效数据包括,三轴加速度计数据和三轴陀螺输出数据;Intercepting the inertial sensor data according to preset rules to obtain valid test data, wherein the valid data includes three-axis accelerometer data and three-axis gyro output data;
对所述三轴加速度计数据进行低通滤波得到第一数据,去除高频振动干扰;Perform low-pass filtering on the three-axis accelerometer data to obtain the first data to remove high-frequency vibration interference;
对所述第一数据及三轴陀螺输出数据进行带阻滤波得到第二数据,去除风动气流的脉动干扰;Band-stop filtering is performed on the first data and the output data of the three-axis gyro to obtain the second data, so as to remove the pulsating interference of the wind-driven airflow;
基于所述第二数据进行递推位姿解算得到试验过程中有效时间内的飞行器模型六自由度位姿信息。Based on the second data, recursive pose calculation is performed to obtain the six-degree-of-freedom pose information of the aircraft model within the valid time during the test.
可选地,所述位姿解算方法应用于风洞自由飞试验模型位姿测量之中,测量系统基于惯性传感器,且置于模型内部。Optionally, the pose calculation method is applied to the pose measurement of the wind tunnel free flight test model, and the measurement system is based on an inertial sensor and is placed inside the model.
可选地,所述预设规则是:加速度变化量|a(i)-a(i-1)|首次大于阈值ath时刻之前的数据为试验有效数据,其中,Optionally, the preset rule is: the data before the moment when the acceleration change amount |a(i)-a(i-1)| is greater than the threshold a th for the first time is the valid data of the experiment, wherein,
a(i-1)为a(i)上一时刻的值。ax、ay和az分别是加速度计输出的三轴加速度,ath由试验前多次测试获取。a(i-1) is the value of a(i) at the last moment. a x , a y and a z are the three-axis acceleration output by the accelerometer, respectively, and a th is obtained from multiple tests before the test.
可选地,低通滤波截止频率是惯性传感器数据采集频率的一半。Optionally, the low pass filter cutoff frequency is half the frequency of inertial sensor data acquisition.
可选地,带阻滤波阻频带中心频率和带宽由风洞气流的脉动水平决定,不同风洞和不同马赫数下,带阻滤波器阻频带中心频率和带宽不同,由先序流场校测获得。Optionally, the center frequency and bandwidth of the stop band of the band-stop filter are determined by the pulsation level of the air flow in the wind tunnel. Under different wind tunnels and different Mach numbers, the center frequency and bandwidth of the stop band of the band-stop filter are different, and are calibrated by the pre-order flow field. get.
可选地,基于所述第二数据进行递推位姿解算得到试验过程中有效时间内的飞行器模型六自由度位姿信息包括:Optionally, performing the recursive pose calculation based on the second data to obtain the six-degree-of-freedom pose information of the aircraft model within the valid time during the test process includes:
a、定义惯性器件x轴在模型铅垂面内指向模型前方,z轴在模型铅垂面内指向模型下方,y轴与x、z轴成右手系指向模型右侧;惯性传感器轴系定义与模型一致;初始化解算参数,其中包括:比例常数Kp,积分常数Ki,时间常数T,四元数初始值q=[q0 q1 q2 q3]T,上角标T代表向量或矩阵转置;误差积分项初始值ei=[eix eiy eiz]T;速度初始值vel=[velxvely velz]T,位置初始值pos=[posx posy posz]T;a. Define that the x-axis of the inertial device points to the front of the model in the vertical plane of the model, the z-axis points to the bottom of the model in the vertical plane of the model, and the y-axis and the x and z-axes form a right-handed system and point to the right side of the model; the definition of the inertial sensor axis is the same as The model is consistent; initialize the solution parameters, including: proportional constant K p , integral constant K i , time constant T, quaternion initial value q=[q 0 q 1 q 2 q 3 ] T , superscript T represents the vector Or matrix transposition; initial value of error integral term e i =[e ix e iy e iz ] T ; initial value of velocity vel=[vel x vel y vel z ] T , initial value of position pos=[pos x pos y pos z ] T ;
b、将当前时刻三轴陀螺数据和加速度计数据归一化:b. Normalize the three-axis gyro data and accelerometer data at the current moment:
an=a/|a|,gn=g/|g|a n =a/|a|, gn=g/|g|
其中,an=[anx any anz]T为归一化的加速度计数据,gn=[gnx gny gnz]T为归一化的陀螺数据,a=[ax ay az]T为原始三轴加速度计数据,g=[gx gy gz]T为原始三轴陀螺数据,且where, an =[ anx a ny a nz ] T is the normalized accelerometer data, g n = [g nx g ny g nz ] T is the normalized gyro data, a=[a x a y a z ] T is the original three-axis accelerometer data, g=[g x g y g z ] T is the original three-axis gyro data, and
c、计算单位重力向量v=[vx vy vz]T:c. Calculate the unit gravity vector v=[v x v y v z ] T :
其中,gn=[0 0 1]T;为姿态矩阵,根据欧拉角旋转序列的不同,一共有12种表示,可选择任意一种;Wherein, g n =[0 0 1] T ; is the attitude matrix, according to the different Euler angle rotation sequences, There are a total of 12 representations, you can choose any one;
d、计算当前时刻姿态误差e=[ex ey ez]T,并对误差进行积分:d. Calculate the attitude error e=[e x e y e z ] T at the current moment, and integrate the error:
e=an×ve=a n ×v
积分项ei=[eix eiy eiz]T更新如下:The integral term e i =[e ix e iy e iz ] T is updated as follows:
ei(i)=ei(i-1)+KiT·ee i (i)=e i (i-1)+K i T·e
其中,ei(i-1)代表上一时刻的误差积分项。Among them, e i (i-1) represents the error integral term at the previous moment.
e、修正陀螺零偏:e. Correct the zero offset of the gyro:
gnr=gn+Kp·e+ei(i)g nr =g n +K p ·e+e i (i)
其中,gnr=[gnrx gnry gnrz]T是修正后的陀螺数据。Wherein, g nr =[g nrx g nry g nrz ] T is the corrected gyro data.
f、更新四元数并对四元数归一化:f. Update the quaternion and normalize the quaternion:
q(i)=q(i-1)+TΩq(i-1)q(i)=q(i-1)+TΩq(i-1)
其中,in,
对四元数归一化得到qn(i)=[q1n(i) q2n(i) q3n(i) q4n(i)]T Normalize the quaternion to get q n (i)=[q 1n (i) q 2n (i) q 3n (i) q 4n (i)] T
qn(i)=q(i)/|q(i)|q n (i)=q(i)/|q(i)|
其中in
g、利用更新的四元数求解飞行器模型姿态,包含滚转角、俯仰角和侧偏角。更新公式由步骤c确定的旋转序列决定。旋转序列不同,姿态角的计算方法不同。g. Use the updated quaternion to solve the attitude of the aircraft model, including the roll angle, pitch angle and sideslip angle. The update formula is determined by the rotation sequence determined in step c. The rotation sequence is different, and the calculation method of the attitude angle is different.
h、计算地平坐标系下的飞行器模型三轴加速度:h. Calculate the three-axis acceleration of the aircraft model in the horizon coordinate system:
其中ane=[anex aney anez]T,ge为当地重力加速度。where a ne = [a nex a ney a nez ] T , g e is the local gravitational acceleration.
i、计算地平坐标系下的飞行器模型三轴速度并滤波:i. Calculate and filter the three-axis velocity of the aircraft model in the horizon coordinate system:
vel(i)=vel(i-1)+ane·Tvel(i)=vel(i-1)+a ne ·T
对速度进行高通滤波,目的是去除偏置误差:The velocity is high-pass filtered to remove bias errors:
velf(i)=Fil1(vel(i))vel f (i) = Fil 1 (vel (i))
其中,Fil1(*)是设计的高通滤波器,其波通频带截止频率小于0.2Hz。Among them, Fil 1 (*) is a designed high-pass filter whose pass-band cutoff frequency is less than 0.2Hz.
j、计算地平坐标系下的飞行器模型三轴位置并滤波:j. Calculate the three-axis position of the aircraft model in the horizon coordinate system and filter:
pos(i)=pos(i-1)+velf·Tpos(i)=pos(i-1)+vel f ·T
对位置进行高通滤波,目的是去除偏置误差:The position is high-pass filtered to remove bias errors:
posf(i)=Fil2(pos(i))pos f (i) = Fil 2 (pos (i))
其中,Fil2(*)是设计的高通滤波器,其波通频带截止频率小于0.2Hz。Among them, Fil 2 (*) is a designed high-pass filter whose pass-band cutoff frequency is less than 0.2Hz.
k、返回步骤b,迭代计算,直至获取有效数据时间内的飞行器模型位置姿态信息。k. Return to step b, and iteratively calculate until the position and attitude information of the aircraft model within the valid data time is obtained.
有益效果beneficial effect
本发明公开了一种内嵌式风洞自由飞试验模型位姿获取方法,通过对所述惯性传感器数据按预设规则进行截取得到试验有效数据,其中,所述有效数据包括,三轴加速度计数据和三轴陀螺输出数据;对所述三轴加速度计数据进行低通滤波得到第一数据,去除高频振动干扰;对所述第一数据及三轴陀螺输出数据进行带阻滤波得到第二数据,去除风动气流的脉动干扰;基于所述第二数据进行递推位姿解算得到试验过程中有效时间内的飞行器模型六自由度位姿信息,能够针对风洞自由飞试验的应用场景,以提升试验精度。The invention discloses a method for obtaining the pose and attitude of an embedded wind tunnel free flight test model. The valid data of the test is obtained by intercepting the inertial sensor data according to preset rules, wherein the valid data includes a triaxial accelerometer. data and three-axis gyro output data; perform low-pass filtering on the three-axis accelerometer data to obtain the first data to remove high-frequency vibration interference; perform band-stop filtering on the first data and the three-axis gyro output data to obtain the second data. data to remove the pulsating interference of wind and airflow; based on the second data, recursive pose calculation is performed to obtain the 6-DOF pose information of the aircraft model during the valid time during the test, which can be used for the application scenario of the wind tunnel free flight test , in order to improve the test accuracy.
附图说明Description of drawings
图1为本发明内嵌式风洞自由飞试验模型位姿获取方法一种实施例的流程图;1 is a flowchart of an embodiment of a method for obtaining a pose of an embedded wind tunnel free flight test model of the present invention;
图2为基于所述第二数据进行递推位姿解算得到试验过程中有效时间内的飞行器模型六自由度位姿信息一种实施例的流程图;Fig. 2 is a flow chart of an embodiment of performing a recursive pose calculation based on the second data to obtain the six-degree-of-freedom pose information of the aircraft model within the valid time during the test;
具体实施方式Detailed ways
下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below with reference to the embodiments. Obviously, the described embodiments are part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
在本发明的描述中,需要理解的是,术语"厚度"、"上"、"下"、"前"、"后"、"左"、"右"、"内"、"外"、等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或系统必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present invention, it should be understood that the terms "thickness", "upper", "lower", "front", "rear", "left", "right", "inner", "outer", etc. The indicated orientation or positional relationship is based on the orientation or positional relationship shown in the accompanying drawings, which is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the indicated device or system must have a specific orientation or a specific orientation. construction and operation, and therefore should not be construed as limiting the invention.
此外,术语"第一"、"第二"仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有"第一"、"第二"的特征可以明示或者隐含地包括一个或者更多个所述特征。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。In addition, the terms "first" and "second" are only used for descriptive purposes, and should not be understood as indicating or implying relative importance or implying the number of indicated technical features. Thus, features defined as "first", "second" may expressly or implicitly include one or more of said features. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood in specific situations.
在风洞试验中,惯性器件目前大多数应用于静态角度测量而非位姿解算,且由于MEMS惯性传感器精度较低,因此,需要针对风洞自由飞试验的应用场景,设计位姿捕获算法以满足试验精度。将MEMS惯性器件应用于风洞试验之中必须考虑如下问题:1、受限于飞行器模型体积和金属屏蔽环境,其很难与其它传感器进行组合,只能通过提高惯性解算精度提高位姿解算精度;2、风洞试验中飞行器模型振动及气流脉动干扰较大,而MEMS传感器对振动较为敏感,故必须对原始数据进行有效滤波。In the wind tunnel test, inertial devices are currently mostly used for static angle measurement rather than position and attitude calculation, and due to the low accuracy of MEMS inertial sensors, it is necessary to design a position and attitude capture algorithm for the application scenario of wind tunnel free flight test. to meet the test accuracy. The following issues must be considered when applying MEMS inertial devices to wind tunnel tests: 1. Limited by the volume of the aircraft model and the metal shielding environment, it is difficult to combine with other sensors, and the pose solution can only be improved by improving the inertial solution accuracy. 2. In the wind tunnel test, the aircraft model vibration and airflow pulsation interfere greatly, and the MEMS sensor is more sensitive to vibration, so the original data must be effectively filtered.
本发明一种实施例公开了一种内嵌式风洞自由飞试验模型位姿获取方法,具体包含如下步骤:An embodiment of the present invention discloses a method for obtaining a pose of an embedded wind tunnel free flight test model, which specifically includes the following steps:
S20、对所述惯性传感器数据按预设规则进行截取得到试验有效数据,其中,所述有效数据包括,三轴加速度计数据和三轴陀螺输出数据;S20, intercepting the inertial sensor data according to a preset rule to obtain valid test data, wherein the valid data includes three-axis accelerometer data and three-axis gyro output data;
S40、对所述三轴加速度计数据进行低通滤波得到第一数据,去除高频振动干扰;S40, performing low-pass filtering on the three-axis accelerometer data to obtain first data to remove high-frequency vibration interference;
S60、对所述第一数据及三轴陀螺输出数据进行带阻滤波得到第二数据,去除风动气流的脉动干扰;S60, band-stop filtering is performed on the first data and the output data of the three-axis gyro to obtain the second data, and the pulsating interference of the wind-driven airflow is removed;
S80、基于所述第二数据进行递推位姿解算得到试验过程中有效时间内的飞行器模型六自由度位姿信息。S80. Perform recursive pose calculation based on the second data to obtain the six-degree-of-freedom pose information of the aircraft model within the valid time during the test.
进一步地,步骤S20中,数据截取的规则是:加速度变化量|a(i)-a(i-1)|首次大于阈值ath时刻之前的数据为试验有效数据。其中,Further, in step S20, the data interception rule is: the data before the time when the acceleration change amount |a(i)-a(i-1)| is greater than the threshold value a th for the first time is valid data for the experiment. in,
a(i-1)为a(i)上一时刻的值。ax、ay和az分别是加速度计输出的三轴加速度。ath由试验前多次测试获取。a(i-1) is the value of a(i) at the last moment. a x , a y and az are the three-axis acceleration output by the accelerometer, respectively. a th is obtained from multiple tests before the test.
进一步地,步骤S40中,滤波截止频率fc是惯性传感器数据采集频率的一半。Further, in step S40, the filter cut-off frequency fc is half of the inertial sensor data acquisition frequency.
进一步地,步骤S60中,带阻滤波阻频带中心频率f0和带宽BW由风洞气流的脉动水平决定。不同风洞和不同马赫数下,带阻滤波器阻频带中心频率f0和带宽BW不同,由先序流场校测获得。Further, in step S60, the center frequency f 0 and the bandwidth BW of the band rejection filter are determined by the pulsation level of the wind tunnel airflow. Under different wind tunnels and different Mach numbers, the center frequency f 0 and bandwidth BW of the stop band of the band-stop filter are different, which are obtained from the pre-order flow field calibration.
下面引入具体参数以一种较优的实施方式对本发明的有益效果进一步说明:The beneficial effects of the present invention are further described below by introducing specific parameters with a preferred embodiment:
步骤1:将内嵌式风洞自由飞试验模型位姿测量系统采集到的惯性传感器数据进行截取,获取试验有效数据,描述为数据1.其中,试验有效数据是指模型未碰到风洞试验段之前,仅在空气动力作用下风洞自由飞试验模型的惯性传感器数据。因为模型碰到风洞试验段时,会出现加速度突变。因而加速度产生突变之前的数据为有效数据。Step 1: Intercept the inertial sensor data collected by the embedded wind tunnel free flight test model pose measurement system to obtain test valid data, which is described as data 1. Among them, test valid data means that the model does not touch the wind tunnel test Before the previous paragraph, only inertial sensor data of the wind tunnel free-flight test model under aerodynamic action. Because the model encounters the wind tunnel test section, there will be a sudden acceleration of the acceleration. Therefore, the data before the sudden change of acceleration is valid data.
具体地,数据的截取的规则是:加速度变化量|a(i)-a(i-1)|首次大于阈值ath时刻之前的数据为试验有效数据。其中,Specifically, the data interception rule is: the data before the time when the acceleration change amount |a(i)-a(i-1)| is greater than the threshold a th for the first time is the valid data of the experiment. in,
a(i-1)为a(i)上一时刻的值。ax、ay和az分别是加速度计输出的三轴加速度。ath由试验前多次测试获取。a(i-1) is the value of a(i) at the last moment. a x , a y and az are the three-axis acceleration output by the accelerometer, respectively. a th is obtained from multiple tests before the test.
步骤2:将步骤1所得的所述数据1中的三轴加速度计输出数据进行低通滤波,和未滤波的三轴陀螺输出数据一起组成数据2。其中,滤波截止频率fc是惯性传感器数据采集频率的一半。下面以ax的低通滤波为例进行步骤说明,其中采集频率为100Hz,fc=50Hz。ay和az低通滤波步骤完全一致。滤波公式如下:Step 2: Perform low-pass filtering on the triaxial accelerometer output data in the data 1 obtained in step 1, and form data 2 together with the unfiltered triaxial gyro output data. Among them, the filter cutoff frequency fc is half of the inertial sensor data acquisition frequency. The steps are described below by taking the low-pass filtering of a x as an example, where the acquisition frequency is 100 Hz, and f c =50 Hz. The a y and a z low-pass filtering steps are exactly the same. The filtering formula is as follows:
x(n)=0.858·ax(n)x(n)=0.858·a x (n)
y(n)=x(n)+x(n-1)-0.716·y(n-1)y(n)=x(n)+x(n-1)-0.716 y(n-1)
其中,ax是N维原始数组,N为数据长度;y为ax经低通滤波后的数组,y(n)是y的第n个元素。Among them, a x is the N-dimensional original array, N is the data length; y is the low-pass filtered array of a x , and y(n) is the nth element of y.
步骤3:将步骤2所得的所述数据2进行带阻滤波,得到数据3。其中,带阻滤波阻频带中心频率f0和带宽BW由风洞气流的脉动水平决定。不同风洞和不同马赫数下,带阻滤波器阻频带中心频率f0和带宽BW不同,由先序流场校测获得。下面同样以ax的带阻滤波为例进行步骤说明,其中采集频率为100Hz,f0=25Hz,BW=10Hz。ay和az的带阻滤波步骤完全一致。滤波公式如下:Step 3: Band-stop filtering is performed on the data 2 obtained in step 2 to obtain data 3. Among them, the center frequency f 0 of the band-stop filter and the bandwidth BW are determined by the pulsation level of the wind tunnel airflow. Under different wind tunnels and different Mach numbers, the center frequency f 0 and bandwidth BW of the stop band of the band-stop filter are different, which are obtained from the pre-order flow field calibration. The following also takes the band-stop filtering of a x as an example to describe the steps, wherein the acquisition frequency is 100 Hz, f 0 =25 Hz, and BW = 10 Hz. The bandstop filtering steps for a y and az are exactly the same. The filtering formula is as follows:
x(n)=0.6486·ax(n)x(n)=0.6486·a x (n)
y1(n)=x(n)-0.4478·x(n-1)+x(n-2)-0.7503·y1(n-1)-0.4701·y1(n-2)y 1 (n)=x(n)-0.4478·x(n-1)+x(n-2)-0.7503·y 1 (n-1)-0.4701·y 1 (n-2)
x1(n)=0.6486·y1(n)x 1 (n)=0.6486 y 1 (n)
y2(n)=x1(n)+0.4478·x1(n-1)+x1(n-2)+0.7503·y2(n-1)-0.4701·yi(n-2)y 2 (n)=x 1 (n)+0.4478·x 1 (n-1)+x 1 (n-2)+0.7503·y 2 (n-1)-0.4701·y i (n-2)
其中ax是N维原始数组,N为数据长度;y2为ax经带阻滤波后的数组,y2(n)是y2的第n个元素。Where a x is the N-dimensional original array, N is the data length; y 2 is the band-stop filtered array of a x , and y 2 (n) is the nth element of y 2 .
步骤4:利用步骤3所得的所述数据3进行递推位姿解算,获取试验过程中有效时间内的飞行器模型六自由度位姿信息。Step 4: Use the data 3 obtained in step 3 to perform recursive pose calculation, and obtain the six-degree-of-freedom pose information of the aircraft model within the valid time during the test process.
具体地,如图2所示:Specifically, as shown in Figure 2:
利用步骤3所得的所述数据3进行递推位姿解算,获取试验过程中有效时间内的飞行器模型六自由度位姿信息包含如下步骤:Use the data 3 obtained in step 3 to perform recursive pose calculation, and obtain the six-degree-of-freedom pose information of the aircraft model within the valid time during the test process, including the following steps:
a、定义惯性器件x轴在模型铅垂面内指向模型前方,z轴在模型铅垂面内指向模型下方,y轴与x、z轴成右手系指向模型右侧。惯性传感器轴系定义与模型一致。初始化解算参数,本实施例参数设定如下:比例常数Kp=2.5,积分常数Ki=0.001,时间常数T=0.005,四元数初始值q=[q0 q1 q2 q3]T=[1 0 0 0]T,上角标T代表向量或矩阵转置;误差积分项初始值ei=[eix eiy eiz]T=[0 0 0]T;速度初始值vel=[velx vely velz]T=[0 0 0]T,位置初始值pos=[posx posy posz]T=[0 0 0]T。a. Define that the x-axis of the inertial device points to the front of the model in the vertical plane of the model, the z-axis points to the bottom of the model in the vertical plane of the model, and the y-axis and the x- and z-axes form a right-handed system and point to the right side of the model. The inertial sensor shaft system definition is consistent with the model. Initialize the calculation parameters. The parameters in this embodiment are set as follows: proportional constant K p =2.5, integral constant K i =0.001, time constant T = 0.005, quaternion initial value q = [q 0 q 1 q 2 q 3 ] T =[1 0 0 0] T , superscript T represents vector or matrix transposition; initial value of error integral term e i =[e ix e iy e iz ] T =[0 0 0] T ; initial value of speed vel =[vel x vel y vel z ] T =[0 0 0] T , the position initial value pos=[pos x pos y pos z ] T =[0 0 0] T .
b、将当前时刻三轴陀螺和加速度计数据归一化:b. Normalize the three-axis gyro and accelerometer data at the current moment:
an=a/|a|,gn=g/|g|a n =a/|a|, g n =g/|g|
其中,an=[anx any anz]T为归一化的加速度计数据,gn=[gnx gny gnz]T为归一化的陀螺数据,a=[ax ay az]T为原始三轴加速度计数据,g=[gx gy gz]T为原始三轴陀螺数据,且where, an =[ anx a ny a nz ] T is the normalized accelerometer data, g n = [g nx g ny g nz ] T is the normalized gyro data, a=[a x a y a z ] T is the original three-axis accelerometer data, g=[g x g y g z ] T is the original three-axis gyro data, and
c、计算单位重力向量v=[vx vy vz]T:c. Calculate the unit gravity vector v=[v x v y v z ] T :
其中,gn=[0 0 1]T;为姿态矩阵,根据欧拉角旋转序列的不同,一共有12种表示,可选择任意一种,之后的解算均需以此旋转序列为准。本实施例中,采用“ZYX”旋转序列,得到如下:Wherein, g n =[0 0 1] T ; is the attitude matrix, according to the different Euler angle rotation sequences, There are a total of 12 representations, any one of which can be selected, and this rotation sequence shall prevail in subsequent solutions. In this embodiment, the "ZYX" rotation sequence is used to obtain as follows:
因此,可得到v=[vx vy vz]T的分量表达式:Therefore, the component expression of v=[v x v y v z ] T can be obtained:
vx=2(q1q3-q0q2)v x =2(q 1 q 3 -q 0 q 2 )
vy=2(q0q1+q2q3)v y =2(q 0 q 1 +q 2 q 3 )
d、计算当前时刻姿态误差e=[ex ey ez]T,并对误差进行积分:d. Calculate the attitude error e=[e x e y e z ] T at the current moment, and integrate the error:
e=an×ve=a n ×v
积分项ei=[eix eiy eiz]T更新如下:The integral term e i =[e ix e iy e iz ] T is updated as follows:
ei(i)=ei(i-1)+KiT·ee i (i)=e i (i-1)+K i T·e
其中,ei(i-1)代表上一时刻的误差积分项,具体计算结果如下:Among them, e i (i-1) represents the error integral term at the previous moment, and the specific calculation results are as follows:
ex=any*vz-anz*vy e x = a ny *v z -a nz *v y
ey=anz*vx-anx*vz e y =a nz *v x -a nx *v z
ez=anx*vy-any*vx e z =a nx *v y -a ny *v x
eix(i)=eix(i-1)+Ki*ex*Te ix (i)=e ix (i-1)+K i *e x *T
eiy(i)=eiy(i-1)+Ki*ey*Te iy (i)=e iy (i-1)+K i *e y *T
eiz(i)=eiz(i-1)+Ki*ez*Te iz (i)=e iz (i-1)+K i *e z *T
e、修正陀螺零偏:e. Correct the zero offset of the gyro:
gnr=gn+Kp·e+ei(i)g nr =g n +K p ·e+e i (i)
其中,gnr=[gnrx gnry gnrz]T是修正后的陀螺数据。具体计算结果如下:Wherein, g nr =[g nrx g nry g nrz ] T is the corrected gyro data. The specific calculation results are as follows:
gnrx=gnx+Kp*ex+eix(i)g nrx =g nx +K p *e x +e ix (i)
gnry=gny+Kp*ey+eiy(i)g nry =g ny +K p *e y +e iy (i)
gnrz=gnz+Kp*ez+eiz(i)g nrz =g nz +K p *e z +e iz (i)
f、更新四元数并对四元数归一化f. Update the quaternion and normalize the quaternion
q(i)=q(i-1)+TΩq(i-1)q(i)=q(i-1)+TΩq(i-1)
其中,in,
展开如下:Expand as follows:
q0(i)=q0(i-1)+(-q1(i-1)gnrx-q2(i-1)gnry-q3(i-1)gnrz)T/2q 0 (i)=q 0 (i-1)+(-q 1 (i-1)g nrx -q 2 (i-1)g nry -q 3 (i-1)g nrz )T/2
q1(i)=q1(i-1)+(q0(i-1)gnrx+q2(i-1)gnrz-q3(i-1)gnry)T/2q 1 (i)=q 1 (i-1)+(q 0 (i-1)g nrx +q 2 (i-1)g nrz -q 3 (i-1)g nry )T/2
q2(i)=q2(i-1)+(q0(i-1)gnry-q1(i-1)gnrz+q3(i-1)gnrx)T/2q 2 (i)=q 2 (i-1)+(q 0 (i-1)g nry -q 1 (i-1)g nrz +q 3 (i-1)g nrx )T/2
q3(i)=q3(i-1)+(q0(i-1)gnrz+q1(i-1)gnry-q2(i-1)gnrx)T/2q 3 (i)=q 3 (i-1)+(q 0 (i-1)g nrz +q 1 (i-1)g nry -q 2 (i-1)g nrx )T/2
对四元数归一化得到qn(i)=[q1n(i) q2n(i) q3n(i) q4n(i)]T Normalize the quaternion to get q n (i)=[q 1n (i) q 2n (i) q 3n (i) q 4n (i)] T
qn(i)=q(i)/|q(i)|q n (i)=q(i)/|q(i)|
其中in
g、利用更新的四元数求解飞行器模型姿态。更新公式由步骤c确定的旋转序列决定。旋转序列不同,姿态角的计算方法不同。根据“ZYX”旋转序列,分别计算出飞行器模型的滚转角俯仰角θ以及侧偏角ψ如下:g. Use the updated quaternion to solve the attitude of the aircraft model. The update formula is determined by the rotation sequence determined in step c. The rotation sequence is different, and the calculation method of the attitude angle is different. According to the "ZYX" rotation sequence, the roll angle of the aircraft model is calculated respectively The pitch angle θ and the sideslip angle ψ are as follows:
θ=-arcsin(2q1n(i)q3n(i)+2q0n(i)q2n(i))θ=-arcsin(2q 1n (i)q 3n (i)+2q 0n (i)q 2n (i))
h、计算地平坐标系下的飞行器模型三轴加速度:h. Calculate the three-axis acceleration of the aircraft model in the horizon coordinate system:
其中ane=[anex aney anez]T,ge为当地重力加速度,本发明取ge=9.81,具体结果计算如下:where a ne = [a nex a ney a nez ] T , g e is the local gravitational acceleration, and the present invention takes g e =9.81, and the specific results are calculated as follows:
i、计算地平坐标系下的飞行器模型三轴速度vel=[velx vely velz]T并滤波:i. Calculate the three-axis velocity vel=[vel x vel y vel z ] T of the aircraft model under the horizon coordinate system and filter:
velx(i)=velx(i-1)+anex·Tvel x (i)=vel x (i-1)+a nex ·T
vely(i)=vely(i-1)+aney·Tvel y (i)=vel y (i-1)+a ney ·T
velz(i)=velz(i-1)+anez·Tvel z (i)=vel z (i-1)+a nez ·T
对速度进行高通滤波,目的是去除偏置误差:The velocity is high-pass filtered to remove bias errors:
velf(i)=Fil1(vel(i))vel f (i) = Fil 1 (vel (i))
其中,Fil1(*)是设计的高通滤波器,本实施例选取通频带截止频率为0.1Hz。Wherein, Fil 1 (*) is a designed high-pass filter, and the cut-off frequency of the pass-band is selected as 0.1 Hz in this embodiment.
j、计算地平坐标系下的飞行器模型三轴位置pos=[posx posy posz]T并滤波:j. Calculate the three-axis position of the aircraft model in the horizon coordinate system pos=[pos x pos y pos z ] T and filter:
posx(i)=posx(i-1)+velfx(i)pos x (i)=pos x (i-1)+vel fx (i)
posy(i)=posy(i-1)+velfy(i)pos y (i)=pos y (i-1)+vel fy (i)
posz(i)=posz(i-1)+velfz(i)pos z (i)=pos z (i-1)+vel fz (i)
对位置进行高通滤波,目的是去除偏置误差:The position is high-pass filtered to remove bias errors:
posf(i)=Fil2(pos(i))pos f (i) = Fil 2 (pos (i))
其中,Fil2(*)是设计的高通滤波器,本实施例选取通频带截止频率为0.1Hz。Wherein, Fil 2 (*) is a designed high-pass filter, and the cut-off frequency of the pass band is selected as 0.1 Hz in this embodiment.
k、返回步骤b,迭代计算,直至获取有效数据时间内的飞行器模型位置姿态信息,解算结束。k. Return to step b, and iteratively calculate until the position and attitude information of the aircraft model within the valid data time is obtained, and the calculation ends.
本发明公开的一种内嵌式风洞自由飞试验模型位姿获取方法,应用于基于惯性传感器的内嵌式风洞自由飞试验模型位姿测量系统中。采用低通滤波去除加速度计振动干扰,同时采用带阻滤波针对性去除风洞气流的脉动干扰。利用滤波后的惯性传感器数据进行惯性解算,得到飞行器模型的位置、姿态六自由度信息。本方法位姿解算精度满足试验要求,普适性较强,为风洞自由飞试验飞行器模型位姿获取提供一种解决方案。The invention discloses a method for acquiring the pose of an embedded wind tunnel free flight test model, which is applied to an inertial sensor-based embedded wind tunnel free flight test model pose measurement system. Low-pass filtering is used to remove the vibration interference of the accelerometer, and band-stop filtering is used to specifically remove the pulsating interference of the wind tunnel airflow. Using the filtered inertial sensor data for inertial calculation, the position and attitude six degrees of freedom information of the aircraft model are obtained. The accuracy of the pose calculation of this method meets the test requirements and has strong universality.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: The technical solutions described in the foregoing embodiments can still be modified, or some or all of the technical features thereof can be equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the embodiments of the present invention. scope.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011565410.2A CN112577706B (en) | 2020-12-25 | 2020-12-25 | Method for acquiring pose of embedded wind tunnel free flight test model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011565410.2A CN112577706B (en) | 2020-12-25 | 2020-12-25 | Method for acquiring pose of embedded wind tunnel free flight test model |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112577706A true CN112577706A (en) | 2021-03-30 |
CN112577706B CN112577706B (en) | 2022-05-27 |
Family
ID=75139761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011565410.2A Active CN112577706B (en) | 2020-12-25 | 2020-12-25 | Method for acquiring pose of embedded wind tunnel free flight test model |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112577706B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113155405A (en) * | 2021-04-27 | 2021-07-23 | 中国空气动力研究与发展中心设备设计与测试技术研究所 | Wind tunnel test attack angle mechanism pose parameter tracing method |
CN113350067A (en) * | 2021-07-20 | 2021-09-07 | 邢康林 | Intelligent cushion based on inertial sensor and sitting posture classification method |
CN113639954A (en) * | 2021-10-18 | 2021-11-12 | 中国空气动力研究与发展中心高速空气动力研究所 | Model inclination angle measuring device suitable for 1-meter-scale high-speed wind tunnel test |
CN114754973A (en) * | 2022-05-23 | 2022-07-15 | 中国航空工业集团公司哈尔滨空气动力研究所 | Wind tunnel force measurement test data intelligent diagnosis and analysis method based on machine learning |
CN114964311A (en) * | 2022-05-13 | 2022-08-30 | 山东新一代信息产业技术研究院有限公司 | IMU zero offset processing method |
CN116499696A (en) * | 2023-06-28 | 2023-07-28 | 中国航空工业集团公司沈阳空气动力研究所 | Method for improving dynamic accuracy of attitude angle of wind tunnel model test model |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106643737A (en) * | 2017-02-07 | 2017-05-10 | 大连大学 | Four-rotor aircraft attitude calculation method in wind power interference environments |
CN108827313A (en) * | 2018-08-10 | 2018-11-16 | 哈尔滨工业大学 | Multi-mode rotor craft Attitude estimation method based on extended Kalman filter |
US20190204123A1 (en) * | 2018-01-03 | 2019-07-04 | General Electric Company | Systems and methods associated with unmanned aerial vehicle targeting accuracy |
CN111413064A (en) * | 2020-03-27 | 2020-07-14 | 智方达(天津)科技有限公司 | Response measurement method for aircraft model in wind tunnel |
CN112014062A (en) * | 2020-08-19 | 2020-12-01 | 中国航天空气动力技术研究院 | Pose measurement system and measurement method for wind tunnel free flight test model |
-
2020
- 2020-12-25 CN CN202011565410.2A patent/CN112577706B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106643737A (en) * | 2017-02-07 | 2017-05-10 | 大连大学 | Four-rotor aircraft attitude calculation method in wind power interference environments |
US20190204123A1 (en) * | 2018-01-03 | 2019-07-04 | General Electric Company | Systems and methods associated with unmanned aerial vehicle targeting accuracy |
CN108827313A (en) * | 2018-08-10 | 2018-11-16 | 哈尔滨工业大学 | Multi-mode rotor craft Attitude estimation method based on extended Kalman filter |
CN111413064A (en) * | 2020-03-27 | 2020-07-14 | 智方达(天津)科技有限公司 | Response measurement method for aircraft model in wind tunnel |
CN112014062A (en) * | 2020-08-19 | 2020-12-01 | 中国航天空气动力技术研究院 | Pose measurement system and measurement method for wind tunnel free flight test model |
Non-Patent Citations (1)
Title |
---|
杨天茂等: "基于三轴陀螺仪的飞行器自动飞行控制", 《信息技术》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113155405A (en) * | 2021-04-27 | 2021-07-23 | 中国空气动力研究与发展中心设备设计与测试技术研究所 | Wind tunnel test attack angle mechanism pose parameter tracing method |
CN113350067A (en) * | 2021-07-20 | 2021-09-07 | 邢康林 | Intelligent cushion based on inertial sensor and sitting posture classification method |
CN113350067B (en) * | 2021-07-20 | 2022-04-12 | 邢康林 | Intelligent cushion based on inertial sensor and sitting posture classification method |
CN113639954A (en) * | 2021-10-18 | 2021-11-12 | 中国空气动力研究与发展中心高速空气动力研究所 | Model inclination angle measuring device suitable for 1-meter-scale high-speed wind tunnel test |
CN113639954B (en) * | 2021-10-18 | 2021-12-28 | 中国空气动力研究与发展中心高速空气动力研究所 | Model inclination angle measuring device suitable for 1-meter-scale high-speed wind tunnel test |
CN114964311A (en) * | 2022-05-13 | 2022-08-30 | 山东新一代信息产业技术研究院有限公司 | IMU zero offset processing method |
CN114754973A (en) * | 2022-05-23 | 2022-07-15 | 中国航空工业集团公司哈尔滨空气动力研究所 | Wind tunnel force measurement test data intelligent diagnosis and analysis method based on machine learning |
CN116499696A (en) * | 2023-06-28 | 2023-07-28 | 中国航空工业集团公司沈阳空气动力研究所 | Method for improving dynamic accuracy of attitude angle of wind tunnel model test model |
CN116499696B (en) * | 2023-06-28 | 2023-08-22 | 中国航空工业集团公司沈阳空气动力研究所 | Method for improving dynamic accuracy of attitude angle of wind tunnel model test model |
Also Published As
Publication number | Publication date |
---|---|
CN112577706B (en) | 2022-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112577706B (en) | Method for acquiring pose of embedded wind tunnel free flight test model | |
CN108592952B (en) | Simultaneous calibration of multi-MIMU errors based on lever arm compensation and forward and reverse rate | |
CN110207697B (en) | Inertial navigation resolving method based on angular accelerometer/gyroscope/accelerometer | |
CN109682377B (en) | A Pose Estimation Method Based on Dynamic Step Gradient Descent | |
CN109974714B (en) | A Sage-Husa Adaptive Unscented Kalman Filter Attitude Data Fusion Method | |
CN106643737B (en) | Four-rotor aircraft attitude calculation method in wind power interference environment | |
CN106990426B (en) | Navigation method and navigation device | |
CN106017507B (en) | A kind of used group quick calibrating method of the optical fiber of precision low used in | |
CN108731676B (en) | An attitude fusion enhanced measurement method and system based on inertial navigation technology | |
CN111121820B (en) | MEMS inertial sensor array fusion method based on Kalman filtering | |
CN108458714B (en) | A method for solving Euler angles without gravitational acceleration in attitude detection system | |
CN109211231B (en) | A method of projectile attitude estimation based on Newton iteration method | |
CN103712598B (en) | A method for determining the attitude of a small unmanned aerial vehicle | |
CN109211230B (en) | A method for estimating shell attitude and accelerometer constant error based on Newton iteration method | |
CN105300381A (en) | Rapid convergence method based on improved complementary filter for attitude of self-balance mobile robot | |
CN105137804B (en) | A kind of laboratory simulation method for flight attitude disturbance | |
CN113790737B (en) | On-site rapid calibration method of array sensor | |
CN107764261A (en) | A kind of distributed POS Transfer Alignments analogue data generation method and system | |
CN111649747A (en) | An Improved Method of Adaptive EKF Attitude Measurement Based on IMU | |
CN102853834A (en) | High-precision scheme of IMU for rotating carrier and denoising method | |
CN113325865A (en) | Unmanned aerial vehicle control method, control device and control system | |
CN102607591A (en) | Track data generation method for testing strap-down inertial navigation software | |
CN111207734B (en) | EKF-based unmanned aerial vehicle integrated navigation method | |
CN109211232B (en) | A method of projectile attitude estimation based on least squares filtering | |
CN106197376A (en) | Car body obliqueness measuring method based on single shaft MEMS inertial sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |